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Abstract: Understanding the impact of water availability on vegetation growth in the context of
climate change is crucial for assessing the resilience of vegetation to environmental shifts. In this
study, the relationship between vegetation growth and water availability was studied using a variety
of indicators. The Normalized Difference Vegetation Index (NDVI), the Enhanced Vegetation Index
(EVI), and Solar-Induced Chlorophyll Fluorescence (SIF) were utilized as vegetation growth indicators,
while the standardized precipitation evapotranspiration index (SPEI) and soil moisture indicators
served as water use indices. To investigate the vegetation response to water deficit in the Loess Plateau
during the growing season from 2000 to 2020, Spearman’s rank correlation coefficients were calculated
using a 5-year sliding window approach. The spatial and temporal heterogeneity of vegetation
response to water deficit during the growing seasons were also explored. The results showed that:
(1) with the improvement of moisture conditions, vegetation growth recovered significantly, and there
was no expansion trend for vegetation water deficit. (2) The most sensitive timescale of vegetation
to water deficit was 6-8 months; the response degree and sensitivity of vegetation to water surplus
and deficit were the highest from June to August; and broadleaved forest was the vegetation type
most sensitive to water deficit in the early growing season, while grass was the vegetation type most
sensitive to water deficit during the mid and late growing seasons. (3) Soil moisture emerged as the
dominant factor influencing vegetation growth in the Loess Plateau, followed by precipitation, albeit
to a lesser extent. These findings contribute to understanding the mechanism and characteristics of
the response of vegetation to climate fluctuations induced by global climate change.

Keywords: Loess Plateau; NDVI; SPEI; water deficit; multiple timescales; water availability

1. Introduction

As global warming intensifies, extreme weather and climate events are becoming more
frequent [1]. These events include cumulative water deficit events, which seriously threaten
terrestrial ecosystems and human societies, making water deficit an increasingly prominent
global issue [2]. Extreme droughts, in particular, have the potential to alter the carbon
balance of terrestrial ecosystems and may cause them to transition from carbon sinks to
carbon sources [3]. This carbon—climate feedback effect can lead to increased droughts and
the irreversible degradation of ecosystems [4—6]. However, different terrestrial ecosystems
respond to climate change in different ways [7], and the response of vegetation growth to
drought exhibits significant spatiotemporal heterogeneity [8]. Under drought conditions,
vegetation experiences water stress, which causes stomata to close and reduces the rates of
photosynthesis, leading to a decline in primary productivity [9]. Consequently, drought
can result in a growth slowdown, degradation, or even death of the vegetation [10,11].
Therefore, studying the vegetation response to drought is crucial to understanding the
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underlying mechanisms and characteristics of vegetation response to climate variability in
the context of global climate change [3].

The relationship between drought and vegetation has been extensively explored [8,12,13].
Drought is essentially characterized by a water deficit event, and the vegetation’s response
to such events is not always straightforward, as plant species exhibit different levels of
resistance and resilience to water deficit due to their unique physiological responses [14,15].
The physiological characteristics of vegetation are mainly influenced by the climatic con-
ditions of the different vegetation types in various climatic zones [16]. Moreover, the
response of vegetation to drought is affected by drought characteristics and climatic en-
vironments [17], making it a complex process influenced by many eco-physiological and
climatic factors [18,19]. To precisely monitor the overall climate condition and depict the
temporal and spatial distribution of drought, a drought index that synthesizes the effects
of temperature, precipitation, and radiation on vegetation is imperative [20]. These indices,
such as the Moisture Index (MI) [21], the Palmer Drought Severity Index (PDSI) [22], the
Standardized Precipitation Index (SPI) [23], and the Standardized Precipitation Evapotran-
spiration Index (SPEI) [19], are widely used and have been found to be well-correlated
with vegetation indicators such as the NDVI, EV], the Leaf Area Index (LAI), and Gross
Primary Productivity (GPP) [24]. Notably, the SPEI holds an advantage over other drought
indicators as it combines potential evapotranspiration and precipitation data to gauge
the severity of drought [19]. Furthermore, it can indicate drought conditions at different
timescales [25]. The timescale of drought, which refers to the duration from the onset of
vegetation water deficit (VWD) to the determination of vegetation change, has been widely
used in aridification studies [5,8,26].

