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Abstract: Urban forests have the potential to sink atmospheric CO2. With the improvement of cover-
age of vegetation in urban environments, more attention has been paid to the carbon sequestration
potential of the urban forest. However, the high fragmentation of urban forests makes it difficult to
evaluate their carbon budget on a regional scale. In this study, the GPP-NIRv relationship model was
employed to estimate GPP in Suzhou by MODIS, Landsat-8 and Sentinel-2 remote sensing data, and
to further explore what kind of remote images can figure out the spatial-temporal pattern of GPP
in urban forests. We found that the total GPP of the terrestrial ecosystem in Suzhou reached 8.43,
8.48, and 9.30 Tg C yr-1 for MODIS, Landsat-8, and Sentinel-2, respectively. Monthly changes of GPP
were able to be derived by MODIS and Sentinel-2, with two peaks in April and July. According to
Sentinel-2, urban forests accounted for the majority of total GPP, with an average of about 44.63%,
which was larger than the results from GPP products with coarser resolutions. Additionally, it is
clear from the high-resolution images that the decline of GPP in May was due to human activities
such as the rotation of wheat and rice crops and the pruning of urban forests. Our results improve
the understanding of the contribution of the urban forest to the carbon budget and highlight the
importance of high-resolution remote sensing images for estimating urban carbon assimilation.

Keywords: gross primary productivity; near-infrared reflectance of vegetation; urban forest;
carbon budget

1. Introduction

Gross Primary Productivity (GPP) quantifies the total amount of carbon assimilated
by plants through photosynthesis per unit time. As the critical variable of carbon cycling
of terrestrial ecosystems, GPP is the initial amount of energy and material entering the
terrestrial ecosystem and plays an essential role in regulating the global carbon cycle [1–3].
GPP can be observed at the leaf level or ecosystem level [4–6], and also can be simulated
by process-based terrestrial ecosystem models [7–9] or estimated through remote sens-
ing [10–13]. Benefiting from the eddy-covariance techniques and the multisource data of
remote sensing, satellite-based GPP models were developed to estimate regional and global
GPP by establishing the empirical relationship between the vegetation index (VI) and sur-
face observation data [14–18]. Previous studies have shown that the correlation coefficient
between Enhanced Vegetation Index (EVI) and surface observation data in global GPP
estimation can reach 0.52–0.92 [19], and the correlation coefficient between Solar-induced
Chlorophyll Fluorescence (SIF) and GPP for crops and grass can achieve 0.87 [20]. How-
ever, there are several limitations in these methods; for example the adaptability of the
empirical method is affected by different ecosystem structures and climate conditions [21].
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Additionally, the coarse spatiotemporal resolution of satellite SIF is generally a limiting
factor in the regional estimation of GPP [22,23].

In recent years, Near-infrared Reflectance of Vegetation (NIRv), which integrates
the advantages of NDVI and near-infrared reflectance, has provided a new avenue for
GPP estimation [24–27]. NDVI can intuitively reflect vegetation coverage, which is tightly
correlated to vegetation productivity, while near-infrared reflectance can embody the
information on vegetative canopy structure and leaf area [24,28]. Therefore, NIRv takes
into consideration both the pigment and structure of vegetation in remote sensing images
to avoid the saturation effects of NDVI [29–31]. Meanwhile, a strong and stable correlation
was found between NIRv and GPP in the same ecosystem [21,23,32]. In the study of
regional and global carbon budgets of terrestrial ecosystems, NIRv has been suggested as
the effective substitution for satellite SIF, based on theoretical derivations and radiative
transfer simulations, and has gained a great deal of attention in recent years [24,33].

Urban forest is considered as a large green infrastructure in the urban area, which
consists of trees, shrubs and grasses in streets, parks, gardens, alongside rivers and so
on [34–36]. Additionally, urban forest in this study is also defined as the above description.
Urban forest usually plays an indispensable role for people living in urban environments,
such as reducing air pollution and heat islands effect [37], and increasing biodiversity [38].
As global CO2 concentrations continue to increase, there is also increasing interest in the
carbon storage and sequestration of the urban forest [39–41]. Vegetation in urban areas
is offered for environments with higher temperatures and CO2 concentrations, highly
intensive use of water and pesticides [42,43], and its photosynthetic activity would play an
important role in the carbon cycle of terrestrial ecosystems.

