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Abstract: The aboveground carbon storage (AGC) of urban forests is an important indicator reflecting
the ecological function of urban forests. It is essential to monitor the AGC of urban forests and
analyze their spatiotemporal distributions. Remote sensing is a technical tool that can be leveraged to
accurately monitor forest AGC, whereas machine learning is an important algorithm for the accurate
prediction of AGC. Therefore, in this study, single Landsat 8 (L) remote sensing data, single Sentinel-2
(S) remote sensing data, and combined Landsat 8 and Sentinel-2 (L + S) data are used as data sources.
Four machine learning methods, support vector regression (SVR), random forest (RF), XGBoost
(extreme gradient boosting), and CatBoost (categorical boosting), are used to predict forest AGC
based on two phases of forest sample plots in Shanghai. We chose the optimal model to predict the
AGC and simulate the spatiotemporal distribution. The study shows that both machine learning
models based on separate Landsat 8 OLI and Sentinel-2 satellite remote sensing data can accurately
predict the AGC and spatiotemporal distribution of the Shanghai urban forest. Nevertheless, the
accuracy of the combined data (L + S) and CatBoost-integrated AGC models is higher than the others,
with fitting and validation accuracy R2 values of 0.99 and 0.70, respectively. The RMSE was also
smaller at 0.67 and 6.29 Mg/ha, respectively. The uncertainty of the AGC spatial distribution in the
Shanghai urban forest derived from the CatBoost model prediction from the 2016–2019 data was
small and consistent with the actual situation. Furthermore, the statistics showed that the AGC of the
Shanghai forest increased from 24.90 Mg/ha in 2016 to 25.61 Mg/ha in 2019.

Keywords: urban forest; AGC; remote sensing; machine learning

1. Introduction

Cities cover less than 1% of the Earth’s surface but account for 71% of global CO2
emissions, and the International Energy Agency predicts that this proportion will grow
to 76% by 2030 [1]. Therefore, the issue of urban CO2 emissions has become the focus of
global carbon emission reduction and low-carbon development [2]. Aboveground carbon
storage (AGC) is an important indicator reflecting the CO2 absorption capacity of urban
forests and evaluating the quality of those ecosystems [3]. The urban forest is a green
space system consisting of forest patches, forest strips, and scattered trees contained within
urban areas [4]. With the gradual expansion of urban environments, many of the functions
offered by urban forests, such as CO2 emission reduction, air purification, PM2.5 absorption,
urban rainfall, flood control, water quality improvement, noise reduction, and microclimate
improvement, have received increasing attention [5]. Therefore, the study of urban forest
AGC and its spatial and temporal distribution is of great significance to the construction
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of forested and low-carbon cities, which is a popular focus of domestic and international
research [6,7].

Currently, the methods of estimating forest AGC generally include field surveys,
model simulations, and remote sensing inversions. Considering field surveys, the in-
ventorying of sample plots uses two types of survey data (diameter at breast and tree
height) to calculate carbon stocks through the anisotropic growth equation. The estimated
value obtained, although accurate, requires considerable human and material resources
and a lengthy survey period, cannot wholly reflect the spatial distribution pattern of the
whole region, and has certain destructive properties [8]. Model simulation methods, such
as BIOME-BGC, mainly estimate carbon stocks by simulating physiological–ecological
processes such as photosynthesis, respiration, and decomposition in ecosystems [9]. It
should be noted that various vegetation parameters are needed to effectively simulate
forest carbon stocks; thus, when the available input parameters are inadequate or missing
due to acquisition difficulty, the prediction results will be substantially impacted [10]. The
remote sensing estimation method mainly establishes a complete mathematical model, and
its analytical formula incorporates the information received from satellites and directly
measured biomass. Finally, this approach uses an analytical formula to estimate the forest
biomass in other areas [11]. Remote sensing data offers the advantages of fast acquisition
and high temporal resolutions and can cover large spatial scales [12]. As remote sensing
technology continues to rapidly develop, the high-resolution images and multispectral
images obtained by various satellites can collect more detailed vegetation information, such
as texture features, and be used for vegetation indices [13,14]. Additionally, these datasets
can be combined with the growing suite of machine learning methods, such as the random
forest algorithm, support vector regression, and deep learning techniques [15]. Therefore,
forest carbon stock estimation using remote sensing technology combined with ground
survey data is more accurate [16].

