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Abstract: The research and development of deep learning methods are heavily reliant on large
datasets, and there is currently a lack of scene-rich datasets for synthetic aperture radar (SAR) image
vehicle detection. To address this issue and promote the development of SAR vehicle detection
algorithms, we constructed the SAR Image dataset for VEhicle Detection (SIVED) using Ka, Ku, and X
bands of data. Rotatable bounding box annotations were employed to improve positioning accuracy,
and an algorithm for automatic annotation was proposed to improve efficiency. The dataset exhibits
three crucial properties: richness, stability, and challenge. It comprises 1044 chips and 12,013 vehicle
instances, most of which are situated in complex backgrounds. To construct a baseline, eight detection
algorithms are evaluated on SIVED. The experimental results show that all detectors achieved high
mean average precision (mAP) on the test set, highlighting the dataset’s stability. However, there
is still room for improvement in the accuracy with respect to the complexity of the background.
In summary, SIVED fills the gap in SAR image vehicle detection datasets and demonstrates good
adaptability for the development of deep learning algorithms.

Keywords: SIVED; vehicle detection; synthetic aperture radar (SAR); complex scenarios; rotatable
bounding box; deep learning

1. Introduction

The synthetic aperture radar (SAR), as an active sensor, has the capability of all-day,
all-weather imaging. Due to the long wavelength of emitted electromagnetic waves, SAR
can effectively identify camouflage and penetrate masked objects. Hence, with increasing
resolution, SAR can acquire high-quality images and is being widely used in target surveil-
lance and reconnaissance. The appearance features of a target are varied and influenced
by its near environments. How to detect, i.e., find and locate, the target in a complex
background has been an important research direction for SAR image applications. Vehicles,
as a common type of land transportation, have gradually become increasingly a point of
focus for researchers.

The most commonly used traditional SAR target detection method is the Constant
False Alarm Rate (CFAR) algorithm, a typical detection operator based on statistical char-
acteristics. Nevertheless, this method has a drawback in that it necessitates the manual
definition of the background clutter distribution and guarding area, which ultimately leads
to detection outcomes being influenced by complex scenarios and human factors.

However, deep networks have a remarkable feature abstraction ability and can au-
tomatically perform target detection in complex backgrounds. Due to their powerful
performance, deep networks are at present widely used for SAR object detection, and many
researchers have designed different networks or improved on existing detection networks.
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For SAR ship detection, Jiao et al. [1] proposed a multi-scale neural network based on Faster
R-CNN for densely connected convolutional network layers to solve the multi-scale and
multi-scene SAR ship detection problem. Cui et al. [2] proposed a ship detection method
based on Dense Attention Pyramid Network, which also adds attention modules to the con-
volutional network layer and connects them for multi-scale ship detection. Zhang et al. [3]
proposed a novel balance learning network (BL-Net) to solve four imbalance problems in
SAR ship detection. They also carried out work on high-speed SAR ship detection [4–6]. In
addition, researchers have used a rotatable bounding box-based detection network [7–10]
to cope with dense scenes, thus further improving localization accuracy. For SAR air-
plane detection, He et al. [11] proposed a component-based multi-layer parallel network to
solve the sparsity and diversity problems that arise from the SAR scattering mechanism.
Wang et al. [12] proposed a new fast detection framework, named the Efficient Weighted
Feature Fusion and Attention Network (EWFAN), which conducts the automatic and rapid
detection of aircrafts with high accuracy. Moreover, many researchers [13–15] have carried
out work related to SAR aircraft detection. Other types of SAR object detection include
oil-tank detection [16,17] and video SAR shadow detection [18], to name but a few.

Since the deep network is a data-driven approach, a considerable amount of input
samples are required as training data to achieve a better performance. Therefore, corre-
sponding datasets must be created for network training purposes. Over the past few years,
the reason for the more rapid development of SAR ship detection is the richness of the
SAR ship dataset [19–23]. However, the only public dataset containing vehicle targets is
Moving and Stationary Target Acquisition and Recognition (MSTAR) [24], which com-
prises a series of military vehicle chips and clutter images and was originally intended for
classification studies. In recent years, some researchers have carried out detection work
using MSTAR. For example, Long et al. [25] proposed a simple rotated detection model
on the dataset, where the vehicles were embedded into the clutter images for detection
experiments. Zhang et al. [26] selected eight types of vehicle chips and integrated them into
the background images to construct the SAR_OD dataset first and then utilized data en-
hancement to improve detection accuracy. Sun et al. [27] constructed a small dataset called
LGSVOD by manually labeling three target classes, and proposed an improved YOLOv5
network for detection. As mentioned above, the studies all embedded vehicle targets into
the clutter images for detection. In this case, although there are many vehicle categories
in the MSTAR dataset, the background is homogeneous, and the distribution of vehicles
is ideal and not sufficiently dense. Therefore, for civilian vehicle detection in urban-area
scenes, some researchers have used MiniSAR images [28] or FARAD images [28], which are
publicly available at Sandia National Laboratories (USA). Wang et al. [29] took MiniSAR
images as the basis, added MSTAR data as an expansion to form a detection dataset, and
used transfer learning based on the Single Shot MultiBox Detector (SSD). Zou et al. [30]
proposed a SCEDet network on a band of FARAD images, and the produced dataset con-
tained 1661 vehicles for experimental validation. Tang et al. [31] employed a CFAR-guided
SSD algorithm using five MiniSAR images for experimental validation. As mentioned, in
the above studies, only a portion of those images were selected for experiments, and the
corresponding data were not fully explored and required a unified evaluation metric.

