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Abstract: Floods are one of the most destructive natural disasters, causing financial and human
losses every year. As a result, reliable Flood Susceptibility Mapping (FSM) is required for effective
flood management and reducing its harmful effects. In this study, a new machine learning model
based on the Cascade Forest Model (CFM) was developed for FSM. Satellite imagery, historical
reports, and field data were used to determine flood-inundated areas. The database included
21 flood-conditioning factors obtained from different sources. The performance of the proposed CFM
was evaluated over two study areas, and the results were compared with those of other six machine
learning methods, including Support Vector Machine (SVM), Decision Tree (DT), Random Forest
(RF), Deep Neural Network (DNN), Light Gradient Boosting Machine (LightGBM), Extreme Gradient
Boosting (XGBoost), and Categorical Boosting (CatBoost). The result showed CFM produced the
highest accuracy compared to other models over both study areas. The Overall Accuracy (AC),
Kappa Coefficient (KC), and Area Under the Receiver Operating Characteristic Curve (AUC) of the
proposed model were more than 95%, 0.8, 0.95, respectively. Most of these models recognized the
southwestern part of the Karun basin, northern and northwestern regions of the Gorganrud basin as
susceptible areas.

Keywords: Cascade Forest Model; machine learning; flood susceptibility mapping; Iran

1. Introduction

Natural disasters such as landslides, wildfires, tsunamis, and floods cause huge
financial and human losses every year [1–3]. The effects of flooding are detrimental to
human and ecological wellbeing around the world, making it one of the most destructive
disasters [4]. For example, according to statistics, floods are accountable for more than
half of the damage caused by natural disasters over the last five decades [5–7]. There are
many immediate impacts of flooding, including loss of life, damage to properties and
infrastructure, as well as loss of crops and livestock. Although many efforts have been
made to reduce the negative effects of floods, the number of flood events has considerably
increased [8]. Thus, reliable and accurate Flood Susceptibility Mapping (FSM) is vital in
flood-prone regions [9].

To quantify the associated risk, damage, vulnerability, and spatial extent of floods,
researchers have focused their efforts in recent years on understanding, predicting, esti-
mating, and explaining flood hazards [10–13]. Flood susceptibility describes the risk of
flooding in a specific region based on geo-environmental factors [14,15]. FSM is based on
the relationship between floods and their causes [16,17]. It provides informative guidance
for decision-makers in managing and preventing floods. Generally, there are four types of

Remote Sens. 2022, 15, 192. https://doi.org/10.3390/rs15010192 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15010192
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-3678-4877
https://orcid.org/0000-0002-9215-5354
https://orcid.org/0000-0002-7254-4475
https://orcid.org/0000-0003-4817-2875
https://orcid.org/0000-0002-9495-4010
https://doi.org/10.3390/rs15010192
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15010192?type=check_update&version=2


Remote Sens. 2022, 15, 192 2 of 25

methods for FSM, namely, qualitative, hydrological-based, statistical, and machine learning
methods [18,19].

Qualitative methods are knowledge-based FSM methods that depend on a scientist’s
experience [20]. The multi-criteria decision analysis is the most common technique in this
group that generates FSM by assigning weights to flood conditioning factors [21]. Analytic
Hierarchy Process (AHP) is one of the popular multi-criteria decision-making methods,
which has widely been used for FSM in many studies [9]. Expert judgments are usually
used to determine the relative importance and weights of factors [22,23]. Consequently, the
reliability of the results could be low and the model might not produce accurate results for
different study areas [24,25].

In the hydrological-based FSM methods, the concept of nonlinearity is used as a
basis for performance. The HyMOD [26], SWAT [27], WetSpass [28], and distributed
hydrological models (e.g., TOPKAPI) [29] are examples of the hydrological-based methods.
The heterogeneities in geomorphology and differences in Land Use/Land Cover (LULC)
could negatively affect the accuracy of these models [21]. Furthermore, these models have
to be calibrated and need reliable datasets for calibration, which might not be available in
many cases [30].

Statistical FSM methods use mathematical expressions to assess the relationship be-
tween flood-driving factors and floods [31]. There are two types of statistical methods:
multivariate and bivariate. Logistic regression, frequency ratio, and discriminant analysis
are the most conventional statistical methods for FSM [30]. They use linear assumptions to
predict variables. However, flooding generally follows a nonlinear pattern and, thus, these
models could provide inaccurate results in many cases [32].

