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Abstract: Research of seismic infrared remote sensing has been undertaken for several decades, but
there is no stable and effective earthquake prediction method. A new algorithm combining the long
short-term memory and the density-based spatial clustering of applications with noise models is
proposed to extract the anomalies from the multichannel infrared remote sensing images of the
Fengyun-4 satellites. A statistical analysis is used to validate the correlation between the anomalies
and earthquakes. The results show that the correlation rate is 64.29%, the hit rate is 68.75%, and
the probability gain is about 1.91. In the Madoi and YangBi earthquake cases, the infrared anomaly
detected in this paper is correlated with the TEC anomaly found in the previous research. This
indicates that it is feasible to combine multi-source data to improve the accuracy of earthquake
prediction in future studies.

Keywords: pre-seismic anomaly; anomaly detection multichannel infrared images; remote sensing

1. Introduction

Earthquake prediction is a complicated issue [1]. The application of multi-source data
may benefit to collect more detailed surface and atmospheric information and interpret
pre-seismic anomalies [2]. Researchers have found multiple types of pre-seismic anomalies,
including crustal deformation [3], infrared radiation [4], temperature [5,6], humidity [7],
electromagnetic field [8,9], atmospheric composition [10], and so on. Huang [11] found
changes in the seismicity pattern before a strong earthquake.

The previous research on seismic infrared remote sensing includes three aspects: the
mechanism of anomaly [12–14], anomaly detection methods [15], and correlation anal-
ysis [16]. According to experiments and observations, changes in the earth’s crust, its
atmosphere, and the earth’s electric field may cause anomalies of infrared radiation [14,17].
The data from the NOAA [18], Terra [19], Aqua [20], and Fengyun satellites [4,21,22] could
capture infrared images continuously over a large area for a long time and have been
applied to analyze earthquake precursors. The earth’s system is complex and infrared
radiation is affected by several factors [23]. The changes in infrared radiation caused by
earthquakes are difficult to observe directly. It is necessary to eliminate the background
field and high-frequency noise before anomaly detection. Many signal processing methods
have also been used to detect this pre-seismic anomaly, such as robust satellite techniques
(RST) [24,25], wavelet transforms [26], power spectrum [4], and other classical signal pro-
cessing methods. Machine learning has also been used to detect anomalies related to
earthquakes. Akhoondzadeh et al. [27] compared the classical methods and artificial intel-
ligence in the pre-seismic anomaly detection from infrared data. Researchers have used
the Kalman filter [28], auto-regressive integrated moving average [29], support vector ma-
chines [30], neural networks, and genetic algorithm [31] to predict the time series of infrared
or total electron content (TEC) data for pre-seismic anomaly detection. Zhai et al. [32] used
the ARIMA model to detect the infrared anomalies before two earthquakes. Jing et al. [33]
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found anomalies in microwave brightness temperature and outgoing longwave radia-
tion before the Madoi earthquake. Yang et al. [34] found the thermal infrared brightness
temperature anomalies before this event.

Most of the infrared data used for earthquake prediction are long-wave infrared im-
ages, and a few are medium-wave infrared images [35]. In this paper, the multichannel
infrared remote sensing images from the FY-4A satellite were applied, which included long-
wave and medium-wave infrared images, and a new algorithm based on the long short-term
memory (LSTM) and the density-based spatial clustering of applications with noise (DB-
SAN) models was proposed to detect the anomalies. The anomalies and earthquakes were
analyzed statistically to validate the performance of this method in earthquake prediction.

2. Materials and Methods
2.1. Data and Study Area

The Fengyun-4 satellites are China’s latest generation of geostationary-orbit meteo-
rological satellites. The first one (FY-4A) among the Fengyun-4 satellites was launched in
December 2016 and has been providing data since 2018. The FY-4A satellite has two main
optical detectors. One is the advanced geostationary radiation imager (AGRI), and the other
is the geostationary interferometric infrared sounder (GIIRS). The AGRI of FY-4A could
obtain images from 14 channels, including visible and infrared light [36]. The wavelengths
of these channels are shown in Table 1. In this paper, the data of the FY-4A satellite from
2019 to 2021 were used to analyze the multichannel infrared anomalies before earthquakes.
The former two-year (2019–2020) data were used to train the model, and the last one-year
(2021) data were used to detect anomalies. The radiations emitted by the earth’s surface are
mainly medium-wave infrared and long-wave infrared light, so only nighttime data from
the seventh to the fourteenth channel were applied to avoid the influence of sunshine.

Table 1. The wavelengths of 14 channels of the advanced geostationary radiation imager (AGRI).

