
Citation: Luo, Y.; Liang, W.; Yan, J.;

Zhang, W.; Gou, F.; Wang, C.; Liang,

X. Vegetation Growth Response and

Trends after Water Deficit Exposure

in the Loess Plateau, China. Remote

Sens. 2023, 15, 2593. https://doi.org/

10.3390/rs15102593

Academic Editors: Hooman Latifi,

Nikos Koutsias and Hamed Naghavi

Received: 16 March 2023

Revised: 3 May 2023

Accepted: 9 May 2023

Published: 16 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Vegetation Growth Response and Trends after Water Deficit
Exposure in the Loess Plateau, China
Yuanyuan Luo 1 , Wei Liang 1,2, Jianwu Yan 1,2,* , Weibin Zhang 3, Fen Gou 1, Chengxi Wang 1 and Xiaoru Liang 1

1 School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China
2 National Demonstration Center for Experimental Geography Education, Shaanxi Normal University,

Xi’an 710119, China
3 College of Water Resources and Architectural Engineering, Northwest A&F University,

Xianyang 712100, China
* Correspondence: yanjw@snnu.edu.cn; Tel.: +86-029-85310525

Abstract: Understanding the impact of water availability on vegetation growth in the context of
climate change is crucial for assessing the resilience of vegetation to environmental shifts. In this
study, the relationship between vegetation growth and water availability was studied using a variety
of indicators. The Normalized Difference Vegetation Index (NDVI), the Enhanced Vegetation Index
(EVI), and Solar-Induced Chlorophyll Fluorescence (SIF) were utilized as vegetation growth indicators,
while the standardized precipitation evapotranspiration index (SPEI) and soil moisture indicators
served as water use indices. To investigate the vegetation response to water deficit in the Loess Plateau
during the growing season from 2000 to 2020, Spearman’s rank correlation coefficients were calculated
using a 5-year sliding window approach. The spatial and temporal heterogeneity of vegetation
response to water deficit during the growing seasons were also explored. The results showed that:
(1) with the improvement of moisture conditions, vegetation growth recovered significantly, and there
was no expansion trend for vegetation water deficit. (2) The most sensitive timescale of vegetation
to water deficit was 6–8 months; the response degree and sensitivity of vegetation to water surplus
and deficit were the highest from June to August; and broadleaved forest was the vegetation type
most sensitive to water deficit in the early growing season, while grass was the vegetation type most
sensitive to water deficit during the mid and late growing seasons. (3) Soil moisture emerged as the
dominant factor influencing vegetation growth in the Loess Plateau, followed by precipitation, albeit
to a lesser extent. These findings contribute to understanding the mechanism and characteristics of
the response of vegetation to climate fluctuations induced by global climate change.

Keywords: Loess Plateau; NDVI; SPEI; water deficit; multiple timescales; water availability

1. Introduction

As global warming intensifies, extreme weather and climate events are becoming more
frequent [1]. These events include cumulative water deficit events, which seriously threaten
terrestrial ecosystems and human societies, making water deficit an increasingly prominent
global issue [2]. Extreme droughts, in particular, have the potential to alter the carbon
balance of terrestrial ecosystems and may cause them to transition from carbon sinks to
carbon sources [3]. This carbon–climate feedback effect can lead to increased droughts and
the irreversible degradation of ecosystems [4–6]. However, different terrestrial ecosystems
respond to climate change in different ways [7], and the response of vegetation growth to
drought exhibits significant spatiotemporal heterogeneity [8]. Under drought conditions,
vegetation experiences water stress, which causes stomata to close and reduces the rates of
photosynthesis, leading to a decline in primary productivity [9]. Consequently, drought
can result in a growth slowdown, degradation, or even death of the vegetation [10,11].
Therefore, studying the vegetation response to drought is crucial to understanding the
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underlying mechanisms and characteristics of vegetation response to climate variability in
the context of global climate change [3].

The relationship between drought and vegetation has been extensively explored [8,12,13].
Drought is essentially characterized by a water deficit event, and the vegetation’s response
to such events is not always straightforward, as plant species exhibit different levels of
resistance and resilience to water deficit due to their unique physiological responses [14,15].
The physiological characteristics of vegetation are mainly influenced by the climatic con-
ditions of the different vegetation types in various climatic zones [16]. Moreover, the
response of vegetation to drought is affected by drought characteristics and climatic en-
vironments [17], making it a complex process influenced by many eco-physiological and
climatic factors [18,19]. To precisely monitor the overall climate condition and depict the
temporal and spatial distribution of drought, a drought index that synthesizes the effects
of temperature, precipitation, and radiation on vegetation is imperative [20]. These indices,
such as the Moisture Index (MI) [21], the Palmer Drought Severity Index (PDSI) [22], the
Standardized Precipitation Index (SPI) [23], and the Standardized Precipitation Evapotran-
spiration Index (SPEI) [19], are widely used and have been found to be well-correlated
with vegetation indicators such as the NDVI, EVI, the Leaf Area Index (LAI), and Gross
Primary Productivity (GPP) [24]. Notably, the SPEI holds an advantage over other drought
indicators as it combines potential evapotranspiration and precipitation data to gauge
the severity of drought [19]. Furthermore, it can indicate drought conditions at different
timescales [25]. The timescale of drought, which refers to the duration from the onset of
vegetation water deficit (VWD) to the determination of vegetation change, has been widely
used in aridification studies [5,8,26].