The last group of FSM methods is machine-learning-based models [33]. The use
of machine-learning FSM models has drawn widespread interest in recent years due to
their advantages in modeling complex events such as landslides and floods. For example,
Avand et al. [34] evaluated the impacts of the spatial resolution of a digital elevation
model (DEM) on FSM using machine learning methods. They have investigated three
models, including Artificial Neural Network (ANN), Random Forest (RF), and Generalized
Linear Model (GLM) with 14 predictors. Saber et al. [35] also assessed the performance
of two advanced machine learning methods, including Light Gradient Boosting Machine
(LightGBM) and Categorical Boosting (CatBoost), for predicting vulnerability to flash
floods. They evaluated the relative importance of 14 flood-controlling factors in predicting
flood occurrence. Additionally, Ma et al. [36] employed an Extreme Gradient Boosting
(XGBoost) algorithm for assessing the flash flood risk. They employed 13 factors in the
FSM as independent variables that represented topography, human characteristics, and
precipitation. Ha et al. [37] also combined the Bald Eagle Search (BES) optimization
algorithm with four machine learning methods for FSM. The BES was applied to tune the
parameters of four individual models, including Multi-Layer Perceptron (MLP), Support
Vector Machine (SVM), RF, and Bagging. Moreover, they generated 14 conditioning factors
as independent variables. Yaseen et al. [38] also developed an ensemble FSM method
using a combination of three machine learning models, including Logistic Regression, SVM,
and MLP. They employed 12 causative factors for FSM. Costache et al. [39] evaluated the
potential application of different models, including the adaptive neuro-fuzzy inference
system (ANFIS), analytic hierarchy process (AHP), certainty factor (CF), and weight of
evidence (WoE) models. To this end, they utilized 12 flood conditioning factors in the FSM.

The above-mentioned studies focused on conventional machine learning models.
Moreover, most of these studies used a limited number of factors for FSM, while there
are many other factors that could improve the model. Therefore, more advanced machine
learning models, such as deep learning algorithms, should be developed to employ more
flood-influencing factors and, thus, improve the accuracy and reliability of the FSM.

Deep learning models have provided promising results in many applications [6,40–45].
Although these methods can result in a high accuracy, they are more complicated compared
to conventional machine learning algorithms and require a large amount of training datasets



Remote Sens. 2022, 15, 192 3 of 25

to produce accurate results [46]. Furthermore, deep learning frameworks contain several
hyperparameters the tuning of which could be time-consuming and challenging [47]. To
tackle these limitations, a new robust model called Deep Forest has been proposed by [48]. In
the deep forest model, the layers are similar to those in Deep Neural Networks (DNN), but
instead of neurons, each layer contains many random forests [49]. The deep forest model has
two main components [47]: multi-grained scanning and Cascade Forest Model (CFM).

In this study, an CFM model was developed using 21 flood-influencing factors to
produce accurate FSM results over two study areas. It should be noted that due to the
limitation of the number of features in the input dataset, this research only used the second
component of the deep forest model (i.e., CFM). The main contributions of this study are:
(1) a novel CFM was developed for FSM for the first time; (2) the performance of the
proposed FSM model was compared to other advanced machine learning methods; (3) the
robustness and applicability of the proposed model and other methods were investigated
over two different study areas; and (4) the most informative features for FSM were selected
based on a combination of the Harris Hawks Optimization (HHO) algorithm and deep
forest model and were then applied to FSM.

2. Materials and Methods

FSM can be applied in three main steps: (1) preprocessing and data preparation,
(2) model training and tuning models’ parameters, and (3) applying the trained model to
generate FSM and accuracy assessment. The general framework of the proposed FSM method
is shown in Figure 1. More details of each step are provided in the following subsections.
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Figure 1. Overview of the proposed Flood Susceptibility Mapping (FSM) based on the Cascade
Forest Model (CFM). Digital Elevation Model (DEM), Cross-Sectional Curvature (CSC), Longitudinal
Curvature (LC), Convergence Index (CI), Valley Depth (VD), LS factor (LS), Flow Accumulation
(FA), Terrain Ruggedness Index (TRI), Topographic Position Index (TPI), Modified Catchment Area
(MCA), Stream Power Index (SPI), Topographic Wetness Index (TWI), Horizontal Overland Flow
Distance (HOFD), Vertical Overland Flow Distance (VOFD), Land Use/Land Cover Map (LULC),
and Normalized Vegetation Index (NDVI).
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2.1. Study Areas

The proposed FSM model was applied to two study areas in Iran. These study areas
were the Gorganrud and Karun basins (Figure 2).
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The Karun basin originates from the west slopes of the Zagros mountain in Iran, and flows
through the plain of Khuzestan. Karun River’s watershed is part of the first-class watershed
of the Persian Gulf and the Sea of Oman. The Karun basin has an area of 67,297 km2, which
makes it the largest watershed in Iran. The basin lies within the middle Zagros highlands and is
bounded by 30◦00′ to 34◦05′N latitudes and 48◦00′ to 52◦30′E longitudes.

The Gorganrud Basin, located in the province of Golestan, is one of the most flood-
prone watersheds in Northern Iran. It occupies an area of 11,290 km2 located between
36◦25′ to 38◦15′N latitudes and 56◦26′ to 54◦10′E longitudes. There is a semi-arid, semi-
humid, humid, and Mediterranean climate in this basin with a mean annual temperature
of about 18 ◦C. Over the last decade, there have been multiple large flood events in this
basin; the largest one occurred on 11 August 2001, which killed more than 500 people.
Furthermore, on 17 March 2019, over 70 villages, 12,000 homes, infrastructure, gardens,
and agricultural lands were destroyed by a flood.

