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Abstract: The accurate estimation of spatially explicit forest aboveground biomass (AGB) provides
an essential basis for sustainable forest management and carbon sequestration accounting, especially
in Myanmar, where there is a lack of data for forest conservation due to operational limitations.
This study mapped the forest AGB using Sentinel-2 (S-2) images and Shuttle Radar Topographic
Mission (SRTM) based on random forest (RF), stochastic gradient boosting (SGB) and Kriging algo-
rithms in two forest reserves (Namhton and Yinmar) in Myanmar, and compared their performance
against AGB measured by the traditional methods. Specifically, a suite of forest sample plots were
deployed in the two forest reserves, and forest attributes were measured to calculate the plot-level
AGB based on allometric equations. The spectral bands, vegetation indices (VIs) and textures de-
rived from processed S-2 data and topographic parameters from SRTM were utilized to statistically
link with field-based AGB by implementing random forest (RF) and stochastic gradient boosting
(SGB) algorithms. Followed by an evaluation of the algorithmic performances, RF-based Kriging
(RFK) models were employed to determine the spatial distribution of AGB as an improvement of
accuracy against RF models. The study’s results showed that textural measures produced from
wavelet analysis (WA) and vegetation indices (VIs) from Sentinel-2 were the strongest predictors
for evergreen forest reserve (Namhton) AGB prediction and spectral bands and vegetation indices
(VIs) showed the highest sensitivity to the deciduous forest reserve (Yinmar) AGB prediction. The
fitted models were RF-based ordinary Kriging (RFOK) for Namhton forest reserve and RF-based
co-Kriging (RFCK) for Yinmar forest reserve because their respective R2, whilst the RMSE values
were validated as 0.47 and 24.91 AGB t/ha and 0.52 and 34.72 AGB t/ha, respectively. The proposed
random forest Kriging framework provides robust AGB maps, which are essential to estimate the
carbon sequestration potential in the context of REDD+. From this particular study, we suggest
that the protection/disturbance status of forests affects AGB values directly in the study area; thus,
community-participated or engaged forest utilization and conservation initiatives are recommended
to promote sustainable forest management.

Keywords: SRTM; random forest; stochastic gradient boosting; random forest Kriging; wavelet analysis

1. Introduction

Global climate change, which has become a major environmental problem for all
nations, mainly results from anthropogenic fossil fuel combustion and land-use changes [1].
As the biggest carbon pool of terrestrial ecosystems, forests play a major role in the global
carbon sequestration process, which contributes to climate change mitigation [2]. Overall,
forests store approximately 45% of terrestrial carbon globally [1], most of which is stored in
trees in the major form of aboveground biomass (AGB) that accounts for 44% of the total
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biomass through the process of photosynthesis [3]. Understanding the spatial and temporal
dynamics of AGB is the most critical step in quantifying carbon stocks and fluxes from
forests [4]. Hence, it is necessary to develop robust methods to estimate AGB for calculating
carbon stocks, which is an essential indicator of the ‘reducing emission from deforestation
and forest degradation’ (REDD)+ initiative as well as sustainable forest management [5,6].

AGB estimation with direct field surveys or that uses of species-specific allometric
equations based on destructive sampling is accurate and widely used. However, these
methods are difficult, expensive, time-consuming and not viable for wide regions due to
limited samples and incomplete spatial coverage [7]. Remote sensing images have become
efficient data sources for AGB predictions in diverse-scale landscapes by providing different
spatial, spectral and temporal resolutions of images. Recent studies have used various
remote sensing data types to map the biomasses of different forests [8–16]. Currently, the
prevailing high-resolution light detection and ranging (LiDAR) systems can capture the
three-dimensional information of vertical forest structures and are well suited for forest
biomass estimation since they reduce the spectral saturation problem [17,18] against those
optical remote sensing images. However, LiDAR data have an operational limitation
for large area estimation due to their increased imaging cost, data processing cost and
spatial limitation [19]. Additionally, LiDAR systems do not provide infrared signals which
undermine their capability to analyze the vegetation status. On the other hand, low-
resolution satellite images (e.g., AVHRR, MODIS and SPOT Vegetation) have an advantage
for AGB prediction in large areas since only one scene covers a wide area of interest.
However, their accuracy is the lowest compared to moderate or high spatial data due to
their plot-pixel matching differences [20,21]. Therefore, the medium resolution satellite
images (e.g., Sentinel and Landsat) were increasingly applied for forest AGB estimation
at different spatial scales for their free accessibility and high suitability to landscape scale
analysis [22,23].

The European Space Agency (ESA) launched the Sentinel-2A (S-2) multispectral satel-
lite in 2015 following the SPOT and Landsat missions to monitor terrestrial surface [24].
The S-2 has a wide swath at 290 km with 13 multispectral bands including four bands at
10 m, six bands at 20 m, and three bands at 60 m, respectively. Therefore, it provides data on
land surface reflectance for many different wavelengths, such as Landsat 8. Some bands of
S-2 have better resolution over Landsat 8 (10 m overrides 30 m of Landsat 8). Additionally,
the level-1 TOA radiance or reflectance product from the S-2 satellite (S-2 L1C) can be
improved to a level-2 product as the BOA reflectance (S-2 L2A) using free atmospheric
correction tools in the Sentinel Application Platform (SNAP) software [25]. Particularly,
for the presence of longer wavelength red-edge bands in S-2 data, it is extremely useful
in vegetation monitoring [26]. Although many studies have explored the application of
S-2 optical satellite imagery in biomass mapping, there is still a present saturation problem
since it lacks the capability to vertically penetrate dense forests [27]. For example, an
optimal combination of reflectance, VIs and textural variables of S-2 has been employed in
existing AGB mapping in an attempt to reduce this saturation effect [28].

S-2 derived VIs can minimize atmospheric saturation to some extent and better distin-
guish vegetation characteristics (e.g., moisture content) and forest AGB, especially in the rel-
atively simply structured forests. Two studies by Adamu et al. [29] and Nuthammachot et al. [30]
proved that VIs from S-2 were best correlated with forest AGB. However, the sensitivity
of VIs to AGB varies among forest types and structures [31]. In a canopy complex forest
where spectral features cannot identify the vegetation structure (e.g., canopy depth), texture
features may improve the prediction accuracy of AGB thanks to their sensitivity to the hori-
zontal arrangement patterns of canopies and their shadows. For example, Li et al. explored
the performances of S-2 textures in AGB estimation for the mature broadleaved forest with
complex canopy layers [32]. Pandit et al. found that if proper processing techniques were
used, texture features could mitigate the saturation problem of S-2 spectral data to some
extent in the mature forest AGB prediction [33]. Different texture processing techniques
including the principal component analysis (PCA), gray level co-occurrence matrix (GLCM)
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and wavelet analysis (WA) were applied in existing scientific works. PCA has been proven
to be a method of reducing the dimensionality and increasing the interpretability of satellite
datasets [34] and can hold over 80% of all representative original information [22]; thus,
these generated principal components may have a stronger relationship with biomass
than individual original spectral bands, which are somehow independent of different
biophysical conditions. Recent studies have claimed that textural measures derived from
the GLCM and WA of satellite images could improve forest cover differentiation and forest
AGB estimation [35,36]. Additionally, topographic features such as elevation, slope, and
aspect are significantly related with the growth and distribution pattern of forests, and
thus are of great significance in AGB estimations. Recent research findings have proven
that variables derived from SRTM data at 30 m resolution are helpful for estimating forest
biomass and have great influence over the spatial distribution of AGB [37]. Elevation is
especially well correlated with forest AGB since it provides information about the forest
distribution and site attributes [38]. As proven by numerous studies for different forest
types with varying terrains, the topography may depend on the reflectivity of the specific
forest site and affect the AGB estimation [39].