Channel Wavelength (µm)

1 0.45~0.49
2 0.55~0.75
3 0.75~0.90
4 1.36~1.39
5 1.58~1.64
6 2.10~2.35
7 3.50~4.00
8 3.50~4.00
9 5.80~6.70
10 6.90~7.30
11 8.00~9.00
12 10.30~11.30
13 11.50~12.50
14 13.20~13.80

China is one of the countries with frequent earthquakes. The China earthquake
networks center (www.ceic.ac.cn (accessed on 11 August 2022)) provided the earthquake
list. There were 106 earthquakes with a magnitude over 5 in China and its surrounding
area (from 70◦E to 140◦E, from 0◦N to 60◦N) in 2021. The seismic information is collected in
Supplementary Materials. The geographic locations of the epicenters are shown in Figure 1.
The strongest earthquake in the study area is the M 7.4 Madoi earthquake on 22 May 2021
(UTC+8). The Yangbi earthquake with a magnitude of 6.4 occurred about 4 h before the
Madoi earthquake. There may be a series of earthquakes in the same region during a short
term. The strongest earthquake in the earthquake sequence is the mainshock, and multiple
foreshocks or aftershocks may occur before and after it. Taking the Madoi M7.4 and Yangbi
M6.4 earthquakes in May 2021 as examples, these two earthquakes and their foreshock
and aftershocks are shown in Table 2. The Yangbi earthquake with a magnitude of 6.4

www.ceic.ac.cn
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occurred at 21:48:34 on 21 May 2021 (UTC+8). The epicenter was at 99.87◦E, 25.67◦N. The
depth of the hypocenter was 8 km. There was one foreshock and two aftershocks with a
magnitude of over five around it. The Madoi earthquake with a magnitude of 7.4 occurred
at 02:04:11 on 22 May 2021, (UTC+8). The epicenter was at 98.34◦E, 34.59◦N. The depth of
the hypocenter was 17 km. There was one aftershock with a magnitude of over five around
it. The study area in this paper is the region in the red box in Figure 1 (from 90◦E to 110◦E,
from 17◦N to 42◦N), and there were 20 earthquakes with a magnitude of over 5, including
16 mainshocks.

Remote Sens. 2023, 15, 259 3 of 20 
 

 

2021 (UTC+8). The Yangbi earthquake with a magnitude of 6.4 occurred about 4 h before 
the Madoi earthquake. There may be a series of earthquakes in the same region during a 
short term. The strongest earthquake in the earthquake sequence is the mainshock, and 
multiple foreshocks or aftershocks may occur before and after it. Taking the Madoi M7.4 
and Yangbi M6.4 earthquakes in May 2021 as examples, these two earthquakes and their 
foreshock and aftershocks are shown in Table 2. The Yangbi earthquake with a magnitude 
of 6.4 occurred at 21:48:34 on 21 May 2021 (UTC+8). The epicenter was at 99.87°E, 25.67°N. 
The depth of the hypocenter was 8 km. There was one foreshock and two aftershocks with 
a magnitude of over five around it. The Madoi earthquake with a magnitude of 7.4 oc-
curred at 02:04:11 on 22 May 2021, (UTC+8). The epicenter was at 98.34°E, 34.59°N. The 
depth of the hypocenter was 17 km. There was one aftershock with a magnitude of over 
five around it. The study area in this paper is the region in the red box in Figure 1 (from 
90°E to 110°E, from 17°N to 42°N), and there were 20 earthquakes with a magnitude of 
over 5, including 16 mainshocks. 

Table 2. Seismic list around Madoi M7.4 and Yangbi M6.4 earthquakes. 

Time (UTC+8) Magnitude Latitude (°N) Longitude (°E) Depth (km) Type 
22 May 2021, 

10:29:34 
5.1 34.85 97.5 10 Aftershock 

22 May 2021, 
02:04:11 

7.4 34.59 98.34 17 Mainshock 

21 May 2021, 
22:31:10 5.2 25.59 99.97 8 Aftershock 

21 May 2021, 
21:55:28 5.0 25.67 99.89 8 Aftershock 

21 May 2021, 
21:48:34 

6.4 25.67 99.87 8 Mainshock 

21 May 2021, 
21:21:25 5.6 25.63 99.92 10 Foreshock 

 

Figure 1. The epicenters of the earthquakes in 2021.

Table 2. Seismic list around Madoi M7.4 and Yangbi M6.4 earthquakes.

Time (UTC+8) Magnitude Latitude (◦N) Longitude (◦E) Depth (km) Type

22 May 2021,
10:29:34 5.1 34.85 97.5 10 Aftershock

22 May 2021,
02:04:11 7.4 34.59 98.34 17 Mainshock

21 May 2021,
22:31:10 5.2 25.59 99.97 8 Aftershock

21 May 2021,
21:55:28 5.0 25.67 99.89 8 Aftershock

21 May 2021,
21:48:34 6.4 25.67 99.87 8 Mainshock

21 May 2021,
21:21:25 5.6 25.63 99.92 10 Foreshock

2.2. Anomaly Detection
2.2.1. Long Short-Term Memory (LSTM)

The data with a spatial resolution of 4 km are used in this paper. The changes in
infrared radiation in the nearby region are similar, and the seismic infrared anomalies
commonly covered a large region [37]. The original data were down-sampled with an
interval of 5 pixels to improve the efficiency of data processing. The brightness temperatures
were obtained by looking up the calibration table, and the everyday average was calculated
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with the brightness temperature during nighttime (from 23:00 to 04:00 UTC+8). The
preprocessed data are four-dimension data (two-dimensional geographic coordinates, time,
and channel).