In this paper, we construct a SAR Image dataset for VEhicle Detection based on a
rotatable bounding box named SIVED, which collects data in the X, Ku, and Ka bands from
MSTAR, MiniSAR, and FARAD. The imaging areas of MiniSAR and FARAD are mainly
concentrated in urban areas with complex backgrounds composed of trees, buildings, roads,
and clutter. SIVED contains more than 270 dense scene chips. The rotatable bounding
boxes are adopted to avoid information redundancy and reduce interference from the
background and adjacent targets in dense scenes. This is also convenient for orientation
estimations and aspect ratio calculations. The creation of SIVED consists of three main
steps. The first step involves data preprocessing, including the removal of scenes without
targets. Then, an automatic annotation algorithm based on CFAR and YOLOv5 is proposed
to establish semi-automatic annotation. Finally, chips and annotation files are automatically
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organized to build the dataset. After construction, a complete analysis is performed for the
dataset characteristics, eight rotated detection algorithms are selected to verify the stability
of and challenge the dataset, and the corresponding baseline is built for the reference of
relevant researchers.

The main contributions of this paper are as follows.

• Using publicly available high-resolution SAR data that includes vehicle targets, we
construct the first SAR image dataset in three bands for vehicle detection. The rotatable
bounding box annotation is adapted to reduce redundant background clutter and
accurately position targets in dense scenes. This dataset can advance vehicle detection
development and facilitate vehicle monitoring in complex terrestrial environments.

• An algorithm, combined with a detection network, is proposed for the annotation of
MSTAR data to increase annotation efficiency. The annotated files contain enriched
information, expanding the potential for various applications.

• Experiments are conducted using eight state-of-the-art rotated detection algorithms,
which establish a relevant baseline to evaluate this dataset. The experimental re-
sults confirm the dataset’s stability and the adaptability of the current algorithms to
vehicle targets.

The rest of this paper is organized as follows. Section 2 presents the basic information
about SIVED. Section 3 describes the construction of SIVED. In Section 4 is an analysis of
the characteristics of SIVED. Section 5 introduces the architectures of the selected eight
rotated detection algorithms. Presented in Section 6 are experiments conducted based
on SIVED toward establishing a baseline to analyze the dataset characteristics. Section 7
provides a detailed discussion of the dataset based on the experimental results from the
eight algorithms. Finally, the conclusions and outlook are given in Section 8.

2. Basic Information about SIVED

The previously mentioned open data MSTAR (X-band), MiniSAR (Ku-band) [28], and
FARAD (Ka and X-bands) [28] are used to construct the dataset; the basic information of
the above open data is shown in Table 1. For MSTAR, 5168 vehicle chips at 17◦ and 15◦

depression angles are selected. SIVED consists of a training, test, and validation set, and
the chip size is set to 512 × 512. The statistics for the number of chips and the number
of targets are shown in Table 2. Chips for vehicles located in urban areas are selected for
display in Figure 1a, and the scenes contain parking lots, buildings, tree coverings, both
sides of roads, etc. Since the original MSTAR chip size is 128 × 128, the chips are stitched
in groups of 16 (4 × 4) to form slices of corresponding settings, as shown in Figure 1b.

Table 1. Basic information of open data.

Data Source Location Band Polarization Resolution

FARAD Sandia National Laboratory Albuquerque, NM, USA Ka/X VV/HH 0.1 m × 0.1 m
MiniSAR Sandia National Laboratory Albuquerque, NM, USA Ku - 0.1 m × 0.1 m
MSTAR U.S. Air Force - X HH 0.3 m × 0.3 m

Table 2. Statistics on the sub-set number of SIVED in two scenarios.

