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Abstract: SSD is a classical single-stage object detection algorithm, which predicts by generating
different scales of feature maps on different convolutional layers. However, due to the problems of
its insufficient non-linearity and the lack of semantic information in the shallow feature maps, as well
as the fact that small objects contain few pixels, the detection accuracy of small objects is significantly
worse than that of large- and medium-scale objects. Considering the above problems, we propose
a novel object detector, self-attention combined feature fusion-based SSD for small object detection
(SAFFE-SSD), to boost the precision of small object detection. In this work, a novel self-attention
module called the Local Lighted Transformer block (2L-Transformer) is proposed and is coupled with
EfficientNetV2-S as our backbone for improved feature extraction. CSP-PAN topology is adopted as
the detection neck to equip feature maps with both low-level object detail features and high-level
semantic features, improving the accuracy of object detection and having a clear, noticeable and
definitive effect on the detection of small targets. Simultaneously, we substitute the normalized
Wasserstein distance (NWD) for the commonly used Intersection over Union (IoU), which alleviates
the problem wherein the extensions of loU-based metrics are very sensitive to the positional deviation
of the small objects. The experiments illustrate the promising performance of our detector on many
datasets, such as Pascal VOC 2007, TGRS-HRRSD and AI-TOD.

Keywords: convolutional neural network; feature fusion; transformer; EfficientNetV2-S; CSP-PAN;
NWD metric; small object detection

1. Introduction

The widespread use of object detection technology has increased with the advancement
of deep learning technology in the military, national defense, transportation, industrial au-
tomation and other fields [1]. Small objects are poorly detected compared with objects of
normal scale due to their low resolution, small coverage in the image, and inadequate feature
expression. Therefore, the question of how to accurately recognize and locate small objects is
a significant topic in the current computer vision field. The criteria for defining small objects
in different scenarios vary, but there are two basic types of current defining methodologies:
(1) definition based on absolute size, where objects of a size less than 32 pixels x 32 pixels are
defined as small objects in the MS COCO dataset; and (2) definition based on relative size,
where an object’s imaging points are less than 80 pixels in a 256 pixels x 256 pixels image
(i.e., a small object is defined as an object whose ratio of the number of pixels occupied by the
object to the total number of pixels in the original image is less than 0.12%).

Existing convolutional neural network (CNN)-based [2] object detection methods can
be divided into two categories, namely, two-stage object detection methods and one-stage
object detection methods. With regard to the two-stage method, a region proposal network
(RPN) and region of interest pooling (Rol pooling) are used first to obtain candidate regions.
Then, classification and regression are performed on the candidate regions to obtain the final
detection results, representing algorithms such as Fast R-CNN [3] and Faster R-CNN [4].
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However, compared with the two-stage method, use of the one-stage object detection
methods offers a more end-to-end strategy. The YOLO series is widely recognized as
one of the most popular detection frameworks in industrial applications. This success is
largely due to its exceptional balance between speed and accuracy. The series’ pioneering
works, YOLOv1-3 [5-7], have paved the way for one-stage detectors and been substantially
improved over time. YOLOvV4 [8] has been a game-changer in this regard, reorganizing
the detection framework into separate parts (backbone, neck, and head) and introducing
the bag-of-freebies and bag-of-specials to design a single-GPU training framework. Today,
efficient detectors such as YOLOV5 [9], YOLOX [10], PPYOLOE [11], and YOLOvV?7 [12] are
credible alternatives for deployment. Different-sized models are often obtained through
scaling techniques. Aiming at the problem of large object scale gap, SSD [13] improves
detection accuracy by setting multiple scales of feature maps for detection without losing
real-time performance. Single-stage object detection models employ VGG-16 as their back-
bone network for feature extraction. To improve detection accuracy, several convolutional
layers are added on top of the backbone network to produce a diverse set of feature maps.
SSDs generate six of these, making them ideal for detecting smaller objects, while the deep
feature maps contain more semantic information, making them suitable for detecting larger
objects. For each input image, SSD utilizes the anchor concept introduced in Faster R-CNN
by setting prior boxes with different scales and aspect ratios. These prior boxes serve as
a reference for predicting the bounding boxes, thus reducing the complexity of training.
Finally, SSD applies non-maximum suppression to generate the ultimate detection results.
However, the problem of small object detection still arises due to the lack of semantic infor-
mation derived from the shallow features and spatial information of deep feature maps.
Hence, several techniques have been proposed by researchers to enhance the semantic
information of the feature maps. ESSD [14] uses transposed convolution to upsample the
feature map once more and then skips to connect feature maps of the same size. This
improves situations where there is a difficulty in classifying due to shallow feature maps.
FFESSD [15] presents a lightweight feature fusion module that integrates several outputs
of the backbone and passes them through the feature pyramid again. This yields new fea-
tures with stronger semantic information. ZHAO applied transposed convolution, dilated
convolution and deformable convolution to improve SSD for multi-scale feature fusion in
terms of receptive field and adaptive object shape [16]. Similar to the above, RSSD [17] also
uses transposed convolution. However, it fuses the outputs of the various stages of the
backbone. In addition, sharing parameters between feature maps becomes feasible when
the channels of the fused feature maps exhibit consistency. Thereafter, in MDSSD [18],
the deeper feature maps are considered to possess richer semantic information, so the
improved model retains more of the backbone. This allows it to make jump connections
over a larger span and finally use elaborate feature fusion modules.