In this paper, the model based on the LSTM is used to predict the multichannel infrared
data. The model comprised two layers (an LSTM layer and a fully connected layer). The
structure of the LSTM layer is shown in Figure 2 [38]. Xt,m,n is the input variable comprised
of three-day and eight-channel data, as Equations (1) and (2) show [39]:

Xt,m,n =

St−3,m,n
St−2,m,n
St−1,m,n

, (1)

St−k,m,n =
[
BTt−k,m,n,7, BTt−k,m,n,8, . . . , BTt−k,m,n,14

]
, (2)

where BTt−k,m,n,p denotes the brightness temperature of the data at the mth line and the
nth column at the t− k moment in the pth channel. In Figure 2, Ht,m,n is the output of the
LSTM layer at the t moment. It was transferred to the state at the t + 1 moment, and it was
also inputted into the next layer to calculate the predicted value Ŷt,m,n, which has the same
dimension as the output variables Yt,m,n, as Equations (3) and (4) show:

Ŷt,m,n =
î”BTt,m,n,7,”BTt,m,n,8, . . . ,”BTt,m,n,14

ó
, (3)

Yt,m,n =
[
BTt,m,n,7, BTt,m,n,8, . . . , BTt,m,n,14

]
, (4)

where BTt,m,n,p denotes the brightness temperature of the data at the mth line and the nth
column at the t moment in the pth channel;”BTt,m,n,p denotes the predicted value at the mth
line and the nth column at the t moment in the pth channel.
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The root-mean-square error of the predicted and observed values is shown in
Equation (5) [32]:
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RMSEP =

Ã
∑M

m=1 ∑N
n=1 ∑T

t=1

Ä”BTt,m,n,p − BTt,m,n,p
ä2

M× N × T
, (5)

where RMSEP is the root-mean-square error in the pth channel; M and N are the numbers
of the lines and columns of the image; and T is the time length of the data.

2.2.2. Density-Based Spatial Clustering of Application with Noise (DBSCAN)

The difference between the observed and predicted values is shown in Equation (6):

∆Yt,m,n = Yt,m,n − Ŷt,m,n

=
î
BTt,m,n,7 −”BTt,m,n,7, BTt,m,n,8 −”BTt,m,n,8, . . . , BTt,m,n,14 −”BTt,m,n,14

ó
=
[
∆BTt,m,n,7, ∆BTt,m,n,8, . . . , ∆BTt,m,n,14

] (6)

where ∆BTt,m,n,p is the difference between the observed and predicted values at the mth
line and the nth column at the t moment in the pth channel. The data in different channels
were normalized, as Equations (7)–(10) show:

Rt,m,n =
[
Rt,m,n,7, Rt,m,n,8, . . . , Rt,m,n,14

]
, (7)

Rt,m,n,p=
∆BTt,m,n,8 − µp

σp
, (8)

µp=
∑M

m=1 ∑N
n=1 ∑T

t=1 ∆BTt,m,n,p

M× N × T
, (9)

σp =

√
∑M

m=1 ∑N
n=1 ∑T

t=1
(
∆BTt,m,n,p − µp

)2

M× N × T
, (10)

where Rt,m,n is the normalized data; the µp and σp are the average and standard deviation
of ∆BTt,m,n,p. The DBSCAN model could be used to detect anomalies. The Euclidean
distance Dt1,m1,n1,t2,m2,n2 between two points (P1(t1, m1, n1) and P2(t2, m2, n2)) is shown in
Equation (11):

Dt1,m1,n1,t2,m2,n2 =

…
∑14

p=7

(
Rt1,m1,n1,p − Rt2,m2,n2,p

)2, (11)

For a given radius (E0) and minimum integer (M0), a point Pc(tc, mc, nc) is a core point
if there are more than M0 points within E0 around it. It is denoted as fc(tc, mc, nc) = 1, as
Equations (12) and (13) show [40]:

fc(tc, mc, nc) =

®
1, i f ∑M

m=1 ∑N
n=1 ∑T

t=1 h(Dtc ,mc ,nc ,t,m,n) > M0
0, otherwise

, (12)

h(x) =
ß

1, i f x ≤ E0
0, otherwise

. (13)

A point Pb(tb, mb, nb) is a border point if it is not a core point and there is any core
point within E0 around it. It is denoted as fb(tb, mb, nb) = 1, as Equation (14) shows [40]:

fb(tb, mb, nb) =®
1, i f fc(tb, mb, nb) = 0 and ∑M

m=1 ∑N
n=1 ∑T

t=1 fc(t, m, n)× h(Dtb ,mb ,nb ,t,m,n) > 0
0, otherwise

.
(14)

Other points Pn(tn, mn, nn) are noise points. In this paper, the noise points are regarded
as abnormal points. It is denoted as fn(tn, mn, nn) = 1, as Equation (15) shows [40]:

fn(tn, mn, nn) =
ß

1, i f fc(tn, mn, nn) = 0 and fb(tn, mn, nn) = 0
0, otherwise

. (15)
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2.3. Statistical Method

An anomaly detection algorithm needs to be validated statistically. We assume that
the pre-seismic infrared anomalies commonly occurred near the epicenter. For the given
predicted radius (R0) and predicted time window (W0), the region within R0 around the
anomaly and the time within W0 after the anomaly determine the predicted range. The hit
rate (HR) is defined in Equation (16) [41]:

HR =
NP
NE

, (16)

where NP is the number of earthquakes within the predicted range, and NE is the number
of all earthquakes within the study region. The two points (P1(t1, m1, n1) and P2(t2, m2, n2))
belong to an anomaly sample, if they follow the condition of Equations (17)–(21):

fn(t1, m1, n1) = 1, (17)

fn(t2, m2, n2) = 1, (18)

|t1 − t2| ≤ 1, (19)

|m1 −m2| ≤ 1, (20)

|n1 − n2| ≤ 1, (21)

The correlation rate (CR) is defined in Equation (22) [42]:

CR =
NY
NA

, (22)

where NY is the number of anomaly samples related to earthquakes, and NA is the number
of all anomaly samples. The probability gain (Gain) is defined in Equation (23) [43]:

Gain =
HR
ρ

, (23)

where ρ is the spatiotemporal occupancy of the predicted range.

