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Abstract: Woody vegetation landscape features, such as hedges, tree patches, and riparian vegetation,
are important elements of landscape and biotic diversity. For the reason that biodiversity loss is one
of the major ecological problems in the EU, it is necessary to establish efficient workflows for the
registration and monitoring of woody vegetation landscape features. In the paper, we propose and
evaluate a methodology for automated detection of changes in woody vegetation landscape features
from a digital orthophoto (DOP). We demonstrate its ability to capture most of the actual changes in
the field and thereby provide valuable support for more efficient maintenance of landscape feature
layers, which is important for the shaping of future environmental policies. While the most reliable
source for vegetation cover mapping is a combination of LiDAR and high-resolution imagery, it
can be prohibitively expensive for continuous updates. The DOP from cyclic aerial photography
presents an alternative source of up-to-date information for tracking woody vegetation landscape
features in-between LiDAR recordings. The proposed methodology uses a segmentation neural
network, which is trained with the latest DOP against the last known ground truth as the target. The
output is a layer of detected changes, which are validated by the user before being used to update the
woody vegetation landscape feature layer. The methodology was tested using the data of a typical
traditional Central European cultural landscape, Goričko, in north-eastern Slovenia. The achieved
F1 of per-pixel segmentation was 83.5% and 77.1% for two- and five-year differences between the
LiDAR-based reference and the DOP, respectively. The validation of the proposed changes at a
minimum area threshold of 100 m2 and a minimum area percentage threshold of 20% showed that
the model achieved recall close to 90%.

Keywords: woody vegetation landscape features; change detection; segmentation neural network;
cyclic aerial photography; digital orthophoto

1. Introduction

The loss of landscape and biotic diversity due to intensified land use for agricultural
production and urbanization is one of the major problems in the European Union (EU),
whose strategy for reversing the ecosystem degradation is a core part of the European
Green Deal (https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/
european-green-deal_en, accessed on 22 May 2023). The European biodiversity strategy for
2030 (https://environment.ec.europa.eu/strategy/biodiversity-strategy-2030_en, accessed
on 22 May 2023) includes specific actions for the preservation and restoration of important
habitats. In Slovenia, the landscape diversity is threatened by both agricultural expansion in
some areas, and its abandonment in others. The National Environmental Action Programme
for 2020–2030 (https://www.gov.si/assets/ministrstva/MOP/Publikacije/okolje_en.pdf,
accessed on 22 May 2023) specified the conservation of biodiversity and protection of
valuable natural features in Slovenia as some of the main goals. The protection of specific
high nature value habitat types (HT) is one of the guidelines, which is considered in the
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adoption of future agricultural development plans. Because the prevalent land cover
type in the Slovenian rural environment is a mosaic (i.e., a mixture of several different
HT), its characteristic components are small woody vegetation landscape features, such
as hedges, tree lines, and riparian vegetation. These structures are crucial elements of
ecosystem diversity and have many positive effects on the environment since they prevent
erosion and offer shelter to (endangered) wildlife. The importance of their preservation
and restoration has been recognized and incorporated into European ecological strategies
and national policies. Landscape features are acknowledged in the Slovenian 2023-2027
Common Agricultural Policy Strategic plan (https://skp.si/en/cap-2023-2027, accessed
on 22 May 2023) as the driving forces of biotic diversity and representatives of national
identity with both cultural and aesthetic value.

Following the practice of European countries with established advanced systems for
the registration and monitoring of landscape features in agroecosystems, a Land Parcel
Identification System (LPIS) (https://eprostor.gov.si/imps/srv/api/records/8c8072f5-2
075-49c3-b3e5-56ee58f8db8d, accessed on 22 May 2023) is used in Slovenia as a central
registry of control layers related to areas of ecological importance. In recent years, sev-
eral studies have been funded by the government to provide the necessary data layers
for LPIS. The most elaborate product of this type so far, covering the whole national
territory, was commissioned by the Institute of the Republic of Slovenia for Nature Conser-
vation (https://iaps.zrc-sazu.si/en/programi-in-projekti/feasibility-study-and-mapping-
of-vegetative-landscape-structures-important-for, accessed on 22 May 2023). It contains
more than 3 million woody vegetation landscape features (outside woodland), which are
classified into five classes [1]. The layer is derived from the LiDAR point clouds provided
by the airborne laser scanning (ALS) of Slovenia, which was conducted for the last time in
2014 (http://gis.arso.gov.si/evode/profile.aspx?id=atlas_voda_Lidar@Arso, accessed on
22 May 2023). Due to this, the layer is already an inaccurate representation of the current
situation in the field.

In order to support periodic updates of the woody vegetation landscape feature
databases in agroecosystems, there is a desire to build a system for the automated detection
of vegetation changes from remote sensing data. In the paper, we propose a methodology
that uses DOP from periodic aerial surveys to generate the change layers. The methodology
is envisioned as the basis for a future decision support tool where the user can set the
significance level of detected changes and validate them before updating the database. The
goal of the study is to evaluate the efficiency and suitability of the proposed approach for
such purposes.