2.2. Flood Samples

Flood maps are essential for generating samples of flooded and non-flooded points. In
this study, the reports published by the Iranian Water Resources Department for the period
of 1985–2022 as well as investigative reports on disaster management for the flood events
in the two study areas were used to create the samples. A field survey was also conducted
to verify the data collected regarding flooded locations. Based on the flood susceptibility
maps obtained by the Multi-Criteria Decision Making (MCDM) analysis, areas with lower
flood susceptibility ranks were recognized. Non-flooded points were randomly created in
those areas in the GIS software. Finally, the samples of flooded and non-flooded areas were
divided into two groups of training, and test datasets (Table 1).
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Table 1. The training and test samples of flooded and non-flooded areas.

Description Study Area Number of Samples Percentage (%) Non-Flood Flood

Training
Karun 1123 27 747 376

Gorganrud 383 30 211 172

Test
Karun 3037 73 2029 1008

Gorganrud 895 70 476 419

Total
Karun 4160 100 2776 1384

Gorganrud 1278 100 687 591

2.3. Flood Conditioning Factors

Current research considers 21 independent factors which affect FSM, shown in Table 2.
The flood conditioning factors for both study areas are also illustrated in Figures 3 and 4.
These factors were derived from Sentinel-1 and Sentinel-2, Landsat satellite imagery, DEM,
and in-situ precipitation data. A total of 17 factors from the 21 investigated flood conditioning
factors were calculated using DEM and 3D topography indicators.

Table 2. Flood conditioning factors which were used in this study.

Factor Description
Basin

Resolution Source
Gorganrud Karun

Digital Elevation
Model (DEM)

Elevation is one of the most significant
criteria in identifying flood susceptible

areas. Areas with lower elevation
values are more likely to

experience flood.

Max: 3672
Min: −65

Max: 4418
Min: −66

30 m SRTM 1

Slope

Slope is a criterion that controls run off
and flow velocity in a way that the

possibility of flood events is
accelerated in flat areas.

Max: 3927
Min: 0

Max: 833
Min: 0

30 m DEM

Aspect

Aspect examines the direction of slope
which affects many features, such as

water flow direction, receiving
precipitation, land cover scheme

and sunshine.

Max: 359
Min: −1

Max: 359
Min: 0

30 m DEM

Curvature

Geomorphological characteristics of
the surface is determined by this
criterion which has three classes,
namely, convex, concave and flat.

Max: 397
Min: −494

Max: 193
Min: −138

30 m DEM

Plan Curvature

This morphometric criterion identifies
the type of surface runoff, and whether

it is convergent or divergent and
controls the water movement.

Max: 0.467
Min: −0.424

Max: 0.13
Min: −0.07

30 m DEM

Profile Curvature
The level of runoff, whether it is high

or low, is identified using this
morphometric factor.

Max: 0.475
Min: −0.455

Max: 0.09
Min: −0.09

30 m DEM

Convergence Index

This morphometric criterion
corresponds to the river valleys and
interfluvial areas using negative and
higher than zero values, respectively.

Max: 99
Min: −99

Max: 99
Min: −99

30 m DEM
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Table 2. Cont.

Factor Description
Basin

Resolution Source
Gorganrud Karun

Valley Depth

This measure estimates the vertical
distance from interpolated ridge level

to a river network base level for
each pixel.

Max: 2222
Min: 0

Max: 1543
Min: 0

30 m DEM

LS Factor (LS)

This quantity has two components,
slope length and slope steepness, and
it defines the impact of topography on

soil erosion.

Max: 248
Min: 0

Max: 2281
Min: 0

30 m DEM

Flow Accumulation
(FA)

For each pixel, this criterion indicates
the number of pixels which flow into it.
Therefore, there is a direct relationship

between this factor and flood
occurrence possibility.

Max: 1.15 × 1010

Min: 900
Max: 6.19 × 1010

Min: 0
30 m DEM

Terrain Ruggedness
Index (TRI)

This criterion calculates the elevation
difference among a pixel and its

adjacent pixels. Flood susceptible areas
have a lower TRI value.

Max: 1815
Min: 0

Max: 390
Min: 0

30 m DEM

Topographic
Position Index (TPI)

This criterion identifies valleys, ridges,
or flat parts of the landscape. Positive

and negative values of TPI indicate
valleys and ridges, respectively.

Max: 238
Min: −2072

Max: 461
Min: −332

30 m DEM

Modified
Catchment Area

(MCA)

Catchment area is the area of the
upstream watershed. In order to not
consider the flow as a thin layer, the
modified catchment area can be used

to obtain more realistic results.

Max: 1.32 × 1010

Min: 0
Max: 5.95 × 1010

Min: 909
30 m DEM

Stream Power
Index (SPI)

This hydrological criterion measures
the erosive power of the runoff and

discharge degree within the catchment
area. A higher value of SPI indicates

the higher potential of
flood occurrence.

Max: 1.61 × 109

Min: 0
Max: 1.61 × 109

Min: 0
30 m DEM

Topographic
Wetness Index

(TWI)

This index predicts the regions which
have a high potential to witness

overland runoff. There is a direct
relationship between TWI

and flooding.

