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Abstract: Forest height inversion with Polarimetric SAR Interferometry (PolInSAR) has become
a research hotspot in the field of radar remote sensing. In this paper, we systematically studied
a modified two-step, three-stage inversion simulating the L-band (L = 23 cm) full-polarization
interferometric SAR data with an average forest height of 18 m using ESA PolSARpro-SIM software.
We applied this method to E-SAR L-band single-baseline full PolInSAR data in 2003. In the first step,
we modified the three-stage inversion algorithm based on phase diversity (PD)/maximum coherence
difference (MCD) coherence optimization methods, corresponding to PD, MCD, respectively. In the
second step, we introduced the coherence amplitude inversion term and modified the fixed weight
to the variable of ε times the ground scattering ratio, which improved the accuracy of forest height
inversion. The mean of forest height inversion by the HV method was the lowest (15.83 m) and
the RMSE was the largest (4.80 m). The PD method was superior to the HV method with RMSE
(4.60 m). The MCD method was slightly better than using the PD method with the smallest RMSE
(4.43 m). After adding the coherence amplitude term, the RMSE was improved by 0.15 m, 0.14 m, and
0.08 m, respectively. The smallest RMSE was obtained by MCD, followed by the PD and HV methods.
Although the robustness of the forest height inversion algorithm was reduced, the underestimation
was improved and the RMSE was reduced. Due to the complexity of the real SAR E-SAR L-band
single-baseline full PolInSAR data and the small sample sizes, the three-stage inversion methods
based on coherent optimization were lower than the three-stage in-version method. After introducing
the coherent magnitude term, the overestimation of the forest height was significantly weakened
in HVWeight, PDweight, and MCDWeight, and PDWeight was optimal. The modified two-step,
three-stage inversion algorithm had significant effects in alleviating forest height underestimation
and overestimation, improving the accuracy of forest height inversion, and laying a foundation for
the upcoming L-band SAR satellite generation, new SAR and LIDAR systems combined with RPAs
(remotely piloted aircrafts)/UAVs (unmanned aerial vehicles) for small areas mapping initiatives,
and promoting the depth and breadth of the SAR applications of the new SAR system.

Keywords: forest height inversion; three-stage algorithm; coherence optimization; complex coherence
amplitude inversion

1. Introduction

Forest height is an important biophysical parameter [1], and its spatial distribution
is of great significance for forest resource management, forest biomass estimation, and
regional and global carbon cycle research [2–4]. The measurement methods of forest height
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include ground survey, photogrammetry, Lidar, and so on. Since the measurement of large-
scale forest height is difficult, it has not been well quantified [5]. Although forest ground
survey data can also obtain forest heights, its application in large-scale research is limited
due to the large amount of human and material resources, and the lack of observations in
remote regions. Remote sensing is the most effective method for real-time forest inversion
on a regional and global scale. Although LIDAR can achieve high accuracy, it is limited by
the atmosphere, mist, and clouds, especially in areas with cloudy, rainy, foggy, and snowy
weather. Moreover, the acquisition cost of LIDAR is too high to obtain information on the
vertical structure of the forest, and there is no information on the horizontal structure of
the forest. Optical remote sensing is not only influenced by clouds, fog, and snow, but also
cannot penetrate the forest to the ground. Therefore, it is of great scientific significance
to estimate forest height based on synthetic aperture radar (SAR), which combines the
properties of both the real-time forest inversion at regional and global scales provided by
remote sensing and the forest penetration to the ground by microwaves [6].

Among many forest height inversion methods widely used, Polarimetric SAR In-
terferometry (PolInSAR) combines the comprehensive advantages of interferometry and
polarization information. PolInSAR is not only sensitive to the vegetation spatial distri-
bution with SAR Interferometry (InSAR), but also has the property of Polarimetric SAR
(PolSAR), which is sensitive to the shape and direction of the vegetation [7].

Cloude and Paphthanassious first proposed PolInSAR technology [8], and afterwards,
formally proposed the concept and extended the random volume over ground (RVoG) [9] to
the full PolInSAR, thus laying the foundation of forest height inversion with PolInSAR [10].
The applicability of the RVoG model for forest height inversion has been studied for
cases of different forest density [11]. Due to the high computational complexity of the
six-dimensional nonlinear parameter method [12], the PolInSAR forest height inversion
was simplified to a three-stage method based on the RVOG model [13]. By reason of its
simplicity and generality, the three-stage inversion algorithm has low calculation cost and
been widely used. The three-stage inversion algorithm was validated in various activities
at different frequencies and configurations [14–17]. Some literature has improved the three-
stage algorithm by considering the effect of terrain or extinction coefficient successively,
which ultimately improved the accuracy of forest height inversion [18,19].

However, the three-stage inversion algorithm accuracy is affected by the accuracy of
the estimated topographic phase [20] and pure volume scattering complex coherence [21].
One of the main reasons is the irrational selection of polarized channels, resulting in the
ineffective separation of ground and volume scattering phase centers. Therefore, several
coherence optimization methods based on optimization theory [10,22–26] have emerged to
solve this problem. Xie Q. et al. combine the three-stage inversion algorithm with the five
effective separation phase centers generated by singular value decomposition (SVD) [10]
and phase diversity (PD) [26] coherence optimization methods for forest height inversion,
which improves the forest height accuracy [27]. Lavalle compared the max of phase with
the max of magnitude over the coherence boundary and studied the dependence of L-band
PolInSAR complex coherence on forest height inversion [28]. Fu W.X. et al. extend the
three-stage algorithm and SVD [10] to the dual-polarized PolInSAR and, furthermore,
propose a search method based on the RVoG model for solving pure volume scattering
complex coherence on the fuzzy line segment, which has similar inverted forest height to
full polarization [6]. Based on the RVoG model, Lin D.F. et al. have proposed a new method
based on TSVD decomposition to directly estimate “pure” volume scattering complex
coherence. Compared with the three-stage method, the RMSE of the inverted forest height
is improved by 48.6% [29].