However, in some studies, the vegetation productivity in urban areas was set as
zero [44]; the role of urban vegetation might be underestimated in the global carbon
budget. With the improvement of urban green coverage (e.g., the green coverage in the
urban built areas in Jiangsu province increased from 19.5% in 1990 to 42.1% in 2020), more
attention should be paid to the effect of the urban forest in the global and regional carbon
assimilation [45–47]. Although the ability of carbon assimilation can be estimated through
GPP, the contribution of the urban forest to regional carbon assimilation is still unclear. A
number of difficulties in the current estimations of urban GPP need to be overcome; for
example the lack of surface observation data in urban areas makes it difficult to conduct
empirical estimation on the urban scale by using traditional VI. At the same time, the
lack of driving and parameterized data with high spatiotemporal resolution significantly
reduced the performance of process-based ecological models in the simulation of GPP in
urban areas.

As NIRv has successfully estimated GPP in other ecosystems, it may be able to provide
a new approach to estimating carbon assimilation in urban forests. To the best of our
knowledge, the contribution of urban forests to regional carbon assimilation has not yet
been studied according to this method. Meanwhile, it is not yet clear which resolution
of satellite data is appropriate for determining urban forest carbon assimilation capacity.
Therefore, in this study, the GPP-NIRv relationship model is employed to estimate the GPP
of terrestrial ecosystems in Suzhou by MODIS, Landsat-8, and Sentinel-2 remote sensing
data, and to further explore what kind of remote images can figure out the spatiotemporal
pattern of GPP of urban forests. Then, we evaluate the contribution of urban forest to the
regional carbon budgets and the impact of human activities on regional GPP. The expected
results will improve our understanding of the ability of urban forests to affect carbon
assimilation and will provide an appropriate reference for selecting the right resolution of
remote sensing images for carbon budget research in urban areas.

2. Materials and Methods
2.1. Study Area

Suzhou is one of the most economically developed cities in eastern China, and is
located in the southeast of Jiangsu and the middle of the Yangtze River Delta, with the
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region ranging from eastern longitude 119◦55′ to 121◦20′ and northern latitude from 30◦47′

to 32◦02′. Suzhou connects to Shanghai to the east, Jiaxing and Huzhou of Zhejiang
province to the north, Wuxi to the west, and the Yangtze River to the north, with a total
area of 8657.32 km2. As one of the largest industrial cities in China, Suzhou has an urban
population of 12.84 million, and the gross output value of all the above designated-size
industrial enterprises in Suzhou exceeded CNY 4 trillion in 2021 (http://tjj.suzhou.gov.cn/
sztjj/tjnj/2021/zk/indexce.htm (accessed on 1 May 2022)).

Suzhou lies in the subtropical monsoon climate zone, where abundant precipitation
and warm temperatures are suitable for vegetation growth. The annual precipitation and
mean temperature in the year 2021 were 1318.6 mm and 18.3 ◦C, respectively. Suzhou is
low and even, with a general elevation range from 3.5 to 5 m above sea level. The southeast
of Suzhou is lower, with the lowest elevation below 2 m, and the southwest is a hilly area
where vegetation grows well. The terrain of this area is shown in Figure 1. Suzhou is a
famous water country region with a dense river network and numerous lakes, and rivers,
lakes, tidal flats and wetlands account for 34.6% of the total area. Cropland is the dominant
land use type in Suzhou, with an area of about 2871.6 km2, accounting for 33.17% of the
total area.
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Figure 1. The geographic location (a) and land cover (b) derived from Sentinel-2 by ESRI of Suzhou
in Jiangsu province in China.

2.2. Data Sources and Processing

Remote sensing data, climate data and land cover data were used in this research to
estimate GPP in Suzhou and analyze the importance of urban forests for the regional carbon
budget. Three kinds of resolution remote sensing images are used to estimate GPP. Of these,
30 m-Landsat 8 and 10 m-Sentinel 2 surface reflectance datasets were downloaded from the
United States Geological Survey (https://earthexplorer.usgs.gov/ (accessed on 10 April
2022)) and the Copernicus Open Access Hub (https://scihub.copernicus.eu/dhus/#/home
(accessed on 15 April 2022)) in 2021 to calculate NIRv. In order to avoid the impact of cloud
on data quality, the maximum value composite (MVC) method was set to generate the
monthly NIRv.