3. Results
3.1. The Deviation of the LSTM Model

Both the pre-processed and predicted data are four-dimensional data. The data at
99.13◦E, 29.68◦N are shown in Figure 3. The pre-processed data are complicated and
varies irregularly. The brightness temperatures in the 9th, 10th, and 14th channels are
lower than those in the other channels because of the absorption of water vapors in the
atmosphere. The deviation data reveal the difference between the observed and predicted
data. As Figure 4 shows, it fluctuates around zero. The blue line is the deviation for the
training dataset, and the orange line is the deviation for the test dataset. The images on
a randomly selected date (30 January 2021) are used as examples to compare the original
data with the deviation images. The images of the brightness temperature on 30 January
2021 are shown in Figure 5, and the deviation images are shown in Figure 6, where
the digits denote the terrain in kilometers. The geospatial distribution of brightness
temperature is related to the latitude and the topography. There were lower temperatures
in the region with a high latitude and a high altitude. The spatiotemporal difference
near the absorption band of water vapor was relatively less pronounced. The deviation
images show the independence of the latitude. This indicates that the LSTM model
could eliminate the background field of infrared brightness temperature, especially the
difference caused by the latitude.
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The training and testing scores of the LSTM model are shown in Table 3. A smaller
score, which means a smaller prediction deviation, indicates a better performance of the
model. The RMSEs in the channels around the water vapor absorption band (channel 9,
10, and 14) are lower. Among the other channels, the RMSEs in the long-wave infrared
channels (channels 11, 12, and 13) are slightly higher than those in the medium-wave
infrared channels (channels 7 and 8). The frequency distributions of the deviation values
are shown in Figure 7. Most of the deviations are around zero.
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Table 3. The training and testing scores of the LSTM model.

Channel Training Score (µm) Testing Score (µm)

7 7.4826 7.8116
8 7.2683 7.3682
9 4.3431 4.4512
10 4.9965 5.0628
11 7.7708 7.9001
12 8.4068 8.5414
13 8.624 8.7911
14 5.1109 5.4133
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3.2. Clustering Results

The clustering results of the DBSCAN model depend on its two parameters (E0 and
M0). The abnormal rates for different parameters are shown in Table 4. These are the
proportions of abnormal points in the whole study area. For the same radius, the larger
the minimum integer is, the larger the abnormal rate is. A larger radius increases the
amount of computation. Considering the algorithm efficiency and anomaly rate, the radius
of 2 and the minimum integer of 100 are chosen in this study. For the chosen parameters
(E0 = 2, M0 = 100), the deviation data were classified into two classes. About 4% of all the
points were abnormal, and the others were normal.
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Table 4. The abnormal rate for different radii and minimum integers.

Radius E0 Minimum Integer M0 Abnormal Rate (%)

1 10 14.17
1 102 29.23
1 103 82.01
2 10 2.54
2 102 4.02
2 103 6.72
3 10 1.12
3 102 1.89
3 103 2.24

All anomalies within one month before the Madoi and Yangbi earthquakes in the study
area are recorded in Table 5. The start time is the number of days relative to the Yangbi
Earthquake time (21 May 2021, UTC+8). The duration is the number of days from the
anomaly starting to the anomaly ending. Distance 1 is the distance between the anomaly
and Yangbi epicenter, and Distance 2 is the distance between the anomaly and Madoi
epicenter. The coverage area is the number of pixels covered by the anomaly. The longest
anomaly occurred from 8 to 13 May 2021. It is about 420 km away from the Yangbi epicenter
and 389 km away from the Madoi epicenter. The anomaly images are shown in Figure 8.
The black points represent the abnormal points marked by the DBSCAN model. The two
red stars represent the locations of the two mainshocks. The coverage area is the largest on
12 May 2021, which is 1157 pixels.

Table 5. The information on anomalies from 20 April 2021 to 20 May 2021 (UTC+8).

Start Time (Day) Duration (Day) Distance 1 (km) Distance 2 (km) Coverage Area (Pixel)

−29 2 1218.514 522.3128 335
−27 2 1614.612 1082.72 76
−27 3 694.1449 147.2815 233
−27 5 357.3739 1338.696 1310
−22 2 256.0721 989.042 174
−21 4 416.9308 308.354 777
−19 2 1818.656 871.9 65
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Table 5. Cont.