Vegetation growth responses to climate change have been widely studied at global
and regional levels. However, the effects of water limitation on vegetation growth in arid
and semi-arid areas and how they will respond to climate change remain to be thoroughly
explored. The Loess Plateau is particularly susceptible to frequent droughts caused by
climate warming, which has had an increasing impact on vegetation [27]. The moisture
required for vegetation growth in this region mainly comes from soil moisture, which is
unevenly distributed due to the deep soil layer and buried groundwater [28]. Although
existing studies have employed statistical analyses and vegetation indices to characterize
the spatial and temporal variation in the response of regional vegetation to water surplus
and deficit, the sensitivity of vegetation to changes in water deficit and how vegetation
will adapt to or resist climate changes is not clear [29]. Furthermore, there are fewer
studies regarding the impact of seasonal drought on land surface dynamics, and many
uncertainties still need to be investigated regarding vegetation sensitivity to seasonal
drought at the regional scale [13]. Therefore, a more comprehensive study of the effects
of drought and climate change on vegetation in arid and semi-arid regions, such as the
Loess Plateau, is necessary to develop strategies for the sustainable management of land
and water resources.

The objective of this study is to investigate the expanding trend of increasing vege-
tation water deficit in regards to climate change across diverse climatic zones, as well as
the response mechanisms of vegetation to water deficit in these zones. The study aimed to
achieve the following goals: (1) investigate the expansion trend of VWD in various climatic
zones; (2) analyze the characteristics of the response of vegetation to water deficit from three
perspectives, namely, different climatic zones, growing season stages, and vegetation types;
(3) attempt to explain the reasons behind the variations in the expansion trend of VWD
among different climatic zones based on the above perspectives; and (4) identify future
sustainable changes in vegetation and moisture conditions and investigate the environmen-
tal factors that govern vegetation growth. Our study aims to comprehensively assess the
resistance and resilience of vegetation to drought and its potential risks to vegetation health.
Furthermore, the study intends to establish a foundation for formulating and implementing
measures to alleviate vegetation drought.
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2. Materials and Methods
2.1. Study Area

The Loess Plateau, located between 33◦43′–41◦16′N and 100◦54′–114◦33′E, encom-
passes most of Shaanxi, Shanxi, and Ningxia, as well as parts of Qinghai, Gansu, Henan,
and Inner Mongolia. It covers an area of approximately 620,000 km2 in the middle reaches
of the Yellow River [13] (Figure 1). The region is known for severe soil erosion and the
most fragile ecology, with an arid continental monsoon climate [30]. Precipitation in the
Loess Plateau is low and unevenly distributed in time and space, and it is concentrated
from June to September, primarily in heavy rainfall. The average annual precipitation is
150 mm·a−1 to 800 mm·a−1, decreasing from northwest to southeast [31]. The growing sea-
son occurs from April-October, accounting for about 92.00% of the annual precipitation [32].
In consideration of the Loess Plateau’s climatic attributes, this paper divides it into three
distinct climatic zones: arid, semi-arid, and semi-humid [33], representing 13.13%, 62.98%,
and 23.99% of the total area, respectively. The research primarily focuses on examining the
spatiotemporal heterogeneity of the response of vegetation growth to water availability
during the growing season from 2000 to 2020.
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Figure 1. Background information on the study area: (a) location; (b) vegetation cover type data; and
(c) elevation.

2.2. Data Sources
2.2.1. Meteorological Data

The monthly precipitation dataset and the monthly mean temperature dataset, with
1 km resolution, were provided by the National Earth System Science Data Center, National
Science and Technology Infrastructure of China (http://www.geodata.cn, accessed on
11 May 2022). The precipitation and temperature datasets were generated by the delta
spatial downscaling scheme in the Chinese region, based on the global 0.5◦ climate data
released by CRU and the global high-resolution climate data released by WorldClim.
The accuracy and reliability of the datasets were verified by comparing them with data
from 496 independent meteorological observation stations, and the validation results were
credible [34]. Monthly temperature and precipitation data from 1999 to 2020 were utilized to
calculate SPEI to examine the meteorological changes and assess the response of vegetation

http://www.geodata.cn
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to varying durations of water deficit. To facilitate the calculation, the spatial resolution of
all data was uniformly resampled to 0.1◦ for this study.