Vegetation growth responses to climate change have been widely studied at global
and regional levels. However, the effects of water limitation on vegetation growth in arid
and semi-arid areas and how they will respond to climate change remain to be thoroughly
explored. The Loess Plateau is particularly susceptible to frequent droughts caused by
climate warming, which has had an increasing impact on vegetation [27]. The moisture
required for vegetation growth in this region mainly comes from soil moisture, which is
unevenly distributed due to the deep soil layer and buried groundwater [28]. Although
existing studies have employed statistical analyses and vegetation indices to characterize
the spatial and temporal variation in the response of regional vegetation to water surplus
and deficit, the sensitivity of vegetation to changes in water deficit and how vegetation
will adapt to or resist climate changes is not clear [29]. Furthermore, there are fewer
studies regarding the impact of seasonal drought on land surface dynamics, and many
uncertainties still need to be investigated regarding vegetation sensitivity to seasonal
drought at the regional scale [13]. Therefore, a more comprehensive study of the effects
of drought and climate change on vegetation in arid and semi-arid regions, such as the
Loess Plateau, is necessary to develop strategies for the sustainable management of land
and water resources.

The objective of this study is to investigate the expanding trend of increasing vege-
tation water deficit in regards to climate change across diverse climatic zones, as well as
the response mechanisms of vegetation to water deficit in these zones. The study aimed to
achieve the following goals: (1) investigate the expansion trend of VWD in various climatic
zones; (2) analyze the characteristics of the response of vegetation to water deficit from three
perspectives, namely, different climatic zones, growing season stages, and vegetation types;
(3) attempt to explain the reasons behind the variations in the expansion trend of VWD
among different climatic zones based on the above perspectives; and (4) identify future
sustainable changes in vegetation and moisture conditions and investigate the environmen-
tal factors that govern vegetation growth. Our study aims to comprehensively assess the
resistance and resilience of vegetation to drought and its potential risks to vegetation health.
Furthermore, the study intends to establish a foundation for formulating and implementing
measures to alleviate vegetation drought.
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2. Materials and Methods
2.1. Study Area

The Loess Plateau, located between 33°43'-41°16’N and 100°54'-114°33’E, encom-
passes most of Shaanxi, Shanxi, and Ningxia, as well as parts of Qinghai, Gansu, Henan,
and Inner Mongolia. It covers an area of approximately 620,000 km? in the middle reaches
of the Yellow River [13] (Figure 1). The region is known for severe soil erosion and the
most fragile ecology, with an arid continental monsoon climate [30]. Precipitation in the
Loess Plateau is low and unevenly distributed in time and space, and it is concentrated
from June to September, primarily in heavy rainfall. The average annual precipitation is
150 mm-a~! to 800 mm-a~?, decreasing from northwest to southeast [31]. The growing sea-
son occurs from April-October, accounting for about 92.00% of the annual precipitation [32].
In consideration of the Loess Plateau’s climatic attributes, this paper divides it into three
distinct climatic zones: arid, semi-arid, and semi-humid [33], representing 13.13%, 62.98%,
and 23.99% of the total area, respectively. The research primarily focuses on examining the
spatiotemporal heterogeneity of the response of vegetation growth to water availability
during the growing season from 2000 to 2020.
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Figure 1. Background information on the study area: (a) location; (b) vegetation cover type data; and
(c) elevation.

2.2. Data Sources
2.2.1. Meteorological Data

The monthly precipitation dataset and the monthly mean temperature dataset, with
1 km resolution, were provided by the National Earth System Science Data Center, National
Science and Technology Infrastructure of China (http://www.geodata.cn, accessed on
11 May 2022). The precipitation and temperature datasets were generated by the delta
spatial downscaling scheme in the Chinese region, based on the global 0.5° climate data
released by CRU and the global high-resolution climate data released by WorldClim.
The accuracy and reliability of the datasets were verified by comparing them with data
from 496 independent meteorological observation stations, and the validation results were
credible [34]. Monthly temperature and precipitation data from 1999 to 2020 were utilized to
calculate SPEI to examine the meteorological changes and assess the response of vegetation


http://www.geodata.cn

Remote Sens. 2023, 15, 2593

4 0f 20

to varying durations of water deficit. To facilitate the calculation, the spatial resolution of
all data was uniformly resampled to 0.1° for this study.