Scholars have conducted substantial research on the remote sensing-based estimations
of urban forest carbon stocks [17]. The commonly used multiple linear regression models
have some advantages in predicting forest biomass [18], but linear regression cannot fully
resolve the complex relationship between independent variables and AGC. In recent years,
the emergence of machine learning algorithms, such as artificial neural networks (NN),
support vector regression (SVR), random forest (RF), deep learning (DL), and ensemble
learning (EL), has greatly improved the accuracy of forest AGC estimation [19]. Zou
analyzed the application of a multiple linear regression model, logistic regression model,
and neural network model in estimating the urban forest carbon stock in Shenzhen City
using remote sensing images from Landsat 8 as the data source. It showed that the neural
network model has the highest estimation accuracy [20]. Zhang used Landsat TM and OLI
satellite remote sensing data to estimate the spatial and temporal distribution of urban forest
carbon stocks in the Hangzhou–Jiahu region using RF [21]. Dong et al. used Worldview-2
high-resolution remote sensing data as the data source and DL to achieve a highly accurate
estimation of AGC in the Leizhu forest in Lin’an District, Hangzhou [22]. EL is a branch
of machine learning that improves model stability, learning accuracy, and generalization
capability by integrating and combining multiple learners, including boosting, bagging,
and stacking algorithms, to accomplish learning tasks [23]. The boosting algorithm, also
known as the augmented learning or boosting method, improves the model’s accuracy
by transforming weak learning rules into strong learning rules [24]. Among the boosting
algorithms, two methods, XGBoost (extreme gradient boosting) and CatBoost (categorical
boosting), are again typical representatives, and they are preferred for cases with small
training samples. Scholars have obtained better results using both methods to estimate
forest AGC [25].

In summary, monitoring the AGC of urban forests is important for evaluating the
function of urban forest carbon sinks and low-carbon city construction. Remote sensing
is a technical means to accurately monitor urban forest AGC, and machine learning is an
important algorithm that can be applied to improve the accuracy of remote sensing-based
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AGC estimation. The purpose of this study is to accurately simulate urban forest AGC
based on machine learning models and multi-source remote sensing data and analyze their
spatiotemporal distributions. This study takes the Shanghai urban forest as the research
object; uses two kinds of remote sensing data, Landsat 8 OLI and Sentinel-2, as the data
sources; and extracts remote sensing variables and metrics, such as the vegetation index and
texture, and combines them with sample plot survey data. Four machine learning methods,
SVR, RF, XGBoost, and CatBoost, are then used to construct the Shanghai urban forest AGC
estimation model from the remotely sensed data. Based on the model accuracy evaluation,
the model with the best performance and strong generalization ability is selected to estimate
the carbon stock and spatial and temporal distribution of the Shanghai urban forest. The
study’s results will provide an important reference for evaluating the carbon sink capacity
of Shanghai's urban forest and its role in constructing a low-carbon city.

2. Materials and Methods
2.1. Study Area

Shanghai is one of China’s most urbanized and fastest growing cosmopolitan cities.
Shanghai is located between 120◦50′ E and 121◦53′ E and between 30◦40′ N and 31◦50′ N.
It is situated on the coast of the East China Sea and the Yangtze River Delta, as shown
in Figure 1. The city of Shanghai covers an area of 6340.5 square kilometers, of which
Huangpu, Pudong New Area, Xuhui, Changning, Putuo, Jing’an, Hongkou, Yangpu, and
other main urban areas cover an area of 977.1 square kilometers. Baoshan, Jinshan, Jiading,
Minhang, Fengxian, Qingpu, Songjiang, Chongming, and other suburban areas cover an
area of 5363.4 square kilometers [26]. By the end of 2020, the forested area of Shanghai
reached 1758 million acres, and the forest coverage rate reached 18.49%. The vegeta-
tion along urban streets, parks, and suburban woodlands is dominated by lady’s mantle
(Ligustrum lucidum), magnolia (Magnolia grandiflora), balsam fir (Cinnamomum camphora),
Populus, Cedrus deodara, and other subtropical evergreens, deciduous broadleaf, and ever-
green broadleaf species [27].
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Figure 1. (a) China’s border; (b) classified data of Shanghai in 2019; (c) Landsat 8 image of Shanghai
province and forest aboveground carbon (AGC) plots in 2019.

2.2. Datasets and Processing
2.2.1. Processing Observed Data

The ground sample plot data were obtained from 81 urban forest fixed sample plots in
Shanghai that were each 25.8 m × 25.8 m in size. The distribution of the sample plots is
shown in Figure 1. The 81 sample plots were surveyed over a period of 4 years, and each
sample plot was surveyed twice. The 40 sample plots were surveyed in the summer of 2016
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and 2018, respectively; the remaining 41 sample points were surveyed in the summer of
2017 and 2019. In this study, the remote sensing data corresponding to the time of sample
points are selected for the spatiotemporal estimation of urban forest AGC.

During the field survey, tree height, diameter at breast height, height below the canopy,
and crown width were recorded for trees with a diameter at breast height greater than
5 cm. The AGC of individual trees was calculated by combining the anisotropic growth
equations [28] of different tree species to statistically derive the total AGC of each site. As
outlier AGC values will significantly damage model training, this study used the double
standard deviation method [29] to ensure the observed AGCs were within 95% confidence,
and 103 sample plots were selected for estimating urban forests AGC. The AGC statistics
for the 103 samples are shown in Table 1. These sample plots were divided into two parts
using a 3:1 ratio, of which 75% of the samples were used for model construction, whereas
the other 25% were used for model accuracy assessment.