2.2.2. Soil Moisture

Soil moisture directly impacts vegetation growth and resistance to drought [35,36].
The Global Land Evaporation Amsterdam Model (GLEAM) was employed to provide the
surface and root-zone soil moisture statistics used in this study [37,38]. The reliability of
GLEAM soil moisture data has been verified by on-site soil moisture measurements in
the Loess Plateau [39]. The 2000 to 2020 monthly surface soil moisture (0–10 cm) (SMsurf)
and root-zone soil moisture (10–100 cm) (SMroot) data in GLEAM (v3.5a) were selected
for analysis. Soil moisture is the primary source of water required for vegetation growth,
and it determines the amount of water used by the vegetation [35]. As soils of different
textures have varying water-holding capacities and nutrients [40–42], this study utilized
soil moisture and SPEI at different timescales as water availability indicators.

2.2.3. Vegetation Indices

Two different vegetation indices, namely NDVI and EVI, were employed in this
study. NDVI was selected, as it is widely used to assess vegetation status at regional and
global levels. It is related to the vegetation canopy structure and coverage, as well as the
photosynthesis of the vegetation canopy [43,44]. On the other hand, EVI was calculated
by incorporating the light blue band of the spectrum, which mitigated the influence of
the atmospheric and canopy background and enhanced the sensitivity in areas with a
dense biomass [45]. Monthly NDVI and EVI data were obtained from moderate resolution
imaging spectroradiometer (MODIS) product data (MOD13C2, V6).

2.2.4. Solar-Induced Chlorophyll Fluorescence (SIF)

Solar-induced chlorophyll fluorescence was selected for comparison with NDVI and
EVI data, as it provided a signal corresponding to vegetation photosynthesis and was a
more accurate assessment of the actual photosynthetic state of the vegetation than were
traditional indices [46,47]. Integrating SIF with traditional vegetation indices provided a
comprehensive analysis of vegetation status, enabling the dynamic monitoring of vege-
tation growth changes. A global, OCO-2-based SIF dataset (GOSIF) was generated by a
machine learning approach based on discrete OCO-2 SIF soundings, remote sensing data
from the MODIS, and meteorological reanalysis data through a data-driven approach [48].

2.2.5. Vegetation Cover Type Data

To investigate the variation in the expansion trend of VWD among different climatic
zones, this study analyzed the characteristics of the responses of different vegetation types
to water deficit. Vegetation cover types were acquired from the Data Center for Resources
and Environmental Sciences, Chinese Academy of Sciences (http://www.resdc.cn, accessed
on 1 October 2022) in May 2001. The vegetation types were extracted and categorized
into six distinct cover types: grasses, shrubs, alpine forests, cultivated forests, broadleaved
forests, and coniferous forests (Figure 1) (Table S1).

2.3. Standardized Precipitation Evapotranspiration Index

SPEI was proposed by Vicente-Serrano et al. [19]. The calculation of SPEI was based
on monthly precipitation and temperature and was characterized by multiple timescales.
SPEI’s central concept is the construction of a meteorological water cycle to describe the
accumulated water deficit or surplus, which can then be used to characterize drought [49].
High to low SPEI means relatively wet to relatively dry [50]. In this study, SPEI was
calculated separately on 1–12 month timescales to assess the different durations of the
water deficit. The specific calculation method for SPEI is given below.

http://www.resdc.cn
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First, Thornthwaite’s method was employed to estimate the monthly potential evapo-
transpiration (PETj, mm):

PETj = 16K
(

10Tj

I

)m

(1)

where Tj is the monthly temperature of j; ◦C; I is the annual heat index, which is the
sum of 12 monthly index values; m is the coefficient, depending on I; m = 0.492 + 1.79×
10−2 I − 7.71× 10−5 I2 + 6.75× 10−7 I3; and K is the correction factor for the latitude and
month functions.

The accumulated moisture deficit sequence X, with different timescales, was con-
structed and its probability distributions were calculated. A month’s cumulative moisture
deficit is the sum of the previous k − 1 months and the current month’s moisture deficit,
and k is the timescale, k = 1, · · · , 12.

Xk
i = ∑ Di (2)

Di = Pi − PETi (3)

where Pi is the monthly precipitation (mm), Di is the monthly moisture deficit (mm), and
i = 1, · · · , n, n is the number of samples in a time series. The calculation of the probability
distribution function of the cumulative water deficit series is performed by introducing a
three-parameter logarithm-logistics probability distribution function.

f (x) =
β

α

(
x− γ

α

)β−1
[

1 +
(

x− γ

α

)β
]−2

(4)

α, β, and γ are the scale, shape, and position parameters, respectively, for the D values
in the range (γ< D < ∞). The probability distribution function of D is given according to
the log-logistic distribution.

F(x) =

(
1 +

(
α

x− γ

)β
)−1

(5)

Finally, SPEI was obtained as the standardized value of F(x).

SPEI = W − c0 + c1W + c2W2

1 + d1W + d2W2 + d3W3 (6)

W =
√
−2 ln(P) (7)

For P ≤ 0.5, P is the probability of exceeding the defined D value, P = 1 − F(x). If
P > 0.5, P is replaced by 1 − P and the resultant SPEI is the opposite; c0, c1, c2, d1, d2 and
d3 are constants.