In terms of temporal resolution, an attractive source of remote sensing data for change
detection is satellite imagery, such as Sentinel-2 multispectral data. In the past, a lot of
research has been devoted to the detection of land cover changes on a large scale from
satellite images [2–10], where the typical value of a minimum mapping unit (MMU) is on
the order of 100 m2. The main advantage of using Sentinel-2 data is its low cost. However,
the spatial resolution of 10 m/pixel for the color and NIR channels is insufficient for reliable
detection of small-scale vegetation changes driven mainly by man for agricultural purposes.
The monitoring of such woody vegetation landscape features requires higher precision
to capture changes in narrow linear structures and small patches of non-forest greenery,
which can be only a few meters in width or diameter. Using very high spatial resolution
(VHR) satellite images can provide a necessary solution [11,12], but is less attractive due to
the higher costs involved in periodic updates. Satellite data were, therefore, not used in
this study.

High-resolution images of the ground can also be produced by unmanned aerial
vehicles (UAVs), which have been used on a limited local scale for precise vegetation
mapping and classification from hyperspectral [13,14], multispectral [15,16], and RGB
data [17–19], as well as for land cover change detection [20,21]. However, extending such
an approach to a regional scale is, in the best case, impractical (e.g., time-consuming,
incurring high costs, requiring high data capacity and computational power). Some of the
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recent approaches have, thus, started addressing the middle ground, where high-resolution
vegetation monitoring on a regional or state level is based on periodic aerial surveys [22].
For instance, the cyclic aerial photography of Slovenia (CAS) has been performed in digital
form regularly since 2006, with a period of approximately three years in which the whole
area of the country is covered. The product of CAS is a color digital orthophoto (DOP) with
a spatial resolution of 25 cm/pixel, which currently presents the best compromise in terms
of spatial/temporal resolution and cost for use in landscape feature monitoring. In this
paper, an automated procedure is proposed for periodic detection of changes in woody
vegetation landscape features, which can be combined with manual validation for regular
updating of vegetation layers.

Previous studies demonstrated that high-resolution imagery is required for the pre-
cise detection of small woody vegetation features. Several object-based approaches for
this task, which typically involves image segmentation, feature extraction, and object
classification, have been proposed in the past. The problem of mapping trees outside
forests was addressed using object-based image analysis techniques [23] and random forest
classification [24], where it was shown that combining UAV and multi-temporal satellite
imagery can provide the best overall accuracy. In order to map linear woody vegetation, an
object-based approach was proposed, using discriminant functions with spectral, textural,
and shape features [25]. The problem of mapping riparian habitats was addressed using
a random forest classifier in combination with airborne [26] and UAV imagery [27]. A
similar approach was employed to perform wide-scale mapping of non-cropped habitats
in high-resolution aerial photography [28], while classification trees were used for the
detection of shrub encroachment in areas where agricultural management practices have
been abandoned [29]. Integration of multiple classifier outputs was shown to improve
overall classification accuracy [30].

In most cases, manual labeling of training samples is necessary to provide the ground
truth or masks for vegetation mapping, but some studies rely on existing datasets, such
as Small Woody Features (SWF) [31–33]. SWF is a product available through Copernicus
Land Monitoring Services (https://land.copernicus.eu/pan-european/high-resolution-
layers/small-woody-features, accessed on 22 May 2023), but only for the year 2015, while
the SWF for 2018 is, at the time of this writing, still in production. The spatial resolution
of the SWF raster layer is 5 m/pixel, while the vector layer classifies woody features into
linear, patchy, and additional features. The latter are features that are, according to the
rules, neither linear nor patchy but enhance the connectivity of other features or represent
isolated features with an area larger than 1500 m2.

In recent years, the field of semantic image segmentation has been dominated by
deep learning (DL) models, which have achieved substantial performance improvements
over the previous state of the art [34]. Many DL-based approaches to semantic image
segmentation employ an end-to-end convolutional neural network (CNN), such as the fully
convolutional network (FCN) [35], in order to classify individual pixels into predefined
semantic classes. The architecture used by several popular segmentation neural networks
is the encoder-decoder [36–38]. The encoder transforms the input image into a compressed
latent representation using a backbone feature extractor, which is typically a CNN pre-
trained on a large dataset such as ImageNet [39]. The decoder reconstructs from the
latent representation a segmented image of original size through a series of up-sampling
operations and a final pixel-wise classification. The encoder-decoder architecture has been
employed for vegetation mapping from both UAV [40,41] and high-resolution satellite
images [42]. Improvements over the baseline have later been achieved by introducing
dilated separable convolutions [43] and the channel attention mechanism [44].

In the context of aerial and satellite image segmentation, recent advances comprise
techniques like transfer learning from high-resolution satellite datasets [45], the use of
segmentation neural network ensembles [46], hybrid architectures [47,48], adaptive CNNs
that improve the classification of easily confused classes [49], and deformable convolutions
that adjust the receptive field to geometric deformations of shape and size [50,51]. Some al-
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ternative approaches to image segmentation employ graph neural networks (GNN) [52–54],
which operate on graph nodes constructed from an image in a preprocessing step. An-
other recent line of research in remote sensing image segmentation uses attention-based
transformers to replace or supplement the backbone CNN [55–58].