Start Time (Day) Duration (Day) Distance 1 (km) Distance 2 (km) Coverage Area (Pixel)

−19 2 774.8023 1100.769 295
−17 4 11.84356 769.3796 809
−16 2 633.2236 515.8192 73
−14 2 622.0482 1264.55 138
−13 6 420.0436 388.9196 1157
−12 2 1438.045 704.7843 40
−11 4 297.1712 573.796 1261
−10 3 415.1837 1417.791 48
−10 2 629.9462 1580.574 85
−8 2 1046.354 79.24198 545
−6 2 682.544 1520.562 160
−5 5 412.239 1011.247 562
−4 2 557.2012 554.8826 349
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Figure 8. The anomaly images from 8 to 13 May 2021.

Figures 9 and 10 show the anomaly information of the Yangbi and Madoi earthquakes,
respectively. The size of the scatter denotes the anomaly area (S), while the color denotes
the anomaly duration. The coordinates denote the spatiotemporal interval between the
anomaly and earthquake. The red dotted line is the radius of the seismogenic region
calculated according to the so-called Dobrovolsky area, defined as Equation (24) [44]:

R = 100.43M, (24)
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where M is the magnitude of the earthquake. The large-area and long-duration anomalies
are within the seismogenic zone (the region below the red dotted line in Figures 9 and 10).
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3.3. Statistical Results

For the given predicted time window (W0) of 14 days, Table 6 shows the correlation
rate, the hit rate, and the probability gain with different predicted radii (R0). The anomaly
samples with a duration of over 5 days and a coverage area over 1000 pixels are used
to determine the predicted range. There are 14 anomaly samples and 20 earthquakes
with a magnitude over 5 in the study area, including 16 mainshocks, 1 foreshock, and
3 aftershocks. The magnitudes of the foreshock and aftershocks are no more than 5.6, as
Table 2 shows. The foreshocks and aftershocks are excluded because they occupy a similar
spatiotemporal area to the main shock. The highest probability gain is 1.9137, which is
calculated with the predicted radius of 600 km. This means that multichannel infrared
data could reduce the uncertainty of earthquake prediction. Meanwhile, the correlation
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is 64.29%, and the hit rate is 68.75%. This means that most of the anomaly samples are
related to the earthquakes, and the method we proposed could detect the anomalies from
multichannel infrared images before most of the earthquakes. The Molchan diagram is
shown in Figure 11. The horizontal axis is the spatiotemporal occupancy of the predicted
range, and the vertical axis is the miss rate (1-HR) [45]. The slope of the line through the
star in Figure 12 is negative and is equal to the negative of the probability gain [46]. There
are both the lowest miss rate and highest probability gain when the predicted radius is
600 km.

Table 6. The correlation rate, the hit rate, and the probability gain with different parameters.

Predicted
Radius (km) Correlation Rate Hit Rate Probability Gain

1000 0.6429 0.6875 1.6193
800 0.6429 0.6875 1.7358
600 0.6429 0.6875 1.9137
400 0.5714 0.5625 1.7971
200 0.3571 0.375 1.4576
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In this study, the anomalies were detected within 14 days before 11 earthquakes within
600 km around the epicenters. The information on these 11 earthquakes is listed in Table 7.
The anomaly times and the distances between the anomaly and the epicenter are shown
in Figure 12. Two earthquakes occurred after the anomaly disappeared. Two earthquakes
occurred on the same day when the anomaly disappeared. In the other seven cases, the
anomaly continued for several days after the earthquake.

Table 7. The considered earthquakes with a pre-seismic anomaly.

Time (UTC+8) Magnitude Latitude (◦N) Longitude (◦E) Depth (km)

16 September 2021, 04:33:31 6 29.2 105.34 10
26 August 2021, 07:38:18 5.5 38.88 95.5 15
13 August 2021, 12:21:35 5.8 34.58 97.54 8

29 July 2021, 16:39:27 5.7 22.7 96.04 20
7 July 2021, 14:43:48 5.2 19.65 101.2 10

16 June 2021, 16:48:58 5.8 38.14 93.81 10
12 June 2021, 18:00:46 5 24.96 97.89 16
10 June 2021, 19:46:07 5.1 24.34 101.91 8
22 May 2021, 02:04:11 7.4 34.59 98.34 17
21 May 2021, 21:48:34 6.4 25.67 99.87 8

19 March 2021, 14:11:26 6.1 31.94 92.74 10

4. Discussion

In this paper, the one-year infrared anomalies are detected and their correlations
with the earthquakes are analyzed statistically. The maximum probability gain was 1.91,
which was similar to the application result of the total electron content (TEC) anomaly [47].
Probability gains are influenced by the data used, the algorithms, and the regions studied.
Filizzola et al. [48] studied the thermal anomalies in Turkey using robust satellite techniques,
the probability gain for earthquakes with a magnitude over 5 was 2.2 in their study. A
probability gain greater than one means that the prediction method is better than a random
guess. Jiao et al. [48] compared true earthquakes and random synthetic earthquakes to
verify that the recognition ability of their method was higher than the random guess. At the
same time, they proposed that it is expected to improve earthquake prediction performance
by combining two–five kinds of anomalies.