2.4. Trend Analysis

The Theil–Sen median method and the Mann–Kendall nonparametric statistical test
were used to analyze the changes in vegetation growth, water availability, and meteoro-
logical elements in the Loess Plateau from 2000 to 2020. The trend is estimated as follows.

β = Median
(Xj − Xi

j− i

)
∀j > x (8)
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where β is the trend of change; i and j represent the time sequence; and Xi and Xj represent
the values at moments i and j, respectively. β > 0 means an increasing trend, and β < 0
means a decreasing trend. The Mann–Kendall method was used to determine the signifi-
cance of the trend, and Z values greater than 1.64 and 2.32 represent passing the significance
tests with 95.00% and 99.00% confidence levels, respectively.

2.5. Spearman’s Rank Correlation Coefficient

The Spearman’s rank correlation is a distribution-independent measure of the strength
of the association between variables. Compared with the Pearson correlation, this method
is less sensitive to outliers. It does not rely on assumptions of normality or equal variance
in variable distributions, so it is usually more widely applicable. The Spearman’s rank
correlation coefficient is calculated as follows:

ρ = 1−
6 ∑ d2

i
n(n2 − 1)

(9)

where ρ is the Spearman rank correlation coefficient; di is the difference in rank of the
corresponding variables, i.e., the difference in rank of the variables in pairs after the two
variables are sorted separately; and n is the number of observations.

2.6. Hurst Index Based on R/S Analysis

The Hurst index is a valuable tool for predicting the future evolution trend of the
time series. It is based on the rescaled extreme deviation analysis (R/S) method, which
takes values from 0 to 1, where a value of 0.5 indicates that the time series is randomly
wandering. A value between 0 and 0.5 indicates an inverse time series persistence, while a
value between 0.5 and 1 indicates a positive persistence of the time series [51–53]. This study
classified the Hurst index into six categories based on the range of H values, 0 < H < 0.2,
0.2 < H < 0.35, 0.35 < H < 0.5, 0.5 < H < 0.65, 0.65 < H < 0.75, and H > 0.75, which
represents strong anti-sustainability, medium anti-sustainability, weak anti-sustainability,
weak sustainability, medium sustainability, and strong sustainability, respectively. The
results of the trend and the Hurst index calculations were combined and analyzed using
cluster analysis to obtain different scenarios regarding the sustainability of a given factor
over the coming years.

2.7. Standard Regression Coefficient Method

The standard regression coefficient method was used to calculate the standard coeffi-
cient of NDVI with respect to four meteorological factors, namely temperature, precipita-
tion, soil moisture, and net solar radiation, on a raster basis. This allowed us to determine
the contribution or relative importance of the inter-annual variation of NDVI. The variable
with the highest absolute value of the standard regression coefficient was considered the
dominant variable of the dependent variable in the grid. The calculation equation is used
as follows.

ÑDVIk = a× T̃k + b× P̃k + c× S̃Mk + d× R̃adk (10)

CRa =
|a|

|a|+ |b|+ |c|+ |d| (11)

where T̃k, P̃k, S̃Mk, and R̃adk represent the standardized values of the growing season aver-
age NDVI, air temperature, precipitation, root-zone soil moisture, and net solar radiation in
year k, respectively; CRa represents the contribution of air temperature to the interannual
variation of NDVI, and the contribution of precipitation, root-zone soil moisture, and net
solar radiation were calculated using the same method.
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3. Results
3.1. Trends in the Vegetation Growth and Moisture Conditions
3.1.1. Expansion Trend of VWD

The robustness of the calculated SPEIs was verified by comparing them with the
SPEI of the SPEIbase v2.5 products, and the results showed that the SPEI index calculated
in this study was reliable (Figures S1 and S2). To investigate the correlation between
NDVI and cumulative water deficit events on different timescales during the 2000–2020
growing season, the 5-year sliding window was employed to calculate the Spearman’s rank.
Additionally, the correlation between NDVI and soil moisture was also compared. The area
with a significant positive correlation area (p < 0.05) represents the VWD area, indicating
that vegetation growth is promoted by an increase in water, while the areas with a significant
negative correlation (p < 0.05) represent excess water, indicating that vegetation growth
is inhibited by an increase in water. No significant correlation indicates that vegetation
growth is not affected by water in the area [53]. Figure 2 displays inconsistent trends of
water deficit or water surplus area obtained at short timescales, whereas those calculated at
timescales greater than 6 months are more consistent (Figure 2d–f). The relevant literature
also suggested that short timescales were unsuitable for arid and semi-arid areas such as the
Loess Plateau [3,49,54,55]. Therefore, this study focused on the response characteristics of
cumulative water deficit events with vegetation growth timescales greater than 6 months.
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Figure 2. Area expansion trend of VWD in different climatic zones: (a–c) are the trends of VWD
in arid, semi-arid, and semi-humid climate zones obtained by statistical analysis of the correlation
between NDVI and SM, respectively; (d–f) are the trends of VWD in arid, semi-arid, and semi-
humid climate zones obtained by statistical analysis of the correlation between NDVI and SPEI07,
respectively. The major scale of the coordinate axis represents the starting year of the slide.