Scene Train Valid Test Total

number of
chips

urban 578 72 71 721
1044MSTAR 259 32 32 323

number of
vehicles

urban 5417 710 718 6845
12,013MSTAR 4144 512 512 5168
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Figure 1. The chips with the size of 512 × 512 in SIVED. (a) Vehicles in different urban scenarios;
(b) MSTAR chips after splicing.

SIVED is annotated with rotatable bounding boxes; one of the chips is annotated with
bounding boxes as shown in Figure 2a. The row direction of the image matrix is defined
as the y-axis, the column direction is defined as the x-axis, and the coordinates follow the
form of (x, y) as recorded. Meanwhile, two formats of annotation files are provided. One
format is derived from the DOTA [32] annotation format, using TXT files to record the
annotation information of each chip, which is characterized by conciseness and clarity as
well as the possibility of being directly applied to most rotated detection networks. The
corresponding file format is shown in Figure 2b, where the corner coordinates are arranged
clockwise. It should be mentioned that the difficulty indicates whether the labeled target
is a detection difficulty instance (0 means no difficulty, and 1 means difficulty). Another
from the PASCAL VOC [33] annotation format, using XML files, is employed to record the
detailed information of each chip, including source data, band, resolution, polarization
mode, target azimuth, etc., which is convenient for researchers to exploit these for further
research; the annotation file is shown in Figure 3.
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Figure 2. Presentation of annotation example. (a) Visualization of target annotation; (b) presentation
of annotation TXT file.

Figure 3. Presentation of an annotation XML file.

3. Dataset Construction

This section explains the details of the dataset construction process, as shown in
Figure 4. It consists of three main steps: data preprocessing and selection, semi-automatic
annotation, and dataset production. The critical step is semi-automatic annotation, designed
with a CFAR operator and neural network.

3.1. Data Preprocessing and Selection

The public dataset comprises 351 FARAD-Ka images, 61 FARAD-X images, and
20 MiniSAR images, all of which were converted into TIFF files using the officially provided
script files. Upon visual interpretation, it was discovered that specific images did not
contain vehicles, while others had reduced resolution due to sampling issues, rendering
vehicle extraction ineffective. This situation is demonstrated in Figure 5. Ultimately, a total
of 17 MiniSAR images, 53 FARAD-Ka images, and 13 FARAD-X images were selected as
annotated images.
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Figure 4. The construction workflow of SIVED, * represents file name.

Figure 5. The presentation of vehicles that cannot be extracted effectively: (a) area 1; (b) area 2.

Before the annotation process, special cases need to be described. In urban scene
images, there are usually small buildings that match the size of vehicles and show strong
scattering features. They are easily confused, but the geographic location does not change,
so we used Google Earth to compare and identify them. The corresponding example is
shown in Figure 6.
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Figure 6. Example of a small building easily confused with vehicle targets in (a) SAR image and
(b) Google Earth.

Meanwhile, there will be regions where trees and vehicle targets overlap each other,
which can be divided into two cases: the target is obscured by trees but exhibits strong
scattering properties and contains the combined scattering information of vehicles and
trees, as shown in Figure 7a; the target is partially obscured by trees, and the obscured part
is entirely invisible, as shown in Figure 7b. In the first case, the target is labeled according
to the complete profile, and in the second case, only the visible part of the target is marked.

Figure 7. Example in regions where trees and vehicles overlap each other, red boxes represent labeled
vehicles: (a) completely covered but visible situation; (b) partially covered and partially visible case.

3.2. Semi-Automatic Annotation of SIVED

The vehicle targets in urban scenes are manually annotated by visual interpretation.
For the vehicles in MSTAR, semi-automatic annotation is used; the specific process is shown
in Figure 4, including the automatic annotation algorithm, detection network annotation,
and manual correction. The details of each step are as follows.

1. Algorithm Automatic Annotation: In this paper, an automatic annotation algorithm
is designed for MSTAR; the input is the MSTAR chips, and the output is the visual
annotation box and the coordinate values of the four corner points. After the chip
is input, a 30 × 30 area in the center is first selected for masking. The main purpose
is to roughly mask the target area to prevent pixel leakage, which affects the clutter
distribution estimation. The second step for clutter estimation is to select the Rayleigh
distribution [34], whose probability density function (PDF) is described as follows:

p(x) =
x

σ2 e−
x2

2σ2 , x > 0 (1)

where x denotes the pixel values that the range is defined as [0, 255], and σ2 denotes
the variance of the pixel values in the estimated region.

