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Abstract: Flash floods in the Eastern Mediterranean (EM) region are considered among the most
destructive natural hazards, which pose a significant challenge to model due to their high complexity.
Machine learning (ML) methods have made a significant contribution to the advancement of flash
flood prediction systems by providing cost-effective solutions with improved performance, enabling
the modeling of the complex mathematical expressions underlying physical processes of flash floods.
Thus, the development of ML methods for flash flood prediction holds the potential to mitigate risks,
inform policy recommendations, minimize loss of human life, and reduce property damage caused
by flash floods. Here, we present a novel approach for improving flash flood predictions in the EM
region using Support Vector Machines (SVMs) with a combination of precipitable water vapor (PWV)
data, derived from ground-based global navigation satellite system (GNSS) receivers, along with
surface pressure measurements, and nearby lightning occurrence data to predict flash floods in an
arid region of the EM. The SVM model was trained on historical data from 2004 to 2019 and was
used to forecast the likelihood of flash floods in the region. The study found that integrating nearby
lightning data with the other variables significantly improved the accuracy of flash flood prediction
compared to using only PWV and surface pressure measurements. The results of the SVM model
were validated using observed flash flood events, and the model was found to have a high predictive
accuracy with an area under the receiver operating characteristic curve of 0.93 for the test set. The
study provides valuable insights into the potential of utilizing a combination of meteorological and
lightning data for improving flash flood forecasting in the Eastern Mediterranean region.

Keywords: flash flood prediction; natural hazards; SVM; machine learning; lightning; PWV; pressure

1. Introduction

Flash floods are sudden and intense flooding events that are typically caused by
heavy rain. They can occur in a short period of time, making them difficult to predict [1].
Flash floods can lead to human casualties, causing extensive damage to infrastructure,
property, and the natural environments [2]. Flash floods can also lead to serious injuries
due to landslides [3] and collapsed infrastructures, as well as disrupt essential services
such as electricity, water and transportation, thus leading to significant economic and social
disruption. They can also cause erosion on roads and paths, resulting in the formation of
potholes, sinkholes, and other hazards [4].

The short occurrence time of flash floods, which is typically a matter of several hours,
makes them challenging to predict. Furthermore, when analyzing the output of hydrolog-
ical models, the most significant factor that controls the generation of flash floods (such
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as soil saturation and surface cover) is the spatiotemporal distribution of rainfall [5–8].
The rainfall pattern in the arid and semi-arid areas of the Eastern Mediterranean region is
highly variable and is mostly characterized by brief, high-intensity events [9–11]. In order
to anticipate flood events, it is necessary to consider the location and timing of these heavy
rainfall events, which can be done through remote sensing platforms such as weather
radar [12–14].

Flash flood risk assessment, such as determining the likelihood of a precise prediction,
is critical for determining the impact of future events within a particular area of interest [15].
Effective flood risk management is crucial in mitigating the devastating impacts of floods on
human health, the environment, and economic activities. The 2007/60 European directive
on the assessment and management of flood risks recognizes the shared responsibility of
various stakeholders in ensuring coordinated efforts to reduce the risk and mitigate the
impacts of floods. Floods are one of the most common and devastating natural hazards,
causing loss of life, damage to infrastructure and property, and disruption to economic
activities. To address these risks, the directive establishes a systematic process for identify-
ing areas at risk of flooding, evaluating potential consequences, and developing strategies
to reduce the overall risk. The directive emphasizes adopting a risk-based approach to
flood risk management, prioritizing measures that reduce the likelihood and potential
consequences of flooding. A comprehensive and coordinated approach involving various
stakeholders and integrating different measures such as land-use planning, structural
measures (e.g., dams and levees), and non-structural measures (e.g., early warning systems
and flood insurance) is vital in mitigating flood risks. By implementing effective flood risk
management strategies and measures, communities can better protect themselves from the
devastating impacts of flooding. The 2007/60 European directive provides a framework
for flood risk management in the EU, highlighting the importance of a risk-based approach
and the involvement of various stakeholders.

As such, the importance in predicting flash flood events is reflected in numerous
studies that have been conducted on this topic in recent years. For example, the FLASH
project [16] used lightning data to improve flash flood predictions in the Mediterranean
Basin, and the HYDRATE project reported by Borga et al. [1] was established in order to
improve the scientific abilities of flash flood forecasting in Europe, by developing a coherent
set of technologies and tools for an effective early warning systems, as well as enhancing
the availability of flash flood data. The project focused on organizing existing flash flood
data and improving the understanding of flash flood processes in ungauged basins. Other
contributions to flash flood prediction has been in incorporating machine learning tools in
order to improve prediction ability [17–21].