In this paper, we propose a methodology for detecting woody vegetation landscape
features in cyclic aerial photography and marking areas where significant changes with
respect to a reference layer are indicated by the model. Besides the segmentation neural
network-based detector, the methodology includes post-processing steps to match the
detected features in consecutive DOPs and indicate the locations of potentially important
changes for visual or field inspection. Such a methodology could be used primarily for
semi-automated layer updates in the periods between consecutive ALSs. The proposed
methodology is a step towards systematic registration and monitoring of woody vegeta-
tion landscape features, which is important for the shaping of future environmental and
agricultural policies, including issuing Subsidy Control Acts to encourage establishing new
landscape features and preventing their removal.

The main contributions of the paper are:

• machine learning based detection of small-scale woody vegetation landscape features
in aerial photography,

• segmentation neural network training with LiDAR-based targets and weighted train-
ing loss, masked by combined land use, cadastre, and public infrastructure masks,

• a methodology for automated generation of change layers at user-specified levels
of detail,

• experimental evaluation of system efficiency for a region in north-eastern Slovenia,
• discussion of limitations and analysis of conditions that impact model accuracy.

The rest of the paper is organized as follows. In Section 2, an overview of the proposed
methodology is presented, and its individual components are described in detail. The
experimental setup is described, and the results are reported in Section 3. This is followed
by an analysis of the results and a discussion of limitations in Section 4, while Section 5
concludes the paper.

2. Materials and Methods

In this section, we first provide an overview of the proposed methodology, and then
describe individual components in more detail. We also describe the way the methodology
is evaluated from the perspective of its use as a decision-support tool.

2.1. Overview

The goal of the proposed methodology is to support the automated generation of
a woody vegetation change layer from the input DOP. The changes are indicated with
respect to a reference layer, which is typically the last known state of the vegetation. The
significance of change is determined based on a user-specified threshold, which defines the
minimum difference area or some other property of the mismatch between the old and the
new layers. The core element of the methodology is a segmentation neural network, which
is trained from the perspective that the extent of significant changes from the last cycle is
small compared with the non-changes. This means that periodically updated targets remain
largely representative of the situation in the field, which allows their use for re-training
the network on a new DOP. The expectation is that, with a large enough training set, the
segmentation neural network will be forced to disagree with the training targets in regions
where there is a true change.

A high-level schematic of the proposed methodology for updating the landscape fea-
ture layer is shown in Figure 1. A segmentation neural network is first trained using the new
DOP against the targets sampled from the last known ground truth (Figure 1 top), and the
trained model is used to perform the segmentation of the whole region (Figure 1 bottom).
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Figure 1. The structure of the proposed methodology for change detection in woody vegetation
landscape features.

In both the training and final segmentation, the regions of specific land use, such as
forests and intensive orchards, are masked out in order to exclude from model evaluation
the vegetation that does not fall under the category of suitable woody vegetation landscape
features. The obtained raster is vectorized, and features with areas smaller than 10 m2 are
removed following the methodology proposed in [1]. This eliminates potential leftover
vegetation fragments from the filtering step, as well as individual bushes and small trees,
which are not considered standalone woody vegetation landscape features. A vegetation
change layer is produced next as a symmetric difference between the new layer and the
last ground truth, and the area attributes are computed for the new features. The change
layer is finally filtered with respect to user-specified threshold values for minimum area
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and percentage of change. This allows the user to focus on the most significant changes
first or specify the minimum required extent of change to be registered. The changes are
validated manually by visual inspection of the DOP or through field inspection before they
are used to update the ground truth. In the case of CAS, such updates would be performed
once per year after a new DOP is obtained for the target areas where woody vegetation
landscape features are lacking owing to intensive agricultural practices.

2.2. Study Area

The selected study area is the region of Goričko, which lies between 46◦61′–46◦88′ N
and 15◦98′–16◦43′ E, covering approximately 462 km2 of hilly landscape in the northeastern-
most part of Slovenia (Figure 2). It is the largest landscape park in the country (with the
exception of the National parks). The region was selected because it is one of the highest
priority areas for the preservation of existing and the formation of new woody vegetation
landscape features in the country, and environmental actions are implemented here much
more easily owing to the specific land ownership structure. The whole landscape park also
falls under the Natura 2000 network of protected areas for biodiversity conservation, which
makes Goričko an interesting target for continuous surveillance of agricultural practice
implementations.

2.3. Data

The datasets used in this study are the LiDAR point clouds, the DOP, the building
cadastre, the public infrastructure cadastre and the land use database for the selected study
area of Goričko.

The LiDAR scanning of Goričko was performed in early 2014. The average density
of first returns calculated over 10 m2 squares was 5 points/m2, while the root mean
square error (RMSE) of absolute height measurements for the entire survey block was 8 cm
(http://gis.arso.gov.si/related/lidar_porocila/b_24_izdelava_izdelkov.pdf, accessed on 22
May 2023). The geo-referenced and classified point clouds are available for download as
a grid of 1 km2 cells from the website of the Slovenian Environment Agency (http://gis.
arso.gov.si/evode/profile.aspx?id=atlas_voda_Lidar@Arso&culture=en-US, accessed on
22 May 2023).