Empirical regression techniques were widely used in the early studies of remote
sensing-based AGB estimation, considering the normality of the modeling datasets [40,41].
Therefore, simple linear or multiple linear regression models for practical AGB estimation
are limited because of the complex non-linear relationships between forest AGB and remote
sensing variables. Non-parametric models, also called machine-learning algorithms, do
not require a strictly linear assumption between the response and covariates due to the
independence of their data distribution. Machine learning models such as artificial neural
network (ANN), support vector machine (SVM), random forest (RF), and stochastic gradient
boosting (SGB) are popular non-parametric methods for identifying complex relationships
between the predictors and forest AGB [42,43]. Among these, RF and SGB are efficient
machine learning methods proposed by Breiman [44] and Friedman [45] and have been
successfully used in forest AGB estimations. Although these models estimating AGB well,
the major drawback of these models lies in their ignorance of the spatial autocorrelation of
sample plots [35]. Kriging interpolation provides the linear unbiased prediction of variables
based on the variogram model and is best applied to minimize the spatial variation error
between samples in AGB estimation [46].

Although these existing studies have had varying degrees of success in estimating
forest AGB in different forest ecosystems with varying structural complexities, they regard
AGB as an independent spatial biophysical variable when creating AGB prediction models,
whereas as one of the more important variables in biogeochemical cycles, forest AGB not
only has its own randomness in distribution, but also has structurized characteristics in
space. Thus, the modeling techniques of the classic statistics applied in the vast majority
of existing works that do not consider the auto-correlation information of forest AGB
cannot adequately capture spatial variations in AGB, which necessitates an improvement
upon existing modeling means by introducing geostatistical analytical methods, such as
Kriging interpolation.

In recent decades, radical demographic, economic and social changes in Myanmar
have placed considerable pressure on its forest resources [47]. According to the Food and
Agricultural Organization (FAO), in 2015, the forest area in Myanmar was 42.92% of the total
country, which had decreased from 45.04% in 2010 [48,49]. To cover this loss, the forestry
sector in Myanmar has been implementing the Myanmar reforestation and rehabilitation
plan (MRRP) under the REDD+ scheme starting from 2017 to 2026 in the areas of forest
degradation. As a REDD+ scheme, Myanmar predicts its forest reference emission level
(FREL) based on preliminary information from the reference year 2005 to 2017, which needs
to be periodically updated by integrating carbon improvement from reforestation programs
based on new knowledge, methods and trends in the future [50]. Hence, the reliable method
and data sources for mapping AGB by forest types are essential for Myanmar’s future FREL
calculation of REDD+ since local AGB maps are also the basis for the extension of estimates
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to larger areas using remote sensing approaches. To date, however, no systematic research
has been conducted to predict the spatial distribution of AGB by forest types, especially in
inaccessible areas of northern and eastern Myanmar because of operational limitations and
the consequent lack of data, technology and appropriately qualified individuals [47]. In
this context, the optimal integration of remote sensing data and modeling algorithms may
fill this gap.

The overall goal of this study was to evaluate the performance improvement of over-
laying geostatistical interpolation onto machine learning modeling based on S-2 and SRTM
in mapping the AGB of two forest reserves in Myanmar. Additionally, the robust AGB
maps generated from this work were also expected to support the strategic development of
carbon sequestration-aimed forestry management efforts in Myanmar.

2. Materials and Methods
2.1. Study Area

Two forest reserves in Myanmar, namely Namhton (NH) and Yinmar (YM), were
selected as case studies (Figure 1). They are located in the northern and central-eastern
parts of the country and have been formally protected by the Forest Department and by the
1992 Forest Law since 1995 and 2003, respectively.

Remote Sens. 2022, 14, x FOR PEER REVIEW 5 of 28 
 

 

 
Figure 1. Location of the study area: (a) country boundary; (b) location of the two forest reserves; 
(c) the Sentinel-2 true color image (collected in 26 January 2017) attached with field sample plots in 
NH; (d) the Sentinel-2 true color image (collected in 5 February 2017) attached with field sample 
plots in YM; (e) the DEM of NH; and (f) the DEM of YM. 

2.2. Data Collection and Processing Methods 
2.2.1. Sentinel-2 Images Pre-Processing and Indices Extraction 

The study site is located in two eco-regions (northern and central eastern) of Myan-
mar. Frequent rains and cloud contamination exist in the study sites, which highly restrict 
the availability of images collected in the peak season of vegetation growth (i.e., June–
September). Therefore, two S-2 L1C MSI satellite images, with tile numbers of T47RLL 
and T46QHL acquired on 26 January 2017 and 5 February 2017, respectively, were down-
loaded from the European Space Agency. Available online: https://www.scihub.coperni-
cus.eu (accessed 21 March 2022). These images are composed of 100 km2 tiles with 
UTM/WGS84 projection. The descriptive information of the images is summarized in Ta-
ble 1. The atmospheric correction of the two S-2 L1C scenes was performed with the 
Sen2Cor plugin in SNAP software to reduce the atmospheric, adjacency, and slope effects 
[51]. In the process, TOA reflectance images were converted into surface reflectance im-
ages with aerosol-free and noise reduction. Then, all 20 m spectral bands were resampled 
to 10 m using the nearest neighbor strategy. Bands 1, 9, and 10 were not suitable for AGB 
estimation and excluded from the analysis [52]. The images and spectral response curves 
for a test vegetation pixel before and after atmospheric correction are shown in Figure 2. 

  

Figure 1. Location of the study area: (a) country boundary; (b) location of the two forest reserves;
(c) the Sentinel-2 true color image (collected in 26 January 2017) attached with field sample plots in
NH; (d) the Sentinel-2 true color image (collected in 5 February 2017) attached with field sample plots
in YM; (e) the DEM of NH; and (f) the DEM of YM.

The NH forest reserve area is approximately 19,418 hectares and the dense evergreen
forest type dominates this region, geographically spanning from 97◦13′00′′E, 27◦23′30′′N
to 97◦24′30′′E, 27◦13′00′′N. It is situated in the Putao Township, Myitkyina District, of
northern Kachin State. The terrain in the region is mountainous, with an altitude ranging
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from 416 m to 1951 m. The annual average temperature of the area is 22.13 ◦C, with its
average annual precipitation ranging from 1218 mm to 2800 mm; snowfall used to be heavy
in the northern part, at higher altitudes of the mountainous regions. Evergreen tree species
such as Quercus glauca, Macaranga denticulata, Michelia champaca, Shorea assamica, and Ficus
cuspidata, are typical tree species of NH. A village called “Namhton Ku” is located in the
center of this reserved forest as an encroachment, where forest-related field data collection
was not performed.

The YM is a deciduous forest reserve-dominated region with an area of 20,163 hectares
which is located between latitude 23◦7′30′′N–23◦17′00′′N and longitude 96◦18′30′′E–96◦33′30′′E,
in Moemaik Township, Kyaukme District of Shan State. The mean annual temperature of
this region is approximately 27 ◦C with an average annual rainfall ranging from 1000 mm to
1500 mm. The terrain is relatively flat, ranging from 128 m to 261 m according to the analysis
of the SRTM DEM data. The vegetation in the YM region is predominantly Dipterocapaceae
species such as Dipterocarpus alatus, Hopea odorata, Dipterocarpus tuberculatus, and Shorea
obtuse. The vegetation in this area is mainly deciduous, losing its leaves during the dry
season. Additionally, bush fires, which frequently occur during the dry season, further
reduce the available foliage. Biomass or carbon stocks during the dry season months can
therefore dramatically differ from those during the rainy season for the same area.