An alternative method is to identify heavy rainfall events is to monitor the quantity of
water vapor (WV) present in the atmosphere. This serves as an indicator of mass moisture
transport, a necessary condition for such events. One way to achieve this is through the
use of Global Navigation Satellite System (GNSS) meteorology, which can provide a nearly
instantaneous estimate of the precipitable WV (PWV) above the location of a ground-based
Global Positioning Satellite (GPS) receiver on a continuous basis [22–26].

Recently, Ziskin and Reuveni [21] investigated the use of precipitable water vapor
(PWV) derived from ground-based global navigation satellite system (GNSS) stations to
assist in predicting flash floods in an arid region of the eastern Mediterranean (EM). In
GNSS, navigation messages in the form of radio waves are transmitted from GPS satellites,
orbiting the Earth at a distance of 20,200 km, can be received by ground-based GPS receivers.
These messages contain information that enables users on the ground to determine their
position with a high degree of accuracy, up to a centimeter or even millimeter level, using
a technique called precise point positioning (PPP) [27,28]. In addition to determining the
receiver position, this method can also be used to estimate the amount of water vapor
present between the GPS satellite and the ground-based receiver, known as the PWV
content. When radio waves transmitted by the GPS satellite reach the ground-based
receiver, they are affected by the Earth’s atmosphere in two ways. The ionosphere disperses
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the radio waves, causing a measurable delay upon arrival at the receiver. To correct for
this effect, GPS satellites transmit radio waves in at least two frequency bands. The other
effect is caused by the troposphere, which absorbs the radio waves, causing a delay in their
arrival time at the receiver [29]. This delay, known as the zenith tropospheric delay (ZTD),
is composed of two types of delay: the hydrostatic delay or zenith hydrostatic delay (ZHD),
which is mainly caused by atmospheric pressure, and the wet delay, which is caused by the
interaction of the radio waves with water molecules. The wet delay can be calculated by
subtracting the ZHD from the ZTD [30–32].

The approach of Ziskin and Reuveni [21] involved training three types of machine
learning models (random forest (RF), multi-layer perceptron (MLP) and support vector
machine (SVM)) with 24 h of PWV data, in order to predict whether a flash flood will
occur. The models were trained with 107 unique flash flood events, and were tested
using a nested cross-validation technique. The results showed good agreement across
the various score metrics for the three ML models and indicated that the models can be
improved by incorporating additional features such as surface pressure measurements
and the day of year (DOY) information as an additional feature. In addition, a feature
importance analysis revealed that PWV values from 2 to 6 h prior to a flash flood are the
most important features. These results suggest that near real-time GNSS ground-based
data-driven approaches can be used to augment current flash flood warning systems. Thus,
when these models were tested with an imbalanced test set, simulating more realistic
flash flood occurrence scenarios, they indicated a drop in the false alarm rate (precision
score metrics) with a high hit rate (recall score metrics). The study suggested that the
suggested flash flood prediction approach could be used to improve real-time flash flood
early warning systems, possibly through the use of a multi-class classification task with
peak discharge as a threshold parameter. For a comprehensive understanding of the
processing parameters and methodology used to derive and validate PWV, as well as for
an analysis of diurnal, interannual, and long-term trends, readers who are interested may
refer to [31] or [30].

The Contribution of This Study

In this current study, the aim is to address the research gap that was present in a recent
paper, presented by Ziskin and Reuveni [21], namely the sharp drop in the false alarm rate
(i.e., the precision score metrics) when considering imbalanced data that closely simulate a
realistic flash flood scenario.

An additional feature that has been successfully explored for predicting flash floods
is the use of lightning activity data, which has proven to be a reliable precursor to heavy
rainfall, thus [33] is known to be highly correlated with flash floods occurrence [34–36].
As such, the integration of nearby lightning data as a new dataset feature is performed,
and the best model is tested with a highly imbalanced dataset. This approach closely
mimics a real-life flash flood scenario, where the number of false alarms can have serious
consequences. The results demonstrate a significant improvement over previous studies,
particularly in terms of precision. Specifically, it was found that all models tested exhibited
a lower false alarm rate while maintaining a high hit rate.

The inclusion of this feature may enhance the ability of the learning algorithms to
better distinguish between a typical flood event from a fair weather day. The motivation
for adding this new dataset feature is the previously reported results concerning heavy
rainfalls, which are often accompanied by an increase in nearby lightning activity, that can
lead to flash flood events.