Max: 16
Min: −2

Max: 27
Min: 1.6

30 m DEM

Horizontal
Overland Flow

Distance (HOFD)

Instead of Euclidean distance from the
river network, the horizontal

component of water flow is considered.
This criterion computes the actual
movement of water flow from each

pixel to others. Areas with lower value
of HOFD are more prone to flooding.

Max: 15,931
Min: 0

Max: 3008
Min: 0

30 m
DEM and

Stream

Vertical Overland
Flow Distance

(VOFD)

VOFD is the vertical height difference
between each cell and the river

network. Areas with lower value of
VOFD are more susceptible to flooding.

Max: 1765
Min: 0

Max: 2581
Min: 0

30 m
DEM and

Stream
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Table 2. Cont.

Factor Description
Basin

Resolution Source
Gorganrud Karun

Curve Number

This criterion consists of land use data
and soil map, and measures the

permeability feature of the surface. The
amount of penetration is low in areas

with high CN values.

Max: 94
Min: 72

Max: 94
Min: 68

250 m
Soil and
LULC

Land Use/Land
Cover (LULC)

The hydrological processes, such as
runoff, permeability and evaporation

and sediment transportation, vary
based on LULC types.

8 classes 8 classes 10 m ESA 2

Normalized
Difference

Vegetation Index
(NDVI)

NDVI is used to examine the
vegetation coverage of the area. There

is a negative correlation between
compact vegetation cover

and flooding.

Max: 0.56
Min: −0.28

Max: 0.49
Min: −0.19

30 m
Landsat
Satellite
Images

Modified Fournier
Index (MFI)

The level of precipitation is determined
using this criterion. MFI is calculated
using monthly and annual average

values of rainfall.

Max: 37
Min: 14

Max: 119
Min: 12

30 m Precipitation

1 https://www.usgs.gov/ (accessed on 7 November 2022); 2 https://esa-worldcover.org/en (accessed on 7
November 2022).
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(s) Land Use/Land Cover Map, (t) Normalized Vegetation Index, and (u) Modified Fournier Index.

2.4. Cascade Forest Model (CFM)

DNNs have a large number of hidden neurons, which learn representations layer-by-
layer by leveraging forward and backward propagation procedures [50]. In contrast, CFM
creates a cascade of Decision Tree (DT) forests to learn classification distributions (features)
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based on layers of input data, supervised by the input data [48]. Therefore, CFM generates
more accurate predictions based on ensembles of random forests because each layer learns
more discriminative representations [51,52].

As illustrated in Figure 5, a CFM consists of multiple layers, each of which consists of
an ensemble module. Each layer receives features by concatenation of the input and output
probabilistic features from the previous layer, then feeds the results to the next level [47].
For each layer, the process is repeated, and the final output is produced by averaging the
forest outputs (without raw data) using the argmax function. To ensure that the ensemble is
diverse, each layer includes different types of forests (the red and blue boxes in Figure 5).
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The concatenation probabilistic features with original input features put into a single
input feature vector can effectively prevent overfitting. The output of CFM, yl , for original
input vector dataset, X0, for lth layer can be described as:

yl =

{
[Hl1(X0),Hl2(X0), . . . ,Hln(X0)]; s.t. l = 1
[X0, Hl1(Xl−1),Hl2(Xl−1), . . . ,Hln(Xl−1)] s.t. l > 1

(1)

whereH refers to individual learner (i.e., RF algorithm) and n is number of individual learners.

2.5. Feature Selection

The feature selection process is important for dimensional reduction of the input
datasets. This process removes the less effective features from the input dataset. The main
purpose of using feature selection is to improve learning accuracy and to minimize the
computational costs and time during the model training [53].

Heuristic strategies are utilized to determine a reasonably informative feature subset
from the entire solution space, which may not be the best solution but will be accepted
within the constraints of computational efficiency [54]. In Ref. [55], HHO was proposed
as a population-based, nature-inspired optimization paradigm to select the optimum
features. This optimization algorithm has widely been used in many applications of remote
sensing [56]. HHO was inspired by the Harris’ hawks in nature and their cooperative
behaviors, in which several hawks attack their prey from different directions to surprise
them. Based on dynamic scenarios and prey escaping patterns, Harris’ hawks can present
a variety of chasing patterns [57].

In terms of optimization, HHO is a continuous algorithm. Some real-world problems,
such as feature selection, have a binary search space. Consequently, this algorithm should
be reformulated efficiently to work on binary spaces. Thus, this study used the binary
version of the HHO algorithm for feature selection.
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2.6. Accuracy Assessment

The accuracy assessment was carried out by both visual interpretation of the results
and statistical accuracy measures, such as Overall Accuracy (OA), Balance Accuracy (BA),
F1-Score, Kappa Coefficient (KC), Area Under the Receiver Operating Characteristic (ROC)
Curve (AUC), and Intersection Over Union (IOU). The OA index shows the overall per-
formance of the model. The misbalancing of sample datasets is one the most important
challenges in FSM using machine learning models. Therefore, different indices, such as
such as BA, KC, and F1-score, were calculated to have a better evaluation of the model in
an imbalanced dataset.