Table 1. Summary of the forest AGC plots of Shanghai.

ID Year Sample
Dimension

Min
(Mg/ha)

Max
(Mg/ha)

Mean
(Mg/ha)

SD
(Mg/ha)

1
2016 27 1.71 53.72 26.86 12.87

2017 24 2.98 55.54 26.55 11.82

2
2018 26 2.55 52.63 28.05 11.4

2019 26 3.89 52.33 29.91 12.57

2.2.2. Landsat 8 and Sentinel-2 Remote Sensing Data

Landsat 8 is an imaging mission with large time span, good data quality, and high
resolution collected by National Aeronautics and Space Administration (NASA) and the
United States Geological Survey (USGS). It is equipped with an operational land imager
(OLI) to monitor and help manage the use of agricultural, forestry, animal husbandry, and
water resources and investigate and forecast various serious natural disasters (such as
earthquakes) and environmental pollution. Landsat 8 data can be downloaded for free
(https://earthexplorer.usgs.gov/ (accessed on 1 August 2021)).

Sentinel-2 is a large-scale, high-resolution, multispectral imaging mission funded
by the European Union, European Space Agency (ESA), and Copernicus Programme,
which supports Copernicus land monitoring and research, including vegetation, soil, and
water cover monitoring and observation of inland waterways and coastal areas. The data
of Sentinel-2 can be obtained from scihub (https://scihub.copernicus.eu/ (accessed on
1 June 2022)).

2.2.3. Remote Sensing Data Preprocessing

As shown in Table 2, in this study, remote sensing data from two sources, Landsat
8 OLI and Sentinel-2 were selected to estimate the AGC of the Shanghai urban forest based
on the ground sample survey results. Satellite data were selected from 2016 to 2019, and
only imagery with low cloud cover was used to ensure data quality. Two scenes from
the Landsat 8 image data over Shanghai, with strip numbers 118/039 and 118/040, were
used to consider the influence of the atmosphere, aerosols, and other factors in the image
acquisition process. This study performed radiometric calibration, FLAASH atmospheric
correction, and geometric correction on the Landsat 8 image data [30–32] and stitched and
cropped the corrected data.

https://earthexplorer.usgs.gov/
https://scihub.copernicus.eu/
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Table 2. Acquisition date and cloud coverage (C) (%) of the images.

Satellite Data ID
2016

Data ID
2017

Date Cloud Date Cloud

Landsat 8
LC81180382016202LGN00 20/07/2016 6.09 LC81180382017236LGN00 24/08/2017 0.40
LC81180392016122LGN00 01/05/2016 1.25 LC81180392017236LGN00 24/08/2017 0.26

Sentinel-2

N0202_R089_T51RTQ 04/05/2016 2.62 N0205_R089_T51RTQ 28/07/2017 0.13
N0202_R089_T51RUQ 04/05/2016 5.17 N0205_R046_T51RUQ 04/08/2017 0.56
N0204_R046_T51SUR 30/06/2016 15.79 N0205_R089_T51SUR 27/08/2017 1.15
N0204_R089_T51SUR 02/08/2016 19.70 N0205_R089_T51RUQ 28/07/2017 0.58
N0204_R046_T51RUQ 30/06/2016 4.63 N0205_R046_T51RUQ 26/05/2017 0.05

Satellite Data ID
2018

Data ID
2019

Date Cloud Date Cloud

Landsat 8
LC81180382018143LGN00 23/05/2018 18.43 LC81180382019210LGN00 29/07/2019 10.78
LC81180392018143LGN00 23/05/2016 4.37 LC81180392019210LGN00 29/07/2019 1.66

Sentinel-2

N0206_R089_T51RTQ 04/05/2018 0.06 N0208_R089_T51RTQ 17/08/2019 0.01
N0206_R089_T51RUQ 04/05/2018 0.03 N0208_R089_T51RUQ 17/08/2019 0.15
N0204_R046_T51SUR 04/05/2018 15.40 N0208_R089_T51SUR 17/08/2019 0.09
N0206_R089_T51SUR 13/06/2016 15.92 N0208_R046_T51RUQ 14/08/2019 2.62
N0206_R046_T51RUQ 29/08/2016 4.10 N0207_R046_T51RUQ 15/08/2019 1.01

Sentinel-2 carries a spectral imager that spans 13 spectral bands. These include four
bands with a spatial resolution of 10 m: the blue band (490 nm), the green band (560 nm), the
red band (665 nm), and the near-infrared band (842 nm); four bands with a spatial resolution
of 20 m, which mainly consists of the four bands used to characterize the red spectrum of
vegetation (705, 740, 783, and 865 nm); two shortwave infrared bands (1610 and 2190 nm)
for snow and ice detection; and three bands with a resolution of 60 m that are mainly
used for atmospheric correction, etc. [33]. In this study, bands with spatial resolutions
of 10 and 20 m are mainly used. For Sentinel-2 Level-1C images, atmospheric correction
was performed using the Sen2cor tool (http://step.esa.int/main/snap-supported-plugins/
sen2cor/ (accessed on 1 June 2022)) [34]. In addition, to be consistent with Landsat 8, the
spatial resolution was resampled to 30 m using the nearest neighbor method [35].