The DOPs of Goričko for the years 2014, 2016, and 2019 were used in this study. Aerial
images was produced with a 25 cm ground sample distance. The orthorectification of
images was performed using a 5 m photogrammetric digital terrain model (DTM) for the
year 2014 and a LiDAR-based DTM with 1 m resolution for the years 2016 and 2019. The
public digital orthophoto is accessible through the e-survey data portal maintained by the
Surveying and Mapping Authority of the Republic of Slovenia (https://egp.gu.gov.si/egp/
?lang=en, accessed on 22 May 2023).

The building cadastre is a vector layer containing approximately 1.18 million shapes
that represent the ground plans of registered buildings for the whole country. The public
infrastructure cadastre contains vector layers for different public infrastructure objects and
networks, such as roads, railways, water supply networks, communication networks, and
electric grids. In this study, the power transmission line layer was used, which contains the
medial axes of transmission corridors. One of the important object attributes is the power
line voltage level, which determines the required width of the corridor (ranging from 1.5 m
to 40 m). The vegetation encroaching on the transmission corridors is not considered a
landscape feature, as it is removed during periodic corridor maintenance. Both datasets
can be obtained from the same data portal as DOP.

The last dataset is the national record of land use, which contains a vector layer with
approximately 1.7 million objects. The objects are classified into 25 different types of land
use based on photo-interpretation, field inspections, and third-party information. The
updates to the layer correspond to the coverage of yearly CAS surveys, which include
approximately one third of the national territory. The land use dataset is published on
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the website of the Ministry for Agriculture, Forestry and Food (https://rkg.gov.si/vstop/,
accessed on 22 May 2023).

The main properties of the used datasets are summarized in Table 1.

Table 1. Main properties of datasets used in the study.

Dataset Data Type Date Properties

LiDAR Point cloud 4/2014 Density: 5 pts/m2

DOP RGB images 5/2014, 4/2016, 4/2019 Resolution: 25 cm/px
Buildings Polygons 2020 #Features: 1.18 M

Transmission lines Lines 2020 #Features: 319,455
Land use Polygons 2014, 2017, 2020 #Features: 1.55 M–1.74 M

2.4. Data Processing

The original data were processed in order to produce the masks and layers needed in
the later stages of the proposed pipeline. Individual pre-processing steps were performed
using available open-source software tools and libraries for working with GIS data, which
are described in the continuation.

The LiDAR point clouds were used to generate the reference layer of woody vegetation
landscape features by roughly following the approach by Kokalj et al. [1]. The points
already classified as ground were first used to generate a digital terrain model (DTM)
at 1 m resolution, which matches the resolution used in the orthorectification of aerial
images during the production of the DOP. The generated DTM was used to extract the
raster canopy height model (CHM) using the pit-free method [59]. These steps were fully
automated using the lidR package (https://github.com/r-lidar/lidR, accessed on 22 May
2023), which provides a set of tools and algorithms for the manipulation of airborne LiDAR
data [60].

The vectorization of CHM was performed next, where only the pixels with a height
above 2 m were considered. The result was subsequently filtered in order to remove
all segments not corresponding to potential regions of interest (RoI). The filtering was
performed by sequentially subtracting the geometry of individual masking layers from the
vectorized CHM. In particular, the building cadastre, the public infrastructure layer, and
the land use layer were used to respectively mask out urban areas, power line corridors,
and registered special purpose areas, such as hop fields, greenhouses, vineyards, intensive
orchards, forests, and water bodies. The power line corridors were derived from their
axial representation by applying buffers of prescribed clearance widths depending on the
voltage levels of the power lines.

In order to prevent detecting narrow strips of forest border and connected vegetation
as separate landscape features due to the imprecision of the land use layer, a 10 m buffer
was used to expand forest segments before filtering. In a similar way, a 2 m buffer was
used for the building cadastre, and a 1 m buffer for the power lines. In contrast, the regular
fields were not filtered out because this would remove most of the narrow linear vegetation
along field edges, which are rarely delineated separately in the land use layer. Finally, the
remaining segments with areas smaller than 10 m2 were discarded, and the result was
rasterized to produce the candidate target mask at a spatial resolution of 25 cm. All of
the steps were performed using the QGIS (https://qgis.org/, accessed on 22 May 2023)
software tool and automated with the GDAL (https://gdal.org/, accessed on 22 May 2023)
library, which includes Python utilities for operations on raster and vector layers as well as
conversions between different formats.

In order to reduce the fragmentation due to the many small gaps in the vegetation
picked up by LiDAR, a morphological closing with a square structuring element of 3 pixels
width was applied to the raster layer. The resulting target mask T was used as ground
truth in the model training as well as to derive the potential vegetation changes based on
the disagreement between the baseline and the model predictions. The joined mask M of
areas that were filtered during the target mask preparation was also rasterized. It was used
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during the training to limit the calculation of segmentation loss to regions of interest as
well as to perform the final filtering of the model’s predictions.

The training dataset for the segmentation neural network was built using 32 sample
tiles corresponding to rectangular patches of land selected from various parts of the Goričko
region. Each tile was 4000× 4000 pixels and covered an area of 1 km2. Another 8 tiles were
used for the validation dataset during training, while the final 8 tiles were used for the test
set (Figure 2). The plots were chosen such that the number of pixels belonging to woody
vegetation landscape features represented at least 3% of the non-masked area in the tile.