2.2. Data Collection and Processing Methods
2.2.1. Sentinel-2 Images Pre-Processing and Indices Extraction

The study site is located in two eco-regions (northern and central eastern) of Myanmar.
Frequent rains and cloud contamination exist in the study sites, which highly restrict
the availability of images collected in the peak season of vegetation growth (i.e., June–
September). Therefore, two S-2 L1C MSI satellite images, with tile numbers of T47RLL and
T46QHL acquired on 26 January 2017 and 5 February 2017, respectively, were downloaded
from the European Space Agency. Available online: https://www.scihub.copernicus.eu
(accessed 21 March 2022). These images are composed of 100 km2 tiles with UTM/WGS84
projection. The descriptive information of the images is summarized in Table 1. The
atmospheric correction of the two S-2 L1C scenes was performed with the Sen2Cor plugin
in SNAP software to reduce the atmospheric, adjacency, and slope effects [51]. In the
process, TOA reflectance images were converted into surface reflectance images with
aerosol-free and noise reduction. Then, all 20 m spectral bands were resampled to 10 m
using the nearest neighbor strategy. Bands 1, 9, and 10 were not suitable for AGB estimation
and excluded from the analysis [52]. The images and spectral response curves for a test
vegetation pixel before and after atmospheric correction are shown in Figure 2.

Table 1. Descriptive information of the images used in the analysis.

Image/Product Tile Number and Acquisition Date Cloud
%

Bands Used for
Modeling Spatial Resolution (m) Central Wavelength (nm)

S-2 L1C
Product

T47RLL on
26 January 2017 3.63

B2 (blue) 10 490
B3 (green) 10 560

B4 (red) 10 665

T46QHL on
5 February 2017 0.18

B5 (red edge) 20 705
B6 (red edge) 20 740
B7 (red edge) 20 783

B8 (NIR) 10 842
B8A (red edge) 20 865

B11 (SWIR1) 20 1610
B12 (SWIR2) 20 2190

The individual application of spectral values in a predictive model could not give a re-
liable estimation compared to when using combined VIs. In addition to the spectral bands,
VIs were calculated based on the original reflectance bands in the raster calculator tool. The
plot-level vegetation index mean values were extracted using the zonal statistics tool of
ArcGIS, and using the plot size (0.08 ha) to match the AGB calculations. In this study, the

https://www.scihub.copernicus.eu
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normalized difference vegetation index (NDVI) [53], red-edge normalized difference vege-
tation index (RENDVI) [54], weighted difference vegetation index (WDVI) [55], enhanced
vegetation index (EVI) [56], red-edge enhanced vegetation index (REEVI) [57], soil-adjusted
vegetation index (SAVI) [58], green-normalized vegetation index (GNDVI) [59], normalized
difference water index (NDWI) [60], simple ratio (SR) [61], normalized difference vegetation
index with bands 4 and 5 (NDI45) [62] and meris terrestrial chlorophyll index (MTCI) [63]
were calculated. The detailed formulas for VIs calculation are described in Table 2.
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Table 2. List of Sentinel-2-derived variables and topographic factors used in AGB modeling.

Satellite Data Bands and Indices Formula

Sentinel-2
Level-2A

10 m-resolution

Multispectral bands

Band 2 BLUE
Band 3 GREEN
Band 4 RED
Band 5 RE1
Band 6 RE2
Band 7 RE3
Band 8 NIR

Band 8A RE4
Band 11 SWIR1
Band 12 SWIR2

Vegetation indices
(Broad bands)

NDVI NIR − RED/NIR + RED
SAVI 1.5 × (NIR − RED)/(NIR + RED + L)
EVI 2.5 × (NIR − RED/NIR + 2.4RED + 1)

GNDVI (NIR − GREEN)/(NIR + GREEN)
WDVI (NIR − 0.5 × RED)

SR (NIR/RED)
NDWI NIR − SWIR2/NIR + SWIR2
NDI45 (RE1 − RED)/(RE1 + RED)
MTCI (RE2 − RE1)/(RE1 − RED)

Vegetation indices
(Narrow red-edge bands)

RENDVI NIR − RE1/NIR + RE1
REEVI 2.5 × (NIR − RE1/NIR + 2.4RE1 + 1)

Resampled SRTM DEM (10 m)
Elevation Ele -

Slope Slope -
Aspect Asp -

2.2.2. SRTM Data Pre-Processing and Variables Extraction

SRTM topographic data were downloaded from the USGS EROS Data Center. Avail-
able online: https://www.earthexplorer.usgs.gov/ (accessed 23 March 2022). These eleva-
tion data offer worldwide coverage of void-filled data at a resolution of one arc-second (ap-
proximately 30 m) and a high-resolution global dataset. These topographic data were first
reprojected into UTM/WGS84 since the projection system of these data are GCS/WGS84.
To match with S-2 spectral bands, they were also resampled to 10 m spatial resolution
using the nearest neighbor method in the ArcGIS package. Then, from this resampled
dataset, two forest reserves boundaries were clipped and the elevation, slope and aspect
were similarly extracted using the zonal statistics tool in ArcGIS (Table 2).

2.2.3. Texture Features Extraction

Principal component analysis (PCA) can be used to remove correlated or redundant
information in the satellite images and simultaneously reduce their dimensionality [34].
The first three principal components were produced as the potential image variable for
modeling AGB. The first principal component (PC1) was used for texture extraction as it
contained over 80% of the original spectral information. When extracting textural features,
the gray level co-occurrence matrix (GLCM) method and wavelet decomposition method
were applied. Among these, the GLCM textures including the mean, variance, homogeneity,
contrast, dissimilarity, entropy, second moment, and correlation were extracted with differ-
ent window sizes (3 × 3, 5 × 5, 7 × 7) from the PC1 image in the ENVI5.3 package (Table 3).
In this study, the GLCM-based textures derived from a 7 × 7 window size were selected as
predictive variables for AGB estimation after the correlations of different window sizes’
textures with the measured AGB were tested.

https://www.earthexplorer.usgs.gov/
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Table 3. Gray level co-occurrence matrix-based textural measures extracted in the current work.

Data GLCM Texture Formula Reference

PC1 image from 10 m
resolution bands of
S-2 L2A

mean ∑N−1
i,j=0 iPi,j

Robert [64]

variance ∑N−1
i,j=0 iPi,j(1− µi)

homogeneity ∑N−1
i,j=0 iPi,j/(1 + (i− j)2)

contract ∑N−1
i,j=0 iPi,j(i− j)

dissimilarity ∑N−1
i,j=0 iPi,j|i− j|

entropy ∑N−1
i,j=0 iPi,jInPi,j

second moment ∑N−1
i,j=0 iPi,j2

correlation ∑N−1
i,j=0(i(

N−1
∑

i,j=0
ijPi,j2 − µiµi)/σi2σi2)

Additionally, the wavelet analysis was also considered to be an effective means of
extracting textures. Wavelet transformation is a multi-resolution analysis tool for image
signal processing, which has two distinct abilities: subtle variation in spectral features
in the original data can be detected at different scales and the useful information can be
represented by fewer wavelet features by compressing data [51]. The wavelet analysis
produces four basic components including the approximation image, horizontal detail,
vertical detail and diagonal detail images of which the latter three are usually regarded as
helpful textural measures. In this study, the Coiflect discrete wavelet function was chosen
after repeated tests with different mother wavelets (the Haar wavelet, Daubechies (dbN)
and Symlets (symN)) in the Matlab package because it had the highest correlation with
AGB. Thus, based on the first principal component (PC1), a three-level decomposition
strategy was implemented through programming in the Matlab environment to generate
9 detailed images as independent textural variables for AGB modeling. Finally, two types
of textures derived from GLCM-based and wavelet analysis were included in the AGB
modeling in this study. The Coiflet wavelet-based decomposition procedure is summarized
in Figure 3.
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2.2.4. Field Forest Inventory Data

