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Abstract: Seagrasses are flowering plants, adapted to marine environments, that are highly diverse
in the Mediterranean Sea and provide a variety of ecosystem services. It is commonly recognized
that light availability sets the lower limit of seagrass bathymetric distribution, while the upper limit
depends on the level of bottom disturbance by currents and waves. In this work, detailed distribution
of seagrass, obtained through geoacoustic habitat mapping and optical ground truthing, is correlated
to wave energy and light on the seafloor of the Marine Protected Area of Laganas Bay, Zakynthos
Island, Greece, where the seagrasses Posidonia oceanica and Cymodocea nodosa form extensive meadows.
Mean wave energy on the seafloor was estimated through wave propagation modeling, while the
photosynthetically active radiation through open-access satellite-derived light parameters, reduced to
the seafloor using the detailed acquired bathymetry. A significant correlation of seagrass distribution
with wave energy and light was made clear, allowing for performing fine-scale predictive seagrass
mapping using a random forest classifier. The predicted distributions exhibited >80% overall accuracy
for P. oceanica and >90% for C. nodosa, indicating that fine-scale seagrass predictive mapping in the
Mediterranean can be performed robustly through bottom wave energy and light, especially when
detailed bathymetric data exist to allow for accurate estimations.

Keywords: P. oceanica; C. nodosa; wave bottom orbital velocity; photosynthetically active radiation;
habitat predictive modeling; acoustic habitat mapping; wave propagation modeling; Laganas Bay;
Zakynthos Island

1. Introduction

Seagrasses are marine flowering plants that grow in shallow coastal waters and cover
vast areas. The dense underwater meadows they create are some of the most biologically
diverse and productive elements of coastal systems [1]. Since these meadows alter their
abiotic environment (e.g., through build-up and modification of local hydrodynamic con-
ditions), they are considered ecosystem engineers [2]. Five different species of seagrass
can be found in the Mediterranean Sea [3]: Posidonia oceanica (endemic), Cymodocea nodosa,
Zostera noltei, Zostera marina (glacial relict) [4], and Halophila stipulacea, an alien species
introduced from the Red Sea [5]. In terms of distribution and abundance, P. oceanica is the
most significant seagrass species out of the five [6]. According to [7], P. oceanica grows in
depths between 0 m and 45 m. Approximately 1–2% of the 0–50 m depth zone is covered by
this biomass, and it covers an estimated area of 2.5 to 5 million ha [8]. P. oceanica grows into
extensive, densely covered meadows with 1 m tall leaves on average [9]. These meadows
support a diverse community with many fauna species of economic interest and offer
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several ecosystem services [6,10], such as high rates of primary production [11], oxygen
production, carbon dioxide storage [12,13], and protection against coastal erosion [14].

Although Mediterranean seagrasses are of significant importance, they are at risk
from human activities. The severity of anthropogenic impacts on seagrasses has been a
subject of debate in research since the 1980s. An undeniable fact is that some species have
greatly declined in the Mediterranean. For P. oceanica, the primary factors for the decline
are land reclamation for coastal development [15–17], trawling [17], and anchoring of ships
and recreational vessels [18]. Another factor for P. oceanica’s decline is its replacement by
C. nodosa due to anthropogenic factors [17]. Although C. nodosa meadows are considered
able to withstand both natural and human-induced pressures, there has been a decrease in
their size in multiple regions along the Mediterranean coasts [19–22]. Given the immense
significance of these habitats, P. oceanica and other seagrass meadows are priority habitats
for conservation. P. oceanica seagrass is protected by the Marine Strategy Framework
Directive (MSFD) and the Habitats Directive (Dir 92/43/CEE) [23], legal instruments for
integrated management of marine environments in Europe, given that their stipulations
intersect with the environmental legislation of Europe that apply to the sea [24–27].

Conventional methods of accurate mapping and monitoring the seafloor in order to
identify its habitats involve the use of marine acoustics, such as multibeam echosounder
(MBES) [28,29] and sidescan sonar (SSS) [30–32]. Visual census data, such as from SCUBA
diving, towed cameras and remotely operated vehicle (ROV) systems, are also important
for ground truthing and ensuring the accuracy of the collected acoustic data [3,31,33,34].
Due to the high significance of seagrasses within the Mediterranean Sea ecosystem, numer-
ous research projects have been conducted that focused on mapping and assessing their
spatial distribution [35–39], with [39] providing the first-ever satellite-derived full-coverage
seagrass mapping across the entire Mediterranean. In Greece, a national collaboration
between academic and research institutions led to the publication of the most up-to-date
spatial distribution of P. oceanica seagrass on a national scale [3] using extensive in-situ
data sources and satellite imageries. Apart from the latter, in-situ samplings on the full-
coverage distribution of seagrass meadows in the Greek Seas have only been conducted
intermittently in certain areas (e.g., [30,31,40–43]).