As Figure 13 shows, the anomaly occurred in the southeast of the Madoi epicenter
from 24 to 26 April and was 147 km away from the epicenter. It covered 233 pixels. The red
stars indicate the locations of the epicenters, while the green points indicate the locations of
the TEC anomaly. In our previous studies [47], there were TEC anomalies near the region on
23 April 2021. The abnormal region of TEC on 23 April 2021 overlaps with that of infrared
data on 25 April 2021. In addition, TEC anomalies were observed near the two epicenters
on 18 May 2021, and the infrared anomaly lasted from 17 May 2021 to 18 May 2021, as
Figure 14 shows. During this period, the two types of anomalies were closest in location on
18 May 2021. This indicates that there is a certain spatial and temporal correlation between
infrared and TEC anomalies before earthquakes.

Although the correlation rate of 64.29% and the hit rate of 68.75% were higher than
that of the TEC anomalies, the probability gain was not improved. It may be that the
spatiotemporal occupancy of the prediction range was too high because the abnormal
coverage area in this paper is large, the prediction area radius is 600 km, and the prediction
time window is 14 days. It is hard to pinpoint the exact location of an earthquake. Future
research needs to combine multiple data sources to enhance the accuracy of earthquake
prediction. Since both LSTM and DBSCAN models are suitable for multi-dimensional
feature vectors, the method proposed in this paper can be used for pre-earthquake anomaly
extraction from multi-source data, but normalizations of the spatiotemporal scale and
amplitude are necessary for data pre-processing.
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5. Conclusions

A new algorithm combining the LSTM and DBSCAN models was proposed to ex-
tract pre-seismic anomalies from the multichannel data of the Fengyun-4A satellite. The
probability gain of 1.91 shows that this method is better than a random guess and can
reduce the uncertainty of earthquake prediction. The correlation rate is 64.29%, and the hit
rate is 68.75%. In this seismic case analysis, infrared and TEC anomalies exhibited a spa-
tiotemporal correlation. This indicates that the method could be used to extract pre-seismic
anomalies from multi-source data in future research for better prediction accuracy.
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10. Adil, M.; Şentürk, E.; Pulinets, S.; Amory-Mazaudier, C. A Lithosphere–Atmosphere–Ionosphere Coupling Phenomenon
Observed before M 7.7 Jamaica Earthquake. Pure Appl. Geophys. 2021, 178, 3869–3886. [CrossRef]

11. Huang, Q. Seismicity Pattern Changes Prior to the 2008 Ms7.3 Yutian Earthquake. Entropy 2019, 21, 118. [CrossRef] [PubMed]
12. Saraf, A.; Rawat, V.; Choudhury, S.; Dasgupta, S.; Das, J. Advances in understanding of the mechanism for generation of

earthquake thermal precursors detected by satellites. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 373–379. [CrossRef]
13. Guo, Z.; Qiang, S.; Wang, C.; Liu, Z.; Gao, X.; Zhang, W.; Yu, Y.; Zhang, H.; Qiu, J. The mechanism of earthquake’s thermal

infrared radiation precursory on remote sensing images. In Proceedings of the IEEE International Geoscience and Remote Sensing
Symposium, Toronto, ON, Canada, 24–28 June 2002; Volume 4, pp. 2036–2038. [CrossRef]

14. Qiang, Z.J.; Kong, L.C.; Zheng, L.Z.; Guo, M.-H.; Wang, G.-P.; Zhao, Y. An experimental study on temperature increasing
mechanism of satellitic thermo-infrared. Acta Seismol. Sin. 1997, 10, 247–252. [CrossRef]

15. Jiao, Z.-H.; Zhao, J.; Shan, X. Pre-seismic anomalies from optical satellite observations: A review. Nat. Hazards Earth Syst. Sci.
2018, 18, 1013–1036. [CrossRef]

16. Genzano, N.; Filizzola, C.; Hattori, K.; Pergola, N.; Tramutoli, V. Statistical Correlation Analysis between Thermal Infrared
Anomalies Observed from MTSATs and Large Earthquakes Occurred in Japan (2005–2015). J. Geophys. Res. Solid Earth 2021,
126, e2020JB020108. [CrossRef]

17. Pulinets, S.; Ouzounov, D. Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) model—An unified concept for earthquake
precursors validation. J. Asian Earth Sci. 2010, 41, 371–382. [CrossRef]

18. Venkatachalapathy, H.; Sreedharan, V.; Venkatanathan, N. Observation of Earthquake Precursors—A Study on OLR Scenario
Prior to the Earthquakes of Indian and Neighboring Region Occurred in 2016. Int. J. Earth Sci. Eng. 2016, 9, 264–268.

19. Dong, N.; Liao, H. Characteristics of Thermal Infrared Anomalies during the Earthquakes in Wenchuan, Lushan in Ya’an and
Jiuzhaigou. IOP Conf. Ser. Earth Environ. Sci. 2021, 783, 012132. [CrossRef]