Myanmar’s Forest Department conducted the national forest inventory (NFI) data
collection in February and March of 2017 with the financial support of the Finnish govern-
ment and according to the guidelines of the FAO technical team. These secondary forest
inventoried data were used to estimate and infer the plot-level AGB of the study area.
The sampling design of Myanmar’s NFI is shown in Figure 4. The systematic sampling
method was constructed according to the eco-regions of Myanmar in order to cover all
forest types. However, due to inaccessibility, no sample plots were collected for some areas
in the NM (Figure 1c). Each sampling cluster comprises four 0.08-hectare circular subplots
(Elbow, East, North and Northeast) in which the distance between adjacent subplots is
50 m. Within these circular subplots, all trees above 10 cm diameter at breast height (DBH)
were measured to record data, including the DBH, tree height (H), and crown width. The
diameter tape and Leica laser finder were used to measure the DBH and H of trees. Other
forest parameters such as shrub cover, sapling cover, bamboo coverage, humus depth, litter
coverage, and tree bark thickness were also collected in all sample plots. Ultimately, data
collection was performed in 88 subplots in NH (evergreen forest) and 170 subplots in YM
(deciduous forest).
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2.2.5. Allometric Equation and Calculated AGB

Since the species-specific allometric equations are not available for the study region,
we had to use the unpublished national-level coarse allometric equations for evergreen
forest and broad-leaved forest to calculate the plot-level AGB. The AGB formulas were
as follows:

For NH Evergreen, AGB = ρ1 × exp
(
−1.499 + 2.148 ln(DBH) + 0.207(ln(DBH))2 − 0.0281(ln(DBH))3

)
(1)
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For YM Deciduous, AGB = ρ2 × exp
(
−0.667 + 1.78 ln(DBH) + 0.207(ln(DBH))2 − 0.0281(ln(DBH))3

)
(2)

where, AGB is in kg per tree, DBH is in cm, ρ1 and ρ2 are the basic wood density parameters
for evergreen forest and deciduous broad-leaved forest, respectively.

Using the national level biomass expansion factors Equations (1) and (2), AGB was
computed for each tree and summed up by each plot to obtain plot-level AGB. Finally,
the plot-level field AGB values were converted from kg/plot into ton/ha. Therefore, the
AGB unit in this study was t/ha. Table 4 shows the descriptive statistics of the field-
observed AGB.

Table 4. Descriptive statistics of the field-measured AGB (t/ha) for the two forest reserves.

Forest Type Number of
Sample Plots

AGB (t/ha) Value
Range Median Mean Std.

Deviation

Number of Sample Plot Used in Modeling

Training Validation

Evergreen 88 0.57–151.64 38.40 49.00 39.206 71 17
Deciduous 170 2.74–215.24 100.02 98.00 51.73 140 30

2.3. Aboveground Biomass Detection Methods
2.3.1. Prediction Model Establishment

In this study, Random Forest (RF) and stochastic gradient boosting (SGB) models
were first performed for AGB prediction. Then, based on the better one (RF or SGB), the
predicted residuals (the difference between the observed AGB and the model-predicted
AGB) were further analyzed and compared using ordinary Kriging (OK) and the co-Kriging
(CK) to separate the structured components hidden in the residuals, followed by adding
the better structured components onto the better model predictions to obtain the final AGB
predictions. The detailed modeling approaches are summarized as follows:

Random Forest and Stochastic Gradient Boosting Models

Parametric and non-parametric models have been utilized either alone or combined
with environmental variables for remote sensing-based AGB mapping. Nevertheless,
choosing the suitable variables set and modeling algorithm is critical for the improving the
accuracy of prediction model.

The RF model is a bagging algorithm which enhances accuracy and reduces overfitting
and bias [65]. SGB is a boosting ensemble method with low sensitivity to outliers, with
the ability to deal with unbalanced training datasets [44]. Both models are non-parametric
modeling approaches which have a performance superior to those of other machine learning
techniques such as the K-nearest neighbor (KNN), support vector machine (SVM), and
the multivariate adaptive regression splines (MARS) [66,67], which is increasingly being
applied to satellite-based biomass mapping [9].

In view of these advantages, in the current study, the RF and SGB models were per-
formed as the first attempt to predict the AGB of the two forest reserves (NH and YM). The
RF model was implemented in the “randomForest” package [68] within R Studio. This
package supports the chart that illustrates the GI-index and OOB error rate to determine the
most important modeling variables. From this comprehensive chart, preference variables
can be selected for a prediction model to reduce the complexity and load of computa-
tion. In the RF regression analysis, the variables’ importance ranking was determined
by out-of-bag (OOB) error and node-purity percent (IncNodePurity). The first variable
importance analysis was calculated by randomly permuting each predictor variable and
computing the associated reduction in predictive performance using the out-of-bag (OOB)
error. The second most important variable was estimated by determining the decrease in
node impurities attributable to each predictor variable. Larger InNodePurity and %InMSE
indicate higher model accuracy in terms of ranking variable importance. Parameters such
as the number of trees (ntree), the number of variables used to split the tree at each node
(mtry), and node size are adjustable for the RF model. For RF-prediction models in this
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study, after multiple tests, the ntree, mtry and nodesize were specified to be 600, 4, and 5
for the evergreen forest (NH) and 1400, 2, and 5 for the deciduous forest (YM), respectively.

The SGB algorithm is based on the combination of the regression tree and boosted
algorithms to predict the response variable. This algorithm also reduces the chance of
overfitting by introducing an element of stochasticity due to its flexibility and high predic-
tive performance. Unlike RF, a tree is constructed from a different random sub-sample of
the dataset in the SGB model, producing an incremental improvement in the model. In
this study, all steps of the SGB analysis were implemented in the “gbm” package in the
R-studio [69]. The “vip” function in the “gbm” package was also used for the selection
of important variables for the SGB model. The SGB model adjustment includes the dis-
tribution, interaction depth, bagging fraction, shrinkage rate, and training fraction. The
out-of-bag method was used for determining the optimal number of boosting iterations.
The maximum iteration tree was stopped at 420 in the evergreen forest AGB (NH) SGB-
prediction model and 600 at the deciduous forest AGB (YM) SGB-prediction model, as more
iteration tree numbers could no longer improve models’ accuracy. The interaction depth,
also known as the maximum number of possible interactions, was set to 3 and 4 nodes for
the NH and YM SGB-models, respectively. The bagging fraction controlling the fraction of
the training data, the shrinkage rate controlling the learning speed of the algorithm, and
the training fraction randomly selected for calculating each tree were set to 10, 0.03, and 10
for both SGB models (NH and YM).

Once the RF and SGB models were created for the two forest reserves, their predictive
performances in AGB estimation were compared to determine the better model; then,
based on this model, all the residuals resulting from the model were further analyzed
by implementing OK and CK autocorrelation algorithms to separate the structurized
component or trend item hidden in the residuals.