Studies that aimed at correlating various abiotic environmental parameters, such as
light [44–46], temperature, and nutrients [47], to the growth and spatial distribution of the
P. oceanica meadows indicated that light limitation is the main driver differentiating their
distribution at large-scale local and sub-ecoregional levels. Similar efforts addressing the
biogeographic patterns and assessing the natural drivers affecting the marine angiosperm
C. nodosa can be found in [48,49]. Temperature and salinity seem to be the main limiting
factors for C. nodosa [50], while it has considerable resilience to light deprivation due to its
intrinsic arrangement of the pigment pool [51,52].

A pioneering work on P. oceanica distribution modeling was conducted in the context
of MEDISEH project [53], where a great number of morphodynamic, environmental and
human impact variables were used to predict the spatial distribution of P. oceanica alongside
the Mediterranean coasts. The training of the above model relied on presence-only seagrass
datasets, to which simulated or satellite-derived coarse-scale (>400 m cell size) abiotic
parameters were correlated. A similar predictive modeling effort regarding the distribution
of C. nodosa in the Mediterranean–Atlantic region can be found in [50]. While these works
hold great managerial importance, they do not provide insights into the controlling factors
of seagrass distributions at finer scales.

Seagrasses and seafloor wave energy have a two-way relationship, one affecting
the other. Seagrasses increase bottom roughness, thus reducing near-bed wave orbital
velocity and modifying sediment transport [54]. Research has demonstrated that there are
several key characteristics of seagrass that affect wave attenuation, including shoot density,
stiffness, leaf length, and leaf area index as a combining parameter [55–58]. At the same
time, the influence of wave energy is intuitively responsible for the fine-scale variability of
seagrasses and their biometrics. The latter has only been investigated sporadically. In [1], it
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was shown that the near-bottom orbital velocity and P. oceanica coverage were inversely
related, thus stating that the upper limit of seagrass distribution depends on the level of
bottom disturbance by currents and waves. In 2010, it was found by [59] that wave energy
is a major limiting factor for P. oceanica growth and survival at depths shallower than the
wave-breaking depth. The landscape and spatial patterns of the seagrass habitat meadow
were found to be altered by exposure to wind–wave energy in [60]. It was observed that,
compared to locations exposed to low wave energy, high-energy environments support
patchier P. oceanica meadow landscapes with less seagrass cover, more intricate patch
shapes, and less complex intra-patch architecture. The differences in the plant’s tolerance to
wave forcing depending on the substratum type were identified by [61]. The colonization
of rocky outcrops is crucial for P. oceanica’s survival in areas with moderate to intense
hydrodynamics as these substrates provide stability and greater attachment strength, which
are essential elements for the successful establishment of seedlings [62,63]. C. nodosa, on the
other hand, with its lower total leaf surface area compared to P. oceanica [64], experiences
lower drag and so it can be met in areas with higher hydrodynamics [65].

The present work aims to provide a fine-scale case study correlating the spatial distri-
bution of two Mediterranean seagrass species, namely P. oceanica and C. nodosa, with wave
and light energies dissipated on the seafloor, in a marine protected area, i.e., Laganas Bay,
Zakinthos Island, Greece, where extensive P. oceanica and C. nodosa meadows exist. Precise
and fine-scale acoustic habitat mapping in the study area has previously been conducted
through the utilization of multibeam echosounder, sidescan sonar, and towed underwater
camera for ground truthing [31]. The derived bathymetry was employed to simulate the
dominant wave propagation patterns in the given region, establishing correlations between
the respective orbital velocities and backwash current speeds with seagrass distribution.
Photosynthetically active radiation (PAR) on the seafloor was estimated via open access
satellite sea-surface derivatives, reduced to the seafloor by taking the light diffuse atten-
uation coefficient into account. Clear correlations between wave energy and light at the
seabed with both P. oceanica and C. nodosa distributions were found, which further allowed
the validation of a habitat predictive model using depth, wave, and light as the only pre-
dictors. A random forest predictive model was developed, realistically trained over areas
with visual census ground truthing or over random data splits, exhibiting predicted habitat
distributions with overall accuracies of more than 80% and up to 92%, implying worthy
use in un-mapped coastal areas of the Mediterranean Sea.