In the third step, given the false alarm rate Pf a = 0.00001, according to PDF and Pf a to
calculate the threshold T, the relationship between Pf a and T as follows:

Pf a = 1 −
∫ T

0
p(x)dx (2)
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In the fourth step, a pixel-by-pixel comparison is performed; those larger than the
threshold are determined as target pixels for forming a binary image. In the fifth step, the
connected domain is calculated for the binary image, the one with the largest area will be
extracted as the target, and the target is then expanded to make the target structure more
complete. In the sixth step, Canny edge detection [35] is performed; next, the edges are
extracted, and the contour containing the largest area is then found, and the minimum
external moments are drawn. Finally, the coordinates are output.

2. Detection Network Annotation: The previous step automatically outputs 5168 anno-
tation boxes for all chips. Next, a total of 2893 chips, about 56% of the total number
of chips, are confirmed by visual interpretation, and the position of its annotation
boxes are accurate. Then, these chips form a sample set that is fed into the rotated
YOLOv5 network for precise detection. Finally, with a total of 50 epochs trained and
the weights retained, the remaining 2275 chips are fed into the trained network, and
the coordinates of the detection boxes are output.

3. Manual Correction of Labeling: Eventually, 162 detected boxes are offset, accounting
for about 7% of the network output chips. They only contain part of the target or
contain more non-target pixels and are corrected by manual labeling. Finally, MSTAR
data annotation is complete.

Compared with manual labeling, the proposed semi-automatic annotation algorithm
improves efficiency and saves on labor cost. Ultimately, the manually modified chips
account for about 3% of the total, significantly reducing the workload and labeling time.

3.3. Dataset Production

If the pixel area of the vehicle in the chips is larger than 80% of the original pixel
area during the crop, it is labeled as a positive sample, which means a sample that is
retained in the chip. The pixel values are converted to 8-bit integer data, and the annotation
information is output to DOTA format and PASCAL VOC format as TXT files and XML files,
respectively. For MSTAR chips, the stitching operation is performed, and the annotation
files are integrated to add offsets to the coordinates of each target. Next is visualization of
the annotation boxes. Finally, all chips are divided into the training, test, and validation
sets according to the ratio of 8:1:1.

3.4. File Structure

The dataset is constructed, and its file structure is presented in Figure 8. The Anno-
tations folder contains the annotation files in XML format, while JPEGImages holds all
the image chips. VisualImages contains the annotated visual chips, and ImageSets holds
the dataset that has been divided into the training, test, and validation sets. These sets
mainly contain image chips and annotation files in TXT format. It is worth noting that all
images and annotation files are named in the form of source with a serial number, such as
FARAD_1.*, and the front sub-name indicates its source to enable researchers to freely select
either urban scene data (FARAD and MiniSAR) or MSTAR simple scene data. Additionally,
relevant experiments will be conducted in later chapters to provide benchmark metrics
under different scenes, thereby facilitating convenience for the researchers.
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Figure 8. Structure of SIVED, * represents file name.

4. Dataset Analysis

Two primary metrics are considered to provide an overall analysis of the dataset: the
scale distribution and the angle distribution of the vehicles. The scale distribution is specific
to all datasets and can be used to analyze the target scale that the dataset focuses on and
its level of challenge for detection algorithms. Meanwhile, the angle distribution takes
the imaging mechanism of SAR into consideration. Assuming all other conditions are the
same, the target features will significantly differ at different azimuth angles. The presence
of targets at various angles will contribute to the network’s ability to extract features and
rapidly converge toward stability in the training procedure.

4.1. Scale Distribution Analysis

The scale of a target can be defined as the pixel area it occupies. In the COCO
dataset [36], targets are classified as small, medium, or large based on their pixel area range,
as shown in Table 3. The detection of small targets is generally considered to be the most
challenging task, and this is attributed to three main characteristics of small-target detection:

1. Few features are available, meaning less visual information, and extracting features
with discriminatory power is complicated. Moreover, this process is easily disturbed
by environmental factors.

2. High localization accuracy is required because small targets cover a small area in
the image. An offset of even a single pixel point from the bounding box can cause
significant errors in the prediction process.

3. Dense scenes are common, and small targets in proximity are prone to interference
from neighboring targets.

Table 3. The official definition of the COCO dataset for the size of targets.

Type Area

Small target 0 < a ≤ 322

Medium target 322 < a ≤ 962

Large target a > 962

The target scale distribution of our dataset in each set is shown in Figure 9. Small
targets make up 54.5% of the dataset, and 99.8% of the targets have an area less than 3072
(which is three times the area of small targets). This indicates that the dataset mainly
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comprises small- and medium-sized targets, making it challenging for detection algorithms
to accurately identify them.

Figure 9. Statistical chart of vehicle scale size in SIVED: (a) entire dataset; (b) training set; (c) valid
set; (d) test set.