45.5°N
0 50 100

km

HungaryAustria

Slovenia
Italy

Croatia46.0°N

46.5°N

47.0°N

13°E 14°E 15°E 16°E

Figure 2. Location of the target study area (the Goričko region) within Slovenia, and the locations of
the training tiles (red), validation tiles (blue), and test tiles (green) within Goričko.

The training, validation, and test samples consisted of spatially aligned parts of the
DOP, land use mask M, and target mask T. The actual training samples were generated
from the training tiles on the fly by cropping random subimages of size 1024× 1024 pixels,
which is the expected input dimension for the segmentation neural network. Training set
augmentation was performed by flipping the extracted samples randomly in horizontal and
vertical directions, each with a 50% probability. Unlike the training samples, the validation
and test samples were obtained by uniform subdivision of the corresponding tiles into
4× 4 cells with a 32 pixel overlap between neighboring images.

2.5. Segmentation Model

The core step of the proposed change detection methodology involved training a
segmentation neural network, which uses the most recent DOP as an input and outputs
a segmentation probability map. The last known state of woody vegetation landscape
features was used as the target reference T for computing the training loss, while the
combined land use mask M was used to constrain the loss computation to relevant pixels.
The expectation was that training with fresh input data and the last ground truth as the
target would force the model to misclassify primarily in areas of actual changes because
adjusting for them would lead to a significantly higher overall training loss.

In our experiments, we used a pre-trained segmentation neural network based on
the U-Net architecture (Figure 3) from the Python segmentation models package (https:
//github.com/qubvel/segmentation_models, accessed on 22 May 2023). The model allows
the selection of several backbone neural network architectures, which have been pre-trained
on the ImageNet dataset. We selected the EfficientNet backbone [61] because it provides
better or comparable performance using a much smaller number of network parameters
than other architectures, which allows network training on a regular desktop GPU. The
fine-tuning of the U-Net model to a particular task of vegetation detection in DOP was
finally performed. In order to speed up the training and reduce the space requirements, the
encoding layers of U-Net can be frozen during fine-tuning, and only the decoding layers

https://github.com/qubvel/segmentation_models
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are adapted. However, we found that fine-tuning the complete stack was beneficial for
performance, presumably because aerial imagery contains visual features and patterns not
present in typical image datasets.

32×32×1536
encoder
decoder

1024×1024×3

1024×1024×3

512×512×24

256×256×192

128×128×288

64×64×816

64×64×256

128×128×128

256×256×64

512×512×32

1024×1024×16

1024×1024×1

1024×1024×1

concatenate

Figure 3. The U-Net architecture of the segmentation neural network. The blue arrows represent
downscale operations, the red arrows are upscale operations, and the green arrow is a final per-pixel
binary classification.

The training was implemented in Tensorflow using the Keras neural network library.
The Adam optimizer with an initial learning rate η = 10−4 and default values for other
parameters was used for model optimization. The output prediction of the model was
a 2D probability map Ŷ with the same width and height as the input image. The loss
function was a customized binary cross-entropy loss, which applied the mask of land use
M to constrain loss contribution to non-masked pixels only. The errors made in pixels
corresponding to regions of interest (i.e., woody vegetation landscape features), were
weighted differently according to the following equation:

L = − 1
|Ŷ|∑i

(1−mi)(wyi log(ŷi) + (1− w)(1− yi) log(1− ŷi)).

Here, w is the weight for balancing false positive and false negative errors, and was,
in our final experiments, set to 0.6 after extensive hyper-parameter tuning on a validation
set. The mean loss was calculated over all pixels i in the output, where mi ∈ M is the
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corresponding mask value (1 for masked pixels), yi ∈ Y is the target value, and ŷi ∈ Ŷ is
the model prediction.

In the ideal case, re-training a model to a new DOP would not be required. However,
there can be significant differences between photos from different surveys due to varying
phenological stages of the target vegetation and illumination conditions. Some differences
can be reduced by careful planning of flight dates, but this depends on many factors,
including the weather. Alternatively, different training data augmentation techniques, such
as brightness adjustment and adaptive histogram equalization, can be applied during the
training of the original model in order to simulate varying environmental factors. The
downside is that this may lower the model’s performance on an otherwise homogeneous
training set such as the CAS, where a selected target region is typically recorded in a
short time span, during which the state of vegetation foliage and weather conditions
are consistent. Additionally, not all differences can be adequately simulated by data
augmentation, and the model used in the previous cycle is likely overfitted to conditions
present at the time of the aerial imagery capture. Due to that, either a fine-tuning of the
previous network or the training of a new model from scratch is necessary. We compared
different approaches in the experiments. The results demonstrated that training a new
model was more efficient than fine-tuning a trained model from the previous cycle. The
most likely reason is that fine-tuning cannot escape the local optimum basin of a model
that was adapted to the seasonal characteristics of aerial images from the previous training
cycle, although training data augmentation can help in reducing the performance gap.