2. Materials and Methods
2.1. Study Area

The study area includes the seafloor in the marine protected area of Laganas Bay,
Zakynthos Island, Greece. The National Marine Park of Zakynthos (NMPZ) (Figure 1) is
the first marine protected area (MPA) in the Mediterranean for the protection of sea turtles,
including no-take zones [66]. It was established in 1999 with the goal to protect and manage
one of the most important nesting rookeries of loggerhead sea turtles, Caretta caretta, in
the region [67]. The NMPZ mainly contains four habitat types that are all included in the
EU Habitats Directive 92/43/EEC, namely: Posidonia oceanica (EU habitat code—EUhc:
1120—“Posidonia beds”), rocky seafloor (EUhc: 1170—“Reefs”), sandbanks (EUhc 1110),
and two types of soft substrates, i.e., “Unvegetated soft bottoms” (EUhc 119A) and “Vege-
tated soft bottoms” (119B), with the latter corresponding to Cymodocea nodosa beds. The
first marine habitat mapping effort in the NMPZ was carried out by the Hellenic Center for
Marine Research (HCMR) in 1999, in the context of the Annex I of the EU Habitats Directive
92/43/EEC (http://gis.ices.dk/geonetwork/srv/eng/catalog.search#/metadata/ce013
464-e509-40fc-b2dd-859e1e6daa0f, accessed on 15 May 2023). This was derived through
aerial photos of scale 1:5000, data from the RoxAnn echosounder, phytobenthos samples
and in situ observations by scuba diving, and is still used as the official marine habitat map
for the NMPZ. In 2004, Pasqualini et al. [68], constructed a 2.5 m pixel-size marine habitat
map of the NMPZ through analyzing SPOT 5 satellite multispectral imagery, including

http://gis.ices.dk/geonetwork/srv/eng/catalog.search#/metadata/ce013464-e509-40fc-b2dd-859e1e6daa0f
http://gis.ices.dk/geonetwork/srv/eng/catalog.search#/metadata/ce013464-e509-40fc-b2dd-859e1e6daa0f
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sandy and rocky seafloors and two types of P. oceanica, namely “patchy” and “continuous”
ones. In 2019, the Oceanus-Lab (https://oceanus-lab.upatras.gr/, accessed on 15 May
2023) constructed the most detailed habitat map existing of the NMPZ, accompanied by a
detailed bathymetry of the area, both derived via marine geophysical techniques described
in [31] and in Paragraph 2.2. The latter constitutes the baseline source of information used
in the present work, representing the most up-to-date and complete mapping effort in
the area.
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Figure 1. Study area map (National Marine Park of Zakynthos—NMPZ) overlayed by the acoustic
habitat map and the towed camera transects with corresponding seafloor image examples.

2.2. Background Knowledge: Laganas Bay Bathymetry and Acoustic Habitat Mapping

Detailed bathymetry and seafloor habitat mapping in the NMPZ were derived via
marine geoacoustical means, including MBES and SSS, respectively. The mapped seafloor
components were ground truthed and validated by conducting a thorough supplemental
visual seafloor inspection survey with a towed underwater camera (TUC). A dual-head
MBES Elac Nautic Seabeam 1185, transmitting at 180 kHz, and an Edgetech 4200 SP dual-
frequency SSS, transmitting simultaneously at 100 and 400 kHz, were used to survey a total
area of 84 km2. Data acquisition, processing, and analysis methods are thoroughly described
in [31], where the first high-detail habitat map of the NMPZ was released (Figure 1). The
depth of the bay was found to range from 0 to 145 m (Figure 1) while thorough interpretation
of the geoacoustical and ground truth data revealed that “Posidonia beds” cover 27%
(22.5 km2) of the seafloor, C. nodosa beds (“Vegetated soft bottoms”) make up 6% (4.8 km2),
“Reefs” 9% (7.8 km2) and soft sediments account for 58% (48 km2) of the seafloor in the
NMPZ. The P. oceanica habitat type was further divided into two distinct meadow sub-types,
following [68], namely: (a) the “continuous” one, characterized as homogenous, with low
canopy height and developed on plain substrate, and (b) the “patchy” one, corresponding
to meadows with higher canopy height, developed on well-formed “matte” (rhizomes’
build-up).

https://oceanus-lab.upatras.gr/
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2.3. Numerical Modeling of Wave Propagation

The effect of wind- and wave-generated currents on the seabed hydrodynamics was
investigated numerically utilizing the MIKE21 software developed by the Danish Hydraulic
Institute (DHI). In particular, the following modules were used: MIKE21 Spectral Waves
(SW) for the simulation of wave propagation, and MIKE21 Flow Model (FM) for the
simulation of wave- and wind-generated currents.