Random Forest-Based Kriging Model

In this study, RF performed better than SGB in both the NH and YM AGB prediction
models in terms of accuracy evaluations; thus, to improve the accuracy of RF models or
finding the spatial correlation of AGB samples, RF-based OK and CK analyses (RFOK and
RFCK) were also performed as subsequent steps. Since the RF model does not consider
spatial autocorrelation among the AGB sample plots, AGB is actually a typical item with
relatively high spatial autocorrelation; thus, a combination of RF and Kriging (RFK) was
potentially an effective and more reliable means of determining the spatial distribution
of AGB in this study. Specifically, a regression-Kriging technique was used to extract
the structured components of the residuals obtained from the RF regression [70]. As the
procedure of Kriging interpolation, the modeling semivariogram is important to determine
the accuracy and reliability of the estimates. Kriging includes ordinary Kriging (OK) and
co-Kriging (CK) in which OK is a suitable interpolation method for the uneven distribution
of terrain and climatic variation events, while CK is the best method for improving the
accuracy of target prediction [22]. OK is a linear estimation method suitable for inherently
stationary random fields which satisfies the isotropic hypothesis [71] and fully considers
spatial parametric non-stationarity as well as the effects of environmental variables derived
from the benefits of RF. It is a widely used geostatistical technique that generates an optimal
unbiased estimated surface employing a semivariogram based on regionalized variables.
The interpolation formula of OK is as follows:

ZOK
∗(x0) = ∑n

i=1 λiZ(xi) (3)

where ZOK * (x0) is the residual value of the AGB to be estimated at location x0, n is the
number of sample points used for interpolation, Z(xi) is the AGB residual of site i, and λi is
the weighting coefficient at point i.

CK is an improvement over the OK method and deals with multivariate problems [22].
Since the study areas include two reserved forests with different terrains, AGB is definitely
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affected by elevation. Thus, the elevation factor was used as a co-variable for interpolation.
This was expressed as follows:

Z2,CK
∗(x0) =

N1

∑
i=1

λ1iZ1(x1i) +
N2

∑
j=1

λ2jZ2
(
x2j

)
(4)

where Z2,CK
∗(x0) is the residual values of AGB to be estimated, Z1(x1i) is the AGB residual

of the site i, λ1i is the weighting coefficient of site i, Z2
(
x2j

)
is the elevation of site j, and λ2j

is the weighting coefficient of site j.
Variograms are an effective tool for analyzing the spatial variation and structure of

target predictors for the reliable estimation of AGB. The performance of the semivariogram
was assessed by the coefficient of determination (R2) and the root mean square error
(RMSE). The larger the R2, the smaller the RMSE and nugget effect, and the better the fitting
performance was.

In RF-Kriging modeling, the estimated residual value of each sample point was
calculated by subtracting the RF-derived predicted AGB value from the field-observed
AGB value. It can be calculated as follows:

Z(xi) = C(xi)−C R̂F(xi) (5)

Final AGB prediction by RFOK or RFCK method was acquired by the following equation:

C R̂FOK/RFCK(xi) = C R̂F(xi) + Z K̂(xi) (6)

where C R̂FOK/RFCK(xi) is the predicted AGB at site i using RFOK or RFCK, where Z K̂(xi) is
the AGB residual value of site i, C(xi) is the observed AGB of site i, C R̂F(xi) is the RF-based
predicted AGB at site i.

Finally, the maximum livelihood classifier in ENVI Classic 5.3 was applied to classify
the forest and non-forest areas of the study area. The resulting classified forest area was
used as a mask to obtain the forest AGB maps of the study area.

2.4. Accuracy Assessment

The training and validation sets were determined as 80 and 20% of the sampled data
using stratified sampling for all statistical analyses. Model performances were assessed
based on the coefficient of determination-R2, the mean absolute error (MAE), the root mean
square error (RMSE), the RMSE%, bias, and bias%, based on the validation set (20% of
samples). In addition, the relative improvement (RI) index for assessing RFOK and RFCK
over RF models was also performed (7):

RI =
RMSERF − RMSERFOK/RFCK

RMSERF
(7)

where, RMSERF is the root mean square error from RF predicted model, ̂RMSERFOK/RFCK
is the root mean square error from RFOK and RFCK models, respectively.

3. Results
3.1. Variable Importance and Selections

In the RF variable importance analysis, the %IncMSE by OOB error and %InNodePu-
rity by Gini index are indicators of the importance ranking. The topmost important
variables picked up by the evergreen NH and deciduous YM RF models are shown in
Figure 5a,b. For the generalizing the model and reducing the computation load, only the
top 10 variables were selected as the final RF model inputs. S-2 derived the reflectance,
Vis and textures from the wavelet decomposition, and the topographic variables were
included in the list. In the RF model, topographic variables and textures from WA were
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major contributors to the evergreen NH forest AGB estimation, while VIs showed better
sensitivity to deciduous AGB.
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In the variables analysis for the SGB model, the lowest RMSE could be found for an
interaction depth of 3, a shrinkage ratio of 0.03, and 420 iterations in the evergreen forest
reserve. For the deciduous forest reserve, an interaction depth of 4, shrinkage ratio of
0.03, and 600 trees were the best parameters for model fitting. Figure 5c,d show the most
important variables of SGB models for evergreen NH and deciduous YM AGB estimation.
In SGB models, topographic variables and textures from WA were identified as major
contributors to the NH evergreen AGB estimation, while VIs had better sensitivity for the
deciduous AGB prediction. According to the variable importance analyses in the RF and
SGB models, the variables did not differ a great deal in terms of their sensitivity to AGB in
same forest types.

3.2. Validation Metrics for RF and SGB Models

Among the sample plots, 80% were used for training the models (RF and SGB). For
the RF evergreen model training, the optimum model accuracy was obtained from the
following parameters, ntree = 600, mtry = 4 with nodesize = 5, considering the important
predictors. The adjusted parameters values of ntree = 1400, mtry = 2 and nodesize = 5
were selected for the RF deciduous model. The RMSEs values of 11.17, 17.36 t/ha and
corresponding RMSE%s 23.06 and 17.45 were obtained while the R2 values were 0.95 and
0.97 for evergreen and deciduous training models. It was also observed that the bias and
bias% of the evergreen training models were −0.59 and −1.20%, while the deciduous
model obtained −0.011 and −0.11%, respectively. The smallest RMSE value was observed
in the evergreen forest since the AGB values of the training plots in this type were smaller
than those of the deciduous forest (Table 4).

Depending on the shrinkage ratio, the interaction depth, and the number of regression
trees, the two SGB model performances were evaluated. The SGB evergreen model resulted
in an R2 value of 0.98 and an RMSE of 4.62 t/ha with the corresponding RMSE%, bias and
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bias% of 9.45, −1.24 and −2.54, respectively. In the trained model of SGB for the deciduous
forest, the R2, RMSE, RMSE%, bias and bias% were 0.97, 8.83, 8.88, −3.02 and −3.04.

In addition to model training, 20% of the sample plots were used for model validation.
Figure 6 and Table 5 show the validation metrics for RF and SGB models. The R2 values of
the NH evergreen RF model and NH SGB model were 0.47 and 0.35, respectively, while
RMSEs values of those models were 25.45 and 32.02 t/ha, respectively. Meanwhile, the
R2 and RMSE values of the YM deciduous RF model and YM SGB model were estimated
to be 0.38, 0.35 and 40.23, 41.85 t/ha. In the scatter plots of Figure 6, the points along the
fitted lines showing the correlation of predicted and observed AGB are scattered in both
NH and YM, which showed large AGB values which were underestimated and small AGB
values which were overestimated. Nevertheless, by considering the validation models’
metrics, the RF models had higher R2, lower RMSE, and bias values than SGB models in
the biomass estimation at each growth stage, indicating that the RF models can provide
more accurate biomass estimations than SGB; thus, the residuals from the RF model were
further analyzed to attempt to extract the structured components from the residuals to
possibly improve the ultimate prediction accuracy of AGB.
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Table 5. Validation metrics of RF, SGB, RFOK, and RFCK models based on 20% of the sampled data.