2.6. Post-Processing and Filtering

The post-processing of model predictions in the change detection phase was com-
pletely automated using the GDAL library. The value of each pixel in the output image
represents the probability of vegetation’s presence in the pixel. The image was first con-
verted to binary using a probability threshold value of 0.5. The same mask M that was used
during training was applied next in order to remove the areas of land use that were not
compatible with the woody vegetation landscape feature definition. The images generated
from subparts of the original tiles were concatenated back to form a single larger raster, and
morphological closing with a 3-pixel window was applied to it. The result was vectorized,
and the areas were computed for the so-obtained feature polygons. A symmetric difference
was computed next, with the reference vector layer representing the last known state of
woody vegetation landscape features. The land use mask was applied to the reference layer
as well in order to eliminate areas whose land use designations may have changed since the
last update (e.g., overgrown abandoned farmland can, after some time, be reclassified as
forest). The resulting polygons corresponded to potential changes in nature, representing
the locations of vegetation ingrowth or its removal. A final filtering step was performed in
which the areas of the detected change polygons were computed first, as well as the ratio
between the area of the change and that of the source polygon (reference or prediction). In
the last step, all change polygons were removed whose area or percentage of change were
below the user-specified thresholds.

2.7. Validation

The efficacy of the proposed approach was evaluated on an independent test set by
human visual inspection. The test set included the DOPs and masks from the CAS years
2016 and 2019, which were used to extract separate woody vegetation change layers with
respect to the reference LiDAR-based layer from 2014. The detected changes of woody
vegetation landscape features were visualized and presented to the user in an overlay with
the DOP 2014 and the DOP from the respective comparison year. The user was able to show
or hide individual layers in order to validate the proposed changes. In this way, the user
could label false positive (FP) and true positive (TP) cases of woody vegetation change by
concentrating on the polygons in the generated layer. In order to expose the false negative
(FN) cases, which represent the changes overlooked by the model, the user also had the
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ability to draw a polygon around the apparent change. Each such manually delineated
polygon was clipped against the reference layer, and the area of the result was calculated.
The percentage of area change for the polygon was finally calculated with respect to the
polygon’s total area. The resulting feature was counted as a false negative if it passed the
threshold conditions.

3. Results

The aim of the experiments was to simulate a typical scenario, which is first to train
the segmentation neural network using the DOP from the selected CAS year as input and
the LiDAR-based ground truth as target. The trained model was then applied to a test set,
and the results were used to generate the woody vegetation landscape feature change layer.
Separate experiments were performed using the training data from the CAS years 2014,
2016, and 2019. The data from 2014 were used only to evaluate the extent of agreement
between the DOP-based predictions and the LiDAR-based reference targets from the same
year. The target layer was not updated between consecutive experiments because the goal
was to assess the degradation of the landscape feature registry when no monitoring was
performed for an extended period of time.

The experiments were conducted on a computer with an AMD Ryzen 9 5900X CPU
and an NVIDIA Geforce RTX 3060 GPU with 12 GB of VRAM. The operating system was
Manjaro Linux kernel 6.0. The efficientnetb3 backbone was used as a feature extractor in
the segmentation neural network. The training data for the network were 32 tiles of the
aligned DOP, land use mask, and target mask. In each epoch, a single random training
sample of size 1024× 1024 pixels was extracted from each tile. The network was trained
for 200 epochs, which took approximately one hour to complete. A separate validation set,
which contained 128 samples obtained by uniform subdivision of 8 larger tiles, was used
during training to record the best performing model variant. After training, the stored best
model was used to perform the segmentation of a test set with another 128 samples. Table 2
summarizes the results in terms of the achieved per-pixel precision (P), recall (R), and F1
score on the training and test sets.

Table 2. Training and test precision (P), recall (R), and F1 score of models trained on DOPs from
different CAS years and the LiDAR-based ground truth

Year Train Test
P R F1 P R F1

2014 88.3% 88.3% 88.3% 88.5% 87.3% 87.9%
2016 81.4% 83.3% 82.3% 83.6% 83.3% 83.5%
2019 76.0% 73.9% 74.9% 78.7% 75.6% 77.1%

As explained before, the training of a new model for each CAS cycle is desirable for the
best results, because not all seasonal differences in aerial photography can be adequately
simulated by data augmentation. We tested this using a series of experiments. We first used
the 2014 model directly to perform the segmentation of DOP 2016 and DOP 2019, which
resulted in an F1 equal to 71.7% and 67.2%, respectively, a substantially worse outcome
than what we got with the dedicated model. As the next step, the 2014 training data were
augmented using random combinations of brightness, contrast, hue/saturation/value,
and histogram equalization. The F1 scores of the resulting model improved to 75.7% and
69.8%. The last attempt involved additional fine-tuning of the 2014 model with new data
for 50 epochs using a smaller initial learning rate η = 10−5. This improved the F1 score
for the 2016 and 2019 datasets further to 81.2% and 74.9%, respectively, but the preference
clearly remained for specialized models.

The two trained models for the years 2016 and 2019 were used to produce correspond-
ing change layers for woody vegetation landscape features as described in Section 2.6. Two
levels of thresholding were applied during the filtering stage in order to assess the usability
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of the approach at different granularities. For level 1, the more selective threshold values
T1 = 100 m2 for the minimum area of change and T2 = 20% for the minimum percentage
of change were used in order to make the process of manual validation manageable. At
level 2, the relaxed requirements T1 = 30 m2 and T2 = 10% were used for comparison
purposes only.