The MIKE21 SW module [69,70] has the ability to simulate the wind-induced wave
growth and transformation, based on the numerical solution of the wave action conser-
vation equation. Depth-induced wave breaking is included in the SW module to model
wave-energy dissipation in shallow waters, following the formulation in [71]. In the present
application, the values of the model parameters are Alpha = 1 and Gamma = 0.8. The spatial
discretization is performed using a cell-centered finite volume method in an unstructured
computational mesh, and the temporal discretization is based on a fractional time step
approach. On all open boundaries of the computational domain, the parameters, i.e., the
Significant Wave Height (Hs) and the Peak Wave Period (Tp), of the incident deep-water
waves are imposed. Due to lack of existing wave measurements, a hindcast method was
used to obtain the wave parameters, Hs and Tp. Mean annual wind data of the period
1990–2021 were used, which were obtained from the meteorological station of the Hellenic
National Meteorological Service at Zakynthos. Based on the mean annual wind data,
the dominant wind speed and direction with a return period of 1 year were found to be
14.86 m/s (U10) and 180◦ (South), respectively. Then the fetch length for this wind direction
was estimated and the corresponding deep-water wave parameters were calculated to be
Hs = 2.9 m and Tp = 6.54 s using the SMB-Wilson methodology [72].

The output of the SW module is the distribution of the radiation stresses, which is used
as input to the FM module, and acts as the driving forcing for the wave-induced currents.
The MIKE21 FM [69] module is based on the numerical solution of the two-dimensional
shallow water equations, i.e., the depth-averaged continuity equation over depth and the
depth-averaged horizontal momentum equations. A finite volume method is used for
the spatial discretization of the governing equations, while a second order Runge–Kutta
scheme is utilized for the temporal discretization [72]. The land boundary (coastline) is
considered an impermeable boundary with zero velocity, while free outflow boundary
conditions are applied on all open boundaries of the computational domain. An eddy
viscosity formulation is followed for turbulence modeling, utilizing the Smagorinsky (1963)
model for the horizontal diffusion terms. In the present application, the value of the model
constant is Cs = 0.28. The bed shear stress is calculated using a quadratic friction law, where
the drag coefficient is determined from the Manning coefficient, and is considered in the
present application as equal to 0.03125 s·m−1/3.

The bathymetric data for the wave propagation modeling were comprised of both
the aforementioned in-situ acquired bathymetric measurements and data from the digital
database DHI C-MAP, which includes measurements of the Hellenic Navy’s Hydrographic
Service (Figure 2a). The dimensions of the computational domain were 15 km in the W–E
direction and 16 km in the N–S direction. The computational domain was discretized
with 79,699 triangular cells with a resolution from 20 m in shallow waters to 200 m in
deep waters (Figure 2b). Free outflow boundary conditions were applied to all open
boundaries, marked with red dashed line in Figure 2a. The coastline, which is located at
the north side of the computational domain, was considered as an impermeable boundary
with zero normal velocity, while a no-slip boundary condition was applied at the sea
bottom. The computational time step was bounded so the convective criterion was satisfied
(Courant number < 0.8) in all computational nodes, ensuring numerical stability.
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The duration of the numerical simulations was set to 8 h, which corresponds to a
typical duration for intense weather phenomena. A steady current velocity field was
reached after approximately 2 h of simulation. The simulated wave-induced currents (Uwi)
in Laganas Bay for the above-mentioned wave parameters are presented in Figure 3b.
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The wave-generated bottom orbital velocity (Ubr) (Figure 3c) was estimated from
the surface-wave parameters Hs and Tp and the MBES bathymetry, following the formula
described in [73]. Ubr is a key wave energy parameter on the seabed, proven to be well
related to seagrasses in the works of [1] and [59]. Both Ubr and Uwi (in m/s) were exported
to 30 × 30 m raster files.

2.4. Light at Seabed

The quantity of light on the seabed of the NMPZ was estimated using the photosyn-
thetically active radiation (PAR) (i.e., light at 490 nm) at the sea surface (PARs) reduced at
depth z by the diffuse attenuation coefficient for PAR (KdPAR), following Beer–Lambert
Law [74],

PARz = PARs × e−KdPARz, (1)

where PARz is the photosynthetically active radiation on the seafloor. While more complex
light attenuation models are available, the simple Beer–Lambert model, assuming exponen-
tial attenuation of light with depth, has been proven adequate for shallow waters [75] and
has also recently been used for assessing the mesophotic zone in the Mediterranean Sea [76].
Although the directionality of the light field affects the diffuse attenuation coefficient, Kd-
PAR, this influence has been found to be weak at mesophotic depths [74,77]. The average
KdPAR (in m−1) and PARs (in mol.phot/m2/day) values between 2005 and 2009 were
retrieved from https://emodnet.ec.europa.eu/ (accessed on 17 April 2023), as estimated
for the EMODnet Seabed Habitats consortium using data from the European Space Agency
MERIS instrument, with a raster resolution of 100 × 100 m [78], fully covering the NMPZ
(Figure 3d). EMODnet also offers an estimate of PARz for all European waters, but it is
calculated based on the EMODnet Bathymetry. The latter is of very low accuracy in most
parts of the Greek coastal waters and so the herein-generated PARz raster, based on the
MBES bathymetry of the NMPZ, offers the best feasible accuracy.