Moreover, to assess the effectiveness of the CFM, its performance was also compared
to other advanced and well-known machine learning approaches, including SVM, DT, RF,
LightGBM, DNN, XGboost, and CatBoost.

3. Results

All implemented models in this study have several hyperparameters that need to
be tuned. These hyperparameters were knowledge-based, and the optimal values were
selected based on trial and error (Table 3).

Table 3. The optimum values of the tuning parameters of different models. Support Vector Machine
(SVM), Random Forest (RF), Deep Neural Network (DNN), Decision Tree (DT), Light Gradient Boost-
ing Machine (LightGBM), Categorical boosting (CatBoost), Extreme Gradient Boosting (XGBoost),
and Cascade Forest Model (CFM).

Method Optimum Value

SVM Radial Basis Function (RBF) kernel function parameter 10−3, and penalty coefficient 102

RF Number of trees 155, and the number of randomly selected predictor variables 5

DNN Number of layers = 5, activation function = rectified linear unit (Relu), number of hidden layers = [150,150,150],
weight-initializer = He-Normal, optimizer = ADAM, dropout rate = 0.18

LightGBM Number of estimators = 150, learning rate = 0.1, regularization parameter = 0.9, number of leaves = 150, and
maximum depth = 9

CatBoost Number of estimators = 105, learning rate = 0.1, and subsample ratio = 0.9
XGBoost Number of estimators = 105, learning rate = 0.1, maximum depth = 20, and subsample ratio = 0.7

CFM Number of bins = 90, the maximum number of layers = 8, number of estimator = 5, number of trees = 170,
maximum depth = 8, and predictor = XGboost.

3.1. Variable Dependency

This study used 21 flood conditioning factors for FSM. Figure 6 shows the correlation
between variables based on the Pearson correlation Coefficient (PCC) for the Karun and
Gorganrud basins. Based on the results, the correlation between the independent variables
was low (under 0.5). However, the correlation between the dependent variables (e.g., TRI
and Slope factors) was more than 0.7.

A variance inflation factor (VIF) was employed to calculate the degree of multicollinearity
among multiple predictor factors. The result of the VIF for the Karun and Gorganrud basins
is shown in Figure 7. VIF values equal to 1, between 1 up to 5, and more than 5 indicate no
correlation, moderate correlation, and high correlation between variables, respectively.

3.2. FSM of the Karun Basin

Figure 8 illustrates the results of FSM by different models for the Karun basin. Most
areas are located in the low to very low susceptibility regions. The high flood susceptibility
areas are in the southwest part of the Karun basin. Furthermore, some small high flood-
prone regions can be seen in the north of the study area.
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Figure 8. Comparison of the FSM for the Karun basin: (a) Support Vector Machine (SVM), (b) Random
Forest (RF), (c) Deep Neural Network (DNN), (d) Decision Tree (DT), (e) Light Gradient Boosting
Machine (LightGBM), (f) Categorical Boosting (CatBoost), (g) Extreme Gradient Boosting (XGBoost),
and (h) Cascade Forest Model (CFM).

Table 4 presents the statistical indices used to compare the accuracy of different models.
The ensemble learning models (i.e., RF and DT) provided higher performance, while other non-
ensemble models, such as DNN and SVM had relatively lower accuracy. Among ensemble
learning methods, the proposed CFM achieved the highest performance considering all
accuracy indices. CFM resulted in an OA of more than 94.04, which was higher than SVM, RF,
DNN, DT, LightGBM, CatBoost, and XGBoost by 8.70%, 1.06%, 6.32%, 3.79%, 0.40%, 0.46%,
and 0.46%, respectively. Furthermore, the proposed CFM improved the results of the F1-Score
index, which was approximately 12–0.76% compared to all other models.

Table 4. Evaluation of the performance of different FSM models over the Karun basin. OA: overall
accuracy; IOU: intersection over union, BA: balance accuracy; KC: kappa coefficient. Support Vector
Machine (SVM), Random Forest (RF), Deep Neural Network (DNN), Decision Tree (DT), Light
Gradient Boosting Machine (LightGBM), Categorical Boosting (CatBoost), Extreme Gradient Boosting
(XGBoost), and Cascade Forest Model (CFM).The highest value is in bold.

Method OA (%) F1-Score (%) BA (%) IOU KC

SVM 85.34 78.47 84.11 0.646 0.673
RF 92.98 89.29 91.75 0.806 0.840

DNN 87.72 80.10 84.39 0.668 0.713
Decision Tree 90.25 85.17 88.76 0.741 0.779

LightGBM 93.64 90.16 92.17 82.09 0.855
CatBoost 93.58 90.00 92.05 0.819 0.853
XGBoost 93.58 90.14 92.29 0.820 0.854

CFM 94.04 90.92 92.99 0.833 0.865

A comparison of confusion matrices for different FSM models in the Karun basin
is demonstrated in Figure 9. The CatBoost model correctly classified 1960 and 882 non-
flooded and flooded samples, which had the highest performance in detecting non-flooded
areas. However, its performance for the flooded class was quite low. The LightGBM
model correctly classified nine samples more than the proposed CFM model regarding
the non-flooded class; however, it missed 21 samples in the flooded class. Additionally,
although the XGBoost model also provided a performance equal to the CFM algorithm
in the non-flooded class, it missed 14 samples in the flooded class. Overall, the proposed
CFM had the best performance in both flooded and non-flooded classes. CFM correctly
classified 1950 (906) samples of the non-flooded (flooded) samples.
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Figure 9. Comparing the confusion matrices of different FSM models in the Karun basin. (a) Support
Vector Machine (SVM), (b) Random Forest (RF), (c) Deep Neural Network (DNN), (d) Decision Tree
(DT), (e) Light Gradient Boosting Machine (LightGBM), (f) Categorical Boosting (CatBoost), (g) Extreme
Gradient Boosting (XGBoost), and (h) Cascade Forest Model (CFM).