4.2. Angle Distribution Analysis

Due to the difficulty in determining the direction of a vehicle’s head, the azimuthal
definition of 0◦~360◦ cannot be used to evaluate the target angle. Instead, the long edge
definition method is employed. As depicted in Figure 10, the range is defined as [−90◦,90◦),
where the clockwise direction is positive. This method takes into account the relatively
extensive and symmetrically distributed natural angle range, resulting in more uniform
characterization of the target angle distribution. Figure 11 presents the angle distribution
statistics of SIVED, which demonstrate that the targets are distributed at different angles,
thereby promoting the integrity of feature extraction and dataset stability.

Figure 10. Rotatable bounding box long edge definition method.

4.3. Properties of SIVED

SIVED has three main properties: richness, stability, and challenge. It contains SAR
data in X, Ku, and Ka bands, which enrich the target features compared to previous SAR
datasets that lack multi-source image. Additionally, SIVED includes vehicle targets in
multiple scenarios and with various properties, making it suitable for meeting actual
mission requirements.
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Figure 11. Statistical chart of vehicle angle in SIVED: (a) entire dataset; (b) training set; (c) valid set;
(d) test set.

All the vehicles in SIVED are distributed at different azimuths, which is beneficial for
maintaining the integrity of target characteristics under SAR imaging. In the later section,
advanced detection network experiments will be used to verify its stability.

SIVED primarily focuses on small targets and complex backgrounds, and it has been
designed to satisfy this requirement, as analyzed in Section 4.1. Detecting small targets
is always challenging in object detection tasks, and urban areas, in particular, pose an
added challenge with multiple features and tiny structures that can be easily confused with
vehicle targets.

5. Methodology

Currently, there are two mainstream classification methods for deep detection algo-
rithms. The first method divides algorithms into two-stage and one-stage based on their
process. The second method categorizes algorithms as anchor-based or anchor-free, de-
pending on whether they use anchors. Additionally, there are different regression strategies
or designed modules for detecting rotatable bounding boxes. In this paper, we will ex-
periment with eight different models to verify the stable reliability of the dataset. We will
describe these models in the following sections.

5.1. Object Detection Framework Overview

Most object detection networks consist of four parts: input, backbone, neck, and head,
as shown in Figure 12. The backbone is responsible for feature extraction and typically
uses classical CNN networks such as VGG [37] or ResNet [38]. In this paper, the backbone
of all networks is ResNet50 [38]. The neck plays a top-down role and is mainly used for
feature fusion, which makes the features learned by the network richer and more diverse
and improves the detection performance. The neck used in this paper in all cases is feature
pyramid networks (FPN) [39]. The head, also known as the detection head, is responsible
for generating network outputs, making predictions using the extracted features, and
ultimately outputting the object’s class and location.
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Figure 12. The architecture of the object detection framework.

5.2. Rotated Faster-RCNN

Faster-RCNN [40] is a two-stage detection algorithm with a structure shown in Figure 13.
The main parts include the feature extraction network, region proposal network (RPN), and
ROI pooling. As mentioned earlier, the feature extraction network is the backbone, while
the RPN and ROI pooling layers form the head. The RPN generates candidate regions, and
the ROI pooling layer extracts those regions from the feature map for final classification
and regression. Angular parameters are added to the network for regression to form the
final Rotated Faster R-CNN.

Figure 13. The architecture of Faster R-CNN.

5.3. Rotated RetinaNet

RetinaNet [41] is a one-stage network with a typical structure, as shown in Figure 14.
The feature maps of different dimensions extracted by the ResNet50 backbone are input to
the FPN, and the classification and box regression sub-networks complete the detection
process. Focal Loss, proposed by the authors to balance positive and negative samples, is the
core contribution of the paper. By introducing Focal Loss, one-stage detection performance
surpasses that of two-stage detection networks for the first time. The same technique is
applied for angle parameter regression, resulting in the creation of Rotated RetinaNet.

Figure 14. The architecture of RetinaNet.

5.4. Rotated FCOS

FCOS [42] is a typical one-stage anchor-free network with a structure shown in Figure 15.
It outputs fused feature maps through the backbone network and FPN. Later, it outputs
feature vectors at each point location on each feature map through the detection head
network, which is used to represent the final bounding box results. In contrast to anchor-
based networks, the detection head network in FCOS does not use anchors for regression
but introduces center-ness to describe the distance from the point position in the feature
map to the center of the target to achieve target localization. By including the calculation of
angular loss, it becomes Rotated FCOS.
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Figure 15. The architecture of FCOS.