2.5. Statistical Analysis and Variable Importance

Geospatial processing was performed in ArcGIS 10.8. The raster files of the environ-
mental variables were upscaled to meet the Depth raster, i.e., to 30 × 30 m cell sizes, using a
nearest neighbor interpolator. The polygon shapefiles regarding seafloor habitat types were
converted to a point vector file (point shapefile), with points respecting the cell centers of
the raster files. For each point, the raster values of the four environmental variables (Depth,
Ubr, Uwi and PARz) were joined using the Spatial Join (Analysis) tool along with their x–y
coordinates in metric UTM 34N geographic system. The resulting variable database was
the basis for any statistical and predictive modeling tasks.

Statistical analysis and representation of the variable database were performed in
GraphPad Prism 9, IBM SPSS, and PAST. Principal Component Analysis (PCA) with biplot
interpretation was performed in the PAST statistical software to reveal any underlying
mechanisms that link environmental variables to the presence of each seagrass type. Violin
plots were created in GraphPad Prism 9 to compare the value distribution of the envi-
ronmental variables between areas with or without each type of seagrass cover and to
investigate any direct classification boundaries that each one offers. Further statistical
analysis took place employing correspondence analysis (CA), performed in IBM SPSS, to in-
vestigate the correlation between categorical variables, namely seagrass types and the four
environmental variables (Depth, Ubr, Uwi and PARz). To utilize CA, variables were con-
verted to ordinal, with depth categorized into 5 m interval classes, while Uwi, Ubr and PARz
were converted into 0.005 m/s, 0.1 m/s and 2 mol·photon/m2/day classes, respectively.

An information gain attribute evaluator was used to evaluate the worth of each envi-
ronmental variable in separating the probability distribution of the different seafloor types
by measuring the information gain (entropy) with respect to any bottom class. Entropy
quantifies how much information exists in the probability distribution of a random variable:
a skewed distribution having low entropy, whereas a distribution where events have equal
probability has larger entropy [79]. Entry values vary from 0 (no information contribution)

https://emodnet.ec.europa.eu/
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to 1 (maximum information contribution). Variables with a higher information gain value
can be ranked higher, whereas those with a lower score can be removed.

2.6. Predictive Modeling

The random forests (RF) classification algorithm was used in this work for predic-
tive model development. The considered seafloor classes were reduced to “P. oceanica”
(aggregating “patchy” and “continuous” meadow types) and “C. nodosa” beds, as well
as a collective class named “Other”, which included “Reefs”, “Nearshore sandy seafloor”
and “Offshore soft sediments”. RF has recently been used for habitat suitability modeling
works [80–82] exhibiting significant results. This modeling technique is favored over others
because it makes no underlying assumptions of the variables’ distributions, it is robust to
overfitting, it allows for nonlinear interactions between the response and environmental
variables [83,84], and it can handle existence–absence data, in contrast to the most im-
portant habitat suitability modeling software candidate, Maxent (e.g., in [85]), which can
handle presence-only data.

The Waikato Environment for Knowledge Analysis (WEKA V3.9.6) software, devel-
oped by the University of Waikato, Hamilton, New Zealand, was used for performing RF
classification on the absence–presence data to build the spatial distribution probability
model of seagrasses in Laganas Bay. RF is an ensemble learning method for classification,
which is based on multiple decision trees—thus the forest—for the final classification of
a sample based on majority vote. The major component of its decision tree is their root,
which is the start of the tree and contains the number of variables used (N) out of the total
summary of them (K). The formula N = log2 K + 1 is mostly used for the selection of the
number of variances, N, that each tree will adopt. Each step added to the decision tree
leads through two branches into a leaf or to a new decision section called internal branch.
The summary of the steps needed until the final decision is the depth of the tree. In our
case, the number of trees for each forest was set to 100 and each tree included 2 variables,
with a maximum depth of 10.