3. Research Methodology
3.1. Remote Sensing Variable Settings

As shown in Table 3, the remote sensing variables used in this study, such as the
vegetation indices and texture features, were derived from the original image and composite
bands. The vegetation indices include the difference vegetation index (DVI), normalized
difference vegetation index (NDVI), normalized difference water index (NDWI), enhanced
vegetation index (EVI), and ratio vegetation index (RVI) [36]. NDVI is the most commonly
used vegetation index for the qualitative and quantitative evaluation of vegetation coverage
and its growth vitality [37]. NDWI is a normalized water index based on the green and
near-infrared bands. EVI has a narrower range for red light and near-infrared detection
bands, which can detect sparse vegetation and reduce the impact of water vapor. RVI can
better reflect the differences in vegetation coverage and growth status. DVI can detect
vegetation growth status and coverage and eliminate some radiation errors [38].

The texture features are based on the original image waveform. The texture features
(i.e., mean, variance, homogeneity, contrast, dissimilarity, entropy, angular second-order
moment, and correlation) are based on the original image bands calculated using the
grayscale co-occurrence matrix [39]. The window size for texture feature extraction is set to
3 × 3, 5 × 5, 7 × 7, 9 × 9, and 11 × 11.

http://step.esa.int/main/snap-supported-plugins/sen2cor/
http://step.esa.int/main/snap-supported-plugins/sen2cor/
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Table 3. Information on remote sensing-derived variables.

Type Name Calculation Models
or Descriptions Abbreviation Remarks

Landsat
Original Band

Coastal Band 1 B1

Landsat 8 OLI data

Blue Band 2 B2
Green Band 3 B3
Red Band 4 B4
NIR Band 5 B5

Swir1 Band 6 B6
Swir2 Band 7 B7

Sentinel-2
Original Band

Blue Band 2 S_B1

Sentinel-2 data

Green Band 3 S_B2
Red Band 4 S_B3

Red-edge 1 Band 5 S_B4
Red-edge 2 Band 6 S_B5
Red-edge 3 Band 7 S_B6

NIR1 Band 8 S_B7
NIR2 Band 8A S_B8
Swir1 Band 9 S_B9
Swir2 Band 10 S_B10

Vegetation
Index

NDVI (NIR− R)/(NIR + R) NDVI

L takes value for 0.5 [40]
NDWI (G−NIR)/(G + NIR) NDWI

EVI 2.5 (NIR− R)/(NIR + 6R− 7.5B + L)EVI
RVI NIR / R RVI
DVI NIR− R DVI

Texture
[10]

Mean N−1
∑

i=0

N−1
∑

j=0
iP(i, j) MEA P(i, j) = V(i,j)

∑N−1
i=0 ∑N−1

j=0 V(i,j)
,

where V(i, j) is the ith row of the
jth column in the Nth moving

window;

ux=
N−1
∑

j=0
j

N−1
∑

i=0
P(i, j)

uy=
N−1
∑

i=0
i

N−1
∑

j=0
P(i, j)

σx=
N−1
∑

j=0
(j− ui)

2 N−1
∑

i=0
P(i, j)

σy=
N−1
∑

i=0
(i− uj)

2
N−1
∑

j=0
P(i, j)

Variance N−1
∑

i=0

N−1
∑

j=0
(i−mean)2P(i, j) VAR

Homogeneity N−1
∑

i=0

N−1
∑

j=0

P(i,j)
1+(i−j)2

HOM

Contrast N−1
∑

|i−j|=0
|i− j|2

{
N
∑

i=1

N
∑

j=1
P(i, j)

}
CON

Dissimilarity N−1
∑

|i−j|=0
|i− j|

{
N
∑

i=1

N
∑

j=1
P(i, j)

}
DIS

Entropy −
N−1
∑

i=0

N−1
∑

j=0
P(i, j) log(P(i, j)) ENT

Angular second
moment

N−1
∑

i=0

N−1
∑

j=0
P(i, j)2 ASM

Correlation ∑N−1
i=0 ∑N−1

j=0 P(i,j)2−µxµy

σxσy
COR

The remote sensing-derived variables based on Landsat data include 7 original bands,
5 vegetation indices, and 280 texture features (extracted using 5 window sizes generated
from the 7 original bands), for a total of 292 variables. The remote sensing-derived variables
based on Sentinel-2 data include 10 original bands, 5 vegetation indices, and 400 texture
features (also extracted by 5 kinds of windows generated based on 10 original bands), for a
total of 415 variables.