Aiming to reduce the underestimation of forest height, Cloude proposed a hybrid model
combining interference coherence amplitude with the phase difference method [30–32]. Ad-
ditionally, due to the underestimation of forest height by the estimating signal parameters
by the use of the rotation invariance techniques (ESPRIT) method, the total least square
ESPRIT (TLS-ESPRIT) method is combined with the coherence amplitude inversion method
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to improve the accuracy of forest height inversion [33,34]. Using a novel hybrid inversion
algorithm based on covariance matrix decomposition, a forest vegetation parameter inver-
sion experiment [35] was carried out on the L-band airborne data of the simulation and
SIR-C/X-SAR system. Chen E.X. et al. verify and compare several available forest height
inversion methods, such as the SINC, three stage SINC inversion (TSS), and phase and
coherence inversion (PCI) methods, using E-SAR repeated orbits data and corresponding
ground heights, besides analyzing the effect of SVD on the SINC method for forest height
inversion [36]. Some scholars have estimated the forest height by combing the three stage
inversion algorithm with coherence optimization [37,38]. Aghabalaei et al. demonstrated
the capability for forest height estimation with the single-baseline L-band compact PolIn-
SAR (C-PolInSAR) in the Remningstorp, southern Sweden [39]. They developed a novel
four-stage algorithm with volumetric temporal decorrelation to improve the forest height
estimation accuracy using the repeat-pass PolInSAR data of Gabon Lope Park acquired in
the AfriSAR campaign of the German Aerospace Center (DLR) [40]. In recent years, some
researchers have investigated the potential of forest height mapping with spotlight-mode
data with TanDEM-X (TDM) combined with in situ measurements [41,42]. They aim to
demonstrate the potential of space-borne PolInSAR datasets at the L-, C-, and X-band fre-
quencies (ALOS-2/PALSAR-2, TerraSAR-X, and RadarSAT-2) for forest height estimation,
with the RMSE of 5.4 m, 12.8 m, and 7.6 m, respectively [43]. Chen et al. have developed a
new extended Fourier–Legendre series approach for combing Global Ecosystem Dynamics
Investigation (GEDI) LiDAR waveforms with TanDEM-X data to improve forest height
estimation [44]. Some papers use Tomographic SAR (TomoSAR) technology for forest 3D
structure mapping [5,45,46].

In summary, although forest height inversion by single-baseline PolInSAR has been
widely used at home and abroad with good precision, it still presents the phenomenon of
underestimating and overestimating the forest height, to which there is no good solution
yet. In this paper, without considering the influence of residual motion, baseline and
coregistration error, topography, temporal, and signal-to-noise ratio (SNR) decorrelation
sources, we used ESA PolSARproSIM software to simulate single-baseline PolInSAR data.
Furthermore, we applied this method to E-SAR L-band single-baseline full PolInSAR data in
2003. The purpose of this paper was to alleviate alleviated the problem of the overestimation
or underestimation of the three-stage inversion algorithm with the introduction of an
automatic weight adjustment method, which was an improvement on the original three-
stage method. First, for the problem of incomplete coherence separation in the three-stage
inversion method, we introduced the PD/MCD method in coherence optimization. Then,
for forest height underestimation and overestimation problems, we introduced the complex
coherence amplitude inversion method and the ground scattering proportional variable to
automatically select weight. We compared the performance of these methods of the forest
height, laying the foundation for selecting the algorithm based on single-baseline PolInSAR
forest height inversion and providing exploration to develop a better inversion method.

2. Study Data

Due to the difficulty in getting airborne SAR images in forested areas and data sim-
ulated by ESA PolSARproSIM software based on Maxwell’s wave propagation equation
and scattering model without considering the influence of residual motion, baseline and
coregistration error, topography, and temporal and signal-to-noise ratio (SNR) decorrelation
sources [47], we thus used PolSARproSIM software to simulate the L-band (L = 23 cm)
for single-baseline full-polarized PolInSAR data. The parameters were set as follows: the
slopes of range and azimuth were both 0, regardless of topography; the radar platform
height was 3000 m; the horizontal baseline was 10 m; the vertical baseline was 1 m; and the
incidence angle was 45◦. The center frequency was 1.3 GHz; the azimuth resolution was
1.5 m; the slant resolution was 1.0607 m; the forest type was coniferous; and the average
forest height was 18 m. Since the product of the vertical wavenumber and the forest height
is less than 2π, there is no ambiguous problem of forest height inversion [48]. Figure 1
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presents the overall scenario of the study area, with the forest height of 18 m in height in
the middle area and non-forest in the remaining areas. The tree height standard deviation
would be under programmer control, and typically set to 5% of the mean value. The process
of tree location map generation began by determining the number of trees in the scene,
then initializing them in a regular pattern, and realizing their heights and global crown
radii. The trees were subsequently “shuffled” around in random, collision-avoiding walks
using Monte Carlo techniques, to reach a more realistic distribution of tree positions. The
tree height would be drawn from a normal distribution. There were 137 trees in a stand of
radius with 30 m, as shown in Figure 1. Although we could not get a clear value of RMSE
from this information, we knew it had a low RMSE.
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3. Methods
3.1. RVoG Model

The RVoG model [9] considered vegetation as a common process of vegetation volume
scatter decay and surface scatter. The vegetation layer was assumed to be an isotropic
medium, so we used a single extinction coefficient to represent overall attenuation. The
vegetation’s structural function decayed exponentially in the vertical direction.