This paper presents SAFF-SSD, an enhanced small object detection algorithm that
is based on SSD and incorporates a transformer model and a multi-scale feature fusion
strategy. As shown in Figure 1, comparisons with another SSD-based object detectors show
that our method achieves the best accuracy on Pascal VOC2007. The structure is illustrated
in Figure 2. To begin, more development is required for the VGG-16 backbone of the original
SSD network’s feature extraction efficiency and capability. Taking into account the fact that
Transformer [19] has good global self-focus modeling capabilities, in our work we seek to
combine Transformer and convolution in the network’s backbone. To this end, we propose
the Local Lighted Transformer block (2L-Transformer) and couple it with the lightweight
neural network EfficientNetV2-S as the new backbone network, in order to achieve a balance
between accuracy and efficiency. Second, SSD only predicts on a single-scale, shallow
feature map, which cannot effectively integrate positional information with semantic
features. Hence, SSD often results in significant false and missed detection rates, particularly
for small items and objects of varying sizes. In order to resolve this issue, CSP-PAN is
incorporated into the SSD. This is a feature fusion approach that improves the accuracy
and stability of detection by integrating feature maps of different sizes and resolutions to
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2L-Transformer+
EfficientNetV2-S
Backbone

offer additional contextual information. With CSP-PAN, the model may leverage input
from several layers concurrently to capture spatial and semantic information about the
object more accurately. This can aid the model in detecting objects with varying sizes
and resolutions and prevent it from being affected by resolution and scale discrepancies,
resulting in a decrease in false and missing detection rates. Finally, the NWD metric [20] is
utilized to overcome the sensitivity of the position variation of the microscopic objects and
dramatically improve the detection performance.
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Figure 1. Comparison with another object detector based on SSD. Our method achieves optimal
accuracy on Pascal VOC2007.

’ .
’

CSP-PAN @ :upsample @:Concatcnation over channel dimension ',

]
' cls.

'

SSD head

’ reg.
—5@7 Cony Conv — . cls
C CSP Block > G l SSD head .
"
1
]

'

— O comw —— Conv | —— B
P

. s reg.

‘

> sppF | ©

Figure 2. Architecture of our proposed method. This is a hybrid feature extraction architecture
designed based on EfficientNet and Transformer, which cleverly uses the variant CSP module to
improve the limitations of bottleneck network feature fusion. Finally, the prediction results are
obtained using several convolutions as the head.

The contributions are summarized as follows:

1. We propose Local Lighted Transformer block (2L-Transformer), a new transformer
module, and integrate it with EfficientNetV2-S as our backbone for improved feature
extraction. On the AI-TOD dataset, an increase of 1.3% in AP is observed when
we replace the original backbone with EfficientNetV2-S. When further embedding
the proposed Transformer block in EfficientNetV2-S, we achieve an additional 1.8%
increase in AP.

2. By optimizing the original bottleneck network on the PAN topology utilizing CSP as

an internal building block, our experiments demonstrate that the optimized model is
more effective in integrating multi-scale features.
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3. We also evaluate the possibility of using the normalized Wasserstein distance (NWD)
as an alternative similarity metric for small targets. Specifically, on the AI-TOD
dataset, the proposed model with NWD has a 14.1% increase in AP compared with the
standard AP baseline. Moreover, on the VOC 2007 dataset, our proposed multi-level
NWD shows better results than the NWD metric.

The rest of the article is arranged as follows: some related works are reviewed in
Section 2. Materials and methods are introduced in Section 3. Section 4 presents the results
of our experiments and discusses their implications. Finally, Section 5 offers a concise
summary of our findings and suggests directions for future research.

2. Related Work
2.1. Feature Pyramid

Pyramidal feature representation is a fundamental building block for solving multi-
scale problems. SSD first tried to use pyramidal features for object detection. FPN [21] use
lateral connections and top-down pathfinding to construct a feature pyramid with strong
semantics. Further, PAN [22] adds bottom-up augmentation based on FPN to improve
information flow. A bidirectional route is repeated several times by EfficientDet [23]
to facilitate higher level feature fusion. In addition to designing the network manually,
NAS-FPN [24] tries to find a stronger feature pyramid structure with the aid of a neural
architectural search.

2.2. Transformers/Self-Attention Mechanism

Transformer is a self-attention-based neural network architecture proposed by
Vaswani et al. [25] in 2017, where the self-attention enables Transformer to weigh the
importance of various input sequence segments when creating the output. Nowadays,
several versions of Transformer models are available, such as the BERT model for pre-
trained language representations [26] and the GPT model for language production [27-29].
These have emerged as highly effective models in the field of natural language processing,
outperforming previous models in various tasks, including machine translation, language
modeling, and text classification. This has further brought Transformer into the focus
of research. The Transformer has become one of the fundamental components of con-
temporary deep learning models. Self-attention layers have been utilized to supplement
backbones [30-34] and head networks [35,36], enabling them to capture distant dependen-
cies or diverse interactions. Moreover, the Transformer’s encoder-decoder architecture has
recently been employed for object detection and instance segmentation tasks [37-40].

2.3. Similarity Metrics

The Intersection over Union metric is commonly employed for measuring the sim-
ilarity between bounding boxes. However, it has limitations in cases where the boxes
do not overlap. To address this limitation Generalized IoU (GloU) [41], which penal-
izes the smallest box converting bounding boxes, is proposed as a solution to this issue.
The degradation from GloU to IoU occurs in cases where one bounding box completely
encloses another.

Consequently, it is suggested that DIoU [42] and CloU [42] be used in order to overcome
the constraints of IoU and GloU. Yang et al. [43] also proposed a Gaussian Wasserstein
distance (GWD) loss for oriented object detection by measuring the positional relationship
of oriented bounding boxes. The goal of GWD is to address the oriented object identification
border discontinuities and square-like difficulty. Moreover, Wang et al. have introduced
the normalized Wasserstein distance (NWD) [20] as a solution to the sensitivity issue of
Intersection over Union (IoU) in measuring the accuracy of object detection algorithms for
small objects.
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3. Materials and Methods

This section will introduce the proposed self-attention combined feature fusion-based
SSD (SAFF-SSD) in detail. Figure 2 displays the SAFF-SSD architectural plan. Sections 3.1
and 3.2 introduce, respectively, the structures of the two essential constituents. The similarity
metric is described in Section 3.3.