2.2.2. Soil Moisture

Soil moisture directly impacts vegetation growth and resistance to drought [35,36].
The Global Land Evaporation Amsterdam Model (GLEAM) was employed to provide the
surface and root-zone soil moisture statistics used in this study [37,38]. The reliability of
GLEAM soil moisture data has been verified by on-site soil moisture measurements in
the Loess Plateau [39]. The 2000 to 2020 monthly surface soil moisture (0-10 cm) (SMsurf)
and root-zone soil moisture (10-100 cm) (SMroot) data in GLEAM (v3.5a) were selected
for analysis. Soil moisture is the primary source of water required for vegetation growth,
and it determines the amount of water used by the vegetation [35]. As soils of different
textures have varying water-holding capacities and nutrients [40-42], this study utilized
soil moisture and SPEI at different timescales as water availability indicators.

2.2.3. Vegetation Indices

Two different vegetation indices, namely NDVI and EVI, were employed in this
study. NDVI was selected, as it is widely used to assess vegetation status at regional and
global levels. It is related to the vegetation canopy structure and coverage, as well as the
photosynthesis of the vegetation canopy [43,44]. On the other hand, EVI was calculated
by incorporating the light blue band of the spectrum, which mitigated the influence of
the atmospheric and canopy background and enhanced the sensitivity in areas with a
dense biomass [45]. Monthly NDVI and EVI data were obtained from moderate resolution
imaging spectroradiometer (MODIS) product data (MOD13C2, V6).

2.2.4. Solar-Induced Chlorophyll Fluorescence (SIF)

Solar-induced chlorophyll fluorescence was selected for comparison with NDVI and
EVI data, as it provided a signal corresponding to vegetation photosynthesis and was a
more accurate assessment of the actual photosynthetic state of the vegetation than were
traditional indices [46,47]. Integrating SIF with traditional vegetation indices provided a
comprehensive analysis of vegetation status, enabling the dynamic monitoring of vege-
tation growth changes. A global, OCO-2-based SIF dataset (GOSIF) was generated by a
machine learning approach based on discrete OCO-2 SIF soundings, remote sensing data
from the MODIS, and meteorological reanalysis data through a data-driven approach [48].

2.2.5. Vegetation Cover Type Data

To investigate the variation in the expansion trend of VWD among different climatic
zones, this study analyzed the characteristics of the responses of different vegetation types
to water deficit. Vegetation cover types were acquired from the Data Center for Resources
and Environmental Sciences, Chinese Academy of Sciences (http://www.resdc.cn, accessed
on 1 October 2022) in May 2001. The vegetation types were extracted and categorized
into six distinct cover types: grasses, shrubs, alpine forests, cultivated forests, broadleaved
forests, and coniferous forests (Figure 1) (Table S1).

2.3. Standardized Precipitation Evapotranspiration Index

SPEI was proposed by Vicente-Serrano et al. [19]. The calculation of SPEI was based
on monthly precipitation and temperature and was characterized by multiple timescales.
SPEI’s central concept is the construction of a meteorological water cycle to describe the
accumulated water deficit or surplus, which can then be used to characterize drought [49].
High to low SPEI means relatively wet to relatively dry [50]. In this study, SPEI was
calculated separately on 1-12 month timescales to assess the different durations of the
water deficit. The specific calculation method for SPEI is given below.
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First, Thornthwaite’s method was employed to estimate the monthly potential evapo-

transpiration (PET;, mm):
PET~—16K(1OD)m (1)
. I
where T]- is the monthly temperature of j; °C; I is the annual heat index, which is the
sum of 12 monthly index values; m is the coefficient, depending on I; m = 0.492 + 1.79 x
10721 — 7.71 x 107512 + 6.75 x 10~7I3; and K is the correction factor for the latitude and
month functions.

The accumulated moisture deficit sequence X, with different timescales, was con-
structed and its probability distributions were calculated. A month’s cumulative moisture
deficit is the sum of the previous k — 1 months and the current month’s moisture deficit,
and k is the timescale, k=1, - - -, 12.

Xt =YD, @)

D; = P, — PET; 3)

where P; is the monthly precipitation (mm), D; is the monthly moisture deficit (mm), and
i=1,---,n, nis the number of samples in a time series. The calculation of the probability
distribution function of the cumulative water deficit series is performed by introducing a
three-parameter logarithm-logistics probability distribution function.