The paper is structured as follows: in Section 3, the lightning data used and its
integration into the dataset, as well as the flood events utilized in this study, are described.
The ML methodology utilized for studying these datasets is then described in Section 4.
Section 5 presents the results of the ML models’ performance. These results are discussed
in Section 6, and concluding remarks are presented in Section 7.
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2. Related Work

A recent study by Giannaros et al. [37] investigated the November 2019 catastrophic
flash flood in Olympiada (North Greece) using the mesoscale weather and research fore-
casting (WRF) model and the integrated multi-satellite retrievals for global precipitation
measurement (GPM-IMERG) algorithm. The study showed that the WRF-based Hydrologic
Engineering Center-Hydrologic Modelling System (HEC-HMS) could provide a strong
indication of the forthcoming flash flood at least two days in advance, while the GPM-
IMERG algorithm yielded the best performance in capturing the timing of the excessive
rainfall. Another study by Varlas et al. [38] evaluated a hydrometeorological forecasting
system that operates at the Institute of Marine Biological Resources and Inland Waters
(IMBRIW) of the Hellenic Centre for Marine Research (HCMR). The system combines
the Advanced Weather Research and Forecasting (WRF-ARW) model, the WRF-Hydro
hydrological model, and the HEC-RAS hydraulic-–hydrodynamic model to provide daily
120 h weather forecasts and hydrological forecasts for the Spercheios and Evrotas rivers
in Greece. The study demonstrated that the system provided skillful precipitation and
water level forecasts and timely flash flood forecasting products, which could benefit flood
warning and emergency responses due to their efficiency and increased lead time.

In regards to the use of machine learning for flood prediction, Panahi et al. [39] inves-
tigated the potential of using two types of deep learning neural networks—convolutional
neural networks (CNN) and recurrent neural networks (RNN)—for predicting and map-
ping flash flood probability at a spatial scale. They utilized a geospatial database containing
records of historical flood events and environmental characteristics of the Golestan Province
in northern Iran, to develop and validate the predictive models. A step-wise weight assess-
ment ratio analysis was employed to identify the relationships between floods and various
influencing factors. The CNN and RNN models were trained using the results of this
analysis, and were validated using the receiver operating characteristics (ROC) technique.
The results show that CNN performed slightly better than RNN in predicting future floods,
with an area under the curve (AUC) of 0.832 and root mean squared error (RMS) of 0.144,
compared to an AUC of 0.814 and RMSE of 0.181 for RNN.

Bui et al. [40] developed a new approach to flash flood susceptibility mapping based
on a deep learning neural network (DLNN) algorithm, and tested their approach within a
case study of a high-frequency tropical storm area in Vietnam. The DLNN model used a
database of features such as elevation, slope, curvature, aspect, stream density, normalized
difference index (NDVI), soil type, lithology, and rainfall to predict different levels of
susceptibility to flash floods. Feature selection was performed using the information
gain ratio. The results indicated that DLNN yields strong prediction accuracy, with a
classification accuracy rate of 92.05%, a positive predictive value of 94.55%, and a negative
predictive value of 89.55%. The DLNN model performed better than benchmarks based
on a multilayer perceptron neural network (MLP) or on support vector machines (SVM),
suggesting that it could be a useful tool for flash flood mitigation and land-use planning in
the study area.

Band et al. [41] aimed to assess the susceptibility of the Kalvan watershed in Iran
to flash floods, using five hybrid parallel and regularized approaches. The extremely
randomized trees (ERT) model was found to be the most optimal, with an AUC value of 0.82.
The ERT model indicated that 28.33% of the area was at very high to moderate risk of flash
floods, with the remaining area at very low to low risk. Topographical and hydrological
parameters such as altitude, slope, rainfall, and distance from the river were found to be
the most important in assessing flash flood susceptibility. This study demonstrated the
effectiveness of hybrid parallel and regularization approaches for estimating flash flood
susceptibility in a semi-arid environment.

In regards to the correlation between lightning and floods, Koutroulis et al. [34]
examined the relationship between lightning activity and high precipitation events leading
to flash floods for the island of Crete. Their results showed that the maximal correlation
between the lightning and rainfall data was obtained within a circular area of an average
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radius of 15 km and an average time lag of 15 min for flood events, and 25 min for non-
flood events. In addition, lightning activity was also found to be four times higher during
flood-triggering storms. Further analysis is needed to understand the differences between
flood and non-flood producing storms.

Soula and Chauzy [35] and Price and Federmesser [36] both conducted studies on
the correlation between lightning and rain intensity during thunderstorms and winter
storms, respectively. Soula and Chauzy [35] found that the overall spatial correlation
between rain and lightning occurrence was very consistent for all types of lightning during
four days of thunderstorm activity in France. Price and Federmesser [36] found similar
results while investigating winter storms over the central and eastern Mediterranean.
Barnolas et al. [42] used a combination of rain gauges, radar, geographic information
system (GIS), and lightning data to study a flash flood event that occurred in Catalonia
during 12–14 September 2006. They found that the high lightning activity during the event
made it an ideal case for studying the relation between lightning strikes and precipitation,
thus concluding that the correlation between lightning and precipitation was stronger with
increased lightning activity. Hence, these studies demonstrate the importance of harnessing
lightning data for predicting and mitigating the risks of flash floods [2].