The RVoG model was established by Treuhaft [9], and it was the theoretical basis
of the forest height inversion algorithm. Regardless of other decoherence factors, only
considering volume scattering coherence, we obtained the following explicit equation for
the complex coherence [13]:

γ(ω) = exp(jϕ0)
γv+m(w)
1+m(w)

= exp(jϕ0)(γv +
m(w)

1+m(w)
(1− γv))

= exp(jϕ0)(γv + Lws(1− γv)) 0 ≤ Lws ≤ 1
(1)

where w is a three-component unitary complex vector defining the choice of polarization,
ϕ0 is the ground phase center, m(w) is the ground-to-volume scattering ratio, which was
only a function of polarization, and γv is pure volume complex coherence. Formula (2) is
thus as follows

γv =

∫ hv
0 e(2σz)/ cos θejkzzdz∫ hv

0 e(2σz)/ cos θdz
= p

p1
ep1hv−1
ephv−1


p = 2σ

cos θ

p1 = p + ikZ

kZ = 4π∆θ
λ sin θ ≈

4πBn
λH tan θ

(2)

where σ is the mean wave extinction in the medium, z is the scatter position, hv is forest
height, θ was the mean angle of incidence, ∆θ is the apparent angular separation of the
baseline from the scattering point, H is senor altitude, kz is vertical wavenumber, and Bn is
the vertical baseline.



Remote Sens. 2022, 14, 1986 5 of 21

Lws is the ground ratio, which had a relation with m(w):

Lws =
m(w)

1 + m(w)
=

ground
volume

1 + ground
volume

=
ground

ground + volume

G/G + V (ground/(ground + volume)) was also used to indicate the ground scattering
ratio. Equation (1) represents a straight line in a complex plane passing through a point γv
with a slope of 1− γv.

When taking different extreme values of m(w), γwv γws were reached as follows:{
γws = ejϕ0 γv+m(w)

1+m(w)

γwv = ejϕ0 γv
(3)

where γwv is the complex coherence corresponding to a pure volume scattering mechanism
for the top forest canopy, and γws is the complex coherence corresponding to the surface
scattering mechanisms near the ground surface under the forest canopy.

According to Formula (3), the formula for calculating the ground scattering ratio is as
shown in (4):

Lws =
−B−

√
B2 − 4AC

2A
(4)

in which A = |γwv |
2 − 1, B = 2Re((γws − γwv) · γ∗wv), and C = |γws − γwv |

2.
Figure 2 shows pure volume complex coherence changes with forest height and

extinction in a complex plane according to the RVoG model. Figure 2 was used as a look-up
table for the three-stage inversion algorithm described later, laying the basis for forest
height estimation. When knowing pure volume scattering complex coherence, we can
use this lookup table to inverse the forest height and extinction coefficient. Meanwhile,
the estimation of pure volume scattering complex coherence was very important, so we
introduced coherence optimization to make its estimation more accurate.
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Figure 2. Volume complex coherence changes with forest height and extinction at kz = 0.1154.
Note: Calculate kz = 0.1154 and ha = 54.4470 m from the setting parameters. Different color curves
corresponded to different extinction coefficients. With larger extinction or strong ground scattering,
the pure volume complex coherence amplitude was prone to saturation (such as the blue curve), but
the phase was not saturated. When the extinction coefficient was in the range of 0~2 dB/m (such as
yellow curves), the pure volume complex coherence changed with forest height hv (0~ha m, step is
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0.5 m). When the forest height was the same (any yellow curve) and pure volume complex coher-
ence scattering amplitude was large, this was caused by surface scattering or the strong attenua-
tion of vegetation. Complex coherence fell with increasing vegetation height, as a consequence of
volume decorrelation.

3.2. Methods

In this paper, without considering baseline and coregistration error, topography, or
temporal and signal-to-noise ratio (SNR) decorrelation sources, we introduced PD/MCD
coherence optimization to solve for incomplete coherence separation in the three-stage
inversion [13]. Additionally, we introduced complex coherence amplitude inversion [36] to
solve the underestimation or overestimation problem and introduced the ground scatter
ratio to automatically select the weight to improve the three-stage method. We compared
and analyzed these methods combined with the topographic phase affecting forest height.
A technical roadmap is shown in Figure 3.
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The symbol meanings are shown in Table 1. In addition, SINC: introduced the corre-
sponding complex coherence amplitude inversion; G/(G + V): ground scatter ratio of the
corresponding parameter estimation, namely Lws . Weight: Based on three-stage inversion
algorithm, it was further improved by introducing the corresponding complex coherence
amplitude inversion and modified constant weight to the ε times of the ground scatter ratio.
To correct the pure volume complex coherence, we projected it onto a coherence line to
invert forest height.

Table 1. Parameters corresponding to various methods.

Method Use Complex
Coherence

Pure Volume
Complex Coherence

Point Closest to the
Topographic Phase

HV/HVWeight A, B HV HH-VV
PD/PDWeight A, C PDHigh PDLow

MCD/MCDWeight A, D MCDHigh MCDLow
Note: A: HV + VH/HH + VV/VV/HH/LL/LR/RR/Opt1/Opt2/Opt3; B: HH − VV/HV; C: PDHigh/PDLow;
D: MCDHigh/MCDLow; Where HV/VV/HH: linear polarization; HH + VV/HH − VV/HV + VH:
Pauli base polarization; LL/LR/RR: circular polarization; Opt1/Opt2/Opt3: SVD; PDHigh/PDLow: PD;
MCDHigh/MCDLow: MCD.
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The process of three-stage inversion [13] was as follows:
Stage 1: Least squares line fit: Least squares were used to linearly fit the real and

imaginary components of the polarization interference complex coherence and found the
best fit straight line within the complex unit circle.

Stage 2: Vegetation bias removal: The true topographic phase was estimated with the
coherence ranking order algorithm and removed it.

Stage 3: Height and extinction estimation: According to Formula (2), a look-up table
(LUT) was established, where pure volume coherence changed with forest height and
extinction coefficient (Figure 2). According to the topographic phase estimated from
stage 2, it was easy to determine the coherence γ̂v farthest from it in observation data. By
comparing γ̂v with LUT, forest height and extinction can be obtained without additional
iterative optimization algorithms.