MODIS 500 m surface reflectance data (MOD09A1) and NDVI data (MOD13A1)
downloaded from NASA’s Distributed Active Archive Center (DAAC) have eliminated the

http://tjj.suzhou.gov.cn/sztjj/tjnj/2021/zk/indexce.htm
http://tjj.suzhou.gov.cn/sztjj/tjnj/2021/zk/indexce.htm
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impact of cloud. In order to maintain the consistency of the production of NIRv, the MVC
method was also used to generate the MODIS monthly NIRv.

Climate data, including monthly temperature and precipitation, were used to in-
vestigate GPP changes in response to the local climate; climate data were obtained from
the National Meteorological Science Data Center (https://data.cma.cn/ (accessed on 2
May 2022)).

MODIS, Landsat and Sentinel-2 land cover datasets were downloaded to summarize
the GPP of different land cover types according to the corresponding estimation of GPP
with the same spatial resolution. A MODIS land cover data (MCD12Q1) product was
downloaded from NASA DAAC. The MCD12Q1 product supplies maps of land cover at
annual steps, and the land cover in Suzhou was classified according to the International
Geosphere Biosphere Programme (IGBP) land cover classification scheme as urban and
built-up lands, croplands, grasslands, water bodies, evergreen broadleaf forests (EBF),
deciduous broadleaf forest (DBF), mixed forest (MF) and so on.

Global land cover data producing 30 m resolution were downloaded from http://data.
ess.tsinghua.edu.cn/ (accessed on 17 April 2022). This product used the amount of training
samples across the world to optimize many kinds of classifiers, eg. maximum likelihood,
decision tree, random forest, etc. A unique land-cover classification system was used in this
product. In Suzhou, the typical land cover types were crop, forest, grass, shrub, water, and
impervious. Additionally, impervious was considered as urban built-up areas in this study.

ESRI generated a global map of land use and land cover (https://livingatlas.arcgis.
com/landcover/ (accessed on 17 April 2022)) derived from Sentinel-2 imagery at 10 m
resolution by using a deep learning AI land classification model trained by billions of
human-labeled image pixels [48]. This product has 9 classes, of which water, tree, crop,
shrub land, built area and grass are the dominant ones in Suzhou.

In order to better calculate the changes in carbon assimilation of urban forest, the
urban area of Suzhou was divided into built area (black areas in Figure 1b) and non-built
area (remaining areas besides built area).

2.3. Estimation of GPP

NIRv has been found to accurately capture both the seasonal and annual variation in
GPP at flux sites [25,26]. GPP correlates linearly with NIRv among different vegetation
types (Table S1), and global GPP was estimated with high accuracy on a monthly basis by
upscaling the relationships between NIRv and GPP [23]. In this study, we also use these
correlations to determine the Suzhou monthly GPP based on NIRv, and the calculation of
NIRv and GPP are shown in Equations (1) and (2):

NIRv =
NIR− R
NIR + R

× NIR (1)

GPP = a× NIRv + b (2)

R and NIR are the red and the near-infrared bands, a and b are derived from linear
regression, and the values can be found in Table S1. We used the MVC method to generate
the monthly NIRv. Landsat-8 has a limited frequency of revisits, so some images were lost
during the rainy season, i.e., in July and August. MODIS and Sentinel-2 had sufficient data
to produce a full image each month.

For different kinds of forests, such as deciduous broadleaf forests (DBF), ever-
green broadleaf forests (EBF), evergreen needle forests (ENF), and mixed forests (MF),
Wang et al. [23] used different coefficients for calculating GPP. However, the land cover
data of Sentinel-2 used in this study do not distinguish forest type. As a result, based on the
studies of [49], changes in tree NDVI between summer and winter were examined to deter-
mine the forest types, including deciduous broadleaf forest, mixed forest and evergreen
broadleaf forest, according to the criteria listed in Criteria 2 of Table 1. Additionally, we did
not include evergreen needle forest in calculating GPP, for the reason that its distribution in

https://data.cma.cn/
http://data.ess.tsinghua.edu.cn/
http://data.ess.tsinghua.edu.cn/
https://livingatlas.arcgis.com/landcover/
https://livingatlas.arcgis.com/landcover/
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Suzhou is limited and hard to separate from evergreen broadleaf forests by only the change
in NDVI. Considering that the grassland and different kinds of forests in urban area are
always integrated but still able to be identified according to dominated coverage of plants,
vegetation types of urban forest in built area were also identified as grass (GRA), DBF, MF
and EBF.

Table 1. NDVI for identifying vegetation type in land cover of tree and built area.