3. Datasets

In the current study, the main aim is to improve the performance of ML models used
by Ziskin and Reuveni [21] for predicting flash flood events. To achieve this, the exact
dataset and methodology utilized by them were used. The dataset for estimating PWV
used in Ziskin and Reuveni [21] was obtained from the SOI-APN GNSS ground receivers.
The daily RINEX files were processed using NASA’s JPL GipsyX software [43], with PPP
solutions, minimum cutoff elevation angle of 15◦, GMF for the tropospheric model [44],
and 200 ocean loading for all stations. The ZWD was obtained and translated into PWV
using the formula [23]: PWV = Π × ZWD. The dimensionless constant of proportionality,
Π, was calculated by Ziv et al. [31] using IMS’s automated stations and radiosonde mea-
surements [22]. The PWV validation using the Bet-Dagan radiosonde station is extensively
explained in [30,31]. The mean diurnal and annual variations were removed during the
PWV dataset preparation process.

Supplementary lightning occurrence data were introduced into the ML models, in ad-
dition to the dataset used by Ziskin and Reuveni [21]. The lightning occurrence data
were obtained from two sources: World Wide Lightning Location Network (WWLLN) and
Israel Lightning Detection Network (ILDN). WWLLN determines the locations of lightning
strikes by using the time of arrival from at least 5 sensors, with an average global detection
efficiency of around 30% for strikes with peak currents values exceeding 30 kA [45]. The
ILDN system, on the other hand, consists of 11 sensors, including LPATS and IMPACT
sensors. These are distributed throughout the entire state of Israel and have a strike detec-
tion efficiency greater than 90% within the Israel area [46]. The ILDN system accurately
registers cloud-to-ground strikes of each polarity with a time accuracy around 1 ms, where
flashes with peak currents between 0 and 10 kA are automatically filtered out and treated
as intra-cloud flashes. The lightning events captured in the vicinity of the SOI-APN GNSS
stations in the southern part of Israel are illustrated in Figure 1.

To align the WWLLN and ILDN datasets, low-magnitude lightning events below 25 kA
were excluded from the ILDN dataset. This allowed focusing on high-magnitude lightning
events in both datasets. It is worth noting that the ILDN dataset does not include RMS
information, precluding the employment of RMS considerations during pre-processing.
The research period spanned from September 2004 to December 2010, as well as from July
2017 to July 2020, based on the availability of the lightning data.
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Figure 1. Local map illustration of all lightning occurrence in both WWLLN and ILDN dataset
(indicated by red dots), in proximity to each of the 9 SOI-APN GNSS stations used in Ziskin and
Reuveni [21], with a radius of 10 km around each GNSS station.

4. Methodology

The ML methodology introduced in this study is based on the methodology pre-
sented by Ziskin and Reuveni [21], and is illustrated in Figure 2. The figure depicts the
complete steps and processes, beginning with target and feature selection, through data
pre-processing and model input, and finishing with the creation of the best model fit.
The steps are explained in detail in the following sections.
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Features:- PWV
- Surface Pressure- DoY

- Nearby Lightning

Target:- Flash floods- Datetimes

Preprocessing:
- Standarization
- Hourly Resampling
- Station co-location
- 24 hour sequencing
- Class balanncing

Model input: 73 features vector
- 24 - PWV
- 24 - Pressure
-  1 - DoY
-  24 - Nearby Lightning

SVM

Model Output:
Flood/ No flood on 25th hour

k-fold cross 
validation

Figure 2. Main block diagram illustration. The input features are the PWV, surface pressure, day of
year, and the nearby lightning activity, with the target being the flash flood occurrence times. The pre-
processing stage involves standardizing the lightning data by resampling them at 1 h resolution time,
and aligning the hydrometric station data, GNSS-PWV, DOY and surface pressure measurements
following the pre-processing step described in Ziskin and Reuveni [21] work. The creation of 24 h
sequences, with balanced classes, concludes the pre-processing phase. In the learning process,
the SVM model is optimized using cross-validation technique. The final output of each model is a
prediction of whether or not a flash flood will occur in the 25th hour.

4.1. Data Pre-Processing

One of the key steps in building a ML model is the selection and generation of features
that can effectively capture the underlying patterns in the data [47]. In this section, we
describe the various techniques and methods that we used to generate the features for the
ML model, adding to the ones Ziskin and Reuveni [21] presented.