The three-stage inversion method was based on the assumption that the ground-to-
volume scatter ratio in one of the polarization channels is zero. To simplify the problem, it
was generally assumed that the ground-to-volume scatter ratio in the HV channel was zero,
i.e., the estimated pure volume coherence was obtained from the estimated HV channel
coherence. In addition, since the estimated HV and HH-VV channel coherence did not
reach the maximum separation, there were some errors in forest height inversion, so PD and
MCD coherence optimization was introduced to invert forest height. Several studies had
explained specific steps of PD and MCD coherence optimization [25,26]. However, even
with coherence optimization, the volume phase center may lie anywhere between half-way
and the top height layer. Hence, the true forest height will still be underestimated [31].
The retrieved forest height may be overestimated or underestimated depending on the
selected vertical baseline. Therefore, at least a coherence amplitude correction term can
be employed to partially compensate for this underestimate or overestimate problem [36].
Based on a hybrid method proposed by Cloude (such as Formula (5)) [31,32], this study
compensated for the “compression” phenomenon of forest top height not considered in the
three-stage method based on coherence optimization, and modified constant weight ε to a
variable weight ε · Lws , as shown in Formula (6)

hv =
arg(γwv)− ϕ0

kz
+ ε · 2 sin−1(|γwv |)

kz
(5)

hv = hThreeStage + ε · Lws ·
2 sin c−1(|γwv |)

kz
(6)

where ε · Lws is a weight.
The first term represents the forest height inversed by the three-stage method with

PolSARpro, which affects the accuracy of the method according to the linear equations of
different scattering fittings. The second term is the coherence amplitude correction term
with PolSARpro, which was solved for the first term underestimation or overestimated
problem, but only considering the pure volume scatter complex coherence. The second part
affects the accuracy of the method according to the ε times of the ground scattering ratio of
the SINC inversion method, where the ground scattering ratio Lws is the performance of
different scattering from the same vegetation/canopy or similar scattering from different
types of vegetation, and the accuracy of the method is affected by volume scattering in
the SINC inversion method. Therefore, we used the ground scatter ratio to modify it,
and because the highest value of Lws was approximately 0.8, we added an adjustment
factor ε to modify it again with MATLAB. The general rule is that the RMSE between the
retrieved forest heights of these two parts and the true stand average height is the smallest
to invert the forest heights. Therefore, ε · Lws made the full expression as robust as possible
to changes in the structure function. However, in practical applications, forest height
inversion by single PolInSAR data required ideal baselines. The vertical baseline depended
on the platform, target geometry, forest height, and forest vertical structure, and the length
of the vertical baseline determined the sensitivity of the interferometric phase difference to
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different forest heights. The retrieved forest height may be overestimated or underestimated
depending on the selected vertical baseline. The value of ε (−α~α, α = 1/Lws ) was obtained
according to the minimum RMSE of forest height. Negative values of ε corresponded to
overestimation, and positive values corresponded to underestimation. The flow chart is
shown in Figure 4 with MATLAB software.
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In this paper, we improved the three-stage inversion method based on the PD/MCD
coherence optimization method. The PD and MCD methods were compared with the
three-stage inversion algorithm (HV method) to invert forest height. We further inverted
the forest height according to Formula (6), and they were HVweight, PDweight, and
MCDweight. To modify the pure volume scattering complex coherence, we projected it to
the coherence line to invert the forest height. When using real data, we need to consider the
impact of these errors and we cannot systematically evaluate this algorithm. The simulation
data could be used to systematically evaluate the algorithm, laying the foundation for the
future application of the airborne L-band SAR data to invert the forest height. However,
if the decorrelation source was not considered, the result of the three-stage inversion
algorithm for forest height inversion may be high, and therefore the Weight method was
applicable with negative values of ε.

4. Experimental Results
4.1. Topographic Phase

Even if there was a slow terrain change, the coherence phase would change rapidly, so
forest height inversion must take the topographic phase into account [20]. Figure 5 shows
the ground scatter ratio. Figure 6 shows an image of the estimated topographic phase.
Figure 7 present a profile at azimuth = 47 (yellow line in the Figure 1b) and the statistical
histogram of the estimated topographic phase.
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It can be seen from Figure 5 that the overall ground scatter ratio trend was basically
the same: small in the near direction and large in the far direction. After coherence
optimization, the estimated ground scatter ratio improved. After PD and MCD coherence
optimization, the ground scatter ratio was much better than the HV/HVWeight method,
and the MCD/MCDWeight method was better than the PD/PDWeight method.

It can be seen from Figures 5 and 6 that in the region with a small ground scattering
ratio in Figure 5, the estimated topographic phase was obviously high, and the error
was large. In Figure 6, the estimated topographic phases all had negative values, the
HV/HVWeight method values were significantly higher, and the difference in topographic
phase estimated by the PD/PDWeight and MCD/MCDWeight methods was small. The
profile and the statistical histogram of the topographic phase in Figure 7 further illustrated
it. As seen from the profile of Figure 7a, the overall trend of the four methods was
basically the same, and the proximity to the topographic phase from small to large was
MCD/MCDWeight, PD/PDWeight, and HV/HVWeight methods. The statistical histogram
in Figure 7b shows that there was no significant difference between the three methods.

Since the true topographic phase was 0, it was easy to cause positive and negative
cancellation, so we used the arithmetic mean of absolute values for quantitative analysis.
Table 2 lists the mean of the absolute values and the RMSE of the estimated topographic
phase. It can be seen that the HV/HVWeight method had the worst estimation and
the largest error. The PD/PDWeight method was greatly improved compared with the
HV/HVWeight method but was inferior to the MCD/MCDWeight method. The estimation
of the MCD/MCDWeight method was optimal, and the error was minimal.

Table 2. Estimation results of the topographic phase.

Method
Topographic Phase (Rad)

ABSMEAN RMSE

HV/HVWeight 0.041 0.140
PD/PDWeight 0.032 0.095

MCD/MCDWeight 0.029 0.081

4.2. Forest Height

Figure 8 present an image of the inversed forest height, (A) the improved three-stage
inversion algorithm based on coherence optimization, and (B) the forest height inversion
after introducing the coherence amplitude. Figure 9 shows a profile at azimuth = 47 (yellow
line in the Figure 1b) and the statistical histogram of the inversed forest height. Table 3
shows the image of inversed forest height inversion.