Two distinct approaches were employed for the purpose of training the model. In the
first case, database points coinciding with the TUC transect points (manually classified into
seafloor habitat classes) were used for model training (training set) and the rest points were
used for cross validation (test set). In the second case, 20% of the observations (20% split)
were used as a training set and the remaining 80% as a test set. Training the classifier on the
TUC transects can be considered a realistic case, according to which one needs a detailed
bathymetry and a visual census ground truthing dataset to proceed to habitat predictive
modeling without any prior knowledge of the spatial distribution of the bottom habitats.
The 20% split case was decided to test the optimal accuracy of a well-trained classifier for
building generalized decision boundaries.

After the classifier was trained on each training set and their validation metrics were
estimated in the Weka explorer environment, the exported serialized classifiers were applied
to the predictors’ vector file (environmental variables’ points) of the entire region of the
NMPZ. The final classification output contained the probability distribution (in 0–1 range)
for “P. oceanica”, “C. nodosa”, and “Other” bottom classes, assigned to the predictors’ point
vector file along with each point’s coordinates. Using a 0.5 distribution threshold, a final
classification map was created for each training case, which, having been converted back to
raster files of 30 × 30 m resolution, was suitable for further geostatistical compensation
and geographic representation.

3. Results
3.1. Environmental Variables: Spatial Expression and Statistical Analysis

Figure 3 shows the spatial distribution of the four environmental variables considered
in the NMPZ for this study, i.e., (a) Depth, (b) Uwi, (c) Ubr, and (d) PARz.

Some elementary statistics on the above variables, regarding either the overall coverage
of P. oceanica and C. nodosa seagrass species, or their shallow and deep limits, are given in
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Table 1. The importance of each variable, as assessed using the information gain attribute
evaluator, also given in Table 1, ranks Ubr (0.42) first and then Depth (0.40), followed by
PARz (0.32) and, clearly last, Uwi (0.19).

Table 1. Elementary statistics on the wave, light and depth variables considered in this work,
regarding overall coverage of P. oceanica and C. nodosa seagrass species versus their shallow and deep
limits. Variable importance is also provided, as estimated through the information gain ranking filter
attribute evaluator.

Mean on Limits ± std Overall Elementary Statistics

Variable Importance Seagrass Shallow Deep Mean ± std 5% Perc 95% Perc
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The PCA biplot, as applied to the environmental variables, is presented in Figure 4.
The overall variance explained by PC 1 and PC 2 was 72% and 14%, respectively, with PC
1 demonstrating close to +0.8 loadings for all four parameters, while PC 2 demonstrated
approximately +0.4 for Ubr and Uwi and −0.4 for Depth and PARz, indicating a negative
correlation between those two groups. The four variables are grouped in 2 perpendicular
principal axes, according to the biplot, one parallel to the maximum variances of the wave
energy variables (Ubr and Uwi) and the other to the ones of PARz and Depth. Seagrasses
were well separated from the rest of the seafloor in the PCA biplot, mostly found on
negative PC 1 values (−2–1 range) and around zero PC 2 ones (−1.5–0.75 range), but the
individual seagrass species data point clouds were mostly not well separated.
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The detailed value distributions of the four environmental variables are given in
the form of violin plots in Figure 5, regarding all considered bottom types, namely:
P. oceanica, C. nodosa and non-seagrass (“other”), while P. oceanica is further analyzed
in its two sub-types, namely “patchy” and “continuous”. Although the ranges of values
and the simple statistical descriptives (i.e., mean and std) of most variables are overlapping
between different bottom types, their exact distributions have characteristic signatures
that seem suitable for separating one from another. To better investigate the relationship
between the environmental variables and each seagrass type, their values were converted
to ordinal (using distinct intervals) and correspondence analysis (CA) was applied to
each variable. The two-dimensional CA plots of Figure 6 suggest distinct environmental
variable ranges as being the most suitable for each seagrass type, especially regarding Ubr
and PARz.
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Figure 5. Violin plots of Depth (a), Uwi (b), Ubr (c) and PARz (d), for seagrass (P. oceanica or
C. nodosa) and non-seagrass (other) seafloors. P. oceanica is further analyzed in its two sub-types,
namely “patchy” and “continuous”.