NO. Criteria 1 Criteria 2 TR BA Veg

1 NDVI8 < 0.2 C1 and 2 BRE
2 0.2 ≤ NDVI8 < 0.5 C1 and 2 GRA
3 0.5 ≤ NDVI8 ≤ 1 (NDVI8-NDVI12)/NDVI8 > 0.35 C2 C1 and 2 DBF
4 0.5 ≤ NDVI8 ≤ 1 0.2 < (NDVI8-DVI12)/NDVI8 < 0.35 C2 C1 and 2 MF
5 0.5 ≤ NDVI8 ≤ 1 (NDVI8-NDVI12)/NDVI8 < 0.2 C2 C1 and 2 EBF

Note: The subscript is month, NDVI8 and NDVI12 are monthly NDVI in August and December. C1 and C2 are
criteria 1 and criteria 2, respectively. Veg is the vegetation type. TR and BA are the land cover of tree and built
area. BRE and GRA are bare land and grass land, respectively.

In the built area, the contribution of urban forests to total regional carbon assimilation
cannot be ignored as they are widely distributed in Suzhou. However, they are usually
buried in lower-resolution imagery. Considering the fragmentation of urban forests, three
different resolutions of remote images, i.e., MODIS, Landsat and Sentinel-2, were used
to evaluate the ability to detect urban forests. For calculating GPP in urban forest, NDVI
changes in the built area were used to determine vegetation types as shown in Criterions 1
and 2 of Table 1.

2.4. Data Analysis

Based on our estimation, the GPPs of different land cover types were summarized
according to land cover data. Then, we identified the contribution of urban forests to the
regional total GPP. Vegetation in urban areas is inevitably affected by human activities.
Therefore, the monthly changes of GPP were examined to find out the abnormal fluctuation
of monthly GPP and identify what kind of human activities disturbed the change in GPP.

3. Results
3.1. Variance of NIRv in Different Remote Sensing Data with Distinct Spatial Resolutions

The NIRv can be calculated based on MODIS, Landsat-8 and Sentinel-2 by using
Equation (1). Figure 2 shows the spatial distribution of Sentinel-2 NIRv monthly.

The area along the Yangtze River in the northern part of Suzhou was a high-value
area of NIRV. Additionally, the changes in NIRv in this area were significantly greater
than in other parts of the city. During the growing season, in April and from July to
September, NIRv reached more than 0.45. The high NIRv value in this area was a result
of the high photosynthetic ability of crops planted in this region, for example, wheat and
rice. Furthermore, around Tai Lake, the large water body in the southwest of the city, there
was another area with a high NIRv. Forests and crops were spread throughout this area
(Figure 1b), and the peak NIRv was around 0.4 from June to August.

The NIRv in Suzhou’s built area ranged from 0 to 0.1, generally, without an evidently
monthly dynamic. Nevertheless, there were many points scattered in the built area with
high NIRvs (ranging from 0.2 to 0.35) and also seasonal changes. The urban forest in built
areas contributed to the scattered high-value points. This kind of vegetation is usually
found in small urban green spaces, and was represented as discrete points by remote
sensing data with high resolution.
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For comparing the differences of NIRv derived from MODIS, Landsat-8 and Sentinel-2,
the monthly averages and standard deviations of NIRv were listed in Figure 3. Sentinel-2
NIRv showed two peaks in April and July, with values of 0.13 and 0.18, respectively. The
values of MODIS NIRv were generally lower than Sentinel-2 and had similar trends to
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Sentinel-2. Due to the impact of the cloud, the continuous change of Landsat-8 NIRv was
hard to obtain. Additionally, current valid data of Landsat-8 were similar to MODIS NRIv
and also showed a peak in September.
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3.2. Comparing the GPPs Estimated by Different Resolutions of Remote Sensing Data

The GPPs estimated by NIRv derived from MODIS, Landsat-8 and Sentinel-2 were
shown in Table 2. The total GPP in Suzhou in 2021 estimated by MODIS, Landsat-8 and
Sentinel-2 was 8.43, 8.48, and 9.30 Tg C yr−1 (Tg = 1012 g), respectively. Our estimations
of GPP were higher than the results of MOD17A2 (4.37 Tg C yr−1), which ignores the
contribution of the urban forest in built areas (black areas in Figure 4a). In contrast, our
results included this ignoring component and fell within the range of previous studies
which considered the contribution of urban forest (Table 2).

Table 2. Comparison of urban contribution to GPP in different GPP products.