Table 3. Results of forest height inversion.

Method
Forest Height (m)

MEAN RMSE

HV/HVWeight 15.83/16.29 4.80/4.65
PD/PDWeight 16.16/16.73 4.60/4.46

MCD/MCDWeight 16.19/16.71 4.43/4.35

In the area where the ground scatter ratio was small, the inversed forest height is
low, and even there, the forest height cannot be inversed from Figures 5 and 8. The HV
method had the worst forest height inversion. After PD and MCD coherence optimization,
the forest height inversion results were much better than the HV method, and the MCD
method was better than the PD method. The decreasing order of missing values in different
methods was as follows: HV, PD, MCD methods. The corresponding method in Figure 8B
had the same trend as in Figure 8A.
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The mean of forest height inversion by the HV method was the lowest (15.83 m)
and the RMSE was the largest (4.80 m). The PD method maximized the separation of
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complex coherence phases representing canopy scattering and ground scattering, which
making its mean (16.19 m) and its RMSE (4.60 m) superior to the HV method. The MCD
method maximized the distance between canopy scattering and ground scattering complex
coherence in the complex plane, its mean (16.19 m) was slightly better than using the PD
method, and the RMSE was the smallest (4.43 m).

Figure 9b shows a profile of the inversed forest height enlargement image from
Figure 9a in the range near 45~90. After adding ε times the ground scatter ratio as the
weight, the forest height was equivalent to a proportionality increase. After adding the
coherence amplitude term from Table 3, the mean of forest heights inversed by the HV, PD,
and MCD methods were increased by 0.46 m, 0.57 m, and 0.52 m, respectively. The RMSE
was improved by 0.15 m, 0.14 m, and 0.08 m, respectively, and the improvement of the
HV method was obviously best, followed by the PD method. After adding the coherence
amplitude inversion method from Figure 9c and Table 3, although the robustness of the
forest height inversion algorithm was reduced, the underestimation was improved and
the RMSE was reduced. Among these methods, the mean forest height inversion by the
MCD method was the closest to the true value, followed by the PD and HV methods. The
smallest RMSE was obtained by MCD, followed by the PD and HV methods. The MCD
method made the coherence distance between the complex coherence maximum in the
complex plane and obtained the accurate pure volume scatter coherence, such that the
mean forest height inversion was the highest and its RMSE was the lowest. The PD method
maximized the phase of complex coherence and obtained the accurate pure volume scatter
coherence so that the mean and the RMSE of forest height inversion were lower than the
MCD method. The mean of forest height inversion by the HV method was the largest
difference from the true value, and its RMSE was the largest.

5. Discussion

The estimated topographic phase may be caused by the following aspects: (1) The
ground scatter ratio: topographic phase was good and the error was large in the area
where the ground scattering ratio was small. Combining Figures 5 and 6, the estimated
topographic phase error in Figure 6 was relatively large where the ground scattering ratio
of Figure 5 was small. The estimated topographic phase error was significantly reduced
where the ground scattering ratio of Figure 5 was large. (2) The difference of the complex
coherence combination and sample number used to fit the coherence line: Among these
methods, the coherence line was fitted according to the least squares method, in addition
to jointly using a group of complex coherences, and the HV/HVWeight method also used
B group complex coherences, the PD method with C group complex coherences. The
MCD/MCDWeight method in addition used D group complex coherences. The sample
number of HV/HVWeight/PD/PDWeight/MCD/MCDWeight methods was the same,
and only the B/C/D group complex coherence was different. C/D was the complex
coherence obtained after PD and MCD coherence optimization, respectively. PD coherence
optimization maximized the phase center of complex coherence in the complex plane.
MCD coherence optimization made the distance of complex coherence maximum in the
complex plane. Figure 10 shows the complex coherence and the fitted coherence line used
by these methods in a complex plane. The estimated topographic phase in Figure 10a from
small to large was: MCD/MCDWeight, PD/PDWeight, and HV/HVWeight. Squares of
different colors represented different complex coherences in Figure 10. Straight lines of
different colors were coherence lines fitted by different methods according to corresponding
complex coherences. (a) When the azimuth was 70 and the range was 40 in the image,
various coherence lines were fit by different methods. The intersection of the coherence line
fit by the MCD/MCDWeight method and the complex unit circle (the point close to the x
real axis), i.e., the topographic phase, was closest to the real topographic phase, followed by
PD/PDWeight and HV/HVWeight. (b) When the azimuth was 51 and the range was 44 in
the image, because the distance between the complex coherence representing ground and
volume scattering was enough large, and the distance in the normal coherence line direction
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was small, coherence lines fitted by these methods were the same, and the intersections
with the unit circle were also the same, i.e., the topographic phases were the same. It could
be seen that when the sample number of complex coherence was the same, the coherence
line fit by the PD/PDWeight method was more accurate than the HV/HVWeight method.
The PD/PDWeight method was lower than the MCD/MCDWeight method because it
was considered complex coherence amplitude information. In Figure 10b, the estimated
topographic phase is the same, and it can be seen that the greater the distance between
volume and ground complex coherence in the complex plane, and the smaller the distance
in the coherence line normal direction, the higher the accuracy of the topographic phase.
The topographic phase was not affected by complex coherence when the direction of the
complex coherence line and its normal reached a certain value, even without coherence
optimization, the same topographic phase could be obtained. (3) The different selection of
points closest to the ground phase: the HV/HVWeight/PD/PDWeight/MCD/MCDWeight
methods select complex coherence closest to the ground phase, respectively. MCDLow was
optimal, followed by PDLow and HH-VV.
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Without using coherence optimization, the topographic phase estimated by HV/HVWeight
method was the worst. PD coherence optimization maximized the difference between
coherence phase centers in the complex plane. Compared with the HV/HVWeight method,
the topographic phase estimation accuracy was greatly improved. The MCD coherence
optimization maximized the complex coherence distance in the complex plane, compre-
hensively considering phase and amplitude information. The obtained complex coherence
MCDLow representing ground scattering was better than PD coherence optimization, and
closer to the real ground phase. The topographic phase estimated by the MCD/MCDWeight
method was optimal and closest to the true topographic phase. When applied to real SAR
data with lots of field data, we can acquire the same conclusion as the simulation data.
However, when the sample sizes were small, there may be some differences from this
simulation conclusion. Therefore, in order to obtain higher accuracy, it was necessary to
carry out a variety of optimization methods in single-baseline L-band PolInSAR technology
with real SAR data.