5.5. S2A-Net

Single-Shot Alignment Network (S2A-Net) [43] is a one-stage detector for rotated
objects with the structure shown in Figure 16. It consists of two modules: the Feature
Alignment Module (FAM) and the Orientation Detection Module (ODM). The FAM can
generate a high-quality anchor using the Anchor Refinement Network and adaptively align
the convolutional features according to the anchor box using novel alignment convolution.
The ODM first employs an active rotation filter for encoding, and direction-sensitive
and direction-invariant features are then generated to mitigate the inconsistency between
classification scores and localization accuracy.

Figure 16. The architecture of S2A-Net.

5.6. RoI Transformer

RoI Transformer [44] is a module used in rotated two-stage detectors. It consists of two
parts: the first part is the supervised rotated RoI learner, which learns the transformation
parameters from horizontal RoIs to rotated RoIs; the second part is the Rotated Position
Sensitive RoI Alignment module, which extracts rotationally invariant features from rotated
RoIs to enhance target classification and boundary regression.

5.7. Gliding Vertex

The Gliding Vertex [45] is also a simple yet effective strategy for rotated box regression.
It replaces the direct regression of the four vertices of the rotated box with sliding of the
vertices of the horizontal bounding box on each corresponding edge to accurately describe
multi-directional objects. The parameter representation is shown in Figure 17. Specifically,
the algorithm regresses four length ratios that characterize the relative glide offsets of each
corresponding face. This approach facilitates the learning of offsets and avoids confusion
in the sequential labeling points of oriented objects. To further address the confusion
problem for near-horizontal objects, the authors introduce a skewness factor based on
the area ratio between an object and its horizontal bounding box. This factor guides the
choice of horizontal or oriented detection for each object. When using this method, the
overall network architecture is referred to as the structure of Rotated Faster-RCNN, and
five additional variables are simply added to the regression headers.
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Figure 17. Parameter representation of Gliding Vertex.

5.8. Oriented RepPoints

Oriented RepPoints [46] adopts a strategy for rotated bounding box regression that
generates adaptive point sets for geometric structure representation using an adaptive
points learning method. It employs three directed transformation functions that aid in
accurate classification and localization with proper orientation. The architecture of Oriented
RepPoints is shown in Figure 18. To select a representative sample of oriented points during
training, an adaptive points assessment and assignment scheme is proposed for adaptive
point learning that can capture non-axis aligned features from neighboring objects or
background noise. A spatial constraint is introduced to penalize outlier points to enable
adaptive learning. This method uses a one-stage network architecture, which is similar to
RetinaNet while retaining Focal Loss. The corresponding detection network is formed by
adding the corresponding strategy to the head.

Figure 18. The architecture of Oriented RepPoints.

5.9. KLD

KLD [47] is a strategy for rotated bounding box regression. Specifically, it first con-
verts the rotated bounding box into a two-dimensional Gaussian distribution and then
calculates the Kullback–Leibler divergence (KLD) between the Gaussian distributions as
the regression loss. KLD can also be understood as a new loss function and will be added
to the Rotate RetinaNet framework in the experiments of this paper.

Previous studies have successfully applied the Faster-RCNN, Retinanet, and FCOS
frameworks to SAR ship detection [10,48–50], demonstrating their versatility in charac-
terizing and learning from SAR images. Meanwhile, the Oriented RepPoints, Gliding
Vertex RoI Transformer, and KLD methods are novel regression strategies, and S2A-Net
is a model tailored to optical remote sensing images; these methods are awaiting evalu-
ated for dataset compatibility. These various methods represent both stable classical and
emerging algorithms. Thus, they are suitable for establishing a baseline and validating
dataset performance.
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6. Experimental Results

In this section, we will conduct experiments to validate the dataset using the rotated
detection algorithms selected in Section 5. The purpose of these experiments is to test
the dataset’s stability, compare the performance of different algorithms, and analyze the
algorithm that achieves the best results.

6.1. Experimental Setup and Evaluation Metrics

The experiments were conducted with Ubuntu 18.04, using an Intel(R) Xeon(R) Gold
6230R CPU @ 2.10 GHz, and an NVIDIA Geforce RTX 3090 GPU. The detection algorithms
are based on the mmrotate [51] deep learning framework, with the SGD optimizer, initial
learning rate set to 0.01, momentum set to 0.937, and weight decay set to 0.0005. The batch-
size is set to 8, the number of training epochs is set to 150, and a warm-up of 500 iterations
is performed before training, with the warm-up learning rate set as one-third of the initial
learning rate. During training, the validation set was used for verification, and the optimal
weights were saved for testing.