-2
B(x—7\"! x—7)°
== 1 4
fo = £ + (= @
«, B, and vy are the scale, shape, and position parameters, respectively, for the D values
in the range (y< D < o). The probability distribution function of D is given according to

the log-logistic distribution.
-1
P = (14 (=) ®)
= .

Finally, SPEI was obtained as the standardized value of F(x).

co+ W+ C2W2
1+diW +dy W2 + dsW3

SPEI =W — (6)

W = /—2In(P) @)

For P < 0.5, P is the probability of exceeding the defined D value, P =1 — F(x). If
P > 0.5, Pis replaced by 1 — P and the resultant SPEI is the opposite; cy, ¢, c2, d1, d2 and
d3 are constants.

2.4. Trend Analysis

The Theil-Sen median method and the Mann-Kendall nonparametric statistical test
were used to analyze the changes in vegetation growth, water availability, and meteoro-
logical elements in the Loess Plateau from 2000 to 2020. The trend is estimated as follows.

(X=X
B = Medmn( , )V] > x 8

— X
j—1
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where B is the trend of change; i and j represent the time sequence; and X; and X; represent
the values at moments i and j, respectively. § > 0 means an increasing trend, and g < 0
means a decreasing trend. The Mann-Kendall method was used to determine the signifi-
cance of the trend, and Z values greater than 1.64 and 2.32 represent passing the significance
tests with 95.00% and 99.00% confidence levels, respectively.

2.5. Spearman’s Rank Correlation Coefficient

The Spearman’s rank correlation is a distribution-independent measure of the strength
of the association between variables. Compared with the Pearson correlation, this method
is less sensitive to outliers. It does not rely on assumptions of normality or equal variance
in variable distributions, so it is usually more widely applicable. The Spearman’s rank
correlation coefficient is calculated as follows:

L eve
P—lfm )

where p is the Spearman rank correlation coefficient; d; is the difference in rank of the
corresponding variables, i.e., the difference in rank of the variables in pairs after the two
variables are sorted separately; and # is the number of observations.

2.6. Hurst Index Based on R/S Analysis

The Hurst index is a valuable tool for predicting the future evolution trend of the
time series. It is based on the rescaled extreme deviation analysis (R/S) method, which
takes values from 0 to 1, where a value of 0.5 indicates that the time series is randomly
wandering. A value between 0 and 0.5 indicates an inverse time series persistence, while a
value between 0.5 and 1 indicates a positive persistence of the time series [51-53]. This study
classified the Hurst index into six categories based on the range of H values, 0 < H < 0.2,
02 <H <035 035<H<05, 05<H<0.65, 065 <H <0.75 and H > 0.75, which
represents strong anti-sustainability, medium anti-sustainability, weak anti-sustainability,
weak sustainability, medium sustainability, and strong sustainability, respectively. The
results of the trend and the Hurst index calculations were combined and analyzed using
cluster analysis to obtain different scenarios regarding the sustainability of a given factor
over the coming years.

2.7. Standard Regression Coefficient Method

The standard regression coefficient method was used to calculate the standard coeffi-
cient of NDVI with respect to four meteorological factors, namely temperature, precipita-
tion, soil moisture, and net solar radiation, on a raster basis. This allowed us to determine
the contribution or relative importance of the inter-annual variation of NDVI. The variable
with the highest absolute value of the standard regression coefficient was considered the
dominant variable of the dependent variable in the grid. The calculation equation is used
as follows.

—_~—

NDVI, =a x Ty +b x B+ ¢ x SMy +d x Rad, (10)

_ 4]
|a] 4 [b] + |c[ + |d]

CR, (11)

where T, P, SM;, and l% represent the standardized values of the growing season aver-
age NDVI, air temperature, precipitation, root-zone soil moisture, and net solar radiation in
year k, respectively; CR, represents the contribution of air temperature to the interannual
variation of NDVI, and the contribution of precipitation, root-zone soil moisture, and net
solar radiation were calculated using the same method.
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3. Results
3.1. Trends in the Vegetation Growth and Moisture Conditions
3.1.1. Expansion Trend of VWD