With analyzing the effect of the estimated topographic phase on the forest height, we
compared three-stage inversion methods based on coherence optimization. The HV method
selected HV channel complex coherence as the canopy scattering complex coherence, and
its phase center may be located at any position between half-way and the top forest
height [31,32]. The estimated topographic phase was the highest, and the forest height
inversion had the largest error. Due to the observed propagation error of the topographic
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phase, and the selection of channel as forest canopy scattering complex coherence, with the
lowest forest height mean and largest error, the HV method estimated topographic phase
accuracy performed worse. The PD method maximized the complex coherence phase center
of canopy and ground scattering, which made it more accurate than the coherence line fitted
using the HV and HH-VV channel complex coherence used by the HV method. Therefore,
the mean of topographic phase absolute value was better than the HV method, and pure
volume scatter complex coherence (PDHigh) was more accurate than the HV complex
coherence. The mean forest height was increased by 0.33 m compared with the HV method,
whereas the RMSE increased by 0.2 m. The MCD method made the distance between
complex coherence of canopy and ground scattering maximum in the complex plane. The
topographic phase and forest height were very similar to the PD method. However, overall,
the MCD method, while comprehensively considering the coherence amplitude and phase,
had a better forest height inversion than the PD method, as well as the smallest RMSE. The
result estimated by the MCD method obtained the optimal topographic phase and more
accurate pure volume coherence. Therefore, forest inversion based on the lookup table was
also more accurate, and the mean of the inversed forest height was closest to the true value.
Compared with the HV method, the forest height inversion underestimation was improved
after coherence optimization, and the RMSE was reduced [27,36]. The PD method was
based on phase information, which improved forest height inversion to some extent. The
MCD method was based on coherence amplitude and phase, which was better than the
PD method.

Figure 11 shows the relationship between the weighted forest height statistical indica-
tor (MEAN/RMSE/SD) and ε. Compared with the three-stage inversion algorithm based
on coherence optimization, after introducing the coherence amplitude term and modifying
fixed weights to weight variables, the mean of forest height increased while the RMSE
decreased [36]. As the ε increases, the average bias of the forest height increased first and
then decreased, but the final reduced value was greater than the original, and the minimum
value was near 0.1~0.2. The RMSE of forest height decreased first and then increased and fi-
nally decreased with the ε increased, with a minimum value near 0.1. After introducing the
coherence amplitude inversion term, the standard deviation of forest height increased, i.e.,
the algorithm robustness was no better than the three-stage inversion method. We selected
the ε corresponding to the RMSE minimum value with comprehensive consideration.

Remote Sens. 2022, 14, x 15 of 22 
 

 

topographic phase accuracy performed worse. The PD method maximized the complex 
coherence phase center of canopy and ground scattering, which made it more accurate 
than the coherence line fitted using the HV and HH-VV channel complex coherence used 
by the HV method. Therefore, the mean of topographic phase absolute value was better 
than the HV method, and pure volume scatter complex coherence (PDHigh) was more 
accurate than the HV complex coherence. The mean forest height was increased by 0.33 
m compared with the HV method, whereas the RMSE increased by 0.2 m. The MCD 
method made the distance between complex coherence of canopy and ground scattering 
maximum in the complex plane. The topographic phase and forest height were very 
similar to the PD method. However, overall, the MCD method, while comprehensively 
considering the coherence amplitude and phase, had a better forest height inversion than 
the PD method, as well as the smallest RMSE. The result estimated by the MCD method 
obtained the optimal topographic phase and more accurate pure volume coherence. 
Therefore, forest inversion based on the lookup table was also more accurate, and the 
mean of the inversed forest height was closest to the true value. Compared with the HV 
method, the forest height inversion underestimation was improved after coherence 
optimization, and the RMSE was reduced [27,36]. The PD method was based on phase 
information, which improved forest height inversion to some extent. The MCD method 
was based on coherence amplitude and phase, which was better than the PD method. 

Figure 11 shows the relationship between the weighted forest height statistical 
indicator (MEAN/RMSE/SD) and ε. Compared with the three-stage inversion algorithm 
based on coherence optimization, after introducing the coherence amplitude term and 
modifying fixed weights to weight variables, the mean of forest height increased while 
the RMSE decreased [36]. As the ε increases, the average bias of the forest height increased 
first and then decreased, but the final reduced value was greater than the original, and the 
minimum value was near 0.1~0.2. The RMSE of forest height decreased first and then 
increased and finally decreased with the ε increased, with a minimum value near 0.1. 
After introducing the coherence amplitude inversion term, the standard deviation of 
forest height increased, i.e., the algorithm robustness was no better than the three-stage 
inversion method. We selected the ε corresponding to the RMSE minimum value with 
comprehensive consideration. 

 
(a) 

Figure 11. Cont.



Remote Sens. 2022, 14, 1986 15 of 21
Remote Sens. 2022, 14, x 16 of 22 
 

 

 
(b) 

 
(c) 

Figure 11. Forest height statistical indicator changes with the ε. (a) Average bias; (b) RMSE; (c) 
Standard deviation. 

Compared with the HV method, the underestimation of forest height inversion was 
improved after coherence optimization, and the RMSE was reduced [27,36]. The PD 
method was based on phase information, which improved forest height inversion to some 
extent. The MCD method was based on coherence amplitude and phase, which was better 
than the PD method. After introducing the coherence amplitude term and modifying fixed 
weights to weight variables, the corresponding method (weight) was the same as the 
overall trend of the three-stage inversion algorithm based on coherence optimization. 