Forest Type Model R2 RMSE
(t/ha) RMSE% MAE (t/ha) Bias Bias% RI

NH Evergreen RF 0.47 25.45 51.44 22.45 0.15 0.29 -
NH Evergreen SGB 0.35 32.02 64.72 27.03 2.48 5.03 -
NH Evergreen RFOK 0.47 24.91 50.34 22.19 3.35 6.76 0.021
NH Evergreen RFCK 0.46 25.75 52.04 57.67 −49.27 −99.57 −0.011
YM Deciduous RF 0.38 40.23 44.09 33.07 6.18 6.77 -
YM Deciduous SGB 0.35 41.85 45.88 33.00 6.91 7.58 -
YM Deciduous RFOK 0.52 34.84 38.19 27.51 0.30 0.33 0.134
YM Deciduous RFCK 0.52 34.72 38.06 27.47 0.06 0.06 0.137

3.3. Semivariogram Analysis Results of RF-Derived Residuals

Residuals of the RF-predicted AGB were derived by subtracting the RF-predicted
AGB from the field-measured AGB. Table 6 shows the statistics of the residuals. The
mean residual values for the evergreen and deciduous AGB were −0.91 and −1.60 t/ha,
respectively. In addition, the residual value range of the deciduous forest (82.43 t/ha) was
much higher than that of the evergreen forest (34.52 t/ha). The standard deviation of the
evergreen residuals (15.38 t/ha) was smaller than that of the deciduous (23.12 t/ha). The
residual values were shown in different colors and sizes based on their distribution in
Figure 7. As shown in the histogram distribution in Figure 7, the residual values of the
evergreen forest were not close to normal distribution while deciduous residuals were
approximately normally distributed. Nevertheless, the procedure of the semivariogram
analyses for both forest reserves was performed for testing the accuracy of the models.

Table 6. Residual’s statistics derived from the RF model prediction.

Forest Type
Residual

Mean
(t/ha)

Std. Deviation (t/ha) Value Range
(t/ha) Skewness Kurtosis

NH
Evergreen −0.91 15.38 −45.90–34.52 −0.31 3.57

YM
Deciduous −1.60 23.12 −75.97–82.43 −0.03 4.50

After the normality of the residuals was verified in SPSS, these residual values could
be used for semivariogram analysis based on the ordinary Kriging (OK) and the co-Kriging
(CK) in the semivariance analysis. The model with the largest R2 and smallest RMSE was
determined as the optimal analytical function of the semivariogram. As a result, Gaussian
function was picked up (Table 7). Furthermore, elevation was used as a co-variable in
the CK model for the better estimation of AGB. Table 7 and Figure 8 show the modeled
semivariogram and semivariance models using OK and CK analyses. Evergreen forest
models were poorly fitted; the R2 values were much lower than those of deciduous models
(0.19-OK and 0.15-CK versus 0.58-OK and 0.62-CK). The nugget value in the OK model
of the evergreen AGB residuals was slightly smaller than that of the corresponding CK
model, indicating stronger spatial homogeneity. In the CK model of deciduous residuals,
the nugget value was also smaller than that of the OK model. Moreover, the ratio of nugget
and sill (nugget/sill) determined the variation of spatial autocorrelation between the AGB
sample plots. From the OK models, the smaller nugget/sill ratio (0.95) exhibited stronger
spatial homogeneity than the CK model with nugget/sill (0.99) for evergreen residuals.
In the deciduous residuals, CK gave a smaller nugget/sill (0.74), indicating a stronger
spatial correlation by considering elevation as a co-variable. This meant that deciduous
forest AGB varied closely in space with the terrain variations. The improvement was not
obvious in the evergreen OK and CK models compared to the evergreen RF model since the
residuals were not normally distributed because of the existence of a spatial gap between
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the evergreen sample plots that restrict the principle of spatial correlation (Figure 7a). Thus,
the OK model could not serve to fit the spatial patterns of the residuals in the evergreen
forest AGB, while the CK model performed better in terms of fitting the spatial patterns
of the residuals in the deciduous forest AGB in the study area when considering their R2

and RMSE values. Nevertheless, these residuals were used to interpolate their structured
components in the evergreen and deciduous forests, respectively.
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Figure 7. Spatial distributions of the residuals and corresponding frequency histograms; (a,c) are
RF-based AGB-residuals for NH evergreen and YM deciduous, respectively; (b,d) are frequency
histograms of AGB-residuals for NH evergreen and YM deciduous, respectively.

Table 7. Parameter estimations for the semivariogram analysis based on Gaussian function.

Model Parameter Theoretical Model Nugget Sill Nugget/Sill Range
(m) R2 RMSE

(t/ha)

NH Evergreen OK Gaussian 138.53 145.09 0.95 99.57 0.19 12.42
NH Evergreen CK Gaussian 249.63 249.75 0.99 9611 0.15 18.69
YM Deciduous OK Gaussian 245.93 324.58 0.76 10123 0.58 24.38
YM Deciduous CK Gaussian 239.97 326.26 0.74 9890 0.62 22.65
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3.4. Forest AGB Mapping Results Based on RFOK and RFCK Models

The predicted AGB of the two forest reserves were obtained from the RFOK for the
evergreen and RFCK for the deciduous forests, and the validation performances with
20% sample data based on Equation (6) were correspondingly derived. Table 5 shows the
validation accuracy improvements of RFOK and RFCK in relation to the initial RF model.

Although the R2 value (0.47) of the RFOK model for evergreen did not increase
compared to the original RF model, its RMSE, RMSE% and MAE all decreased with
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different magnitudes, and its RI value was 0.02, indicating a slight improvement in AGB
prediction. However, the RFOK had the worst predictive performance in the evergreen
forest. For the deciduous forest, the RFCK model outperformed other two RFOK and RF
models, particularly in relation to the RF, as the RFCK’s R square value increased from
0.38 to 0.52 and its RMSE decreased from 40.23 t/ha to 34.72 t/ha, with an RI value of
13.7%. However, compared to RFOK, RFCK only took on a very tiny improvement in the
prediction accuracy.

In addition to the model evaluation, the generalization ability of the model was also
considered. The AGB value range of the predicted map could reflect the model’s robustness
to some extent. The range of AGB values predicted for the evergreen using the RF model
was 88.75–129 t/ha. The AGB prediction value range from RFOK was 94.3–139.83 t/ha
and the RFCK had a value range of 94.06–139.62 t/ha, respectively. The AGB prediction
value range in the deciduous was 40–176 t/ha, 30.41–187.84 t/ha, and 32.88–185.65 t/ha for
RF, RFOK, and RFCK. These variations in the value range clearly indicated an improved
generalization ability of RFOK and RFCK, with higher robustness. The largest evergreen
AGB values were found in the northern and western boundaries of NH while the AGB in
the central and eastern parts were sparsely distributed. In this area, the low AGB values
were found close to a village and flat area. Deciduous AGB was covered with large values
in some parts of northern YM, and they were evenly distributed in the reserved area, except
in the southeastern boundary which is close to a village. The AGB maps derived from all
performed models are shown in Figures 9 and 10.
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4. Discussions

To the best of our knowledge, this is the first study evaluating the capability of S-2
satellite data for AGB mapping in evergreen and deciduous forest reserves in Myanmar.
AGB mapping in these forest reserves is very fundamental for carbon strategies, especially
for Myanmar REDD+ mechanisms which need to report the carbon improvement of forests
from reforestation programs for future FREL submission. Moreover, the prediction methods
proposed in this study are noticeably relevant for future forest management practices
in Myanmar, which previously exhibited a lack of robust AGB estimation methods for
forest types. We proved that THE combined use of S-2, its derivatives, and topographic
parameters, in tandem with proper modeling techniques, could improve AGB estimation.