3.1. Self-Attention Mechanism

Transformer was initially introduced to address natural language processing (NLP)
problems, but it has also been applied to the computer vision (CV) domain with good
results on many tasks. In order to use Transformer with CV tasks, the self-attention
mechanism of Transformer must first allow for interactions between different locations of
the image, enabling the model to capture dependencies between different regions. Secondly,
the multi-headed self-attention mechanism in Transformer can also process features from
multiple channels simultaneously and combine them into a global representation. However,
spatial structure information cannot be handled by the traditional Transformer. Even more
seriously, image input will raise computational efficiency issues compared with text input.
Therefore, applying Transformer models in the field of object detection remains a challenge.

In view of this, we aim to address this challenge by proposing a novel approach that
combines the Transformer and convolution in the backbone network. This approach can
improve computational efficiency while also leveraging the global self-attention modeling
ability of Transformer. We use EfficientNetV2-5 [44] as the base framework for the backbone.
This is a lightweight and high performance convolutional neural network designed to solve
the conflict between efficiency and accuracy and uses a module called “Squeeze-and-
Excitation (SE)” [45]. Although it may improve detection accuracy, it is only an abbreviated
enhancement or suppression of channels, lacks attention to spatial position, and is not
stable across tasks or datasets. Therefore, SE is not real self-attention. Our proposed 2L-
Transformer module truly combines the self-attention of the transformer with the spatial
invariance of the convolution, and it has worked well in many subsequent experiments.

Let us first review the method of ViT [19]. This divides the image into 16 x 16 patches
and each part is embedded into a vector. It then extracts features by standard transformer,
which is the stacking of several multiheaded self-attention (MSA) modules, a multilayer
perceptron module (MLP) and a layer norm (LN). We consider the module stacked L times
in ViT as a block, named Transformer. The process can be computed as

2
Z0 = |Xclass) x%,E,' x%,E; e X;E} +Epos, E € R® 'C)XD,Eloos € RIN+1)xD

7\=MSA(LN(z, ;) +7_,1=1...L O
z)=MLP(LN(Z'})) +2/|,1=1...L
Y = LN(2Y)

However, this method produces a quadratic multiplication of computational expenses
as the image resolution increases, and the constrained image resolution can have a negative
effect on small object detection. Therefore, we present an improved module.

The Local Lighted Transformer block (2L-Transformer) is shown in Figure 3. To start
with, we split the feature map into two parts according to the channels. Subsequently,
one part does window local self-attention [46], which is to extract features within the
window. For the other part, embedding is first implemented using dilation convolution,
followed by global self-attention to interoperate information between windows. Next,
we reshape the output of both branches to the original size, where the globally attended
branch is downsampled and requires additional upsampling. Finally, we concatenate the
output of the two branches according to the channel. At the same time, to preserve spatial
location information and ensure valid gradients, we also design a shortcut from the input
to the output [47]. After that, smoothing is performed using standard convolutional layers
(Conv + BN + SiLu). Our module can be computed as
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Figure 3. Architecture of our proposed Local Lighted Transformer block (2L-Transformer).

3.2. Feature Fusion Strategy
3.2.1. Spatial Pyramid Pooling-Fast

After the forward process consisting of standard convolution, each point on the feature
map corresponds to a certain fixed small region of the original image. On scenes as complex
as we can foresee—where small objects appear simultaneously with large ones—this fixed
correspondence limits the model’s capacity for detection. Therefore, in our work, inspired
by the Spatial Pyramid Pooling (SPP) module proposed in Spatial Pyramid Pooling in Deep
Convolutional Networks for Visual Recognition by K. He [48], we add the Spatial Pyramid
Pooling-Fast block after the backbone. As illustrated in Figure 4, we integrate local features
by concatenating the maximum pooling outputs of different kernel sizes. Furthermore,
doing so will enrich the expressiveness of the feature map. It is effective when there are
large differences in object sizes, and it does not require additional parameters that need
training. It is worth mentioning that stacking pooling layers with small kernel sizes gives
exactly the same results and significantly reduces the computational cost when compared
with the direct use of pooling layers with large kernel sizes.

fully-connected layers (fcs, fc7)

fixed-length representation

s N\

,
/ spatial pyramid
y  pooling layer

: feature maps of convs
window /

ﬁ* convolutional layers
input image

Figure 4. SPP-net for object detection [48]. Pooling features from arbitrary windows on feature maps. The
feature maps are computed from the entire image, and the pooling is performed in candidate windows.
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3.2.2. Path Aggregation Network

Figure 5a shows the detailed structure of the PANet proposed by Liu et al. To improve
performance, it conducts path augmentation and aggregation. Specifically, the position
features present in the shallow layers are gradually blurred or even lost as the feature
extraction goes deeper. Considering this, bottom-up path augmentation is added, which
will allow the combination of positional features at the shallow layers with semantic
features at the deeper layers. PAN is an extension of FPN, which defines layers producing
feature maps with the same spatial size as belonging to the same network stage, with each
stage corresponding to a feature level. And PAN uses a set notation to denote the feature
levels generated by FPN, specifically {P1, P, P3}. The enhancement path starts from the
lowest level P and progresses towards P3, as illustrated in Figure 5a. From P to P, the
spatial size is progressively downsampled by a factor of 2. We use {N7, Ny, N3} to denote
the newly generated feature maps that correspond to {P;, Py, P3}. Note that Nj is just
P, without any modification. Each building block acquires a higher resolution feature
map Ni and a coarser feature map P;j;; through lateral concatenation and generates a
new feature map Nj, 1. Each feature map N; is first passed through a 3 x 3 convolutional
layer with step size 2 to reduce the space size. Then, each element of the feature map P4
and the downsampled map are joined laterally by summation. After obtaining the fused
feature maps, a 3 x 3 convolutional layer is applied to generate the next feature map, Nj;1.
This is an iterative process that terminates after approaching P3. A rectified linear unit
(ReLU) activation function follows each convolutional layer. Subsequently, the object is
then detected on {N7, N, N3}.