The VWD area in the Loess Plateau exhibited a decreasing trend (p > 0.05), which
may be confounded by inconsistent regional results. Conversely, the vegetation water
surplus area demonstrated an expanding trend (p < 0.05), which may be attributed to the
increasing annual precipitation. During 2000–2020, the maximum percentage of vegetation
surplus area was 1.75%, and the maximum VWD area was 16.06%. Given the small area
of vegetation water surplus in the Loess Plateau, this study focuses on the VWD. As
depicted in Figure 2, the trend of VWD area varied across different climate zone, and
the changes in VWD and vegetation water surplus area were analyzed using the SPEI07
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(7-month cumulative water balance), which yielded results consistent the soil moisture and
NDVI. Thus, SPEI07 proves to be a suitable tool for examining the response of vegetation
growth to water deficit in the Loess Plateau. From a regional perspective, the VWD in
arid and sub-humid climate zones exhibited a decreasing trend, while the VWD in the
semi-arid climate zone showed no significant increase. The vegetation recovery areas
were primarily located in the semi-arid climate zone, implying that vegetation growth
contributed to the expansion of water deficit areas. In terms of temporal changes, nearly
all correlation coefficients that passed the significance test were positive. The distribution
of the VWD areas varied significantly across different periods (Figure 3), with notable
differences between the two periods requiring separate analysis and comparison with
various natural factors, particularly the average water conditions in each period.
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Based on the Spearman’s rank correlation analysis of NDVI and SPEI07 from 2000 to
2020 (as depicted in Figure 4), it was observed that the total VWD area accounted for 38.31%
during 2000–2020. In particular, vegetation growth in the northwestern and central parts of
the Loess Plateau was significantly constrained by water deficit, whereas in other areas,
vegetation was either not limited, or not significantly limited, by water surplus and deficit
(Figure 4a–d). Of the VWD area, which accounted for 38.31%, 23.67% was situated in the
semi-arid climate zone, 7.94% in semi-humid climate zone, and 6.70% in the arid climate
zone. Since soil moisture is the primary source of moisture for vegetation growth, the
correlation between the vegetation index and soil moisture is more significant. Accordingly,
there are more regions with a significant positive correlation between NDVI and surface
soil moisture, accounting for 90.66% of the total area. From southwest to northeast, there
was a gradual increase in the degree of correlation. The less significant regions were mainly
located in the southern Loess Plateau.
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Figure 4. Spatial distribution of Spearman’s correlation coefficients between the NDVI and the water
availability index during the growing season from 2000 to 2020: (a,b) indicate the spatial distribution
of the Spearman’s correlation coefficients of NDVI with SPEI07 and SM, respectively; the black dots
indicate a significant Spearman’s correlation at p < 0.05; (c,d) indicate the correlation coefficients and
significance distributions of NDVI and SPEI07 in the climate zones.
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3.1.2. Trends of the Vegetation Growth Index, the Water Availability Index, and the
Meteorological Index

Time trends were analyzed after standardizing the parameters with the min-max
normalization. During the growing season, the vegetation area with an increasing trend
(improvement area) accounted for 98.59%, while the decreasing trend (degradation area)
accounted for only 1.41%. The Hurst index of annual mean growing NDVI was 0.46 on
average, with 68.71% of the area exhibiting an index of less than 0.50, indicating that the
NDVI changes were largely inversely persistent, with only a few areas being persistent. All
three vegetation indices indicated that the vegetation cover increased during the growing
seasons from 2000 to 2020, and the spatial distribution characteristics were consistent. In
terms of the growth rate of the multi-year average growing season, NDVI showed a higher
growth rate than EVI and SIF (Figure 5a–c). Figure 6 illustrates that the vegetation coverage
rate in the Loess Plateau was low in the northwest and high in the southeast. The greening
of vegetation was the most significant in the semi-humid climate zone, followed by the
semi-arid climate zone, and was the least pronounced in the arid climate zone. The growth
rate of vegetation cover in the semi-humid and semi-arid climate zone was similar, while
it was the slowest in the arid climate zone. In arid and sub-humid climates, the average
annual growing period regarding soil moisture and precipitation showed a downward
trend, indicating vegetation degradation. In contrast, in semi-arid regions, the average
annual growing period regarding soil moisture and precipitation increased, leading to
significant improvement in vegetation (Figure 6). These findings suggest that vegetation
growth is closely related to precipitation and soil moisture.
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Figure 5. The annual trend of different standardized indices during the growing period from 2000 to
2020. The solid lines in (a–i) indicate the normalized values of the average annual growing season
representing NDVI, EVI, and SIF, SMsurf, SMroot, SPEI07 (the cumulative 7-month water deficit
event), temperature, precipitation, and net solar radiation, respectively; the dashed lines are the
relative fit lines, and the shaded area indicates the standard deviation.
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Figure 6. Bivariate map of annual mean and slope of vegetation growth indices, water availability
indices and meteorological indices. (a–c) indicate NDVI, EVI, and SIF, respectively; (d–f) indicate
SMsurf, SMroot, SPEI07 (7-month cumulative water balance), respectively; (g–i) indicate precipitation,
temperature and net solar radiation, respectively.