To evaluate the effectiveness of the detection models on the constructed dataset,
various metrics such as recall (R), precision (P), and mean average precision (mAP) were
introduced. These metrics evaluate the model’s ability to recognize objects in each image
as a whole. The definitions for these metrics are as follows:

P =
TP

TP + FP
; R =

TP
TP + FN

; mAP =
∫ 1

0
P(R)dR (3)

the mAP metric is calculated using TP (the number of detected targets), FN (the number
of missed targets), and FP (the number of false alarms). For a detailed explanation of the
mAP metric, please refer to Table 4, where the IOU represents the overlap ratio between the
predicted bounding box and the actual labeled box to the total area of both boxes.

Table 4. Definition of metrics.

Metrics Explanation

mAP mAP when IOU = 0.5:0.05:0.95
mAP50 mAP when IOU = 0.5
mAP75 mAP when IOU = 0.75

6.2. Experiments for Baselines

The evaluation experiments for the dataset were performed using the eight networks
described in Section 5. The corresponding test set evaluation metric values for each network
are presented in Table 5. The results show that all networks achieved an mAP50 above 95%
except the RoI Transformer. Additionally, the recall remained above 97% for all networks
except the Rotated FCOS and RoI Transformer, and precision remained above 90% for all
networks except the RoI Transformer. Notably, Oriented RepPoints demonstrated the best
performance, maintaining the highest mAP across different definitions.

Table 5. Metric values of different networks on SIVED.

Network Recall * Precision * mAP * mAP75 * mAP50 *

RoI Transformer 95.61 84.40 37.45 16.91 93.47
Rotated FCOS 88.86 96.47 50.40 48.13 95.60

S2A-Net 97.48 90.90 55.49 57.32 97.72
Rotated RetinaNet 97.48 92.73 53.11 50.93 97.76

KLD 98.05 93.34 57.49 64.48 97.92
Rotated Faster R-CNN 97.80 95.55 56.03 59.00 98.09

Gliding Vertex 98.13 95.72 56.06 59.59 98.33
Oriented RepPoints 98.05 95.11 60.15 70.69 99.13

* All metric values are in percentages (%).
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Figure 19 illustrates the detection results of various algorithms in typical scenes. The
first and second rows depict the background of strongly scattering buildings, while the
third row presents a dense scene with trees. The fourth row displays easily confused
small objects, and the fifth and sixth rows depict cluttered scenes. Finally, the seventh row
displays MSTAR chips. In urban scenarios, all algorithms exhibited instances of missing
detections and false alarms.

Figure 19. Ground truth and detection results of eight detection networks. The red boxes in the first
column represent ground truths, while the green boxes in other columns denote detected vehicles.
False alarms are shown in yellow boxes, missing vehicles in pink boxes, and bounding boxes with
large offsets in blue boxes. (a) Ground truth; (b) Oriented RepPoints; (c) Gliding Vertex; (d) Rotated
Faster R-CNN; (e) KLD; (f) Rotated RetinaNet; (g) S2A-Net; (h) Rotated FCOS; (i) RoI Transformer.

6.3. Additional Experiments

We conducted two additional experiments, and the details are as follows:

1. An experimental test to establish baseline metrics for two different scenarios: urban
and MSTAR simple. The training set comprises data from all scenarios. These metrics
can serve as a point of reference for researchers when selecting challenging datasets
for their own experiments. As shown in Table 6, the mAP50 score is higher for the
MSTAR scene test than for the urban scene, reflecting the greater complexity and
interference that exists in urban settings.
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2. To verify the superiority of the SIVED dataset over FARAD and MSTAR, we chose a
simple structured Rotated RetinaNet, trained with those three datasets, respectively.
We compared the performance of the network trained with those datasets via the
specific metric values shown in Table 7. The results show that the constructed SVID
dataset improved the network performance.

Table 6. Values of mAP50 in different scenarios.

Network mAP50_all * mAP50_urban * mAP50_MSTAR *

RoI Transformer 93.47 89.23 97.91
Rotated FCOS 95.60 92.19 98.86

S2A-Net 97.72 96.69 97.91
Rotated RetinaNet 97.76 96.45 99.32

KLD 97.92 97.46 98.83
Rotated Faster R-CNN 98.09 97.53 98.76

Gliding Vertex 98.33 96.71 100
Oriented RepPoints 99.13 98.34 99.73

* All metric values are expressed as percentages (%). The metric mAP50_all indicates that the test set contains
data from all scenarios, while mAP50_urban and mAP50_MSTAR indicate that the test sets only contain data
from the urban (FARAD and MiniSAR) and MSTAR scenarios, respectively.

Table 7. Values of mAP50 in different scenarios.

Training data mAP50_FARAD * mAP50_MSTAR *

FARAD 96.53 -
MSTAR - 99.24
SIVED 96.77 99.32

* All metric values are expressed as percentages (%). The metric mAP50_FARAD indicates that the test set only
contains data from FARAD, while mAP50_MSTAR indicates that the test set only contains data from MSTAR.