(b)

Figure 5. Illustrations of (a) PAN and (b) cross stage partial PAN (CSP-PAN), showing the flow of
feature maps. The leftmost three circles represent the extracted features from the backbone. Then,
starting from the last feature, the map flows from top to bottom (upsampling + fusion), and then
from bottom to top (downsampling + fusion).

3.2.3. Cross Stage Partial-PAN

While adding the PAN module as the neck of the model (which is very lightweight
compared with the backbone) does work, doing so can cause problems when we consider
improving it. Generally, to improve the performance, increasing the depth and width of
the network is considered the most straightforward approach. However, if we do this,
issues such as parameter bloat, overfitting, reduced gradient stability, and difficulty in
convergence will follow. One paper, which goes deeper with convolutions [49], reports the
assembly of multiple convolution or pooling operations into modules and the building of
a network. The networks designed in this way reached a much higher level at that time.
Inspired by this, we expanded the standard convolutional layer into multiple branches
in the neck part of the network. However, unlike inception [50], we did notusea 1 x 1
convolution to reduce the number of channels. Instead, we directly split the input into two
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parts by channel. We have found that this has a minimal effect on the results while saving
a considerable number of parameters.

The architecture of CSP-PAN is shown in Figure 5b. The modified CSP-PAN embeds
the CSP-block [50], which has the structure shown in Figure 6a. In one CSP-block, the
feature map in a stage is split into two parts through channel X, = [X{, X;]. Between X,
and X, the former goes through one ConvBNSiLu layer, and is then directly connected
to the end of the stage, and the latter goes through one ConvBNSiLu layer and some
bottlenecks. The output of these parts will be concatenated and passed through another
ConvBNSiLu layer, until it finally generates output Xi;. Unlike the original CSP, we have
found that concatenating each bottleneck layer to the output results in better performance.

_________________________________________________

A

ConvB

y

NSiLU

ConvBNSiLU
ConvBNSIiLU
BottleNeck
BottleNeck < 3 5
v \
BottleNeck
ConvBNSIiLU

CBS

-block

> .
»IConcatenation

ConvBNSIiLU

BottleNeck

Figure 6. Illustrations of (a) CSP-block and (b) bottleneck. Unlike the original CSP structure, each output
of the bottleneck network on the main branch in the variant CSP structure will be concatenated together.

3.3. Similarity Metric

IoU is actually the Jaccard similarity coefficient for computing similarity of two limited
sample sets. According to this fact, in [20], Wang proposed a novel metric for small objects
using Wasserstein distance, which can better reflect the distance between distributions
even if they have no overlap. Compared with Iol, this metric has better properties for
measuring the similarity between small objects. Normalized Wasserstein distance is a
distance metric that utilizes the Wasserstein distance, derived from Optimal Transport
theory, to measure the distance between probability distributions. When comparing two 2D
Gaussian distributions denoted by y; = N (my,%1) and pp = N (my, %), the second order
Wasserstein distance can be used to quantify their distance from one another as follows:

W11, 1) = | — ma 34T (2482 — 2525, 25/%)12) ©)
and it can be simplified as:
2 2 |Isv2 _v32
W3 (1, p2) = llmy = mal 3+ =7 — 23113, @

where ||+ || is the Frobenius norm.
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Furthermore, for Gaussian distributions A, and M, which are modeled from bound-
ing boxes A = (cxa,cy,, Wa, ha) and, B = (cxy,, ¢y}, Wp, hy, ), respectively, Equation (4) can
be simplified as:

wa hall wp hy T
Wi ) = exw ey 52 2 oxen, 52, 5| 1B ®)

An exponential form normalization is applied to Wasserstein distance, resulting in a
new metric known as normalized Wasserstein distance (NWD):

W%(Na/Nb))

NWD(N,, Np) = exp (— C p

©
where C is a constant that has a strong connection to the dataset.

In addition, the NWD metric has a single hyperparameter C that is strongly dependent
on the dataset, making it difficult for model training in multi-scale object detection tasks. To
address this issue, we expanded the normalized Wasserstein distance (NWD) to multi-level
NWD. The process of setting the hyperparameters for the multi-level NWD is shown in
Figure 7. First, we categorized objects in the training set into three groups based on their
length, corresponding to the three detection heads in object detection. Next, we computed
the NWD metric for various scales based on the origin of the predicted bounding boxes.
This direct approach has been effective in bringing the NWD performance in multi-scale
object detection tasks closer to that of IoU.

! multi-level NWD
_— >

' clustering
§—>

Figure 7. The process of setting the hyperparameters for the multi-level NWD. In the clustering
process, we cluster objects based on their length and width in the training set and use the average
length of objects within the same cluster as the hyperparameter. For example, in the image, cluster C;
corresponds to larger objects.

4. Results
4.1. DataSet

Three publicly available object-detection datasets are used to evaluate the proposed
methods in the experiments. Some examples, the Pascal VOC 2007 [51], TGRS-HRRSD [52],
and AI-DOT [53], are shown in Figure 8.