Figure 10 illustrates the ROC curves of FSM models. The results indicated that the
CFM achieved the highest AUC value (0.97). The CatBoost and XgBoost models were
second best models with AUC = 0.96, the LightGBM model was third with AUC = 0.96.
The AUC of other models was lower than 0.96.
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Figure 10. A comparison of the ROC curves and AUC values of different FSM models using the
test dataset. Support Vector Machine (SVM), Random Forest (RF), Deep Neural Network (DNN),
Decision Tree (DT), Light Gradient Boosting Machine (LightGBM), Categorical Boosting (CatBoost),
Extreme Gradient Boosting (XGBoost), and Cascade Forest Model (CFM).
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3.3. FSM of the Gorganrud Basin

The results of FSM models for the Gorganrud basin are shown in Figure 11. Overall,
the west side of the Gorganrud basin is located in the high flood-prone zones. However,
the east side of the basin is classified as a low flood susceptibility region.
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Figure 11. The FSM maps derived from different models for the Gorganrud basin: (a) Support Vector
Machine (SVM), (b) Random Forest (RF), (c) Deep Neural Network (DNN), (d) Decision Tree (DT),
(e) Light Gradient Boosting Machine (LightGBM), (f) Categorical Boosting (CatBoost), (g) Extreme
Gradient Boosting (XGBoost), and (h) Cascade Forest Model (CFM).
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The accuracy assessment of the FSM models in the Gorganrud basin is shown in Table 5.
The proposed CFM had the best performance considering all indices. For instance, the OA of
the CFM is 92.40 %, which is 3.13%, 0.89%, and 2.01% higher than the XGBoost, CatBoost, and
LightGBM models, respectively. Additionally, CFM has a significant improvement compared
to other remaining models. For example, it outperformed the SVM, RF, DNN, and DT methods
by more than 1.57%, 3.46%, 5.7%, and 4.8% in terms of the OA index, respectively.

Table 5. Evaluation of the performance of different FSM models over the Goranrud basin. Support Vector
Machine (SVM), Random Forest (RF), Deep Neural Network (DNN), Decision Tree (DT), Light Gradient
Boosting Machine (LightGBM), Categorical Boosting (CatBoost), Extreme Gradient Boosting (XGBoost), and
Cascade Forest Model (CFM). OA: overall accuracy; IOU: intersection over union, BA: balance accuracy;
KC: kappa coefficient. The highest value is in bold.

Method OA (%) F1-Score (%) BA (%) IOU KC

SVM 90.83 89.54 90.41 0.811 0.815
RF 88.94 87.82 88.71 0.783 0.777

DNN 86.70 83.98 85.97 0.724 0.729
Decision Tree 87.60 86.64 87.50 0.764 0.751

LightGBM 90.39 89.64 90.29 0.812 0.807
CatBoost 91.51 90.57 91.24 0.828 0.829
XGBoost 89.27 88.85 89.58 0.799 0.793

CFM 92.40 91.60 92.17 0.845 0.847

The confusion matrices of different FSM models over the Gorganrud basin are shown
in Figure 12. Most models showed better performance in detecting the non-flooded areas
compared to the flood regions. For example, among 419 flooded samples, the LightGBM
and CFM correctly classified 372 and 371 samples, respectively. Although the CatBoost
model had slightly better accuracy in identifying the flooded class compared to the pro-
posed LightGBM, it had lower accuracy in detecting non-flooded samples. Overall, CFM
had the best performance compared to other SFM models.
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Figure 12. Comparing the confusion matrices of different SFM models in the Gorganrud basin.
(a) Support Vector Machine (SVM), (b) Random Forest (RF), (c) Deep Neural Network (DNN),
(d) Decision Tree (DT), (e) Light Gradient Boosting Machine (LightGBM), (f) Categorical Boosting
(CatBoost), (g) Extreme Gradient Boosting (XGBoost), and (h) Cascade Forest Model (CFM).
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The FSM results over the Gorganrud basin were evaluated using the ROC curve for
all models (Figure 13). Overall, the CFM AUC = 0.954 and CatBoost AUC = 0.959 models
were the most efficient ones. The DT model provided the lowest performance among FSM
models with AUC = 0.876. The remaining five FSM models (SVM, RF, DNN, XGBoost, and
LightGBM) also had a lower AUC compared to CFM.
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Figure 13. A comparison of the ROC curves and AUC values of the 8 models using the test dataset
for Gorganrud basin. Support Vector Machine (SVM), Random Forest (RF), Deep Neural Network
(DNN), Decision Tree (DT), Light Gradient Boosting Machine (LightGBM), Categorical Boosting
(CatBoost), Extreme Gradient Boosting (XGBoost), and Cascade Forest Model (CFM).