3.2. Feature Variable Selection

In machine learning algorithms, selecting feature variables involved in model con-
struction is extremely important to improve the model’s performance [41]. The Boruta
algorithm proposed by Kursa [42] can select feature variables efficiently, and its goal is to
filter all features relevant to the dependent variable so that the influence of feature variables
on the dependent variable can be better explained. The core idea of the Boruta algorithm is
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to disrupt the original feature order to construct shadow features randomly. The shadow
features are trained as a new feature matrix together with the original features. The impor-
tance score of the shadow features is used as a benchmark to find all the features related to
the dependent variable from the original features through multiple iterations to obtain the
optimal features. Obviously, the Boruta algorithm is different from the traditional method
of selecting feature variables [43]; for example, it is the least-cost function [44] because the
features extracted through the least-cost function do not take into account the nonlinear
correlation between the dependent variables. Therefore, the Boruta algorithm is used in
this study to filter feature variables from the remote sensing-derived variables discussed in
Section 3.1 for AGC model construction.

3.3. AGC model Construction Scheme and Method

Based on the variable selection, this study constructs AGC models with three schemes,
namely, Landsat 8 remote sensing data (L), Sentinel-2 (S), and Landsat 8 combined with
Sentinel-2 (L + S). Four machine learning methods, SVR, RF, XGBoost, and CatBoost are
used for modeling. Finally, based on the model accuracy evaluation, the model with good
performance and strong robustness is selected to estimate the carbon stock and spatial and
temporal distribution of the Shanghai urban forest.

SVR constructs the model by finding a linear regression equation to fit all sample points
so that the total variance of sample points from the hyperplane is minimized. SVR maps
the nonlinearly separable training samples in the low-dimensional input space to the high-
dimensional space by introducing a kernel function to make them linearly separable [45];
thus, the model has good generalization performance and is not easily overfitted [46].

The RF algorithm is an algorithm based on decision tree improvement [47]. The
method first forms N sets of samples for the dataset using self-service sampling techniques
(bootstrap) [48]. Then, a decision tree model is built for each set of samples separately
to form N regression trees. Finally, the average of the results of the N regression trees is
used as the predicted value of the carbon stock. RF considers only some remote sensing
variables at each split point; thus, the weakly correlated variables have more opportunities
to participate in regression tree construction, which increases the reliability of the model.
Compared with the traditional multiple linear regression model, RF can better handle the
complex covariance between remote sensing variables [49].

The XGBoost algorithm starts from the root node and splits one leaf node at a time,
and the optimal split is selected for each possible division. The model is obtained by
improving on the gradient boosting decision tree (GBDT) algorithm, which is an integrated
algorithm for implementing decision trees as the base classifier and usually consists of
multiple decision trees. Nevertheless, it only prunes after the decision tree is constructed.
Furthermore, XGBoost adds a regular term in the decision tree construction stage to reduce
the model's overfitting, thus improving the model's generalization ability [50,51].

The CatBoost algorithm is also an improved ensemble learning method developed
in the framework of the GBDT algorithm, but it implements algorithm integration with a
symmetric decision tree as the base learner, uses the same features for splitting at each layer
during the operation, and calculates the leaf node values by minimizing the sample loss on
the leaf nodes [52]. The CatBoost algorithm has fewer parameters and can efficiently and
reasonably handle category-based features [53], whereas CatBoost is able to handle discrete
feature data when calculating subset residuals automatically. Therefore, the CatBoost
algorithm is highly adaptable to regression problems with multiple input features and
noisy samples [54].

3.4. Model Accuracy Evaluation Method

In this study, the coefficient of determination (R2), root mean square error (RMSE),
and relative root mean square error (rRMSE) are used to evaluate the accuracy of the
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model [55,56]. Generally, a higher R2 and lower RMSE and rRMSE indicate that the model
has better performance. These can be calculated by:

R2 =
∑n

i=1(ŷi − yi)
2

∑n
i=1(yi − yi)

2 (1)

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(2)

rRMSE =
RMSE

yi
× 100% (3)

where yi, yi, and ŷi are the measured AGC, mean AGC, and model-predicted AGC, respec-
tively, and n is the number of samples. The closer the R2 value is to 1, the higher the fitting
degree. The smaller the RMSE value is, the smaller the dispersion between the true value
and the model predicted value.