The first dataset is Pascal VOC 2007 which is a benchmark dataset for object detection
and has been extensively used for evaluating object detection models. It was introduced
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as part of the PASCAL Visual Object Classes Challenge in 2007 and has since become
a standard benchmark for evaluating the performance of computer vision algorithms.
The dataset consists of over 5000 images, each of which is annotated with object class
labels and bounding box coordinates for up to 20 object categories, including people, cars,
and animals.

Figure 8. The figure showcases example images from three experimental datasets, with examples
from (a) Pascal VOC 2007, (b) TGRS-HRRSD, and (c) AI-TOD displayed in the top, middle, and
bottom rows, respectively.

The second dataset is TGRS-HRRSD, which was published by the University of Chinese
Academy of Sciences in 2019. The spatial resolution of the 21,761 image samples in the TGRS-
HRRSD, which ranges from 0.15 m to 1.2 m, were collected from Google Earth and Baidu Map.
There are 55,740 object instances total, divided across 13 object categories. The TGRS-HRRSD
dataset contains occlusion levels and truncation rates, which are key factors in evaluating the
performance of small object detection models and makes it a more accurate measure of small
object detection model performance in challenging real-world scenarios.

The third dataset is AI-TOD. This is a recent addition to the family of object detection
datasets, with a focus on small objects. The dataset comprises 4280 images with an average
absolute size of instances of only 12.8 pixels, which is much smaller than other datasets such as
PASCAL VOC (156.6 pixels), MS COCO (99.5 pixels) [54], or DOTA (55.3 pixels) [55], and which
makes it one of the smallest object detection datasets. The dataset presents a challenging task
for object detection models due to the extremely small object size and limited number of pixels
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available for each object instance. Therefore, it serves as a valuable benchmark for evaluating
the performance of object detection models when detecting small objects.

4.2. Experimental Setup

To compare the performance of the proposed method, we evaluate it against several
algorithms. Among these, SSD [13], YOLOv3 [7], YOLOvV4 [8], RetinaNet [56], YOLOv6-
M [57] are one-stage methods. In addition, the FoveaBox [58] and YOLOvS8n [59] are
anchor-free methods. Some algorithms of remote sensing are EFNet [60] and HRCNN-
regression [52]. Due to the unavailability of public codes, the main sources for various
experimental results of domain algorithms are already published references.

In the object detection experiments, we use the following default hyper-parameters:
the optimizer is SGD and a step decay learning rate scheduling strategy is used with
an initial learning rate of 0.01, multiplied by a factor of 0.1 at 50 and 100 epochs. The
architecture uses a single GPU to perform training with a batch size of 8 due to GPU
memory limitations. The momentum is set to 0.95 with the weight decay set to 0.0005. All
experiments are run with an NVIDIA RTX 3080ti GPU.

4.3. Evaluation Metric

The average precision (AP) and its derivative metrics are adopted to quantitatively
evaluate the proposed method. The AP is a comprehensive metric in the task of object
detection and is based on the precision and recall of Equations (7) and (8).

. TP
precision = TP L EP’ (7)
TP
recall = TP EN' 8)

where the terms TP, FP, and FN are true positives, false positives, and false negatives,
respectively. The terms TP, FP, and FN are calculated from the Intersection over Union
(IoU) between the bounding boxes of ground-truth and the bounding boxes of prediction
as follows:

foug = Dpred M Bt 9

B pred UB gt

where B,y denotes the bounding box of prediction, and By is the bounding box of
ground-truth. The standard HRRSD metrics include AP, APy 5, APg 75, APs, APy, and AP;.
AP denote AP at IoU = 0.50:0.05:0.95 (average over IoU thresholds), APy5 denotes AP at
IoU = 0.50 (equally to PASCAL VOC metric). APy 75 denotes AP at IoU = 0.75 (very strict
metric). APs denotes AP for small objects whose areas are smaller than 322, AP,, denotes
AP for small objects whose areas are between 322 and 962. AP; denotes AP for large objects
whose areas are bigger than 962. In addition, APy, AP;, APs, AP,, are APs for very tiny,
tiny, and small medium scales, respectively. For the detection of multi-category objects,
the AP usually denotes mean average precision (mAP) which is obtained by the average of
different category APs.

4.4. Results and Analysis

The details of the experimental findings are presented in this section. The quantitative
results of the comparative methods are shown in Tables 1-3, and qualitative results are
illustrated in Figures 9-11. We apply mAP to be evaluation metric, which is a widely used
standard in the field of object detection. Therefore, it allows direct comparison of the
performance of different models or mechanisms.
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Table 1. Results of comparative approaches for object detection on Pascal VOC 2007. In natural
scenes, our algorithm yields performances that are almost on par with the state-of-the-art one-stage
algorithm yolové6. Nevertheless, our approach still boasts highly satisfactory results in this context.

Method Backbone Input Size mAP
SSD300 VGG-16 300 x 300 77.2
SSD512 VGG-16 512 x 512 79.8
ESSD [14] VGG-16 300 x 300 78.7
ESSD [14] VGG-16 512 x 512 81.7
RSSD [17] VGG-16 300 x 300 78.5
RSSD [17] VGG-16 512 x 512 80.8
FFESSD [15] VGG-16 300 x 300 79.1
FFESSD [15] VGG-16 512 x 512 80.9
MDSSD [18] VGG-16 300 x 300 78.6
MDSSD [18] VGG-16 512 x 512 81.0
YOLOvV6-M [57] EfficientRep 640 x 640 86.0
YOLOVSn [59] Darknet 640 x 640 80.2
DETR [39] Transformer Encoder 640 x 640 82.6
Ours300 VGG-16 300 x 300 79.9
Ours512 VGG-16 512 x 512 82.4
Ours300 2L-Transformer+EfficientNetV2-S 300 x 300 82.2
Ours512 2L-Transformer+EfficientNetV2-S 512 x 512 849

Table 2. Results of comparative approaches for object detection on TGRS-HRRSD. Although many
algorithms can detect most of the targets in TGRS-HRRSD based on APy 5, our approach stands out
by achieving superior overall performance and demonstrating particular strengths in detecting small

targets (APs).