20. Akhoondzadeh, M.; De Santis, A.; Marchetti, D.; Piscini, A.; Cianchini, G. Multi precursors analysis associated with the powerful
Ecuador (MW = 7.8) earthquake of 16 April 2016 using Swarm satellites data in conjunction with other multi-platform satellite
and ground data. Adv. Space Res. 2017, 61, 248–263. [CrossRef]

http://doi.org/10.1209/0295-5075/132/29001
http://doi.org/10.1016/j.rse.2022.113325
http://doi.org/10.4236/pos.2013.41003
http://doi.org/10.1155/2013/208407
http://doi.org/10.1016/j.jag.2017.08.002
http://doi.org/10.1080/19475705.2022.2137439
http://doi.org/10.5194/nhess-13-27-2013
http://doi.org/10.3390/s21134434
http://doi.org/10.1016/j.tecto.2008.07.019
http://doi.org/10.1007/s00024-021-02867-z
http://doi.org/10.3390/e21020118
http://www.ncbi.nlm.nih.gov/pubmed/33266834
http://doi.org/10.1016/j.jag.2009.07.003
http://doi.org/10.1109/IGARSS.2002.1026436
http://doi.org/10.1007/s11589-997-0093-0
http://doi.org/10.5194/nhess-18-1013-2018
http://doi.org/10.1029/2020JB020108
http://doi.org/10.1016/j.jseaes.2010.03.005
http://doi.org/10.1088/1755-1315/783/1/012132
http://doi.org/10.1016/j.asr.2017.07.014


Remote Sens. 2023, 15, 259 17 of 18

21. Zhang, X.; Zhang, Y.; Guo, X.; Wei, C.; Zhang, L. Analysis of thermal infrared anomaly in the Nepal MS 8.1 earthquake. Earth Sci.
Front. 2017, 24, 227–233. [CrossRef]

22. Yao, Q.-L.; Qiang, Z.-J. Thermal infrared anomalies as a precursor of strong earthquakes in the distant future. Nat. Hazards 2012,
62, 991–1003. [CrossRef]

23. Sun, D.; Zheng, H. Simulation Study of Infrared Transmittance under Different Atmospheric Conditions. J. Phys. Conf. Ser. 2022,
2356, 012045. [CrossRef]

24. Carolina, F.; Pergola, N.; Pietrapertosa, C.; Valerio, T. Robust satellite techniques for seismically active areas monitoring: A
sensitivity analysis on September 7, 1999 Athens’s earthquake. Phys. Chem. Earth 2004, 29, 517–527. [CrossRef]

25. Valerio, T.; Aliano, C.; Corrado, R.; Carolina, F.; Genzano, N.; Lisi, M.; Martinelli, G.; Pergola, N. On the possible origin of thermal
infrared radiation (TIR) anomalies in earthquake-prone areas observed using robust satellite techniques (RST). Chem. Geol. 2013,
339, 157–168. [CrossRef]

26. Xie, T.; Kang, C.; Ma, W. Thermal infrared brightness temperature anomalies associated with the Yushu (China) Ms = 7.1
earthquake on 14 April 2010. Nat. Hazards Earth Syst. Sci. 2013, 13, 1105–1111. [CrossRef]

27. Akhoondzadeh, M. A comparison of classical and intelligent methods to detect potential thermal anomalies before the 11 August
2012 Varzeghan, Iran, earthquake (Mw = 6.4). Nat. Hazards Earth Syst. Sci. 2013, 13, 1077–1083. [CrossRef]

28. Saradjian, M.R.; Akhoondzadeh, M. Thermal anomalies detection before strong earthquakes (M > 6.0) using interquartile, wavelet
and Kalman filter methods. Nat. Hazards Earth Syst. Sci. 2011, 11, 1099–1108. [CrossRef]

29. Akhoondzadeh, M. A MLP neural network as an investigator of TEC time series to detect seismo-ionospheric anomalies. Adv.
Space Res. 2013, 51, 2048–2057. [CrossRef]

30. Akhoondzadeh, M. Support vector machines for TEC seismo-ionospheric anomalies detection. Ann. Geophys. 2013, 31, 173–186.
[CrossRef]

31. Akhoondzadeh, M. Genetic algorithm for TEC seismo-ionospheric anomalies detection around the time of the Solomon (Mw = 8.0)
earthquake of 6 February 2013. Adv. Space Res. 2013, 52, 581–590. [CrossRef]

32. Zhai, D.; Zhang, X.; Xiong, P. Detecting Thermal Anomalies of Earthquake Process within Outgoing Longwave Radiation Using
Time Series Forecasting Models. Ann. Geophys. 2020, 63, PA548. [CrossRef]

33. Jing, F.; Zhang, L.; Singh, R. Pronounced Changes in Thermal Signals Associated with the Madoi (China) M 7.3 Earthquake from
Passive Microwave and Infrared Satellite Data. Remote Sens. 2022, 14, 2539. [CrossRef]

34. Yang, X.; Zhang, T.-B.; Lu, Q.; Long, F.; Liang, M.-J.; Wu, W.-W.; Gong, Y.; Wei, J.-X.; Wu, J. Variation of Thermal Infrared
Brightness Temperature Anomalies in the Madoi Earthquake and Associated Earthquakes in the Qinghai-Tibetan Plateau (China).
Front. Earth Sci. 2022, 10, 823540. [CrossRef]

35. Guo, X.; Zhang, Y.-S.; Wei, C.-X.; Zhong, M.-J.; Zhang, X. Medium Wave Infrared Brightness Anomalies of Wenchuan 8.0 and
Zhongba 6.8 Earthquakes. Acta Geosci. Sin. 2014, 35, 338–344. [CrossRef]

36. Zhang, P.; Zhu, L.; Tang, S.; Gao, L.; Chen, L.; Zheng, W.; Han, X.; Chen, J.; Shao, J. General Comparison of FY-4A/AGRI With
Other GEO/LEO Instruments and Its Potential and Challenges in Non-meteorological Applications. Front. Earth Sci. 2019, 6, 224.
[CrossRef]

37. Tramutoli, V.; Corrado, R.; Filizzola, C.; Genzano, N.; Lisi, M.; Pergola, N. From visual comparison to Robust Satellite Techniques:
30 years of thermal infrared satellite data analyses for the study of earthquake preparation phases. Boll. Geofis. Teor. Appl. 2015,
56, 167–202.