Product Resolution Time Model Total GPP
(Tg C) Remark

This Study
10 m 2021

NIRv-GPP
9.30 Sentinel-2

30 m 2021 8.48 Landsat8
500 m 2021 8.43 MODIS

MOD17A2 500 m 2021 LUE 4.37
Zhang [50] 0.050◦ 2016 VPM 9.37

Ju [51] 0.073◦ 2019 BEPS 6.72
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Figure 4. The spatial distribution of GPP from MOD17A2 product (a) and estimated by MODIS
(b), Landsat-8 (c), Sentinel-2 (d). Areas in panel (a) with no data are due to the MODIS product not
calculating GPP if the land cover type is built area. Additionally, the no vegetation (veg.) areas in
panels (b–d) are the regions where the NDVI is less than 0.2 and, as a result, is recognized as bare
land with no GPP.

The spatial patterns of GPP in Suzhou estimated by MODIS, Landsat-8 and Sentinel-2
in 2021 were shown in Figure 4b–d. All three kinds of GPP showed the same high GPP
region located around Tai Lake (grey area in the southwest of Figure 4). In many areas of
this region, the GPP ranged from 2500 to 3000 g C m−2 yr−1. The estimated GPPs had some
differences in the northeast, along the Yangtze River (grey area in the northeast of Figure 4).
In this region, the GPP of MODIS was lower than the GPP of Landsat-8 and Sentinel-2.
According to our MODIS GPP results, most built areas were capable of photosynthesis
from the vegetation within them. Additionally, GPP in built area of Suzhou ranged from
250 to 500 g C m−2 yr−1. Ignoring the contribution of GPP from the built area (black area
in Figure 4a) induced the lower GPP in MOD17A2. Furthermore, high-resolution results
from Landsat-8 and Sentinel-2 also indicated the contribution of urban forests, which were
scattered over the built area due to their spatial distribution being highly discrete in Suzhou
(Figure 4c,d).
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3.3. Monthly Change of GPP in the Year 2021

The Landsat-8 GPP failed to overcome the effects of clouds every month since its long
revisit. Additionally, with the help of the MVC method, monthly NIRvs derived by MODIS
and Sentinel-2 were generated. As a result, Figure 5 shows only the MODIS and Sentinel-2
GPPs, as well as the changes in monthly temperature and precipitation for the year 2021.
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The monthly GPP of MODIS and Sentinel-2 showed two peaks in 2021. One peak was
in April, with GPPs 0.85 and 0.95 Tg C m−1 for MODIS and Sentinel-2, respectively. The
other peak was in July, when the GPPs of MODIS and Sentinel-2 reached their summit
for the whole year: 1.43 and 1.12 Tg C m−1, respectively. Between the two peaks was an
evident decrement in GPP in May. GPP decreased by 16.4% and 25.9% according to the
estimations of MODIS and Sentinel-2, respectively.

In the growing season, the MODIS GPP was generally lower than Sentinel-2 GPP. For
example, from July to September, the average of Sentinel-2 GPP was 1.31 Tg C m−1, which
was 21.3% higher than MODIS GPP in the same period. Additionally, a similar difference
was also found in the growing peak in April. Moreover, in winter and early spring MODIS
GPP and Sentinel-2 GPP were similar.

As Figure 6 showed, a significant (p < 0.001) linear relationship was found between
the air temperature and GPP. R2 for the temperature–GPP relationships were 0.81 and
0.89 for Sentinel-2 and MODIS GPP, respectively (Figure 6a,b), which was higher than the
precipitation–GPP relationship (Figure 6c,d). Therefore, the change in GPP was mainly
determined by the air temperature in the year 2021. Additionally, the positive coefficient
of slopes for the linear relationships indicated that temperature and precipitation had
positive effects on GPP. However, the GPP declined when temperature and precipitation
increased in May. This decrement in GPP implies that, besides climatic factors, some other
factors determined the change in GPP in May. In urban areas, the impact of anthropogenic
activities on vegetation cannot be ignored.
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3.4. Changes in GPP of Different Land Cover Types