Method Backbone AP APys5 APgy7s AP AP,, AP,

HRCNN-regression [52] AlexNet / 51.4 / / / /
YOLO-v4 CSPDarknet-53 59.9 89.7 68.3 11.2 50.1 58.2
YOLOvV3-608 Darknet-53 59.4 89.0 66.8 10.6 48.3 55.6
RetinaNet ResNet-50 59.6 89.3 67.7 10.9 49.2 57.4
EFNet [60] ResNet-50 62.2 90.7 71.7 124 53.5 60.2
SSD512 VGG-16 52.7 87.3 57.4 9.5 421 51.7
FoveaBox Resnet-50 61.8 90.4 70.6 184 51.8 58.7
SSD512 EfficientNetV2-S 53.4 88.0 62.1 9.6 435 53.8
YOLOvV6-M [57] EfficientRep 62.9 91.4 71.2 18.3 54.0 61.2
YOLOVS8n [59] Darknet 61.3 90.4 70.7 18.0 53.1 59.3
DETR [39] Transformer Encoder 58.8 88.5 69.5 145 53.5 61.8

2L-Transformer+

Ours512 EfficiontNetV2.S 63.2 91.1 72.2 20.4 53.8 60.6
Table 3. Results of comparative approaches for object detection on AI-TOD. Unlike object detection
in daily life, detecting objects in aerial images is more challenging and so fully demonstrates the
advantages of our approach.

Method Backbone AP APys5 APy75 AP, AP; AP AP,
SSD512 [13] ResNet-50 7.0 21.7 2.8 1.0 47 115 13.5
TridentNet [61] ResNet-50 7.5 209 3.6 1.0 5.8 12.6 14.0
FoveaBox [58] ResNet-50 8.1 19.8 51 0.9 58 134 15.9
RepPoints [62] ResNet-50 9.2 23.6 53 2.5 9.2 12.9 14.4
FCOS [63] ResNet-50 9.8 24.1 59 14 8.0 15.1 17.4
M-CenterNet [53] DLA-34 145 40.7 6.4 6.1 15.0 19.4 20.4
RetinaNet ResNet-50 47 13.6 21 2.0 54 6.3 7.6
ATSS [64] ResNet-50 12.8 30.6 8.5 1.9 11.6 19.5 29.2
Faster R-CNN ResNet-50 111 26.3 7.6 0.0 7.2 233 33.6
Cascade R-CNN [65] ResNet-50 13.8 30.8 10.5 0.0 10.6 255 36.6
DetectorRS [66] ResNet-50 14.8 32.8 114 0.0 10.8 28.3 38.0
SSD512 EfficientNetV2-S 6.9 214 2.7 0.8 47 11.0 13.5
YOLOv6-M [57] EfficientRep 16.3 37.9 12.1 2.6 10.2 30.5 40.2
YOLOVS8n [59] Darknet 14.9 328 11.6 2.0 9.8 26.4 33.6
DETR [39] Transformer 106 26.4 74 0.0 6.7 20.5 35.2
Encoder
Ours 2L-Transformer+ 211 49.9 149 7.0 208 30.1 38.8

EfficientNetV2-S
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(d)

Figure 9. Qualitative examples of small object scene detection on Pascal VOC 2007. (a) Qualitative
example of image 1. (b) Qualitative example of image 2. (c) Qualitative example of image 3.
(d) Qualitative example of image 4. Each row, from left to right, represents the image that needs to be
detected with labels, the SSD algorithm’s detection result, and our proposed algorithm’s detection
result, respectively.
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Figure 10. Qualitative examples of small object scene detection on TGRS-HRRSD. (a) Qualitative
example of image 1. (b) Qualitative example of image 2. (c) Qualitative example of image 3. Each
row, from left to right, represents the image that needs to be detected with labels, the SSD algorithm’s
detection result, and our proposed algorithm’s detection result, respectively.

For the Pascal VOC 2007, based on Table 1, it can be observed that when the input
size is 512 x 512, our method outperforms the classical SSD algorithm (baseline) with
5.1% improvement in mAP, and also outperforms other improved SSD methods such as
FSSD, RSSD, DSSD, and MDSSD. Although we design SAFF-SSD for small object detection,
it still achieves good results in VOC, outperforming YOLOv8n [59] and second only to
YOLOvV6-M [57]. This proves that the proposed SAFF-SSD is a promising method.

For the TGRS-HRRSD, it can be observed, based on Table 2, that our method achieves
the best results on the TGRS-HRRSD dataset, outperforming methods such as RetinaNet [56]
and YOLOv4 [8], and, with regard to APs, beating the second-best, FoveaBox [58], by 2.0%,
showing the advantage for small object detection.
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(d)

Figure 11. Qualitative examples of small object scene detection on AI-TOD. (a) Qualitative example
of image 1. (b) Qualitative example of image 2. (c) Qualitative example of image 3. (d) Qual-
itative example of image 4. Each row, from left to right, represents the image that needs to be
detected with labels, the SSD algorithm’s detection result, and our proposed algorithm’s detection
result, respectively.