WWLLN: First, lightning events with large residual RMS greater than 30 ms, which exceeds
the maximum allowed time for detecting the lightning event, were filtered out from the
WWLLN dataset.
ILDN: For the ILDN dataset, it was necessary to remove low-magnitude lightning events
due to the high-magnitude events contained in the WWLLN dataset. To achieve this, all
lightning events below a magnitude of 25 kA were filtered out, allowing us to focus on
the large magnitude events in both datasets. We note that the ILDN dataset lacks the RMS
information, so it was not possible to pre-process this dataset using a RMS considerations.

Furthermore, since the lightning activity area with an average radius of 15 km has the
highest correlation with rainfall data Koutroulis et al. [34], we integrated all the lightning
locations within the same radius originally utilized by Ziskin and Reuveni [21], as they
considered all the flash flood events within a 10 km radius of at least one of the GNSS
stations listed in Table 1.
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Table 1. Geographical coordinates and names of SOI-APN GNSS stations used by Ziskin and
Reuveni [21], in accordance with Figure 1 lightning occurrence locations.

GNSS Station Name Latitude [N◦] Longitude [E◦]
Nizana 30.88 34.2

Kibutz Lahav 31.38 34.87
Yerucham 30.99 34.93

Mitzpe Ramon 30.60 34.76
Metzoki dragot 31.59 35.39

Dead-Sea Manufactories 31.04 35.37
Sapir 30.61 35.18

Kibutz Neve Harif 30.04 35.04
Eilat 29.51 34.92

4.2. Feature Extraction

In this study, a method for extracting relevant features from the dataset was developed
in order to analyze the correlation between flash flood events and lightning activity. Specif-
ically, 24 h lighting vectors were created for each flood event by integrating the number
of lightning strikes that occurred within close proximity to the nearest GNSS station at a
temporal resolution of 1 h.

The GNSS station closest to each flood event was first co-located to construct the
lightning occurrence vectors. Then, the number of lightning strikes occurring within
a 10 km radius around each GNSS station at 1 h time window over a 24 h period was
determined. The distance was chosen based on the fact that the circular area with the
highest correlation between lightning and rainfall data had an average radius of 15 km [34].

The counts of lightning strikes were integrated for each 1 h time window and assem-
bled into a 24 h vector representing the chosen flood event. This method of computing the
lightning vector for each flood event allowed us to analyze the temporal evolution of light-
ning activity in relation to a specific flood event, investigating any potential correlations
or patterns. A comparison between the mean lightning strikes within a time window of
24 h prior to all flash flood events analyzed in this study, versus the mean lightning strikes
24 h prior to all quiet days (non-flash events) is presented in Figure 3.

Figure 3. A comparison between the mean lightning strikes within a time window of 24 h prior to all
flash flood events analyzed in this study (blue line), versus the mean lightning strikes 24 h prior to
quiet days (non-flash events). As can be seen, the mean number of lightning strikes on quiet days
plus one standard deviation does not reach the mean number of lightning strikes on flood days minus
one standard deviation. This finding suggests that there is a strong correlation between the number
of lightning strikes and the likelihood of flood occurrence.
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The feature extraction process in this study enabled us to effectively capture and
analyze the relevant lightning data for each flood event in a consistent and systematic
manner. This approach provided valuable insights into the coupling between flood events
and lightning activity, informing the subsequent analysis and interpretation of the data.

After first filtering the dataset to include only flood and quiet (non-flood) day events
for which lightning data were available, flood and quiet days that occurred only during
winter days were taken into consideration, as summer rain is very rare in the EM region.
The DOY feature introduced by Ziskin and Reuveni [21] reflected this filtering process.
Consequently, a total of 105 flash flood events and 1219 quiet days remained. To simulate a
realistic flash flood scenario, we then used an 80/20 randomized train-test split, resulting
in 85 flood events and 85 quiet days in the training set, and 20 flood events and 1134 quiet
days in the testing set. This resulted in a ratio of 56 quiet days to one flood event in the
testing set. This split allowed us to evaluate the performance of the model on a separate,
unseen dataset, ensuring its robustness and generalizability.

4.3. Support Vector Machine (SVM)

In this study, the support vector machine (SVM) technique was chosen to classify
the flash flood event dataset. The SVM algorithm was applied to the dataset from Ziskin
and Reuveni [21], which includes precipitable water vapor, surface pressure, and DOY,
augmented with the associated lightning activity, as explained above. The decision to
employ the SVM technique was based on its demonstrated effectiveness in classification
tasks, as previously shown by Ziskin and Reuveni [21].