The technical route of this study is shown in Figure 2.
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4. Results and Analysis
4.1. Variable Screening Results and Importance Analysis

The explanatory power of the selected feature variables for AGC is given in Figure 3,
along with a comparison of the three feature variable screening methods, stepwise regres-
sion analysis (SR) [57], and recursive feature elimination (RFE) [58]. As seen in Figure 3,
the feature variables obtained by the Boruta-based algorithm correlate better with AGC in
general, especially for both L and L + S data. Table 4 shows the feature variables screened
from the L, S, and L + S data using the Boruta method. Among the three datasets shown
in Table 4, texture information has the strongest influence on the AGC. Eleven variables
screened in the L dataset are texture information, and among the five feature variables
screened in the S dataset, only EVI is not texture information. All variables screened in the
L + S dataset are texture information, which consists of 12 variables from the L data and 2
from the S dataset.
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Table 4. Feature variable selection result based on the Boruta method.

Dataset Number of Selected
Variables Name of Selected Variables

L 11 W3B4COR, W5B2COR, W5B5VAR, W7B5CON, W7B6VAR, W7B6CON,
W9B5CON, W9B5DIS, W11B1CON, W11B5CON, W11B5DIS

S 5 S_EVI, S_W7B8CON, S_W9B3CON, S_W11B3CON, S_W11B7ENT

L + S 14
W3B4COR, W5B2COR, W5B5VAR, W7B5CON, W7B6VAR, W9B5CON,

W9B5DIS, W11B1CON, W11B5HOM, W11B5CON, W11B5DIS, W11B5ENT,
S_W7B5VAR, S_W9B8CON

Note: WiBjxx refers to the texture information whose window size of the jth band of the image is I; xx refers to
MEA, VAR, HOM, CON, DIS, ENT, ASE, and COR; S_ represents Sentinel-2 data; otherwise, it is Landsat 8 data.

4.2. AGC Model Construction and Prediction Results
4.2.1. Landsat 8-Based AGC Model and Prediction Results

The accuracy evaluation of the AGC models (SVR, RF, XGBoost, and CatBoost) con-
structed based on Landsat feature variables are shown in Figure 4. The accuracy R2 in the
modeling and validation stages ranges from 0.78 to 0.99 and 0.38 to 0.66, respectively. In
addition, the RMSE ranges from 1.43 to 6.49 Mg/ha.

As observed in Figure 4, the overall modeling performance of RF is better than SVR,
as the accuracies of the AGC model on RF in the modeling stage (0.94) and validation stage
(0.62) outperform that of the SVR model by 20.51 and 63.16%, respectively. The AGC model
built by XGBoost shows slightly higher accuracy than that of CatBoost in both the modeling
and verification phases.

In general, the predicted urban forest AGC was more reliable with the XGBoost
algorithm than the SVR, RF, and CatBoost algorithms and outperforms other models on
the accuracies of both the training and verification stages (by 26.92 and 73.68% for SVR,
5.32 and 6.45% for RF, and 2.06 and 4.76% for CatBoost).
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learning models.

4.2.2. Sentinel-2-Based AGC Model and Prediction Results

The results of the AGC models based on Sentinel-2 feature variables are shown in
Figure 5. The modeling accuracy R2, the validation accuracy R2, and the RMSE of the
four models ranged from 0.51 to 0.94, 0.24 to 0.44, and 4.12 to 9.27 Mg/ha, respectively. In
Figure 5, the overall modeling performance of RF is better than that of SVR, as the accuracy
of the RF model, which is 0.94 in the modeling phase and 0.31 in the validation phase,
is higher than the accuracy of the SVR model by 42.42 and 29.17%, respectively, and the
RMSE decreases by 3.59 Mg/ha. The accuracy of the XGBoost-based AGC model is greater
than that of CatBoost in the modeling and verification phases, and the overall modeling
performance of the XGBoost algorithm is slightly better than that of the CatBoost algorithm.
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Figure 5. Accuracy evaluation of AGC prediction based on Sentinel-2 using four machine
learning models.

The modeling accuracy of the XGBoost algorithm is the same as that of RF, but the
validation accuracy is improved by 41.94%, and the accuracy of the XGBoost algorithm
compared with SVR and CatBoost in the modeling and validation stages is improved by
42.42 and 83.33%, and 84.31% and 57.14%; RMSE decreased by 3.73 Mg/ha and 5.15 Mg/ha;
and the AGC model accuracy based on the XGBoost algorithm was the highest.

4.2.3. Landsat 8 Combined with the Sentinel-2 AGC Model and Prediction Results

The accuracy of the AGC models constructed using SVR, RF, XGBoost, and CatBoost
based on Landsat 8 combined with Sentinel-2’s remote sensing-derived variables are shown
in Figure 6, with modeling accuracy R2 values between 0.88 and 0.99, validation accuracy R2

values between 0.39 and 0.70, and RMSEs between 0.67 and 5.76 Mg/ha for all four models.
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As shown in Figure 6, the accuracy of the AGC model constructed based on RF is
0.94 and 0.62 in the modeling and validation phases, respectively, which are higher than
the accuracy of the SVR model by 6.82 and 58.97%, respectively. In addition, the RMSEs
decrease by 1.53 and 1.46 Mg/ha, and the overall modeling performance of RF is better
than that of SVR. The accuracy of the AGC model constructed based on CatBoost is greater
than that of XGBoost in both the modeling and validation phases, and the overall modeling
effect of the CatBoost algorithm is slightly better than that of the XGBoost algorithm.