3.2. Predictive Modeling

Figure 7 compares the original to the predicted classification maps as well as to the
spatial probability distributions of P. oceanica and C. nodosa in the NMPZ, as generated by
the random forest classifier trained either by the 20% split subset of the data or by datapoints
along the TUC. The model validation metrics (Figure 7), sorted by seagrass species and
training set, exhibited remarkable performance for either training set or seagrass type, with
C. nodosa having been predicted up to 10% better by most metrics. The overall accuracy for
C. nodosa was between 92% and 92.6%, while for P. oceanica the accuracy was between 83.4%
and 84.6%. The F-measure for the realistic case of training the model along the TUC was
almost equal between P. oceanica and C. nodosa types, reaching 77.5% and 76.4, respectively.
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Figure 6. Correspondence analysis between the seafloor classes (P. oceanica, C. nodosa and other) and
the four environmental variables considered in this study. Variables were converted into ordinal,
with Depth categorized into 5 m interval classes and Uwi, Ubr and PARz into 0.005 m/s, 0.1 m/s and
2 mol·photon/m2/day classes, respectively.
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distributions of P. oceanica and C. nodosa seagrasses in the NMPZ, as generated by the random forest
classifier, trained either with a 20% split subset of the data or with ones along the TUC. On the
top right a table with the model validation metrics is provided, sorted by seagrass species and
training set.
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4. Discussion

Although no clear threshold values separating P. oceanica from C. nodosa could be
drawn from the elementary statistics of the four parameters (Table 1), correspondence
analysis drew distinct favorable ranges between the seagrass species, especially in the
Ubr and PARz domains. P. oceanica seems to favor the low Ubr (0.1–0.2 m/s) and middle
PARz value ranges (6–14 mol·photons/m2/day), while C. nodosa prefers middle Ubr values
(0.25–0.3 m/s) and sharp PARz values (around 10 mol·photons/m2/day).

PCA hardly managed to separate the two seagrass species in the principal components
space and specifically in the PC 1 versus PC 2 one (Figure 4). The P. oceanica cluster is
located, more or less, along the PC 1 axis in a range of −2 to +1 with two dense sub-clusters
around −1.5 and 0–1.0. C. nodosa cluster seems to be clear mainly in the negative PC 1 and
PC 2 values, located between the two P. oceanica sub-clusters and forming an elongated
cluster down to −3.0 in the PC 2 axis. It is noteworthy that the PCA biplot exhibited a
well-defined separation of both seagrasses from the rest of the seafloor, in the mid-low wave
energy (Ubr and Uwi) principal axes versus the mid-low depth and light ones, respectively,
summarizing the findings of the variables’ distributions, as revealed in the violin plots of
Figure 5.

Closer analysis on the variables’ distribution per seagrass type, as expressed by the
violin plots (Figure 5), reveal that C. nodosa favors a narrow range of depths (around
15–20 m) while P. oceanica appears to flourish in a wider range of depths (5–40 m). Patchy
and continuous P. oceanica meadows favor shallower and deeper depths, respectively. A
reverse distribution skewness between P. oceanica and C. nodosa for both wave derivatives
(Ubr and Uwi) was also seen, with C. nodosa favoring higher wave energies and P. ocean-
ica non-zero, middle to low ones. C. nodosa appears to flourish in areas where the Ubr
fall within a narrow range of 0.35–0.5 m/s. P. oceanica’s median Ubr is 0.3 m/s, and the
“continuous” sub-type, which represents relatively uniform meadows, is mostly found
in areas where the Ubr is below 0.3 m/s. Uwi didn’t show such a sharp transition be-
tween seagrass types. Nonetheless, the data indicates a distinct preference of seagrasses
towards Uwi lower than 0.3–0.4 m/s. This pattern can be explained by the fact that when
the Uwi exceeds this threshold it causes sand transport, which in turn forms seasonal
beach equilibrium profiles. However, it appears that the uniform sub-type of continuous
P. oceanica has a strong preference for lower Uwi, specifically within the narrow range of
0.2 to 0.3 m/s.

The above observations are further supported by the spatial distribution of seagrasses
and the other seabed types. The non-seagrass (“other”) bottom types showed distribution
peaks in both very low and very high Ubr values, below and above the seagrasses’ equiva-
lents, supporting the assumption that seafloor wave energy is suitable for seagrass existence
when it is neither too low nor too high. This is likely because sediment deposition may
occur in low energy environments, especially on sandy floors, and sediments resuspension
and/or transport may occur in high energy ones, not allowing for seagrasses to root and
expand on mobile sandy substrates. For instance, the nearshore sandy seafloor of the
NMPZ (see Figure 1) is a sandbank of changing thickness, following the equilibrium beach
profile, as controlled by the local swash–backwash ratio and longshore drift dynamics. In
this region, as indicated in Figure 3b,c, high wave dynamics correlate very well with the
lack of seagrasses on the seafloor from 0 to 25 m depth. The correlation of high Ubr values
with the lack of seagrasses is also exhibited in the area delineated in Figure 3c(III), where
P. oceanica extents follow exactly the spatial distribution of moderate Ubr values.