SVM works by discovering the high-dimensional hyperplane, which maximally sep-
arates the different classes [48]. It is particularly effective when the data are not linearly
separable [49], as in this setting the kernel trick may be used to embed the data in a higher-
dimensional space admitting a linear separator [50]. In this study, the SVM approach was
used to classify flood events based on their associated lightning activity vectors. To choose
the optimal hyperparameters for the SVM model, a Bayesian optimization has been used
rather than a grid search approach. Bayesian optimization is a global optimization method,
which uses a probabilistic model to guide the search for the best hyperparameters [51–53].
It has been shown to be more efficient and effective than grid search in many cases, particu-
larly for complex, high-dimensional models such as SVM [54].

4.4. K-Fold Cross Validation

As a key aspect of the evaluation of the model’s performance, we have incorporated
a k-fold cross validation process. The k-fold cross validation involves dividing the entire
training-set into k equal subsets, using a randomized stratified sampling approach to
ensure that each subset is representative of the overall dataset, where the other k − 1
subsets are used for training, and one subset is used for testing. This process is repeated
k times, with each subset being used once for testing. The results from each iteration
are then aggregated to produce a comprehensive evaluation of the model’s performance.
By utilizing this approach, we can avoid overfitting, as the model is tested on previously
unseen data. The results from k-fold cross validation provide a useful understanding of
how well the model generalizes to the new data, providing a more robust evaluation of the
model’s performance compared to training and testing with a single fixed dataset. In this
study, 5-fold cross validation was used.

The decision to use here a standard k-fold cross validation approach instead of nested
cross validation was made due to the limited amount of data available [55]. With limited
data, the standard k-fold cross validation approach is a suitable choice as it provides good
balance between the computational cost and the ability to obtain meaningful results, while
still allowing for an evaluation of the model’s generalization performance [56,57].

Figure 4 shows the result of the cross validation process, where the groups refers to
the nine different GNSS stations stated in Table 1.
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Figure 4. Five-Fold Cross Validation Results. The diagram illustrates the performance of the cross
validation process with 5 subsets of the data, obtained through a randomized stratified sampling
approach, allowing each iteration to randomly pick testing sets while still taking into account all 9
stations (groups).

4.5. Score Metrics

In this study, several score metrics composed of different combinations between true
positive (TP), false negative (FN), true negative (TN), and false positive (FP) ratios, were
employed to assess the accuracy and robustness of the flood classification model. The score
metrics used in this study include accuracy, precision, recall, F1 score, HSS score, TSS score,
and the receiver operating characteristic (ROC) curve with its corresponding area under
the curve (AUC), as suggested in previous studies [21,52,53,58].

Accuracy is the fraction of correct predictions made by the model, while precision
is the proportion of true positive predictions among all positive predictions. Recall, also
known as sensitivity, is the proportion of true positive predictions among all actual positive
instances. The F1 score is the harmonic mean of precision and recall, and is often used as a
single metric to balance these two measures.

The HSS and TSS scores are measures of the skill of a binary classification model
in relation to a reference forecast. The HSS score measures the proportion of correctly
predicted events, while the TSS score measures the proportion of correctly predicted events
as well as the proportion of correctly predicted non-events.

The ROC curve is a graphical representation of the relationship between the true posi-
tive rate and the false positive rate of a binary classification model at different classification
thresholds. The AUC, is a measure of the overall performance of the model, with higher
values indicating better performance.

When working with imbalanced data, it is important to consider the impact of class
imbalance on these score metrics. In such cases, it is often preferable to use metrics that
are less sensitive to class imbalance, such as the HSS score and TSS score, in order to more
accurately assess the performance of the model [59].
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The following are the equations for the above metrics:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

HSS =
2 ·

[
(TP × TN)− (FN × FP)

]
(TP + FN) · (FN + TN) + (TP + FN) · (FP + TN)

(3)

Accuracy =
TP + TN

P + N
(4)

TSS =
TP

TP + FN
− FP

FP + TN
(5)

F1 = 2 × Precision × Recall
Precision + Recall

(6)

5. Experimental Results
5.1. SVM Result

In this section, we present the results of the best SVM model obtained through the
use of Bayesian optimization. Specifically, we evaluate the model’s results by examining
the minimum classification error per iteration in the optimization process, as illustrated in
Figure 5. This approach indicates the progress of the optimization algorithm as it explores
the hyperparameter space, with the y-axis representing the minimum classification error,
and the x-axis representing the number of iterations. Thus, demonstrating the effectiveness
of the Bayesian optimization algorithm in reducing the classification error over the course
of the optimization process and achieving a global minimum. In addition, The visualization
of the optimization process provides a clear understanding of the overall performance of
the SVM model used in this study.