The modeling accuracy of the XGBoost algorithm is the same as that of RF, with R2

being 0.94 for both, but the XGBoost validation accuracy is 8.06% higher than that of RF.
The CatBoost algorithm outperforms SVR, RF, and XGBoost by 12.5, 5.32, and 5.32% at
the modeling phase; and 79.49, 12.9, and 4.48% at the validation phase, respectively. The
CatBoost algorithm has the highest accuracy according to the four AGC models constructed
based on the characteristic variables of the L + S.

4.3. Spatiotemporal Distribution of AGC in the Shanghai Urban Forest

The model accuracy results of the urban forest AGC in Shanghai based on Landsat,
Sentinel-2, and L + S data using four models, SVR, RF, XGBoost, and CatBoost, respectively,
show that the AGC model based on L + S data using the CatBoost algorithm had the
highest accuracy. Therefore, in this study, the prediction of urban forest carbon storage
in Shanghai for different periods based on the characteristic variables of L + S using the
CatBoost algorithm was carried out to obtain the spatial distribution of urban forest AGC
in Shanghai from 2016 to 2019, and the results are shown in Figure 7.
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The statistical analysis of Figure 7 shows that the average AGC of Shanghai forests
from 2016 to 2019 was 24.90, 25.09, 25.17, and 25.61 Mg/ha, and the total carbon stocks were
2.37, 2.38, 2.40, and 2.35 Mt. There was no significant change in the spatial distribution of
urban forest carbon stocks in Shanghai, with relatively small forest cover in the urban center.
Far from the urban center, the western, eastern and northern regions showed lower carbon
density but larger forest cover. This study further analyzed the frequency distribution
histograms of the AGC of sample plots and model-estimated AGC. The results show that the
model-inverted AGC histograms of all four phases of Shanghai forests were consistent with
the structure of the sample plot survey, i.e., the largest proportion (27.22–33.46%) accounted
for 20–25 Mg/ha, and the smaller proportion (2.04–2.39%) accounted for 0–10 Mg/ha. This
indicates that the spatiotemporal distribution of the AGC estimated by the CatBoost model
based on L + S data is consistent with the actual situation and can accurately reflect the
spatial distribution characteristics of urban forest AGC in Shanghai.

5. Discussion

The input of different feature variables dramatically impacts the accuracy of AGC
model construction. To understand the correlation between feature variables and AGC,
this study conducted variable importance analysis on the feature variables of the three
datasets screened using the Boruta method, and the ranking results are shown in Figure 8.
The results show that the 11 feature variables based on the Landsat dataset are all texture
information with different window sizes. The fifth band accounts for 54.55%, and 45.45% of
the texture information is correlation features. Four of the five variables screened based on
the Sentinel-2 dataset are texture features, among which 75% are correlation features; and
85% of the fourteen feature variables screened based on the L + S dataset are correlation
features. This indicates that the critical factor in building forest AGC models is the texture
information of Landsat, which is consistent with Zhang [10]. This suggests that the key
factor in constructing forest AGC models is the texture information contained within
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Landsat imagery, which is consistent with the results of Zhang’s study. Meanwhile, 12 out
of 14 feature variables screened based on the L + S dataset are Landsat texture information,
and the accuracy of the constructed models is better than the previous two, which further
verifies the importance of Landsat texture information in building forest AGC models. The
urban forest has a complex structure, fragmented distribution, heterogeneous substratum,
and frequent disturbances, which is very different from the large area and continuously
distributed forests in traditional forest environments. Texture information is a crucial
feature variable for constructing an urban forest AGC model. The acquisition of surface
texture features, such as smoothness and fragility, from remotely sensed imagery allows
for the identification of the subtle features of the urban forest.
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The traditional multiple linear regression (MLR) model is one of the most widely
used methods for the remote sensing inversion of forest AGC [59–61]. In this study, MLR
was also used to construct three data types for the Shanghai urban forest AGC estimation
models, L, S, and L + S, as shown in Figure 9. The accuracy R2 values of the MLR models
constructed by L, S, and L + S are 0.26, 0.15, and 0.32, respectively, and the validation
accuracy R2 values are 0.36, 0.17, and 0.39, with an overall accuracy that is significantly
lower than the four machine learning algorithms discussed in Section 4.2. The forest AGC
spectral response tends to be nonlinear [62]; therefore, the MLR model cannot better explain
the nonlinear characteristics between the independent and dependent variables.
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In this study, the AGC modeling accuracy of XGBoost and CatBoost is higher than
SVR and RF. Single machine learning algorithms have their own limitations. SVR solves
the nonlinear problem by seeking hyperplanes, but the model itself needs to find the
optimal kernel function and optimal penalty coefficients to obtain the optimal results.
Although RF can handle high-dimensional data and has better noise immunity, it is prone to
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overfitting problems when constructing models with a limited number of samples and many
variables. XGBoost and CatBoost, as modern ensemble models, have better generalization
and expression capabilities in densely distributed datasets and can automatically discover
higher-order relationships between features and better describe the relationships between
variables, thus improving the overall accuracy of the AGC model. In addition, CatBoost can
better solve the problems of gradient bias and prediction shift; thus, the model performance
is better than XGBoost in general.