The robustness of the calculated SPEIs was verified by comparing them with the
SPEI of the SPEIbase v2.5 products, and the results showed that the SPEI index calculated
in this study was reliable (Figures S1 and S2). To investigate the correlation between
NDVI and cumulative water deficit events on different timescales during the 2000-2020
growing season, the 5-year sliding window was employed to calculate the Spearman’s rank.
Additionally, the correlation between NDVI and soil moisture was also compared. The area
with a significant positive correlation area (p < 0.05) represents the VWD area, indicating
that vegetation growth is promoted by an increase in water, while the areas with a significant
negative correlation (p < 0.05) represent excess water, indicating that vegetation growth
is inhibited by an increase in water. No significant correlation indicates that vegetation
growth is not affected by water in the area [53]. Figure 2 displays inconsistent trends of
water deficit or water surplus area obtained at short timescales, whereas those calculated at
timescales greater than 6 months are more consistent (Figure 2d—f). The relevant literature
also suggested that short timescales were unsuitable for arid and semi-arid areas such as the
Loess Plateau [3,49,54,55]. Therefore, this study focused on the response characteristics of
cumulative water deficit events with vegetation growth timescales greater than 6 months.
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Figure 2. Area expansion trend of VWD in different climatic zones: (a—c) are the trends of VWD
in arid, semi-arid, and semi-humid climate zones obtained by statistical analysis of the correlation
between NDVI and SM, respectively; (d—f) are the trends of VWD in arid, semi-arid, and semi-
humid climate zones obtained by statistical analysis of the correlation between NDVI and SPEI07,
respectively. The major scale of the coordinate axis represents the starting year of the slide.

The VWD area in the Loess Plateau exhibited a decreasing trend (p > 0.05), which
may be confounded by inconsistent regional results. Conversely, the vegetation water
surplus area demonstrated an expanding trend (p < 0.05), which may be attributed to the
increasing annual precipitation. During 2000-2020, the maximum percentage of vegetation
surplus area was 1.75%, and the maximum VWD area was 16.06%. Given the small area
of vegetation water surplus in the Loess Plateau, this study focuses on the VWD. As
depicted in Figure 2, the trend of VWD area varied across different climate zone, and
the changes in VWD and vegetation water surplus area were analyzed using the SPEI07
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(7-month cumulative water balance), which yielded results consistent the soil moisture and
NDVI. Thus, SPEI0Q7 proves to be a suitable tool for examining the response of vegetation
growth to water deficit in the Loess Plateau. From a regional perspective, the VWD in
arid and sub-humid climate zones exhibited a decreasing trend, while the VWD in the
semi-arid climate zone showed no significant increase. The vegetation recovery areas
were primarily located in the semi-arid climate zone, implying that vegetation growth
contributed to the expansion of water deficit areas. In terms of temporal changes, nearly
all correlation coefficients that passed the significance test were positive. The distribution
of the VWD areas varied significantly across different periods (Figure 3), with notable
differences between the two periods requiring separate analysis and comparison with
various natural factors, particularly the average water conditions in each period.

2000-2004 2001-2005

<

2002-2006 2003-2007

2007-2011

2015-2019

2016-2020

Correlation coefficient (r)

-0.52 -0.07 0 0.07 0.13 0.18 024 029 034 039 054

W@%“ 0 255 510 1020 1530 2040
o Km

Figure 3. Correlation coefficients between NDVI and SPEI07 for the period of 2000-2020, calculated
with a sliding window of 5 years. The top left graph represents the areas that passed the significance
test (p < 0.05).
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Based on the Spearman’s rank correlation analysis of NDVI and SPEI07 from 2000 to
2020 (as depicted in Figure 4), it was observed that the total VWD area accounted for 38.31%
during 2000-2020. In particular, vegetation growth in the northwestern and central parts of
the Loess Plateau was significantly constrained by water deficit, whereas in other areas,
vegetation was either not limited, or not significantly limited, by water surplus and deficit
(Figure 4a—d). Of the VWD area, which accounted for 38.31%, 23.67% was situated in the
semi-arid climate zone, 7.94% in semi-humid climate zone, and 6.70% in the arid climate
zone. Since soil moisture is the primary source of moisture for vegetation growth, the
correlation between the vegetation index and soil moisture is more significant. Accordingly,
there are more regions with a significant positive correlation between NDVI and surface
soil moisture, accounting for 90.66% of the total area. From southwest to northeast, there
was a gradual increase in the degree of correlation. The less significant regions were mainly
located in the southern Loess Plateau.