4.1. Sensitivity of Sentinel-2 Derivatives to AGB

The correct selection of variables contributing to a model is critical for AGB esti-
mation. In most AGB mapping studies with S-2 derivatives, four novel wavebands in
the red-edge region and near-infrared region (NIR) (B5, B6, B7 and B8A) showed good
performance [16,72]. These reflectance regions offer unprecedented spectral signatures
which are highly sensitive to the biophysical and biochemical responses of vegetation that
are critical for measuring vegetation characteristics such as biomass [72]. However, in this
study, the classical and short-wave infrared bands (B2, B3, B4, B11, and B12) outperformed
these aforementioned spectral bands. The excellent performance of these bands is that
carbon and nitrogen-containing metabolites reach their reflectance peak in wavebands be-
tween 440 nm and 570 nm due to the nature of the forests in the study area (B2 and B3) and
concurred with the previous study [73]. Forest canopy in the evergreen forest can uptake
maximum chlorophyll absorption due to non-deciduous phenomena. B3 and B4 in the
S-2 have strong sensitivity to chlorophyll in evergreen vegetation, while B2 can effectively
distinguish vegetation and soil background in the deciduous forest where the reflectivity of
soil is apparent because of the simple canopy structure. Even though vegetation can reflect
the maximum energy at NIR despite the fact that it is unable to provide any information on
the soil under the vegetation, SWIR bands in S-2 can distinguish the vegetation and soil to
some extent. A recent finding by Chen et al. verified that SWIR spectral bands (B11) could
efficiently detect the moisture content of vegetation [37]. Moreover, Dang et al. proved
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that the broad bands (B11, B12) of S-2 were the best response variables of AGB prediction
with an R2 of 0.81 and an RMSE of 36.67 Mg t/ha [6]. Hence, the high sensitivity of SWIR
bands to biomass observed in this study seems plausible, which is in agreement with the
existing studies.

The VIs used in this study (NDVI, GNDVI, SAVI, SR, RENDVI, NDI45, and NDWI)
were primary contributors to the AGB estimation of forests since they have the ability
to maximize the sensitivity of vegetation characteristics and minimize soil background
reflectance and atmospheric effects. Balidoy et al. proved that the SR and NDVI of S-2
data were the most effective biomass predictors, providing the highest accuracy (R2 = 0.89;
RMSE = 5.69 Mg/ha) [74]. Ghosh et al. found that the effectiveness of NDVI, GNDVI, SAVI
indices of S-2 for dense tropical AGB mapping had an R2 value of 0.6 and an RMSE value
of 79.45 t/ha for the teak forest [35]. The findings of Pandit et al. were entirely consistent
with those of this study. The set of 24 variables including NDVI, GNDVI, RENDVI, SAVI,
and SR produced overall plausible and strongly explained variable values, with R2 = 0.81
and RMSE = 1.07 kg/m [72]. Although VIs produced from traditional broad bands can
reduce the saturation problem in simple canopy forest, they are less sensitive to complex
forest stands with high biomass values [75]. In this regard, the red-edge bands derived
indices are highly sensitive to such kind of dense vegetation structures and relatively less
prone to spectral saturation. For example, the standard NDVI from B4 and B8 is less
effective than RENDVI from red-edge bands (B5, B8) in AGB estimation [76] and hence
red-edge-derived indices can be effectively applied in dense vegetation cover (e.g., RENDVI
is sensitive to the NH evergreen forest AGB in the current work). SWIR bands are related
with nitrogen, lignin, and cellulose, capable of retrieving canopy structural attributes and
biomass. Canopy water content index from SWIR bands (e.g., NDWI in this work) is highly
sensitive to deciduous forest AGB but not to evergreen AGB because canopy structure in
deciduous forest is relatively simple, which is in agreement with the previous findings of
Ewald [77]. They pointed out that in the very dense canopy plantation, SWIR indices could
not effectively improve AGB estimation compared to other indices. This study claims that
red-edge indices are suitable for complex canopy AGB retrievals while SWIR indices are
useful for simple canopy forest AGB estimation.

The textural variables are strongest candidates of evergreen forest AGB, especially the
textures (coif1-d, coif1-dd, and coif1-hh) extracted from Coiflect wavelet analysis of the
PC1 image. They could obviously improve the AGB estimation as the horizontal structures
of the evergreen forest can be effectively characterized by them. Previous research had
shown that texture measures have the potential to improve AGB estimation, especially for
complex vegetation structures where canopies’ reflectance values tend to be saturated but
the horizontal structures represented by textural indices still have differences. If proper
processing techniques are used, textural measures could improve the prediction accuracy
of AGB models. According to Eckert et al., textures were much better to capture the various
forest canopy structures of the forest strata than the spectral reflectance or band ratios, due
to their sensitivity to the spatial aspects of the canopy shadow [78]. Su et al. proved the
excellent performance of textures from the PC1 image for AGB prediction of sub-tropical
forest where saturation problem occurred [22]. Moreover, Cutler et al. argued that the
textures extracted from GLCM method and the WA of satellite images yielded better
results in the AGB estimation and forest type classification [79]. Our results concur with
aforementioned studies. However, in this study, GLCM-based textures were not highly
correlated with AGB. The reason might be that the window size (7 × 7) could not reduce
the border effects of pixels to attain original spectral values and thus, texture window size
determination should be considered in accordance with the types of satellite data in future
studies. We conclude that the wavelet decomposition analysis of satellite images might
improve evergreen forest AGB estimation because it produces more suitable textures to
effectively depict evergreen forest horizontal structures to reduce the saturation problem of
spectral signals.
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4.2. Sensitivity of Topographic Variables to AGB

Topographic features (elevation and slope) were also strong predictors of AGB in this
study. The vital role of topography is also an important factor influencing AGB because
water and sunlight storage change in function of topography [80]. Chen et al. proved
that elevation was the strongest factor for complex AGB estimation in China [37]. Slope
inclination was also a strong factor affecting AGB in the evergreen forest, since the terrain
in this area is mountainous with different sunlight and water detention levels by its varying
geomorphological characteristics while deciduous forest is not affected by slope by growing
its trees over sandy soil flat surface. This finding is consistent with the proof of Hamere et al.,
which claimed that AGB carbon, BGB carbon, and the total carbon density trend showed
a decrease as the slope increased due to the little vegetation cover in very steep slope
areas [81]. In addition, in the accessible flat area of nearby settlements and stream banks,
the anthropogenic effects might decrease AGB values. Therefore, topographic factors
ultimately affect the AGB observed in this study.

4.3. Comparison between Models

This study evaluated the two modeling techniques (RF and SGB) for AGB mapping in
two forest reserves and indicated a saturation problem of S-2 d satellite data, thus causing
the presence of bias in the AGB prediction models. The NH evergreen RF model estimated
the smaller AGB value of 129 t/ha than the observed AGB value of 151.64 t/ha. Similarly,
the estimation of the YM deciduous forest AGB value (176 t/ha) was smaller than the
field-observed AGB value (215.24 t/ha). The scatterplots in the validation metrics of this
study indicated the limitation of the classical wavelength bands in the S-2 MSI sensor when
dealing with saturation in high biomass stands. From the important variables ranking, the
candidates of the classical wavelength region and topography such as B3, B4, Ele, Slope,
and one vegetation index SAVI in the evergreen forest, and B11, B12, NDWI, and GNDVI
in the deciduous forest were high ranked while no red-edge reflectance was correlated
with AGB. This ranking affects the performance of models since the improvement in red-
edge bands features was relatively larger than that in classical bands and topographic
variables. This assumption was proven by previous studies of Forkuor et al. [76] and
Nuthammachot et al. [30]. Additionally, Chen et al. suggested that the broadleaved
forests with AGB values above 160 t/ha could be underestimated because of the saturation
problem in S-2 satellite data [82]. The observed AGB value in the YM deciduous forest was
215.24 t/ha and thus should agree with the finding of Chen. An almost similar ranking in
variables was observed in the two SGB models but the two models could not improve the
estimation when considering their performances in prediction. Thus, these SGB models
occurred and similar saturation problem was found in the RF models.