For the AI-TOD, and based on Table 3, it becomes apparent that AP, of current
state-of-the-art detectors tends towards zero, which indicates that they are not suitable for
producing satisfactory results on tiny objects. In addition, our proposed detectors surpass
the AP; metric of SSD [13], TridentNet [61], FoveaBox [58], RepPoints [62], FCOS [63] and
M-CenterNet [53] by 16. 1%, 15.0%, 15. 0%, 11.6% and 12.8%, respectively. Notably, our
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proposed method achieves state-of-the-art performance (21.1% AP) on the AI-TOD dataset
among one-stage detectors, particularly in cases where objects are extremely small. This
indicates a significant improvement in performance compared with existing models.

Figures 9-11 show visual comparison of the detection performance of the SSD algo-
rithm and the proposed algorithm. Each row, from top to bottom, represents the image that
needs to be detected with labels, the SSD algorithm’s detection result, and our proposed
algorithm’s detection result, respectively. From these figures, it can be seen that SSD is very
prone to miss detection in images with complex scenes and dense objects. The proposed
algorithm uses a transformer block to enhance the features and focus more on the spatial lo-
cation information of small objects, and combines feature fusion to strengthen the semantic
information of the feature map, thus effectively locating and detecting dense small object
objects and reducing the phenomenon of missed detection, thus proving the superiority of
the proposed algorithm in detecting dense small objects in a high-resolution image.

4.5. Ablation Study
4.5.1. Influence of Local Lighted Transformer Module

To demonstrate the efficacy of the proposed algorithm, we have chosen to perform
ablation experiments on several datasets, such as AI-TOD. This also helps us to further
analyze the degree of impact of each module on the detection performance. Among these
datasets, AI-TOD is designed for evaluating the performance of the challenging task of
small object detection. The average absolute size of the instances in this dataset is only
12.8 pixels, which makes it appropriate for performance testing of small object detectors.

We propose an efficient, lightweight, local self-attention 2L-Transformer module and
have replaced some of the modules in the backbone network EfficientNetV2-S. To provide
a more intuitive and clear analysis of the effect of the proposed attention module, a heat
map is generated and visualized for a scene with small objects, when the input image size
is set to 512 x 512. The 2L-Transformer module’s detecting impact is shown in Figure 12. It
is evident that the area of interest is more accurately objected to the small object, which
effectively avoids the missed detection and improves the detection accuracy of small objects.
Table 4 presents the results of the ablation experiment, indicating a significant improvement
in the feature extraction ability of EfficientNetV2-S with the proposed attention module.
First, we use EfficientNetV2-S as the backbone of SSD, and its detection accuracy gains 1.3%
mAP improvement. It can be seen that using an improved design for the backbone does
work. We then proceed to replace some of the modules in the EfficientNetV2-S with 2L-
Transformer and end up with a nearly 3.1% improvement in detection accuracy compared
with the original SSD. This is due to the good performance of the 2L-Transformer module in
global modeling and context capture. To a certain extent, it addresses the limitations of the
receptive field and compensates for the lack of features specific to small objects. However,
EfficientNet is considered a lightweight backbone, and increasing the number of modules
does not guarantee their superiority. Therefore, in the end, we replaced the backbone
with the most commonly used ResNet50, and the experiment proved that the backbone
with 2L-Transformer had better feature extraction ability than ResNet50, resulting in an
improvement of nearly 1% in the final results. Moreover, the parameter counts of the
backbone networks are comparable and all within 30 M.
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Figure 12. Local Lighted Transformer block visualization results. (a) Heat map of image 1. (b) Heat
map of image 2. (c) Heat map of image 3. The heatmap focuses on the regions with targets. However,
it is worth noting that, while almost all targets are marked, the most intense heat is not always near
the large objects in the image, but rather on small objects or strong feature areas of the large objects,

such as the legs of a sheep.
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Table 4. Effectiveness of Local Lighted Transformer block visualization results. Several backbone feature
extractors were compared, including VGG-16, which was featured in the original SSD, ResNet-50 which
is now widely utilized, the native version of EfficientNet, and the final mixed architecture version.

Backbone AP APy 5

VGG-16 7.0 21.7

ResNet-50 9.1 26.2

ALTOD EfficientNetV2-S 8.3 24.4
2L-Transformer +

EfficientNetV2-S 101 275

VGG-16 60.7 79.8

ResNet-50 62.1 81.6

VOC-07 EfficientNetV2-S 615 803
2L-Transformer +

EfficientNetV2-S 62.5 828

VGG-16 52.7 87.3

ResNet-50 58.8 88.9

TGRS-HRRSD EfficientNetV2-5 58.7 88.4

2L-Transformer + 50.6 893

EfficientNetV2-S

4.5.2. Influence of Different Feature Fusion Modules

To further investigate the impact of the feature fusion module on small object detection,
we completely trained three variants of the model on two datasets (AI-TOD and VOC-07). By
comparing the effect of the models on the test set, we can analyze the role and applicability
scenarios of CSP-PAN and SPP-Fast. As expected, the experiments prove that the modules
we used are effective.

e  Spatial Pyramid Pooling-Fast

SPP-Fast uses maximum pooling for the inputs with different kernel sizes, then con-
catenates by channel. There are two main starting points for this: firstly, this facilitates the
processing of objects of different sizes; and secondly, we aim to improve the robustness and
generalization of the model. Nevertheless, adding the module only after the backbone may
lead to weak prediction accuracy. The reasons are clear. Firstly, the output of this module
is a small-sized feature map for predicting large objects, and the module has a limited
range of influence; meanwhile, pooling may result in the loss of certain crucial information,
for example, leading in a reduction of spatial resolution or a lack of location information.
Therefore, some improvements are still needed.

e  Cross Stage Partial-PAN

To verify the superiority of the CSP-PAN feature fusion module, we ensured that other
components were the same and selected different necks for feature fusion. The baseline
was the native neck of the SSD model which extracted feature maps from different stages,
passed them through several convolutional layers, and maintained their sizes. Some details
can be found in Table 5. The experimental results showed that CSP-PAN consistently
outperformed FPN. Even for the structurally similar PFPN, CSP-PAN still achieved the
best performance on all three datasets, with an improvement of nearly 0.5 points.