To better understand the importance of urban forests to the regional GPP, the Sentinel-2
and MODIS GPP changes in different land cover types were shown in Figure 7. According
to the result of Sentinel-2, the average monthly GPP of vegetation in the built area (e.g.,
urban forest) and non-built area (e.g., crop, tree, grassland) was 0.35 Tg C and 0.43 Tg C
(0.32 for crops, 0.08 for trees, and 0.03 Tg C for grassland), respectively. Additionally, for
MODIS, GPP of the built area and non-built area was 0.28 Tg C and 0.42 Tg C (0.18, 0.01,
and 0.23 Tg C for crop, tree, and grassland, respectively). The MODIS GPP of grassland
was 0.20 Tg C higher than Sentinel-2 GPP, and the MODIS GPP of cropland was 0.14 Tg C
lower than Sentinel-2 GPP. This may be caused by the use of different land cover datasets in
statistics. MODIS land cover products might be misplaced between farmland and grassland
due to the lower spatial resolution. In fact, as an industrialized city, Suzhou does not have
a lot of grasslands.

The GPP of each land cover type varied throughout the year (Figure 7a,c). Similar
to the change in total GPP, each land cover type had two peaks in spring and summer.
Additionally, they also showed decrements in GPP in May. These decrements in GPP for
crops and urban forests were obviously about 32.33% and 23.57%, respectively, according
to Sentinel-2 GPP.

Sentinel-2 results indicated that crops and urban forests accounted for a majority of the
total GPP in Suzhou in 2021, with an average of about 38.15% and 44.43%, respectively. Trees
and grasses in non-built area made relatively small contributions to total GPP, accounting
for approximately 11.87% and 4.17%, respectively. According to MODIS GPP, urban forests
still accounted for the majority (39.66%) of total GPP, followed by grassland and crops at
33.66% and 25.60%, respectively.
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The contribution of different land cover types also varied throughout the year
(Figure 7b,d). Taking the most contributed urban forests as an example, their Sentinel-2
GPP exceeded 50% of the total GPP for five months of the year, with the highest percentage
at 55.39% in June. Additionally, the contribution made by crops was also large, even more
than the contribution of urban forests in growing peak seasons, such as April and August.

3.5. Changes in GPP by Anthropogenic Factors

The spatial distribution of this decrement in GPP in May is shown in Figure 8. The
evident decrement of GPP for the crop was mainly in the rice and wheat rotation area along
the Yangtze River. In May, as wheat matures, its photosynthetic capacity also decreases
significantly. Additionally, in June, after the wheat harvest, rice has just been planted. In
consequence, the photosynthetic capacity had not yet recovered.
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Furthermore, urban forests’ GPP also decreased significantly in May, but recovered
quickly in June (Figure 7a,c). For making urban vegetation more attractive, urban forests in
Suzhou undergo a pruning process in May. This process removes a considerable amount
of leaves from the canopy. Usually, these leaves are current-year leaves and are located at
the top of the canopy. Additionally, the photosynthetic capacity of these kinds of leaves
is greater than that of old leaves and lower canopy leaves [52,53]. The pruning process
is usually conducted on the grassland and shrub land, which were the main parts of
urban green spaces in Suzhou, approximately 55.67% (Figure 9) according to our criteria in
Table 1. Haberl [54] proposed that the averaged biomass loss during gardening (such as
pruning) or park and infrastructure maintenance amounted to 50% of the aboveground Net
Primary Productivity (the remainder of GPP deducts autotrophic respiration). Therefore,
the pruning process removes the most photosynthetic part of the canopy, which results in
the decline of GPP of urban forests.



Remote Sens. 2023, 15, 71 13 of 20

Remote Sens. 2023, 15, x FOR PEER REVIEW 13 of 20 
 

 

Net Primary Productivity (the remainder of GPP deducts autotrophic respiration). There-
fore, the pruning process removes the most photosynthetic part of the canopy, which re-
sults in the decline of GPP of urban forests. 

 
Figure 9. The distribution of urban forests in Suzhou (a) and its detailed views (b,c). Veg. is vegetation. 
DBF, MF, and EBF are deciduous broadleaf forests, mixed forests, and evergreen broadleaf forests. 

4. Discussion 
4.1. Uncertainty of Estimating GPP by NIRv 

Although, as we know, few studies have examined vegetation productivity in Su-
zhou, studies in similar cities may provide useful information. From 2000 to 2014, the av-
erage rate of GPP in Shanghai, the city next to Suzhou, was between 800 and 1050 g C m−2 
yr−1 based on the simulations by Vegetation Photosynthesis Model (VPM) [55]. This result 
is close to our 973.74, 979.51, and 1074.21 g C m−2 yr−1 for MODIS, Landsat-8, and Sentinel-
2, respectively. 