38. Yu, Y.; Si, X.; Hu, C.; Zhang, J. A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures. Neural Comput.
2019, 31, 1235–1270. [CrossRef]

39. Hafeez, A.; Shah, M.; Shahzad, R. Machine Learning Based Thermal Anomaly Detection Associated with Three Earthquakes in
Pakistan Using MODIS LST. In Proceedings of the 2021 Seventh International Conference on Aerospace Science and Engineering
(ICASE), Islamabad, Pakistan, 14–16 December 2021; pp. 1–5. [CrossRef]

40. Schubert, E.; Sander, J.; Ester, M.; Kriegel, H.; Xu, X. DBSCAN revisited, revisited: Why and how you should (still) use DBSCAN.
ACM Trans. Database Syst. (TODS) 2017, 42, 19. [CrossRef]

41. Piscini, A.; De Santis, A.; Marchetti, D.; Cianchini, G. A Multi-parametric Climatological Approach to Study the 2016 Amatrice–
Norcia (Central Italy) Earthquake Preparatory Phase. Pure Appl. Geophys. 2017, 174, 3673–3688. [CrossRef]

42. Zhang, Y.; Meng, Q. A statistical analysis of TIR anomalies extracted by RSTs in relation to an earthquake in the Sichuan area
using MODIS LST data. Nat. Hazards Earth Syst. Sci. 2019, 19, 535–549. [CrossRef]

43. Shebalin, P.N.; Narteau, C.; Zechar, J.D.; Holschneider, M. Combining earthquake forecasts using differential probability gains.
Earth Planet Sp. 2014, 66, 37. [CrossRef]

44. Dobrovolsky, I.P.; Zubkov, S.I.; Miachkin, V.I. Estimation of the size of earthquake preparation zones. Pure Appl. Geo-Phys. 1979,
117, 1025–1044. [CrossRef]

45. Douglas Zechar, J.; Jordan, T.H. Testing alarm-based earthquake predictions. Geophys. J. Int. 2008, 172, 715–724. [CrossRef]
46. Filizzola, C.; Corrado, A.; Genzano, N.; Lisi, M.; Pergola, N.; Colonna, R.; Tramutoli, V. RST Analysis of Anomalous TIR Sequences

in Relation with Earthquakes Occurred in Turkey in the Period 2004–2015. Remote Sens. 2022, 14, 381. [CrossRef]

http://doi.org/10.13745/j.esf.2017.02.022
http://doi.org/10.1007/s11069-012-0130-8
http://doi.org/10.1088/1742-6596/2356/1/012045
http://doi.org/10.1016/j.pce.2003.11.019
http://doi.org/10.1016/j.chemgeo.2012.10.042
http://doi.org/10.5194/nhess-13-1105-2013
http://doi.org/10.5194/nhess-13-1077-2013
http://doi.org/10.5194/nhess-11-1099-2011
http://doi.org/10.1016/j.asr.2013.01.012
http://doi.org/10.5194/angeo-31-173-2013
http://doi.org/10.1016/j.asr.2013.04.012
http://doi.org/10.4401/ag-8057
http://doi.org/10.3390/rs14112539
http://doi.org/10.3389/feart.2022.823540
http://doi.org/10.3975/cagsb.2014.03.09
http://doi.org/10.3389/feart.2018.00224
http://doi.org/10.1162/neco_a_01199
http://doi.org/10.1109/ICASE54940.2021.9904274
http://doi.org/10.1145/3068335
http://doi.org/10.1007/s00024-017-1597-8
http://doi.org/10.5194/nhess-19-535-2019
http://doi.org/10.1186/1880-5981-66-37
http://doi.org/10.1007/BF00876083
http://doi.org/10.1111/j.1365-246X.2007.03676.x
http://doi.org/10.3390/rs14020381


Remote Sens. 2023, 15, 259 18 of 18

47. Yue, Y.; Koivula, H.; Bilker-Koivula, M.; Chen, Y.; Chen, F.; Chen, G. TEC Anomalies Detection for Qinghai and Yunnan
Earthquakes on 21 May 2021. Remote Sens. 2022, 14, 4152. [CrossRef]

48. Jiao, Z.; Shan, X. Pre-Seismic Temporal Integrated Anomalies from Multiparametric Remote Sensing Data. Remote Sens. 2022,
14, 2343. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/rs14174152
http://doi.org/10.3390/rs14102343

	Introduction 
	Materials and Methods 
	Data and Study Area 
	Anomaly Detection 
	Long Short-Term Memory (LSTM) 
	Density-Based Spatial Clustering of Application with Noise (DBSCAN) 

	Statistical Method 

	Results 
	The Deviation of the LSTM Model 
	Clustering Results 
	Statistical Results 

	Discussion 
	Conclusions 
	References