Meteorological drought conditions in the Loess Plateau changed from wet in the
northeast to arid in the southwest, as depicted in Figure 6. The annual average growing
season SPEI07 displayed a decreasing trend of 6.18%, primarily in the northern part.
However, this does not necessarily indicate a risk of drought or vegetation water stress,
since SPEI is a meteorological water resource effectiveness indicator that compares wet to
dry conditions in an area to the long-term average, with high to low values [19]. The Hurst
index of the annual average SPEI07 ranged from 0.24 to 0.45, indicating an overall inverse
persistence of water deficit in the cumulative 7 months of the annual average growing
season. The multi-year average growing season of SPEI07 showed a gradual increase in
the moisture conditions in the semi-humid climate zone, semi-arid climate zone, and arid
climate zone, with the semi-humid climate zone exhibiting the largest rate of increase
in moisture. Only 11% of the areas exhibited significantly wetter meteorology, primarily
distributed in the semi-humid climate zone. When examining the SPEI07 of the multi-year
average growing season, the moisture conditions in the semi-arid climate zone were found
to be better than those in the semi-humid and arid climate zones, since the SPEI calculation
not only considers precipitation conditions, but also integrates the influence of temperature.
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3.2. Response Characteristics of Vegetation to Water Deficit
3.2.1. The Most Sensitive Time Scale of Vegetation to Water Deficit

The timescale at which vegetation was most affected by the water deficit, deter-
mined by the timescale corresponding to the maximum positive correlation coefficient
(Figure 7a,b), was used to analyze the relationship between vegetation growth and wa-
ter deficit in the Loess Plateau from 2000 to 2020. The results showed that the average
response time was 6.43 months, with 7.53 months in the arid climate zone, 6.28 months in
the semi-arid climate zone, and 6.19 months in the semi-humid climate zone. Vegetation
growth was the most impacted by water deficit events lasting 6–8 months, making 7 months
the reasonable timescale to investigate the moisture deficit of vegetation. Regions with a
response time greater than 7 months were mainly located in the northwestern section, with
a few in the north and south-southeast. For the multi-year average growing season, the
decreasing and increasing trends in response time accounted for 37.15% and 26.84% of the
region’s total area, respectively. An increasing response time indicated that the vegetation
in the region was more drought-resistant and less sensitive to drought, while a decreasing
response time indicated the opposite, requiring that attention be paid to the adverse effects
of water deficit on vegetation growth. The characteristics of the response of vegetation
to drought showed apparent spatial and temporal heterogeneity. The areas where the
response time decreased were mainly in the northern part of the Loess Plateau, mostly in
the semi-arid climate zone, while the areas where the response time increased were mainly
distributed in the southwestern part of the arid climate zone and semi-arid climate zone, as
well as the southeastern part of the semi-humid region.
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3.2.2. The Timescale Showing the Most Sensitive of Periods of Vegetation at Different
Growth Stages to Water Deficit

To examine the impact of water availability on vegetation during different stages of
growth, this study divided the growing season into three sub-stages: the early growing
season (April–June), the mid growing season (June–August), and the late growing season
(August–October). The value of the maximum correlation coefficient between NDVI and
SPEI (Rmax) indicated the extent to which vegetation growth was affected by water deficit
and the duration of the vegetation growth response to water surplus and deficit. On
average, the Rmax value for the entire growing season is 0.38, with values of 0.26, 0.35,
and 0.29 for April–June, June–August, and August-October, respectively, highlighting that
vegetation growth is the most impacted by water deficit in the mid growing season. The
maximum response of the semi-humid and arid climate zones to water deficit was not
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significantly different, and the response for both of these areas was higher than that in the
semi-arid climate zone. June to August show the highest vegetation response to water
deficit. The average response scale of vegetation growth to water deficit in the growing
season was 7.8 months, with an average response timescale of 9 months in April–June,
5.7 months in June–August, and 6.5 months in August–October. Therefore, vegetation
growth was found to be the most sensitive to water deficit in June-August, indicating the
need to pay close attention to the impact of water deficit on vegetation growth during
this period.