Figure 5. Evolution of minimum classification error during the Bayesian optimization of the SVM
model. The y-axis represents the minimum classification error, while the x-axis represents the
number of iterations. The plot demonstrates the effectiveness of the Bayesian optimization algorithm
in reducing the classification error over the course of the optimization process and achieving a
global minimum.
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5.2. Skill Scores Results

In this section, the results of the skill score metrics evaluation for the best SVM model
obtained through the use of Bayesian optimization are presented. The effectiveness of
the model in accurately predicting the target variable is demonstrated by the results of
this evaluation. Furthermore, a comparison was made between these results and those of
Ziv and Reuveni [21] to provide insight into the relative performance of the SVM model
compared to other approaches.

The comparison results are presented in Figure 6, demonstrating that the current
model outperforms the results of Ziv and Reuveni [21] in terms of skill scores performance,
indicating a higher accuracy in flash flood prediction for the realistic scenario.

The flood classification model’s experimental results are highly promising, with en-
couraging performance across multiple score metrics. An accuracy of 0.9913 was achieved
by the model on the testing set, indicating correct predictions for the majority of instances.
This is particularly impressive since the class imbalance in the data means that simply
predicting the majority class all the time would result in a relatively high accuracy.

Figure 6. Comparison of skill score metrics for flash flood event prediction between the current SVM
model and Ziv and Reuveni [21] work. The results show an improvement in the accuracy of the
current model in predicting flash flood events and non-floods, as indicated by the higher values in
most skill scores.

To support the results obtained by the SVM model, it’s important to note that the
evaluation was conducted on imbalanced data, which is a common problem in flood
prediction. Imbalanced data refers to a situation where the number of positive examples
(flood events) is much smaller than the number of negative examples (non-flood events).
This can make it difficult for models to accurately predict the positive examples and can
lead to a bias towards negative examples.

The high skill scores achieved by the model of this study, despite the presence of
imbalanced data, suggest that it is both robust and effective. Although imbalanced data are
known to adversely affect model performance, the results of this study indicate that the
model was able to overcome this issue and achieve high accuracy in predicting flash floods.

Furthermore, the high skill scores achieved in this study, particularly in precision,
and F1, show that it has a low rate of false positives and false negatives, which is particularly
important in flood prediction, as it can have severe consequences if a flood event is not
predicted or if a non-flood event is incorrectly predicted as a flood.
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In terms of the F1 score, which is the harmonic mean of precision and recall and is
used to balance these two measures, the model achieved a value of 0.7917. This indicates
that the model has a decent balance between the precision and recall score matrices, with a
relatively high recall value of 0.95 and a lower precision value of 0.6786. The high recall
value suggests that the model is able to effectively detect a large proportion of the examined
flash flood events, while the lower precision value indicates that there were a relatively
larger number of false positive predictions.

The HSS and TSS scores both measure the skill of a binary classification model in
relation to a reference forecast. The model achieved an HSS score of 0.7875 and a TSS score
of 0.9421, indicating strong performance in terms of both correctly predicted events and
correctly predicted non-events. This suggests that the model was able to accurately classify
both flood and non-flood events, and was not simply relying on the class imbalance to
achieve high performance.

The strong performance of the model across these score metrics demonstrates its
effectiveness at classifying flood events based on their associated lightning activity within
a given time window.

The high accuracy, TSS and HSS scores indicate that the model succeed to correctly
identify both flood and non-flood events, while the relatively high recall and lower precision
values suggest that the model perform effectively in detecting flood events, but has higher
number of false positive predictions.

By using the same machine learning technique as the model presented in the work
of Ziv and Reuveni [21], the current model was able to achieve an improved performance
due to the addition of the local lightning activity as an augmented feature. By doing so,
we were able to provide the model with additional information regarding the key feature
characteristics of each flash flood event, allowing it to make a more accurate predictions.

In addition to the quantitative score metrics analysis, we also assess the current model
performance using a confusion matrix and ROC curve representation to provide a visual
analysis of the model’s performance. These are presented in Figures 7 and 8, respectively.
The confusion matrix indicates the number of correct and incorrect predictions made by
the model for each class, allowing for a more detailed understanding of its performance.
The ROC curve, on the other hand, illustrates the trade-off between the true positive rate
and false positive rate at different classification thresholds, allowing for a more nuanced
understanding of the model’s performance. Together, the confusion matrix and ROC curve
representation provide a comprehensive view of the model’s performance and allow for a
more thorough evaluation of its accuracy and robustness.

Figure 7. The confusion matrix for the SVM model results extracted from the training set (left),
and the test set (right).
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Figure 8. ROC model curve obtained during the hyperparameters optimization process.