4. Discussion
4.1. Accuracy of the Proposed CFM

This study has introduced an advanced machine-learning model for FSM. The accuracy
of the proposed CFM was compared with those of seven other FSM models over two
different study areas. The results showed that CFM had better performance, with an OA of
92%. Furthermore, CFM showed higher accuracy in identifying both flood and non-flood
classes. Thus, the proposed model could be more robust when unbalanced samples are
employed for FSM. One reason for the accuracy improvement was the fact that the proposed
model was developed based on a set of random forests in different layers. Another reason
was the fact that this model could adapt itself to all the included features. Since the current
study utilized a high number of features, the accuracy of the model increased compared to
other models.

Recently, many studies have focused on machine learning-based FSM. For instance,
Arabameri et al. [58] evaluated the performance of XGBoost, SVM, RF, and Logistic re-
gression for FSM. Their results showed that XGBoost provided more promising results
than other models. Furthermore, Kaiser, et al. [59] estimated the performance of Gradient
Boosting Decision Tree, RF, and Catboost models. Their results showed that Catboost had
more reliable results. Similarly, in the current study, the result of FSM implemented for two
study areas showed that Catboost and XGBoost models outperformed other algorithms.

It is worth noting that there is a tradeoff between flooded and non-flooded classi-
fication using machine learning models. Based on the presented confusion matrices in
Figures 9 and 12, some differences for the flooded and non-flooded classes were observed.
For instance, a comparison between Figure 12e,h showed that the performance of the
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LightGBM and CFM models was not similar. Thus, the proposed method had a high level
of effectiveness in both flooded and non-flooded classes.

The complexity of the study area could negatively affect the results of FSM produced
by machine learning models. For example, most models had lower accuracies in the
Gorganrud basin compared to the Karun basin. However, the results of CFM over both
study areas were high. Thus, the proposed CFM could show robust and better results in
various study areas with different characteristics.

4.2. Flood Susceptible Areas

A generated flood susceptibility map can help decision makers in identifying flood
prone areas. In Figure 14, some of flood susceptible areas in Karun basin are shown. As
is noticeable, flood inventory points are overlaid with areas, which have a high flood
susceptibility index. In Karun basin, prone areas are mostly located in the west-southern
part, due to the fact that the values of important factors in this area are in line with higher
flood susceptibility. For instance, the value of elevation (DEM), distance to stream (HOFD),
slope is low, and the level of wetness index (TWI) and catchment area (MCA) is high. The
same condition is true for other regions demonstrated in the figure such as northern and
eastern parts.
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Figure 15 is the zoom area of highly susceptible areas in the Gorganrud basin. As it can
be seen in this figure, flooded points are located in regions where the susceptibility index is
high. In this basin, the western zone as well as some parts of the central and eastern zones
which are illustrated in the figure are recognized as flood prone areas.

4.3. Feature Selection

This study applied the HHO-based optimization framework for feature selection. In
this regard, the HHO algorithm and CFM were used together for feature selection using the
Karun sample dataset. The result of the feature selection process indicated that the highest
accuracy can be obtained by using 12 optimal features. After removing three features
including Cross Sectional Curvature, Curve Number (CN), and Land Use/Land Cover (LULC)
from the input dataset, the value of OA (93.84%) remained unchanged. The elimination of
these features had only 0.2% impact on the OA. Therefore, it can be concluded that these
features do not have a key role in achieving promising results.
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4.4. Model Generalization

The training samples dataset are important for machine learning-based FSM models,
which might not be available in all areas. Thus, utilizing a pre-trained model can be a
reasonable solution for such conditions. In this study, we evaluated the generalization of
the proposed CFM by employing a trained model in two scenarios: (1) training the model
using the training samples of the Karun basin and evaluating the accuracy of the CFM
using the test samples of the Gorganrud basin, and (2) training the model using the training
samples of the Gorganrud basin and evaluating the accuracy of the CFM using the test
samples of the Karun basin.

The qualitative results of the generalization of different models for the first and second
scenarios are provided in Tables 6 and 7, respectively. Overall, the performance of most
models including the proposed CFM, was better in the second scenario than that of the
first scenario. As seen, it has provided an acceptable result in the FSM, with an accuracy of
more than 79% by the OA index.

Table 6. Evaluation of the generalization of different FSM models for the first scenario. Support Vector
Machine (SVM), Random Forest (RF), Deep Neural Network (DNN), Decision Tree (DT), Light Gradient
Boosting Machine (LightGBM), Categorical Boosting (CatBoost), Extreme Gradient Boosting (XGBoost),
and Cascade Forest Model (CFM). OA: overall accuracy; IOU: intersection over union, BA: balance
accuracy; KC: kappa coefficient. The highest value is in bold.