Considering time and signal-to-noise ratio decorrelation, this study could invest 
forest height from the airborne L-band single-baseline full polarization SAR data in the 
flat terrain. When applied to real data, the inverted forest height was combined with the 
average height of the forest stand to minimize its RMSE to automatically select an 
appropriate ε. The smaller the RMSE, the higher the accuracy of the corresponding 
method. At the same time, a y = x straight line equation could be fitted between the 
inverted forest height and the measured forest stand height. The closer the fitted straight 
line equation was to y = x, the more accurate the corresponding inversion method was. 

The accuracy of the algorithm was related to the system parameters of the aircraft 
and the structural parameters of the forest (forest density, height), etc. Since only some 
parameters could be fixed to analyze the relative error of the RVoG model inversion of 
forest height, an uncertainty could not be given for quantifying all involved parameters. 
Due to the most influential factor being the vertical wave number kz of the forest, the forest 
height relative error changed with the forest height and vertical wavenumber kz when the 
time decorrelation was 0.8, and extinction coefficient was fixed at 0, 0.1, and 0.5 dB/m, 

Figure 11. Forest height statistical indicator changes with the ε. (a) Average bias; (b) RMSE;
(c) Standard deviation.

Compared with the HV method, the underestimation of forest height inversion was
improved after coherence optimization, and the RMSE was reduced [27,36]. The PD method
was based on phase information, which improved forest height inversion to some extent.
The MCD method was based on coherence amplitude and phase, which was better than the
PD method. After introducing the coherence amplitude term and modifying fixed weights
to weight variables, the corresponding method (weight) was the same as the overall trend
of the three-stage inversion algorithm based on coherence optimization.

Considering time and signal-to-noise ratio decorrelation, this study could invest forest
height from the airborne L-band single-baseline full polarization SAR data in the flat terrain.
When applied to real data, the inverted forest height was combined with the average height
of the forest stand to minimize its RMSE to automatically select an appropriate ε. The
smaller the RMSE, the higher the accuracy of the corresponding method. At the same time,
a y = x straight line equation could be fitted between the inverted forest height and the
measured forest stand height. The closer the fitted straight line equation was to y = x, the
more accurate the corresponding inversion method was.

The accuracy of the algorithm was related to the system parameters of the aircraft
and the structural parameters of the forest (forest density, height), etc. Since only some
parameters could be fixed to analyze the relative error of the RVoG model inversion of
forest height, an uncertainty could not be given for quantifying all involved parameters.
Due to the most influential factor being the vertical wave number kz of the forest, the forest
height relative error changed with the forest height and vertical wavenumber kz when the
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time decorrelation was 0.8, and extinction coefficient was fixed at 0, 0.1, and 0.5 dB/m,
respectively. Given the values of hv, σ and kz, the vegetation pure volume coherence γv
(hv, σ, kz) was calculated according to Formula (2) for L-band data. Given a fixed time
decorrelation intensity γt, γo = γv (hv, σ, kz) γt was then calculated. For each generated
γo sample, the forest height hvi was inverted by the three-stage method within the 2π
ambiguity elevation, and the relative error of forest height was analyzed. The relative
error of forest height was |hvi − hv|/hv × 100%. Figure 12 shows the forest height relative
error changes with the forest height and vertical wavenumber kz under three extinction
coefficient levels (0.0, 0.1, and 0.5 dB/m) at γt = 0.8, respectively.
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It was shown that for a given vertical wavenumber kz, the inversion performance of
forest height was the best only in a certain height range. The forest height relative error
was larger in places with low forest height, and it decreased with increasing forest height
(Figure 12).

The simulation results showed that in order to achieve 10% accuracy in the forest
height range from 8 m to 60 m, various baselines (vertical wavenumber kz) had to be
required, and the number of baselines required depended on the extinction coefficient.
Among all extinction coefficient levels, the forest height ranged from 8 m to 60 m, and
the three baselines were sufficient to make the forest height relative error better than 10%
(on the left of Figure 12). For example, if the forest height ranged from 8 m to 40 m, the
three baselines were sufficient to make the forest height relative error better than 10%
at σ = 0.1 dB/m (on the left of Figure 12b), and only the two baselines were sufficient
at σ = 0.5 dB/m (on the left of Figure 12c). After introducing the overestimation and
underestimation terms (on the middle and right of Figure 12b,c), the accuracy of forest
height inversion could be improved by selecting the appropriate weight coefficient ε · Lws ,
and even higher forest height inversion accuracy could be obtained by using one baseline
(on the middle and right of Figure 12b,c). An uncertainty model that quantifies all involved
parameters will be the subject of future work.

ALOS-2 with an enhanced PALSAR instrument launched in 2014, where ALOS left in
2011, and will build L-band SAR data for monitoring the global environment. However,
ALOS-2 has a strong temporal decoherence effect, leading the coherence in the forest to be
too low to make the forest height estimation with POLInSAR impossible. The upcoming
TanDEM-L with spaceborne monostatic and bistatic SAR imagery solved the problem of
time decoherence very well. We therefore expected that our results would be valuable for a
wide range of future research topics, including all future airborne and spaceborne SAR with
the upcoming low frequencies forest missions, ALOS-4, NISAR (NASA-ISRO Synthetic
Aperture Radar), and Tandem-L (all L-band), as well as BIOMASS. An unprecedented
combination of sensors will be seen in the next few years, e.g., BIOMASS links to the
Global Ecosystem Dynamics Investigation (GEDI) and NISAR missions will be particularly
important for measuring forest structure parameter, such as forest height and biomass.
The in-situ data for GEDI, BIOMASS, and NISAR collaborated by the ESA-NASA, will
further help to achieve more forest height inversion performance. Meanwhile, LIDAR data
with a relatively fine scale and accurate map of forest height and biomass represents an
important complement to in situ, airborne data. In situ data, when combined with LIDAR
and GEDI data, will allow forest height inversion on canopy structure and even biomass
with POLInSAR to be estimated. This study is expected to mitigate the overestimation
and underestimation problem of forest height inversion for the upcoming L-band SAR
satellite generation, new SAR and LIDAR systems combined with RPAs (Remotely Piloted
Aircrafts)/UAVs (Unmanned Aerial Vehicles) for small areas mapping initiatives, and to
promote the depth and breadth of SAR applications of the new SAR system.