According to the MOD17A2 product, the previous study also indicated the GPP of 
crops along the Yangtze River in the northeast of Suzhou as around 1200–1400 g C m−2 yr−1 
[56], which is lower than our Sentinel-2 GPP, 1250–2000 g C m−2 yr−1, in the same region 
(Figure 4d). Limited by mixed pixel effects, the MOD17A2 product usually overestimates 
in lower value and underestimates in higher value [57,58]. The high resolution of Sentinel-
2 eliminated the many effects of the mixed pixel. Therefore, the Sentinel-2 GPP was obvi-
ously higher than the GPP calculated by MODIS reflectance. Furthermore, Landsat-8 GPP 
would have to be greater than MODIS GPP if it did not miss images during July and Au-
gust, when carbon assimilation rates are at their peak. 

Compared to deciduous forests, evergreen forests are inflexible to short-term 
changes in environmental conditions. As a result, their NIRv is suitable for predicting GPP 
over a longer period, such as 90 days [25]. Consequently, the NIRv–GPP relationship is a 

Figure 9. The distribution of urban forests in Suzhou (a) and its detailed views (b,c). Veg. is vegetation.
DBF, MF, and EBF are deciduous broadleaf forests, mixed forests, and evergreen broadleaf forests.

4. Discussion
4.1. Uncertainty of Estimating GPP by NIRv

Although, as we know, few studies have examined vegetation productivity in
Suzhou, studies in similar cities may provide useful information. From 2000 to 2014,
the average rate of GPP in Shanghai, the city next to Suzhou, was between 800 and
1050 g C m−2 yr−1 based on the simulations by Vegetation Photosynthesis Model (VPM) [55].
This result is close to our 973.74, 979.51, and 1074.21 g C m−2 yr−1 for MODIS, Landsat-8,
and Sentinel-2, respectively.

According to the MOD17A2 product, the previous study also indicated the GPP of crops
along the Yangtze River in the northeast of Suzhou as around 1200–1400 g C m−2 yr−1 [56],
which is lower than our Sentinel-2 GPP, 1250–2000 g C m−2 yr−1, in the same region
(Figure 4d). Limited by mixed pixel effects, the MOD17A2 product usually overestimates in
lower value and underestimates in higher value [57,58]. The high resolution of Sentinel-2
eliminated the many effects of the mixed pixel. Therefore, the Sentinel-2 GPP was obviously
higher than the GPP calculated by MODIS reflectance. Furthermore, Landsat-8 GPP would
have to be greater than MODIS GPP if it did not miss images during July and August,
when carbon assimilation rates are at their peak.

Compared to deciduous forests, evergreen forests are inflexible to short-term changes
in environmental conditions. As a result, their NIRv is suitable for predicting GPP over a
longer period, such as 90 days [25]. Consequently, the NIRv–GPP relationship is a challenge
in estimating monthly GPP for evergreen forests. Additionally, for this reason, our GPP
of evergreen forests in the southwest of Suzhou was more than 2500 g C m−2 yr−1, which
is higher than the previously observed and simulated results [59,60]. Additionally, the
original NIRv-GPP relationships across the different land cover types are generated by
0.05 degree AVHRR reflectance [23]. The uncertainty induced by the different remote
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sensing data in terms of field of view angle, signal-to-noise ratio, and spectral width needs
to be further evaluated.

4.2. Evaluation of High-Resolution Remote Sensing Images in Urban Carbon Research

Compared to Landsat-8 and Sentinel-2, the lower resolution of MODIS lost many
details inside the city (Figure 4b–d). In the built areas, vegetation usually accounts for a
small proportion at 500 m resolution. As a result, the reflection characteristics of vegetation
will be affected by the background. Meanwhile, due to the variety of land cover types
within a built area, low-resolution remote sensing images fail to accurately depict the
spatial variability of urban surfaces (Figure 10), thereby excluding changes in vegetation
characteristics within the city. As a result, the uncertainty in estimating GPP from low
remote sensing images increases. As Figure 11 shows, with the increment of spatial
resolution, the contribution of the urban forest to total GPP was increased. Therefore,
the photosynthetic ability of urban forests can be better figured out by fine-resolution
remote sensing images. Landsat having similar performance as MODIS is partially due to
its coarser resolution and lower NDVI relative to Sentinel-2, and also partially owing to
missing data of high values in summer with large fractions of cloudy days.
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Figure 11. The contribution of urban forests to total GPP. The percentages of 0.073◦ and 0.05◦ are
from Ju [51] and Zhang [50], respectively. Additionally, results of 500, 30, and 10 m resolutions were
calculated by MODIS, Landsat-8 and Sentinel-2 in this study.