3.2.3. Response of Different Vegetation Types to Water Deficit

The dominant vegetation types in the study area are mainly cultivated vegetation and
grasses, which accounted for 45.03% and 32.96% of the total vegetation coverage, respec-
tively. Shrubs, broadleaved forests, coniferous forests, and alpine vegetation accounted
for 7.71%, 5.43%, 3.09%, and 0.07%, respectively. Cultivated vegetation is mainly grown
in the semi-arid and semi-humid climate zones, accounting for 61.81% and 32.54% of the
total cultivated area, respectively. Grasses are predominantly distributed in the semi-arid
climate zone and the arid climate zone, accounting for 76.28% and 16.74% of the total
cultivated area, respectively.

As depicted in Figure 8, the degree of response and the timescale of vegetation growth
in response to the water deficit varied across different growth stages and vegetation types.
In the growing season, grasses were the most affected by the water deficit, followed by
cultivated forests and shrubs, while alpine vegetation showed the least sensitivity to the
water deficit. During the late growing season (August to October), grasses and cultivated
forests were the plants most affected by the water deficit, whereas coniferous forests and
broadleaved forests, as well as alpine forests, showed maximum sensitivity in the mid
growing season (June to August). Moreover, the response time of VWD during the growing
season also varied among different vegetation types, with grasses exhibiting the highest
response time, followed by alpine forests, shrubs, cultivated forests, broadleaved forests,
and coniferous forests. Although grasses were the least sensitive vegetation regarding
the response time to water deficit during the growing season (Figure 8), their sensitivity
varied across different growing seasons. In the early growing season, broadleaved forests
were the most sensitive vegetation to water deficit, while grasses were the least sensitive.
In the middle of the growing season, alpine forests showed the least sensitivity to water
deficit, while grasses were the most sensitive. During the late growing season, grasses
remained the vegetation most sensitive to water deficit, while coniferous forests were
the least sensitive. These differences in vegetation water requirements, timescales, and
critical growth periods should be considered when assessing the impact of water deficit on
vegetation [3,5]. The response characteristics and sensitivity of different vegetation types
to water availability vary, leading to spatial and temporal heterogeneity in the response of
vegetation growth to water availability.

3.3. Sustainable Development of Vegetation Growth in the Loess Plateau
3.3.1. Determining the Future Growth of Vegetation

The sustainability of future changes in vegetation and meteorological drought was
determined by trend analysis and Hurst index calculations. Figure 9 shows that 93.90% of
the Loess Plateau exhibited improved and weakly reversed changes (improvement and
anti-sustainability) in moisture condition, with 0.02% classified as strong anti-sustainability,
58.57% as medium anti-sustainability, and 35.32% as weak anti-sustainability. However,
6.10% of the area is expected to transition from dry to wet. Although the majority of the area
is expected to become wetter, the potential for anti-sustainable changes should be addressed.
Between 2000 and 2020, vegetation restoration improved in 98.59% of the total area of the
Loess Plateau, with 59.24% experiencing improvement, but with weak anti-sustainability,
and 28.70% experiencing weak persistence. Therefore, the future trend of vegetation restora-
tion requires attention, particularly in improved and anti-sustainable areas. Analyzing the



Remote Sens. 2023, 15, 2593 14 of 20

causes of vegetation restoration and improving the external environment of vegetation
growth is crucial for forestry development and scientific management. Vigilance and
concern for the health of vegetation restoration are necessary to ensure sustainability.
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3.3.2. Dominant Environmental Factors of Vegetation Growth

The restoration of vegetation is mainly influenced by human beings, especially regard-
ing the conversion of farmland to forests and grasses. However, environmental factors,
such as temperature, precipitation, soil moisture, and solar radiation, also play a crucial role
in vegetation growth [56]. To identify the relatively more important factors, standardized
regression coefficients were used. As illustrated in Figure 10, temperature, precipitation,
root-zone soil moisture, and solar radiation accounted for 2.78%, 27.48%, 51.56%, and
18.18% of vegetation growth, respectively. Soil moisture was the dominant factor in most
areas, followed by precipitation. However, the dominant factor of vegetation growth varies
by climatic zones. In the arid and semi-arid climate zones, soil moisture is the most critical
factor, while solar radiation is the dominant factor in the semi-humid climate zones. The
effect of soil moisture on vegetation growth is more direct than that of precipitation, espe-
cially in areas where vegetation growth is limited by moisture, such as arid and semi-arid
regions [57,58]. Furthermore, the response of vegetation to environmental factors such as
temperature and precipitation differs among regions due to differences in hydrothermal
conditions and vegetation types [59,60]. Each climate zone has a unique ecosystem struc-
ture, and different ecosystems have varying water use efficiencies [61], resulting in different
sensitivities to water surplus and deficit [17] and different response characteristics in each
climate zone [13]. Hence, understanding the impacts of environmental factors on vegetation
growth is crucial for scientific management and sustainable forestry development.
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and net solar radiation, respectively; (e,f) represent the dominant environmental factors for vegetation
growth (Pre = precipitation, Tmp = temperature, SM = root-zone soil moisture, and Rad = net
solar radiation).