Uncertainty analysis is the estimation and study of external factors and influences that
cannot be controlled in the research process [63–65]. This study analyzed the uncertainty
of the CatBoost model in estimating the forest AGC in Shanghai, as shown in Figure 10.
Figure 10 shows that the percentage of image elements with low uncertainties (<20) in forest
AGC for different periods from 2016 to 2019 is above 94%, indicating that the CatBoost
model has good stability in estimating urban forest AGC in Shanghai, and the model is less
influenced by external factors, further illustrating the accuracy of the forest AGC estimation
results in this study. The remaining few image elements with large uncertainties (>20) were
mainly distributed in the Chongming District of Shanghai. On the one hand, the forest AGC
sample sites were unevenly distributed. The field survey plots’ carbon stock data ranged
from 1.71 to 87.10 Mg/ha, and the sample mean value of 28.59 Mg/ha was close to the
overall sample mean, but its standard deviation of 19.12 Mg/ha was 1.57 times the overall
sample standard deviation. This indicates that the sample data in the Chongming area
have a large spatial heterogeneity, which may be impact the accuracy of estimating forest
AGC with the CatBoost model. On the other hand, the estimation of urban forest AGC in
Chongming District is relatively low (Figure 7), whereas the CatBoost model overestimates
the low AGC values (Figure 6), which may be the reason for the great uncertainty in the
estimation of forest AGC in Chongming District.
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uncertainty of the CatBoost model in estimating the forest AGC in Shanghai, as shown in 

Figure 10. Figure 10 shows that the percentage of image elements with low uncertainties 

(<20) in forest AGC for different periods from 2016 to 2019 is above 94%, indicating that 

the CatBoost model has good stability in estimating urban forest AGC in Shanghai, and 

the model is less influenced by external factors, further illustrating the accuracy of the 

forest AGC estimation results in this study. The remaining few image elements with large 

uncertainties (>20) were mainly distributed in the Chongming District of Shanghai. On 

the one hand, the forest AGC sample sites were unevenly distributed. The field survey 

plots’ carbon stock data ranged from 1.71 to 87.10 Mg/ha, and the sample mean value of 

28.59 Mg/ha was close to the overall sample mean, but its standard deviation of 19.12 

Mg/ha was 1.57 times the overall sample standard deviation. This indicates that the 

sample data in the Chongming area have a large spatial heterogeneity, which may be 

impact the accuracy of estimating forest AGC with the CatBoost model. On the other 

hand, the estimation of urban forest AGC in Chongming District is relatively low (Figure 

7), whereas the CatBoost model overestimates the low AGC values (Figure 6), which may 

be the reason for the great uncertainty in the estimation of forest AGC in Chongming 

District. 
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6. Conclusions

This study used four machine learning methods, SVR, RF, XGBoost, and CatBoost,
to estimate the urban forest AGC in Shanghai based on three datasets, L, S, and L + S.
The results show that: (1) The accuracy of the Shanghai urban forest AGC models based
on L are all higher than that of S, whereas the model fitting accuracy and prediction
accuracy of the models derived from L + S are the best overall. (2) Both types of machine
learning models can achieve higher accuracy in predicting the AGC and spatiotemporal
distribution of the Shanghai urban forest, but the AGC accuracy with the CatBoost model
is relatively the highest, with fitting accuracy and validation accuracy R2 values of 0.99
and 0.70, respectively, and RMSE values of 0.67 and 6.29 Mg/ha, respectively. The model
prediction accuracy is smaller than that of SVR and RF by 79.49 and 12.9%, respectively,
and RMSE by 25.56 and 10.01%, respectively. (3) The spatial distribution uncertainty of the
AGC of the Shanghai urban forest obtained based on the CatBoost model prediction from
2016 to 2019 is small and consistent with the actual situation, and the statistics show that
the AGC of the Shanghai forest is increasing, from 24.90 Mg/ha in 2016 to 25.61 Mg/ha
in 2019. (4) Texture information is crucial for the construction of forest AGC models, and
the results of the feature variables screened in this study based on three different datasets,
Landsat, Sentinel-2, and L + S, all reflect the importance of texture information for the
construction of urban forest AGC models in Shanghai.
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