Table 5. Effectiveness of different feature fusion modules. Through comparison, CSP-PAN structure
is not overly complex yet still manages to achieve an almost 0.5-point improvement.

Dataset/Component SSD_Neck (AP 5) FPN (APy5) PAN (APy5) CSP-PAN (APy5)
AI-TOD 27.5 29.8 31.8 324
VOC-07 82.8 83.5 84.3 84.9

TGRS-HRRSD 89.3 90.2 90.5 90.6
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CSP-PAN combines the location information in the shallow layer with the semantic
information in the deep layer, thus achieving feature fusion and ultimately improving
the capability of feature representation. As is to be expected, with this cross-layer feature
fusion, the model is more likely to make a correct classification and localization of small
objects. Specifically, Table 6 shows that the proposed method achieves a boost of 1.3% mAP
on the VOC test set and nearly 4.7% mAP on the AI-TOD test set.

Table 6. The contribution of SPPF in feature fusion. Although it is a plug-and-play multi-scale
sampling component that can be used for feature fusion, it is not suitable for standalone usage.

Dataset/Component SPP-Fast CSP-PAN APy 5

27.5
v 27.3
322
324

82.8
82.4
84.1
84.9

89.3

89.4
v 90.4
v 90.6

AI-TOD

<<

VOC-07

<<

TGRS-HRRSD

D R U U U S

As analyzed above, adding SPP-Fast after the backbone without consideration will
have negative effects, contrary to our expectations, because SPP-Fast has a limited range
of influence and may cause information loss. If we couple CSP-PAN with SPP-Fast, the
effect will be completely different, not only will the impact range be extended, but the lost
information may also be filled from the cross-layer connection. Experiments show that the
detection effect is optimal in the model wherein CSP-PAN is combined with SPP-Fast: 2.1%
mAP improvement on the VOC test set and 4.9% mAP improvement on the AI-TOD test set.

4.5.3. Influence of Normalized Wasserstein Distance

Table 7 displays the effectiveness of NWD metric, 7.1% AP improvement is achieved
with the NWD-based positive and negative sample assignment compared with the baseline
method. This indicates that the small object sensitivity to IoU severely affects the assignment
of labels, and this confounding error has a negative impact on the training. However, the
NWD-based assignment strategy we adopt greatly improves the assignment quality and
when we apply NWD to both assigning and loss modules, the best performance of 49.9%
APy 5 is achieved.

As observed from the aforementioned table, the NWD values for objects of larger
proportions undergo a significant reduction in the VOC-07 dataset, leading to a decline of
almost 6% in mAP. In order to maintain the admirable descriptive features of NWD for
small-sized objects, while simultaneously confronting its limitations in recognizing objects
of diverse scales, we employed the multi-level NWD methodology, as delineated in the
ensuing Table 8. In instances where the prevalent size of the objects in the dataset was
small, NWD yielded better outcomes in comparison with the traditional IoU technique.
Nonetheless, for entities exhibiting a varied range of proportions, normalizing NWD may
impede the regression of bounding boxes, leading to distortion and reduced precision that
may ultimately impair the model’s training. The said predicament can be circumvented
successfully by employing the multi-level NWD technique, which facilitates closer align-
ment of the NWD yield to that of IoU in diverse scale contexts, minimizing the disparity to
a mere 20% of its original value.
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Table 7. Effectiveness of normalized Wasserstein distance. We modified the existing models as
previously described and conducted comprehensive tests on multiple datasets to explore NWD’s
efficacy in terms of matching positive and negative samples, model training, and validation.

Dataset Method Assigning Loss AP APy 5
Baseline 12.8 324

Vv 18.9 46.2

AI-TOD NMD i 134 36.4
vV v 21.1 49.9

Baseline 64.8 84.9

Vv 62.2 80.2

VOC-07 NMD v 60.7 78.8
Vv Vv 60.5 78.6

Baseline 62.5 90.6

v 62.4 90.4

TGRS-HRRSD NMD v 63.0 91.1
Vv Vv 62.4 90.5

Table 8. Comparison of NWD and multi-level NWD methods in VOC-07. The multi-level NWD
effectively addresses the challenge of multi-scale target detection in NWD, yielding results comparable
to those achieved with IoU.

Method AP AP, 0.5
IoU 64.8 849
NWD 60.7 78.8
Multi-level NWD 62.6 84.1

5. Conclusions

In this paper, we have proposed SAFF-SSD: an improved small object detection
algorithm, which aims to address the issue of low small object detection precision in SSD
and which has an obvious advantage over the previous work and the currently presentative
methods. One of the main contributions is that we propose Local Lighted Transformer block
(2L-Transformer) as a novel self-attention module, which is embedded in the lightweight
EfficientNetV2-S as our backbone. Experimentally, we have shown that the proposed 2L-
Transformer increases the effectiveness of EfficientNetV2-S for superior feature extraction.
In addition, our detector can leverage feature maps of different scales by using CSP-PAN
to improve the accuracy and stability of detecting small objects. This structure can achieve
better performance than even the most advanced neck networks. Finally, we used a large
number of reliable experiments to verify the superiority of normalized Wasserstein distance
(NWD) in small object detection and slightly extend it to improve the problem of handling
multi-scale targets. Moving forward, our future research efforts will be directed towards
enhancing the real-time performance of small object detection.
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