6. Real SAR Data

The SAR data in the Traunstein were the E-SAR L-band single-baseline full PolInSAR
data obtained by the German Aerospace Center (DLR) in 2003. The study area was a
plantation forest, and the terrain was relatively flat with only some small slopes. The
altitude of the aircraft was about 3000 m, the space baseline was about 5 m, the time
baseline was 20 min, and the central incidence angle was 45◦. The range resolution was
1.5 m, and the azimuth resolution was 3 m with four looks. The data were precisely
registered, and flat phase and effective wavenumbers were provided.

The computational effort was 2~3 times that required of the original three-stage
inversion method. The time of the SINC function inversion method was similar to that of
the three-stage method, in which the time for the automatic weight selection method with
one forest stand was about 45.70 s. Finally, the three weight methods with one forest stand
with Matlab software for calculation took about 3.04 s.
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The measured data and ground-truth data concerning the stand height of the sample
plot are shown in Figure 13. The forest height images obtained by the three-stage inversion
methods are shown in Figure 13A, and the three-stage methods introducing the coherent
magnitude term are shown in Figure 13B. The ground-truth data used in the study mainly
included the boundaries of eight stands and the average height of dominant trees, which
were obtained by the Munich Forest Harvest Scientific Committee through field surveys,
as shown in Figure 13(Ad,Bd). Table 4 shows the RMSE of various methods for the corre-
sponding eight forest stands with real data. The result showed that coherent optimization
methods may also not achieve the best accuracy. After the modified two-step, three-stage
inversion algorithm is carried out, the RMSE can always be minimized, and the number of
the minimum RMSE obtained by the PD coherent optimization method is greater. In order
to obtain a better RMSE, it was necessary to use coherent optimization methods. Lws was
the response to forest stand structure, because the scattering mechanisms were different
for different forest stands and different forest heights. The approach performed well in
the case of different plant densities and different plant height variability with simulation
forest relative error and real forest stands. The fitting equations between the forest height
estimated by six methods and the stand height of the plot are shown in Table 5. Unlike the
simulated data, the three-stage inversion method overestimated the forest height, which
may be caused by the vertical baseline of the data. Simulation data showed that the three-
stage method would underestimate forest height, but in practical applications, forest height
could produce overestimation and underestimation owing to the length of the vertical
baseline determined by the sensitivity of the interferometric phase difference to different
forest heights. Forest height inversion by PolInSAR data requires ideal baselines. Due to
the complexity of the real SAR data and the small sample sizes, the three-stage inversion
method based on coherent optimization was lower than the three-stage inversion method.
After introducing the coherent magnitude term, the overestimation of the forest height
was significantly weakened in HVWeight, PDweight, and MCDWeight, and PDWeight
was optimal. Compared with the original three-stage method, the inversion accuracy of
simulated data increased by up to 9.38%, and 59.85% with real data at most.
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Table 4. The RMSE of various methods for the corresponding 8 forest stands with real data.

Forest
Stand

RMSE (m)

HV HVWeight PD PDWeight MCD MCDWeight

1 7.04 6.37 7.17 6.47 7.51 6.76
2 11.67 5.12 11.73 5.07 11.73 4.71
3 7.75 4.08 7.72 3.10 7.70 3.57
4 11.12 5.58 11.12 4.26 11.19 4.43
5 8.19 5.99 8.03 4.94 8.03 5.55
6 8.75 5.72 8.94 5.02 9.10 4.90
7 5.73 5.19 6.05 5.34 6.29 5.38
8 7.41 4.50 8.44 4.12 8.48 4.67

Table 5. The fitting equation between the retrieved forest height and the field measurement stand
forest height.

Method
Retrieved Forest Height and Field Measurement Stand Forest Height

Equation RMSE (m)

HV 0.76292x + 12.54232, R2 = 0.9557 1.69865
PD 0.78461x + 12.17832, R2 = 0.9523 1.81638

MCD 0.7950x + 12.03076, R2 = 0.9549 1.78694
HVWeight 0.99053x + 1.15906, R2 = 0.9892 1.07157
PDWeight 1.00693x − 0.05627, R2 = 0.9990 0.33435

MCDWeight 1.09135x − 2.54197, R2 = 0.9792 1.64526

7. Conclusions

Compared with the forest height inversion accuracy with the simulation and real SAR
data, it was necessary to use coherent optimization methods to obtain a better RMSE for
the forest height inversion using single-baseline L-band PolInSAR data. Using ε times the
ground scattering ratio as the weight alleviates the underestimation and overestimation
phenomena of the forest height estimation and reduces the RMSE to some extent, but the
robustness of the forest height inversion is reduced due to the introduction of the coherence
amplitude term.

This study can invest forest height from the airborne L-band single-baseline full
polarization SAR data in the flat terrain. Since this study only simulates coniferous forests
with a forest height of 18 m and a forest density of 500, and applies and validates these
methods with small real data, other scholars can apply these methods with more airborne
L-band SAR data to better explain the applicability and limitations of these methods.

Due to the inherent characteristics of SAR images, shadows, overlays, and top-to-
bottom overlaps may occur with large terrain fluctuations. Single-baseline PolInSAR
cannot solve these problems temporarily. Therefore, this study mainly considers areas
with flat terrain, not taking the terrain into account. This study does not consider the
effect of slope on forest height inversion, and mainly focuses on solving the problem of the
overestimation and underestimation of forest height inversion by the three-stage method
through a modified two-step, three-stage inversion algorithm. When the slope of the terrain
is not very high, the R-RVoG model can be used to invert the forest height. In the case of a
higher slope, the multi-baselines TomoSAR method can be used to invert the forest height
more accurately, which is what we want to do in the near future.
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