Remote Sens. 2023, 15, 71 16 of 20

With its 10 m resolution, the Sentinel-2 GPP can provide more information about
vegetation dynamics in built areas. Despite the fact that Landsat-8 GPP has a relatively high
resolution to explore the dynamic of urban forests, the 16-day revisiting period made the
images of Landsat-8 subject to cloud cover. For example, for July and August of 2021, the
whole regional average NIRv of Landsat 8 cannot be generated. Vegetation is at a growing
peak during these two months, which is vital for the yearly total GPP. Therefore, the 5-day
revisiting period and higher spatial resolution of Sentinel-2 images make them ideal for
studying GPP on an urban scale.

4.3. Importance of Urban Forests for Regional Carbon Budget

In the land process-based model, as well as the remote sensing model, urban built
areas are usually masked according to land cover data based on the hypothesis that the
photosynthesis of urban forest is weak [45,47]. However, our study illustrated that the
photosynthetic capacity of urban forest was also considerable (Table 3). Meanwhile, in
Suzhou, the coverage of urban forest was 2253.1 km2, which was significantly higher than
the 371.9 km2 of vegetation in non-built area. As a result, about 44.43% of the total GPP in
Suzhou was contributed by urban forests (Figure 3). Therefore, the GPP of urban forest is
an important part of the regional carbon budget and should not be ignored.

Table 3. Differences in yearly GPP between vegetation in non-built areas and built area.

Veg. Type Non-Built Area (g C m−2 yr−1) Urban Forest (g C m−2 yr−1)

GRA 2275.9 ± 949.8 841.5 ± 599.2
DBF 2500.9 ± 749.0 1589.7 ± 722.0
MF 2306.1 ± 605.6 1478.4 ± 624.4
EBF 3206.6 ± 507.4 2640.6 ± 478.8

Note: GRA, DBF, MF, and EBF are grassland, deciduous broadleaf forest, mixed forest, and evergreen broadleaf
forest, respectively. Urban forest is the GRA, DBF, MF, and EBF in the built area.

The average GPP of urban forests was significantly lower (about 36.3%) than the
average GPP of vegetation in the non-built area (Table 3). This reduction of GPP can
primarily be attributed to many factors related to human activities in built areas [61,62].
From an ecological perspective, urban forests are highly fragmented and, as a result,
they are vulnerable to human activities [63]. Additionally, in view of the atmosphere
environment, urban forests are usually exposed to a high concentration of PM2.5 and O3,
which damages leaf tissue and affects photosynthesis [64]. However, the urban environment
also includes some positive factors for carbon assimilation, for example, the increment in
temperature due to the heat island effect [61,65], high CO2 concentration from greenhouse
gas emission [45,66], and enhanced nitrogen deposition from fossil fuel [67]. If we can
improve the management of urban forests to maximize positive factors that promote carbon
assimilation, urban forests will be able to play a more significant role in regional carbon
budgets, which will help China achieve the target of carbon neutrality.

5. Conclusions

In this study, MODIS, Landsat-8 and Sentinel-2 images were used to generate re-
gional GPP in one of China’s most economically developed cities, Suzhou, to identify the
applicability of different kinds of remote sensing data on urban scale studies and the charac-
teristics of urban carbon budgets. The results of GPP estimated by MODIS, Landsat-8, and
Sentinel-2 images were 8.43, 8.48, and 9.30 Tg C yr−1, respectively. The monthly dynamic
of GPP exhibited two peaks in April and September. In May, the harvest of wheat and the
pruning process conducted on urban forests made a pronounced decline in total GPP by
about 25.93% according to Sentinel-2. Accordingly, climate factors as well as anthropogenic
factors contribute to the change of urban GPP. As the spatial resolution rose, the contribu-
tion of the urban forest to regional total GPP increased, reaching about 44.63% according
to the 10 m sentinel-2 images. Since the distribution of urban forests is highly fragmental,
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high-resolution remote sensing images can better figure out the dynamic changes in the
GPP of the urban forest. The results of our study demonstrate the importance of using
high-resolution remote sensing images for estimating the GPP of the urban forest and for
improving our understanding of the urban carbon budget.

Supplementary Materials: The following supporting information can be downloaded at: https://
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