Figure 4 shows, for a selected region, the DOPs from different years, the detected
landscape features, and the changes corresponding to the two filtering levels. Table 3
reports the number of detected changes for the case T1 = 100 m2 and T2 = 20%, as well as
the counts of TP, FP, and FN determined by visual inspection of the results.

17
82

50
17

83
00

17
83

50
17

84
00

17
84

50

590200 590250 590300 590350 590400

17
82

50
17

83
00

17
83

50
17

84
00

17
84

50

590200 590250 590300 590350 590400

17
82

50
17

83
00

17
83

50
17

84
00

17
84

50

590200 590250 590300 590350 590400

Figure 4. DOPs from the years 2014, 2016, and 2019 (top row, left to right), detected woody vegetation
landscape features (red polygons, middle row), and detected changes at level 1 (green polygons)
and level 2 (additional yellow polygons). The scale is in meters, and the coordinate reference system
(CRS) is EPSG:3794.

Table 3. Validation results for the produced landscape feature change layer at the threshold values
T1 = 100 m2 and T2 = 20%.

Year TP FP FN P R F1

2016 84 30 10 0.737 0.894 0.808
2019 173 49 19 0.715 0.901 0.836

The high-detail change detection at level 2 resulted in 772 detected changes in 2016,
and 1142 detected changes in 2019. It should be noted that, by reducing the threshold
values, the increasing number of detected changes was due to the displacement of objects
in orthorectified DOPs. There were also many cases where the gaps between previously
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sparse vegetation were overgrown. However, we considered this to be a valid case for
joining previously fragmented woody vegetation landscape features into larger plots.

4. Discussion

The proposed approach to monitoring woody vegetation landscape features differs
from related studies in that it addresses the complete workflow necessary to support
semi-automated layer updates. A segmentation neural network is trained in order to
detect woody vegetation landscape features in a DOP from periodic aerial surveys. The
initial training target is generated from LiDAR point clouds, while the detected vegetation
changes are presented for validation and used for subsequent database updates. Unlike the
more general vegetation detection approaches, the proposed methodology uses additional
layers for vegetation filtering in both the model training and the post-processing phases.

We compared the segmentation performance of our model with similar studies that
used UAV [41] and high-resolution satellite images [42]. In ref. [41], a U-Net model was
used for shrub segmentation, and achieved an F1-score of 82% on images with a comparable
spatial resolution of approximately 25 cm/pixel. This is below the 88% score of our model
obtained with the contemporary DOP and reference layer. The authors reported a notable
drop in performance on images with distinct seasonal characteristics, which is consistent
with our findings about the use of the same model on images from different surveys. By
using satellite images with a 1 m spatial resolution for mapping in woody vegetation, the
approach in [42] achieved a precision and recall of around 88%, which is very close to our
results. However, both reference approaches involved manual labeling of training data,
while our method uses a LiDAR-based ground truth.

Based on the comparable training and test set results in Table 2, we can conclude that
overfitting of the segmentation models to the training set did not occur. As demonstrated by
the results, the best training performance can be achieved by training a separate model for
each year of the aerial photography cycle. Besides assuring similar imaging conditions and
vegetation states, an additional motivation for the use of specialized models in the case of
CAS is that individual aerial surveys cover parts of the country in adjacent photogrammetric
blocks where the landscape and vegetation are relatively homogeneous [62]. Indeed, in a
country with highly diverse natural biotopes, an even finer granulation of models could
be applied at the level of individual blocks at a reasonable additional cost of preparing
separate training data. For instance, the eastern part of Slovenia is recorded in three
photogrammetric blocks, which include both the Pohorje medium mountain range and
the Pannonian plain. The survey of the western country part, similarly, encompasses four
blocks of diverse alpine and karstic landscapes, which could benefit from sub-specialized
models. Such an approach would be feasible given the low cost of model training.

Another finding of the study is that end-to-end fine-tuning of a pre-trained model is
superior to training the decoder alone. This is consistent with the results of related studies,
which have shown that fine-tuning of the encoder is beneficial for performance [63,64]. It
was further established that transfer learning from a generic pre-trained model was more
efficient than additional fine-tuning of a model from the previous cycle. Similar findings
have been reported in the literature [65]. Although the surveys were made in the same
period of the year, there were important year-to-year differences in the phenological stages
of vegetation and capture conditions, and it was shown in [66] that such significant data
distribution shifts cannot always be adequately simulated by synthetic data augmentation.

Regarding the validation of the detected changes, it can be observed from Table 3 that
the number of false negatives was considerably lower than the number of false positives. A
low false negative rate is desirable, since false positives are easier to discover by subsequent
verification. There was, consequentially, a noticeable gap between the achieved precision
and recall, owing to the model’s preference for false positives. It can also be observed that
the number of detected changes grew with the increasing temporal difference between
the reference and the current time. From an ecological perspective, it was interesting to
analyze the trend of the detected changes. According to the validated changes, the net area
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loss of woody vegetation landscape features in the test plots was approximately 11.5 ares
in 2016 and 15 ares in 2019, which represents roughly 2% and 3% of the corresponding
landscape feature areas in 2016 and 2019, respectively. Moreover, such information is of
crucial importance for agricultural policy decision-makers as well as for parcel owners
who can control and, with financial support, potentially improve the detected unfavorable
ecological status of the environment.