100° E 105° E 110°E 115°E 100° E 105° E 110°E 11.5° E
(b)
<0
| Elo-02 N
40° N A 4 Co2-04 40° N
[Jo4-06
o608
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a | 250
350 N - i 35°N
105° E 110°E 115°E 105° E 110°E 115°E
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. (C) ' ! 1\4'1t=.diar'11glga;1:rl ! (d) N o lation rrelation
+ Average value %
0.7 - s . Outliers
06 - Positi\;";‘;;
=2 | Positive correlation
0.5 23.67%
0'4 T Semi-arid zone
I 63.32%
0.3 -

Arid

Semi-arid Sub-humid

Figure 4. Spatial distribution of Spearman’s correlation coefficients between the NDVI and the water
availability index during the growing season from 2000 to 2020: (a,b) indicate the spatial distribution
of the Spearman’s correlation coefficients of NDVI with SPEI07 and SM, respectively; the black dots
indicate a significant Spearman’s correlation at p < 0.05; (c,d) indicate the correlation coefficients and
significance distributions of NDVI and SPEI07 in the climate zones.
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3.1.2. Trends of the Vegetation Growth Index, the Water Availability Index, and the
Meteorological Index

Time trends were analyzed after standardizing the parameters with the min-max
normalization. During the growing season, the vegetation area with an increasing trend
(improvement area) accounted for 98.59%, while the decreasing trend (degradation area)
accounted for only 1.41%. The Hurst index of annual mean growing NDVI was 0.46 on
average, with 68.71% of the area exhibiting an index of less than 0.50, indicating that the
NDVI changes were largely inversely persistent, with only a few areas being persistent. All
three vegetation indices indicated that the vegetation cover increased during the growing
seasons from 2000 to 2020, and the spatial distribution characteristics were consistent. In
terms of the growth rate of the multi-year average growing season, NDVI showed a higher
growth rate than EVI and SIF (Figure 5a—c). Figure 6 illustrates that the vegetation coverage
rate in the Loess Plateau was low in the northwest and high in the southeast. The greening
of vegetation was the most significant in the semi-humid climate zone, followed by the
semi-arid climate zone, and was the least pronounced in the arid climate zone. The growth
rate of vegetation cover in the semi-humid and semi-arid climate zone was similar, while
it was the slowest in the arid climate zone. In arid and sub-humid climates, the average
annual growing period regarding soil moisture and precipitation showed a downward
trend, indicating vegetation degradation. In contrast, in semi-arid regions, the average
annual growing period regarding soil moisture and precipitation increased, leading to
significant improvement in vegetation (Figure 6). These findings suggest that vegetation
growth is closely related to precipitation and soil moisture.

1.0 4 (a) NDVI 1.04 (b) EVI . 1.04
0.8 4 0.8 ¥ 0.84
7’
0.6 4 0.6 0.64
§
0.4 4 0.4 4 % 0.44
g 5
0.2 | 0.2 | 024
0.0 0.0 4 0.04
2000 2005 2010 2015 2020 2000 2005 2010 2015 2020 2000 2005 2010 2015 2020
104 (d) SMsurf 104 (e) $Mroot 104 (f) SPEI07

0.8 0.8 0.8
0.6 0.6 0.6
0.4 0.4 0.4
02 02 02
0.0 0.0 0.0
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104 (g) Tm 1.04 1.04 (1) Rad
0.8 0.8 0.8
0.6 0.6 0.6
0.4 0.4+ 0.4
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0.0 0.0 0.0
2000 2005 2010 2015 2020 2000 2005 2010 2015 2020 2000 2005 2010 2015 2020

Figure 5. The annual trend of different standardized indices during the growing period from 2000 to
2020. The solid lines in (a—i) indicate the normalized values of the average annual growing season
representing NDVI, EVI, and SIF, SMsurf, SMroot, SPEI07 (the cumulative 7-month water deficit
event), temperature, precipitation, and net solar radiation, respectively; the dashed lines are the
relative fit lines, and the shaded area indicates the standard deviation.
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Figure 6. Bivariate map of annual mean and slope of vegetation growth indices, water availability
indices and meteorological indices. (a—c) indicate NDVI, EVI, and SIF, respectively; (d—f) indicate
SMsurf, SMroot, SPEI07 (7-month cumulative water balance), respectively; (g-i) indicate precipit