7. Discussion

As discussed in the previous section, currently available datasets for SAR image target
detection are primarily focused on ship targets. However, as ships are much larger than
vehicles in terms of physical scale, our dataset is positioned to address the detection of small
targets defined based on image pixels. Thus, SIVED would serve as a valuable complement
to constructing a multiple-target dataset with various scales. Compared to the typical
SAR ship dataset SSDD [21], SIVED offers rich associated information in its annotation
file. Although SSDD employs rotatable bounding boxes, the annotation file only includes
the position and angle of the target. In contrast, SIVED is annotated with the source of the
slices and the basic information of the corresponding sensors, such as band, polarization
mode, and resolution. This additional information will be useful in small-target detection
research based on SAR imaging mechanisms. SSDD contains 1160 chips and 2587 ship
targets, with an average of two targets per chip. On the other hand, SIVED’s urban area
comprises 721 chips and 6845 vehicle targets, indicating an average of nine targets per chip.
This suggests that SIVED’s distribution of targets is denser while the target capacity is
larger, which puts forward a higher challenge for the positioning accuracy of the detection
algorithm. Furthermore, rich land features and clutters constitute a complex background.

The characteristics of vehicles in SAR imaging are closely related to the wavelength
of the band used. Typically, longer wavelengths lead to a deeper penetration but worse
characterization ability for target details, whereas shorter wavelengths result in a weaker
penetration but better characterization ability for target details. In this paper, we con-
structed a dataset of Ka, Ku, and X bands, with sequential increases in their wavelengths.
Figure 20 shows the imaging results of different bands in FARAD, and it is evident that
the vehicles in Ka-band images exhibit more texture features than those in X-band images.
The inclusion of images of different bands indicates that the features become rich, enabling
the network to learn more knowledge and improve the generalization ability. In addition,
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due to the side-view imaging of SAR and the penetration of the microwave, it can form
a mixed area of vehicles and trees as shown in Figure 7, where the pixel information is
formed by the combination of trees and vehicles, and the vehicle targets in the above scenes
are labeled, which further enriches the features of the dataset while making full use of SAR
imaging characteristics.

Figure 20. Chips of FARAD of different bands: (a) Ka band; (b) X band.

As a high recall indicates a high rate of target detection, the results of the experiment
in Table 4 suggest that the dataset is relatively stable. However, the precision does not reach
the same level as the recall, resulting in more false alarms, which means that the background
was wrongly identified as the target. This finding verifies the complexity of the dataset’s
background. It provides further evidence that the dataset is challenging but still maintains
stability. Generally, the one-stage network has a lower detection accuracy compared to the
two-stage network since the two-stage network distinguishes the background from the
target in the RPN, whereas the one-stage network performs regression directly, resulting
in an imbalance between the categories of background and target. Nonetheless, Oriented
RepPoints utilizes the Focal Loss in RetinaNet to provide appropriate weight control to
cross-entropy loss and focus loss calculation on target categories, which improves upon
the influence caused by the imbalance between background and target. Combined with
the adaptive improvements for rotatable bounding box regression, it thus obtains the
highest performance.

The visual detection results presented in Figure 18 reveal that the phenomenon of
missing detection and false alarm exists in the detection results of different algorithms.
This finding is in line with the actual scenario, where there is greater interference and
difficulty in distinguishing dense targets in urban environments, ultimately highlighting
the challenge of the dataset.

When constructing SIVED, multiple sources of data are used, making full use of the
SAR imaging mechanism, and sensor information is recorded during annotation, which
endows the dataset with richness. Compared with the typical ship dataset, SIVED mainly
focuses on small targets, and contains more dense scenes and complex backgrounds, which
make the dataset challenging. The targets are distributed at different angles, and the
different algorithms maintain high recall values in the experiment, which demonstrates
the stability of the dataset. In summary, SIVED exhibits three properties: richness, stability,
and challenge.

8. Conclusions

This paper presents the construction of a new SAR image vehicle detection dataset,
named SIVED, which addresses the lack of rich scene datasets in the field. It includes
120,133 vehicle targets and more than 270 dense scene chips. Targets are annotated by
rotatable bounding boxes, which improve localization accuracy and reduce interference
from background and adjacent targets, and a semi-automatic annotation method is pro-
posed to improve efficiency. Robust baselines are created through eight models in a unified
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framework. SIVED has three main properties: richness, reliability, and challenge. It com-
prises complex urban context and rich dense scenes, which are not available in other SAR
datasets. Although the images currently in use are limited, we believe SIVED will be a
valuable resource for advancing the development of vehicle detection technology for SAR
imagery. We will also make further additions to the dataset in the future.
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