Model OA (%) F1-Score (%) BA (%) IOU KC

SVM 65.62 62.85 71.40 0.458 0.355
RF 50.41 56.30 62.26 0.392 0.179

DNN 70.43 65.57 74.26 0.487 0.420
Decision Tree 49.34 55.79 61.49 0.387 0.167

LightGBM 59.17 60.32 68.10 0.431 0.281
CatBoost 77.47 65.44 74.24 0.486 0.487
XGBoost 73.86 68.80 77.33 0.524 0.480

Cascade-Forest 79.39 73.87 81.69 0.585 0.576

It is worth noting that both study areas have similar topographic, geomorphologic
and LULC conditions. Moreover, most of the investigated factors which are related to
the topography and geomorphology have a similar range of values in the different areas
(Table 2). Therefore, the proposed method has provided efficient and robust FSM results.
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Table 7. Evaluation of the generalization of different FSM models for the second scenario. Support Vector
Machine (SVM), Random Forest (RF), Deep Neural Network (DNN), Decision Tree (DT), Light Gradient
Boosting Machine (LightGBM), Categorical Boosting (CatBoost), Extreme Gradient Boosting (XGBoost), and
Cascade Forest Model (CFM). OA: overall accuracy; IOU: intersection over union, BA: balance accuracy;
KC: kappa coefficient. The highest value is in bold.

Model OA (%) F1-Score (%) BA (%) IOU KC

SVM 78.65 79.95 79.39 0.666 0.578
RF 82.23 79.38 81.68 0.658 0.639

DNN 80.78 74.25 79.49 0.590 0.604
Decision Tree 49.38 41.84 48.76 0.265 −0.02

LightGBM 79.11 71.96 77.79 0.562 0.569
CatBoost 83.35 79.44 82.47 0.659 0.660
XGBoost 65.36 62.10 65.08 0.450 0.302

Cascade-Forest 83.80 80.85 83.15 0.678 0.671

4.5. Dimension Reduction Impact on FSM

Feature selection is a kind of dimension reduction technique which selects the infor-
mative features based on different approaches. The filter-based feature selection approach
investigates the features based on a similarity measurement metric such as Pearson Correlation
Coefficient (PCC). The mentioned approach was used in order to detect highly correlated
features according to a threshold equal to 0.7. Consequently, some features, namely, TRI,
SPI, Curvature, VOFD, VD and LSF were eliminated from the dataset. Table 8 illustrates the
performance of different models over the Karun basin before dimension reduction process.

Table 8. Evaluation of the performance of different FSM models over the Karun basin using original
dataset (before dimension reduction). OA: overall accuracy; IOU: intersection over union, BA: balance
accuracy; KC: kappa coefficient. Support Vector Machine (SVM), Random Forest (RF), Deep Neural
Network (DNN), Decision Tree (DT), Light Gradient Boosting Machine (LightGBM), Categorical
Boosting (CatBoost), Extreme Gradient Boosting (XGBoost), and Cascade Forest Model (CFM). The
highest value is in bold.

Method OA (%) F1-Score (%) BA (%) IOU KC

SVM 70.23 24.91 56.30 0.142 0.158
RF 92.78 89.01 91.58 0.802 0.836

DNN 86.23 79.55 84.83 0.660 0.692
Decision Tree 90.00 84.60 88.29 0.734 0.773

LightGBM 93.61 90.25 92.48 0.822 0.855
CatBoost 93.57 90.00 91.97 0.818 0.852
XGBoost 93.33 89.81 92.10 0.815 0.849

CFM 93.94 90.70 92.69 0.830 0.862

After implementing the dimension reduction analysis and eliminating the correlated
features, the result of all the models saw an increase in accuracy. By comparing Tables 4
and 8, it is concluded that SVM method experienced a noticeable accuracy improvement
due to the reason that in the SVM algorithm, features’ dependency affects the performance
of the model. Moreover, tree-based algorithms consider the features as independent
variables. Therefore, dimension reduction does not greatly increase the efficiency of this
kind of approaches. However, it leads to a reduction in computational cost in all the applied
approaches by decreasing the number of features from 21 to 15.

5. Conclusions

FSM is one of the most important steps to prevent damage from flood events. In
this study, the effectiveness of a new advanced machine learning method, CFM, was
investigated for FSM. We employed two large-scale datasets for evaluating the performance
of the CFM. Additionally, 21 flood conditioning factors were generated to obtain high
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accuracy. In the Karun basin, prone areas were mostly located in the west-southern part.
The flood prone areas of the Gorganrud basin were also located in the western zone as well
as some part of the central and eastern zones. For both study areas, the flood inventory
points are overlaid with areas with high flood susceptibility values. The accuracy of CFM
was compared with those of seven conventional and advanced machine learning models.
The proposed CFM outperformed other models in both study areas. CFM provided an OA
of more than 92%. Furthermore, the generalization assessment of the models showed that
the CFM had a higher generalization capability compared to other models. In this study,
we set the model hyperparameters based on several trial and error efforts. Future studies
should use automatic methods, such as Genetic algorithm (GA), HHO, particle swarm
optimization (PSO) for tuning the hyperparameters of the models.
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