Our results demonstrate that a reliable detection of changes in woody vegetation
landscape features with a true positive rate of around 90% is possible. An important insight
from the experiments is how the representativeness of the reference layer deteriorates
without regular updates, since the number of validated changes in the test set more than
doubled between consecutive surveys (from 94 in 2016 to 192 in 2019).

The analysis of the disagreement between the LiDAR-based ground truth and the
woody vegetation landscape features detected in the DOP showed that there are two main
sources of false differences. The first one is radial displacement of objects in orthorectified
aerial photography, which results in bands of misclassified pixels along opposing edges
in woody vegetation patches. This is illustrated in Figure 5, where the woody vegetation
landscape feature is identified correctly by the model but is shifted slightly with respect
to the LiDAR target, indicating a change. The majority of such cases are eliminated later
during the filtering step because either the area of the change or its percentage within the
feature polygon is below the threshold.
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Figure 5. Radial displacement of objects in the DOP (left image) leads to a positional mismatch
between the LiDAR-based target (the yellow polygon in the middle image) and segmented woody
vegetation landscape feature (the red polygon in the middle image), which manifests as false detected
changes with a recognizable pattern (right image). The scale is in meters, the CRS is EPSG:3794.

The second source of mismatches between the model predictions and LiDAR targets
is the ability of LiDAR to detect low vegetation, smaller clearings, and gaps, which are
not included in woody vegetation landscape feature delineation. It is also able to capture
finer details in woody vegetation edges, which the up-sampling part of the segmentation
neural network cannot reconstruct as precisely (Figure 6). There are two possible ways to
address this in future work: by using a wider window for morphological closing of targets
or by incorporating edge-preserving loss in model training [67]. However, most changes
detected due to such differences are typically fragmented into many smaller patches, which
can be filtered by a properly set minimum area threshold.

There are some limitations to the proposed DOP-based vegetation localization that
affect the efficiency of change detection. Insufficient foliage in late-sprouting vegetation
in particular can cause the segmentation model to underestimate the extent of the growth
and indicate a change where there was none. In order to avoid an unnecessarily high
number of such false positives, the phenological stage of woody vegetation would need to
be considered in determining future surveys since their initial purpose was not specifically
vegetation monitoring.
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Figure 6. Vegetation polygon detected by the segmentation neural network (red polygon) merges
narrow gaps and smooths vegetation edges in targets derived from LiDAR (yellow polygons). The
scale is in meters, the CRS is EPSG:3794.

A more general limitation of monitoring woody vegetation landscape features is that,
from an ecological perspective, not all plant species are equally important for biodiversity.
The possibility of accurately determining the species composition of small woody features
from single-shot aerial photography is severely constrained. In fact, the spreading of
some fast-growing invasive species is becoming a serious problem globally [13,68], and
such vegetation sites should not be considered valuable landscape features. The proposed
framework could also be used to indicate the potential propagation of invasive species by
detecting fast-expanding growth.

5. Conclusions

In the paper, we propose a methodology for automated detection of woody vegetation
landscape features in cyclic aerial photography and the construction of change layers with
respect to the reference ground truth. Systematic registration and monitoring of woody
vegetation is essential for the efficient implementation of ecosystem and biodiversity
preservation strategies. While LiDAR and high-resolution satellite imagery are the best
sources for reliable vegetation detection, their high cost makes them less suitable for
continuous monitoring. As this study demonstrated, a viable solution is to utilize the
remote sensing data of periodic aerial surveys, which present an attractive balance between
cost and resolution required for change detection on a regional scale.

Based on the results, we can conclude that the entire end-to-end pipeline for the
generation of change layers can be implemented in a way that requires almost no user
intervention. The main application of such methodology is for semi-automated updates of
the landscape feature registry, where the user can set the desired granularity of detected
changes before they are presented for manual validation. This allows the user to focus on
major disruptions first in order to make an early assessment of trends.

There are several ways the proposed methodology could be improved in the future. In
the segmentation stage, a better precision in detecting feature boundaries could be achieved
by extending the loss function, or employing specialized neural network architectures.
In the post-processing stage, the number of false positives could be reduced by explicit
matching of overlapping shapes, i.e., detected and reference woody vegetation landscape
features. The filtering thresholds could also be adjusted locally by using the canopy height
model to estimate the possible amount of radial displacement due to orthorectification.
These improvements would increase the precision of change detection without sacrificing
recall, leading to an overall improved user experience.

From the end-user perspective, an important extension of the proposed workflow
would include visual analytics in order to facilitate the supervision of how the national
strategies for biodiversity and nature preservation are implemented. The proposed method-
ology can be used in a similar way to monitor other interesting types of habitats for
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ecological monitoring, such as meadows or marshes. Locating areas of fast vegetation ex-
pansion could also be used to indicate the potential progression of invasive species. Another
possible application of the proposed approach is in planning and overseeing long-term
periodic field operations, such as vegetation maintenance in transmission line corridors.
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