In the N sides of the two islets in the NMPZ, where wave dynamics are minimized
due to the isles’ wave-masking, sediment depositional conditions form wide beaches
whose terrestrial and underwater profiles change vastly over the year in a seasonal fashion.
In these wave-protected areas, Ubr is close to zero and its spatial distribution perfectly
matches the absence of P. oceanica (see Figure 3c(I,II)). In areas where there are strong bottom
currents, the presence of P. oceanica is noticeably absent. Those wave-induced currents,
caused by back-wash action, have been simulated by the wave propagation model in the
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area indicated in Figure 3b(IV) in the SE part of NMPZ. There, a well-shaped downslope
current is formed, developing a wedge-shaped sandy area with total absence of P. oceanica.
In that area, sand-waves have been witnessed through visual census (see photo next to
Figure 3b(IV)), which are likely a local recurring bottom feature, developing after periods
with relatively high wave energies. The instability of the substrate observed in this area,
as in the case of the nearshore sandy seafloor (sandbanks), pose the risk of burial and
uprooting of plants [61] not allowing for seagrasses to flourish.

P. oceanica is found in a broader light radiation range (6–14 mol·photons/m2/day) com-
pared to C. nodosa, which is restricted to a narrower range around 10 mol·photons/m2/day.
Those findings, although indicative of the Laganas Bay case, should not be generalized
because seagrasses might be competing with each other, especially where they seem to
share a similar border. In central Laganas Bay, C. nodosa shares its deep limits with the
shallow limits of P. oceanica and if one of them was not present, the other might have had
wider extents. The deep limits of P. oceanica though, seem to well respect light radiation,
having a mean ± std value of 4.5 ± 1.5 mol·photons/m2/day, much lower than that of
C. nodosa which is 8.1 ± 1 mol·photons/m2/day.

What we are also convinced of, is that the shallow limits of P. oceanica are well con-
trolled by Ubr, judging by the NW and NE areas of Laganas Bay, where northward wave
energy is halted by the islets and P. oceanica flourishes in much shallower depths (~3–5 m),
but starting from similar Ubr values (~0.1 m/s) as in the central Bay, where the seafloor is
exposed to the open-sea waves. There, the same Ubr limit is found at approximately 25 m
depth, where the presence of P. oceanica starts sharply. Further supporting this hypothesis,
C. nodosa seems to be absent in the NW and NE areas of Laganas Bay, where its favored
Ubr ranges don’t seem to occur at all.

The suitability of wave and light dynamics on the seafloor was further verified in this
study by their successful incorporation into the predictive modeling processes. Ubr, PARz
and Depth alone, as implied by the attribute evaluation process, were evidenced to be the
most significant predictors for such modeling. Random forest performed remarkably well
for either seagrass species, with overall accuracies exceeding 80%, as suggested by the
validation metrics (Figure 7), when trained on either ground truthing sites or on samples
spread all over the NMPZ (20% data split). The above implies that habitat predictive
modeling can be an effective tool for mapping Mediterranean seagrasses when seafloor
wave and light energies are measured or modelled in fine scales. A key point for such
high-precision modeling exercises is the existence of high-detail bathymetric data so that
wave and light can be precisely modelled on the seafloor.

5. Conclusions

The research findings demonstrate that the predicted levels of wave energy and light
on the seafloor are critical in determining the fine scale spatial distribution patterns of the
most important Mediterranean seagrasses, namely C. nodosa and P. oceanica. Specifically,
Ubr exhibited a gradual and well-expressed increase as the seafloor moves from nearshore
sand towards areas inhabited by C. nodosa and finally P. oceanica. This transition has a clear
spatial match with Ubr decrease, as evidenced even when habitat boundaries are examined
at finer scales. The deep limits of P. oceanica seem to be well controlled by light irradiance,
although, yet again, local interruptions seem to occur when bottom hydrodynamics are
locally anomalous.

The study area of Laganas Bay (NMPZ) is a unique area for exhaustive testing of
seagrass interrelation to wave and light seafloor energies, allowing for the implementation
of accurate predictive models, as its bathymetry and habitat extents are determined in detail
through extensive application of hydracoustics and visual census mapping. Moreover,
the NMPZ is a well-preserved and protected MPA, forced to minimum anthropogenic
stressors, allowing the habitat extents to be controlled by natural forcings, free of any
human intervention.
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Given its success, this study is a stepping stone towards achieving more holistic habitat
suitability models for finer-scale seagrass distribution, by incorporating light and hydro-
dynamics in the relevant modeling processes, extending the capabilities of more efficient
monitoring and managing seagrass meadows in other MPAs in the Mediterranean Sea.
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