In order to optimize the estimation, the Kriging interpolation analysis of the residuals
from RF models (RFK) was further employed since the RF showed better performance than
SGB in this study. Our study claimed that the ordinary Kriging of RF’s residuals (RFOK)
performed better than other tested models in NH evergreen, while co-Kriging of RF’s
residuals (RFCK) with covariance elevation (Ele) provides a better result than other models
in YM deciduous AGB prediction. The limited contribution of the accuracy of the RFOK
model for the NH evergreen forest reserve was due to the poor spatial autocorrelation
between AGB samples which occurred due to the spatial gaps between the sample plots.
In the YM deciduous forest, RFCK achieved good prediction results, however, the spatial
correlations of the current AGB were also weaker than previous studies of Su et al. and
Chen et al. on forest AGB mapping based on the integration of multi-sensor and Advanced
Land Observing Satellite (ALOS) data [22,37]. It was denoted that AGB residuals from
the integration of the MSI and SRTM data model in this study obtained a lower spatial
correlation than that built by the integration of MSI and ALOS indices. This also proves
that AGB estimation from the combined MSI and SRTM data was only suitable for the
simple structure forest stand (e.g., deciduous forest in this study).
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Overall, we conclude that the accuracies of AGB prediction could be improved to a
certain extent by Kriging methods by reducing the spatial heterogeneity between AGB
samples. In the future, the accuracy of evergreen forest AGB estimation in this study
might be improved with LiDAR data since it can penetrate the forest canopy to a certain
depth, so that its variables are suitable for extracting vertical vegetation structures with
their sensitivity to the biomass of vegetation and the roughness of land cover surfaces.
The determinant of the spatial setting and a sufficient number of sample plots should be
considered in future AGB studies to maintain the Kriging accuracy. Additionally, the study
area is located in the regions where frequent rains and clouds exists, highly restricting the
availability of images collected in the vegetation growth peak season (e.g., June–September).
Therefore, we had to use cloud-free images acquired in January or February, which falls
outside the ideal time window for characterizing vegetation attributes. This limitation may
affect the accuracy of forest AGB prediction model.

In addition, an allometric equation for in situ AGB calculation may be another factor
undermining accuracy. This study used a national-level coarse allometric equation which
was based on an existing inventory dataset and pantropical equation (Chave et al., 2005,
Chen et al., 2013, and IPCC, 2003) for AGB calculation since there have been no species-
specific equations developed for this study area. In the near future, developing species-
specific allometric equations through limited destructive sampling should prioritize the
carbon accounting and climate change response studies in Myanmar because these create
more accurate in situ plot-level AGB measurements, laying a solid foundation for the
remote sensing-based regional estimation of AGB. In general, AGB estimated from the
RF model could yield acceptable results of validated R2 = 0.47, RMSE = 25.45 t/ha for
evergreen and R2 = 0.38, RMSE= 40.23 t/ha for deciduous from S-2 derivatives, topographic
variables and ancillary information.

4.4. Effects of Forest Management on AGB in the Study Sites

Population growth has led to a high demand for forest products, unsustainable forest
management practices, and high deforestation rates, thus causing forest cover loss. The
extent of the forest cover loss depends on the forest protection status with different rules
applying to public and reserved areas [83]. Forest protection typically reduces the conver-
sion of natural land cover types to alternative uses and often results in positive outcomes
(including reduced deforestation rates and the maintenance of forest cover) compared to
unprotected sites. In Myanmar, intact forests are gradually decreasing to only 38% of the
country’s forests due to the rapid political and economic changes. The study site comprises
two protected forests under Myanmar forest law. However, the expansion of the human
population and the need for more agricultural lands tend to encroach into these areas,
especially in the evergreen forest presently under study. Encroachment in protected forests
for agricultural lands, food, and fuels is directly correlated with loss in AGB values. On
the other hand, deciduous forests’ AGB values might be following a decreasing trend
because the demands for commercial timber species are increasing and AGB sources are
gradually decreasing. In this context, the spatial agreement of AGB was observed in the
estimated AGB maps derived from the RFOK evergreen and RFCK deciduous models. For
example, the small AGB values were estimated in the forest area closest to the villages and
cultivated lands while large AGB values were distributed in the high-elevation forest of
the NH evergreen forest reserve. A similar finding was observed in the YM deciduous
forest. To sustain the forest AGB in these areas, community-based forest management is
suggested to reduce these pressures as this would meet the needs of forestry products for
forest dwellers.

4.5. Attainment for SDG and REDD+

The UN SDGs set out the commitment of the international community to rid the world
of poverty and hunger and achieve sustainable development in its three dimensions—the
economic, social and environmental facets. In addition to using standardized national
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official data sources as the basis for monitoring and reporting on these goals and targets,
geospatial information and global/regional datasets have been identified as viable replace-
ment and complementary data sources for achieving these SDGs [84]. As the indicator
of SDG 15, the accurate estimation and monitoring of aboveground biomass stocks need
to be achieved. In this regard, the results of this study are applicable and useful for the
attainment of SDG 15, especially for Myanmar where freely available optical data are
preferred to map biomass stocks, and will greatly assist in the deriving, monitoring, and
reporting of carbon stock changes in a timely and accurate manner.

Myanmar has been implementing the REDD+ project to achieve SDG goals and targets
through sustainable forest management practices since 2013. The REDD+ objective is to find
an accurate method of biomass estimation that is also cost-effective. Based on the results
obtained in this study, S-2-derived derivatives (spectra, VIs, textures) and the topographic
features of SRTM (elevation, slope) have potential in the forest biomass estimation of
two forest reserves. In addition, the methods used in this study are viable and compatible
software has been developed (e.g., SNAP), in such a way that REDD+ can apply it at a
larger scale, including the national and regional levels. The outcomes of this study can
surely assist the evaluation of carbon stock changes via reforestation programs that will be
included in the upcoming FREL calculation under the REDD+ agenda of Myanmar.

5. Conclusions

This study investigates the performance of S-2 MSI derivatives and SRTM DEM
topographic data with field ancillary information based on two machine learning models
(RF and SGB) in mapping the forest AGB of two forest reserves (namely the NH evergreen
and YM deciduous forests) in Myanmar. In addition, the RF-based Kriging (RFK) was
employed for improving the prediction accuracy to find a spatial correction between the
AGB samples. Based on these findings, it is concluded that:

(1) S-2-derived reflectance, VIs, and textures are effective in predicting the AGB of the
two forests if the proper processing techniques are applied;

(2) The RFOK model in the evergreen forest and RFCK model in the deciduous forest
provided a more realistic spatial distribution of AGB by considering the spatial corre-
lation than the RF and SGB models with R2 = 0.47, RMSE = 24.91 t/ha and R2 = 0.52,
RMSE = 34.72 t/ha due to their spatial correlation between AGB sample plots;

(3) The extraction of textures from wavelet analysis (WA) is suggested to improve estima-
tion for the forests with a complex structure and saturation problems;

(4) In future studies, the accuracy may be improved by combining both the active and pas-
sive remotely sensed data to characterize complex forest structures to better estimate
the forest AGB and understand their spatial distributions.
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