4. Discussion
4.1. Response of Vegetation to Water Surplus and Deficit in Different Climatic Zones

The Loess Plateau is experiencing changes in VWD and vegetation water surplus,
with the VWD area contracting and the vegetation water surplus area expanding. This
indicates that vegetation growth is hindered by a weakening water deficit and an increase
in vegetation water surplus due to the improved humidity conditions. The vegetation water
surplus area is relatively small and mainly located in the subhumid climate area on the
southern margin of the Loess Plateau, which is prone to rain and flooding during the flood
season occurring in different years [62]. The occurrence of rain-caused flooding, especially
heavy flooding, negatively affects vegetation or crops with low water demand, resulting
in excess vegetation water in a few areas in the southern Loess Plateau. The changes in
the VWD area vary among different climate zones, with the arid and semi-humid climate
zones showing a trend of contraction, while the semi-arid climate zone exhibits a non-
significant increase and a trend of VWD area expansion. The semi-arid climate zone is rich
in vegetation types, with cultivated vegetation and grasses being the two vegetation types
most affected by drought. In recent years, the implementation of the project of returning
farmland to forests and grasses has resulted in the addition of many new areas of cultivated
vegetation and grasses in the Loess Plateau, but the water-consuming effect of planted
forests is significantly greater than their water-holding effect, leading to widespread dry
soil layers in the Loess area [63]. Therefore, the expansion trend of VWD areas in the
semi-arid climate zone may be attributed to plantation forestry and grasses, which is yet to
be proved by future investigation.

4.2. Response Characteristics of Vegetation Growth to Water Deficit Events in the Loess Plateau at
Multiple Timescales

Vegetation growth responds heterogeneously to drought at multiple spatial and tem-
poral scales. The response time of vegetation to water deficit events varies among different
climate zones, with the arid climate zone showing the longest average response time,
followed by the semi-arid climate zone. This variability can be attributed to the varying
sensitivity, resistance, and resilience of biomes to cumulative water deficit events in differ-
ent climate zones. Plants in arid regions may have developed mechanisms to rapidly adapt
to a changing water supply, which could explain their rapid response to below-normal
water conditions. Conversely, plants in semi-arid and semi-humid biomes have different
physiological mechanisms that are less adapted to water scarcity and can only tolerate it
to a limited extent. However, their response rate to drought is slower than that of arid
biomes. Therefore, the average response time of semi-arid and dry-humid zones is shorter
than that of arid zones [8]. Control indicators that affect the response of vegetation growth
to the water supply include, but are not limited to, soil moisture, soil properties, surface
temperature, snow cover area, land use types, and intensity of human activities [36,64–67].
Therefore, an exploration of the dominant factors regarding the spatial heterogeneity of
the response characteristics of vegetation growth to water availability, which is essential to
improve the accuracy of vegetation change prediction, should be considered in the future.

4.3. Uncertainty

The study utilized NDVI and SPEI at different timescales to determine and examine
the expansion or contraction trend of the VWD and vegetation surplus in the Loess Plateau.
Additionally, it analyzed the response characteristics and sensitivity changes of vegetation
to SPEI at different timescales. The Thornthwaite method was used to calculate PET
(potential evapotranspiration). The calculation accuracy of PET will affect the calculation
results of SPEI; thus, it is an uncertain point. Regarding the analysis, the period of the study
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was restricted to only 21 years due to the limitations of time and the resolution of the data,
so the sliding window of 5 years was employed for calculation and analysis. this period is
insufficient for verifying the robustness of the sliding window analysis results over larger
sliding window periods, such as 10 years and 15 years, nor is it long enough to analyze the
periodic changes of VWD. In future studies, the research timescale can be extended, and
the data resolution can be improved using multi-source remote sensing data. Moreover,
multiple analysis windows of different sizes can be studied to validate one another and to
generate more robust findings.

5. Conclusions

In order to investigate the response of vegetation to water deficit under climate change
conditions, as well as and its response mechanism, the general trend of VWD and the
changes in different climatic zones were analyzed. It was found that the overall trend of the
VWD area exhibited a non-significant increase, which was caused by the varying changes
in different climatic zones. Specifically, the arid and semi-humid climatic zones showed a
trend of contraction, while the semi-arid climatic zone showed a trend of non-significant
expansion. Although the expansion trend of the VWD area may seem insignificant in the
view of the semi-arid climate zone, it poses a potential danger and cannot be ignored.
To understand why the VWD area in the semi-arid climate area was not significantly
expanded, the study examined the response time and sensitivity of vegetation to water
deficit, the response time of vegetation at different growth stages, and the response time of
different vegetation types. The findings revealed that vegetation growth is most significant
in the semi-arid climate area, with grasses and cultivated vegetation being the primary
types. These factors could be the reason for the potential threat of water shortage for
vegetation in the semi-arid climate area. The study results can provide some scientific
recommendations, such as choosing vegetation types that are less sensitive to drought in
these zones or focusing on studying the effects of drought on vegetation during the mid
of the growing season, for vegetation research and management in arid and semi-arid
climatic zones.
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