In this study, a comparison was made to recent studies by Panahi et al. [39] and
Bui et al. [40] in order to provide a more comprehensive understanding of the performance
of the approach, see Figure 9. Notably, the comparison emphasizes the performance of
the approach in the presence of imbalanced data, an aspect that has not been extensively
investigated in either Panahi et al. [39] or Bui et al. [40]. By highlighting this research gap,
the comparison underscores the novelty of the approach in addressing this critical issue and
emphasizes the need for further research in this area. Despite this, the approach continues
to demonstrate relatively good performance in comparison to available metrics, providing
a promising foundation for future research efforts to utilize this methodology.

Figure 9. Comparison of skill score metrics for flash flood event prediction between the current SVM
model and both Panahi et al. [39], and Bui et al. [40] works.

Incorporating nearby lightning activity, around the examined hydrometric stations,
as a feature allowed the model to capture the correlation between the lightning activity and
flash flood occurrence, enhancing the SVM model results presented in the previous study
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carried by Ziv and Reuveni [21]. This augmented feature added additional information,
which clearly contributed to the improved performance of the model, as indicated across
the various examined score metrics. All together, these results demonstrate the advantage
of including diverse relevant features in ML models, along with the potential for improved
performance by leveraging additional data sources.

6. Discussion

Flash floods are a major natural disaster that can cause significant damage and loss of
human lives. As such, the development of accurate and reliable methods for predicting flash
flood events is of critical importance for risk management and disaster response efforts.

We then filtered out the data to only include flash flood events with available nearby
lightning data, taking into account the DOY feature (i.e., only integrating the lightning,
which occurred during winter time), resulting in a dataset of 105 flash flood events along
with 1219 quiet (non-flood) days. We separated the resulting dataset into a training set
(80% of the data) and a testing set (20% of the data), ensuring that the ratio of flood events
to quiet days was approximately 1:1 for the training set (i.e., balanced set), where for the
remaining testing set a ratio of 1:56.

The pre-processed data were used to train an SVM model to classify flash flood events
based on their adjusted PWV, surface pressure, and associated nearby lightning activity.
The model achieved impressive performance across multiple score metrics calculated from
the imbalanced testing set, including an accuracy of 0.9913, F1 score of 0.7917, HSS score of
0.7875, precision of 0.6786, recall of 0.95, and TSS score of 0.9421. These results demonstrate
the effectiveness of the model in accurately predicting flash flood events, particularly in the
presence of imbalanced data.

In this study, the focus was on the imbalanced dataset test to simulate a flash flood oc-
currence that is rarer, which is typical for the study area in the EM region. This scenario was
estimated to represent a flash flood frequency of 1 in 57 days. Results were similar to those
reported by Ziskin and Reuveni for most metrics, but a notable improvement in the preci-
sion and F1 metrics’ performance was observed, demonstrating the ability of this model to
accurately classify both flash flood and non-flood events in a more realistic scenario.

The results of the confusion matrix and ROC curve representation are presented in
addition to the quantitative score metrics to provide a visual understanding of the model’s
performance. The confusion matrix shows the number of correct and incorrect predictions
made by the model for each class, while the ROC curve illustrates the trade-off between
the true positive and false positive rate at different classification thresholds. This provides
a comprehensive evaluation of the model’s accuracy and robustness.

The comparison with recent studies presented in Figure 9 has provided a more compre-
hensive understanding of the performance of the current approach in comparison to other
recent works. Notably, this comparison is significant for its emphasis on the performance
of the current approach when faced with imbalanced data, which has not been extensively
examined in either Panahi et al. [39] or Bui et al. [40]. By highlighting this research gap,
the comparison underscores the novelty of the current approach in addressing this critical
issue and the need for further research in this area. Despite this, the current approach
demonstrates promising results and continues to perform relatively well in comparison to
the available metrics, serving as a promising foundation for future research efforts aimed
at utilizing the methodology.

In summary, the potential for accurately classifying flood events using machine learn-
ing and lightning activity data was demonstrated in this study. An improvement over the
previous research presented by Ziv and Reuveni [21] has been achieved, and the value
of using advanced machine learning techniques and diverse data sources to build more
accurate and robust models has been highlighted. The use of additional features and data
sources to further improve model performance, as well as the application of the model
in operational settings to aid in flood prediction and risk management efforts, may be
explored in further research.
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7. Conclusions

The objective of this study was to explore the classification of flash flood events
using an SVM model that incorporates GNSS-PWV and surface pressure measurements,
augmented by nearby lightning activity data. The experimental results demonstrated that
the model’s performance improved when nearby lightning activity was incorporated as an
augmented feature, capturing the correlation between atmospheric electricity characteristics
and flash flood occurrence. This improvement was observed in the precision and F1
metrics’ performance on an imbalanced testing set, contributing to the development of a
more accurate and reliable flash flood classification system. The findings suggest that the
integration of atmospheric electricity data can enhance the performance of existing flash
flood prediction models and help mitigate the devastating effects of these natural disasters.
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