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Abstract: In recent years, convolutional neural networks (CNNs) have been widely used for hyper-
spectral image classification, which show good performance. Compared with using sufficient training
samples for classification, the classification accuracy of hyperspectral images is easily affected by a
small number of samples. Moreover, although CNNs can effectively classify hyperspectral images,
due to the rich spatial and spectral information of hyperspectral images, the efficiency of feature
extraction still needs to be further improved. In order to solve these problems, a spatial–spectral
attention fusion network using four branch multiscale block (FBMB) to extract spectral features and
3D-Softpool to extract spatial features is proposed. The network consists of three main parts. These
three parts are connected in turn to fully extract the features of hyperspectral images. In the first
part, four different branches are used to fully extract spectral features. The convolution kernel size
of each branch is different. Spectral attention block is adopted behind each branch. In the second
part, the spectral features are reused through dense connection blocks, and then the spectral attention
module is utilized to refine the extracted spectral features. In the third part, it mainly extracts spatial
features. The DenseNet module and spatial attention block jointly extract spatial features. The spatial
features are fused with the previously extracted spectral features. Experiments are carried out on four
commonly used hyperspectral data sets. The experimental results show that the proposed method
has better classification performance than some existing classification methods when using a small
number of training samples.

Keywords: hyperspectral images; classification; convolutional neural networks (CNNs); four branch
multiscale (FBMB); 3D-softpool

1. Introduction

Hyperspectral image is a three-dimensional image, which is captured by some aerospace
vehicles carrying hyperspectral imagers. Hyperspectral images contain rich spectral–spatial
information. Each sample of hyperspectral images has hundreds of spectral bands, and each
band has hundreds of reflection information, which enables hyperspectral images to play a
great role in military target detection, agricultural production, water quality detection, mineral
exploration and other aspects [1–4]. Researchers have carried out a significant amount of
useful research using the unique characteristics of hyperspectral images, for example, using
the spectral information of hyperspectral images to detect the information of the earth’s
surface [5,6]. Hyperspectral image classification is based on different kinds of substances
with different spectral curves. Each category corresponds to some specific samples, and
each sample also has its own unique spatial–spectral characteristics. However, there are two
common problems in hyperspectral image classification: (1) using small sample training in
hyperspectral image classification will affect the performance of the model and reduce the
generalization ability of the model and (2) in the case of small samples, if we can fully extract
spatial spectral features and improve the classification performance.
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In the early stage of studying hyperspectral image classification, tools such as support
vector machine [7] and polynomial logistic regression [8] are mainly used. The definition
of support vector machine is the linear classifier with the largest interval in the feature
spatial. Its learning strategy is to maximize the interval. Because hyperspectral images also
contain a large number of nonlinear features, SVM cannot extract the non-linear features in
hyperspectral images well. Although spectral information can be used for classification, the
classification performance will be better if spatial information is fully used on the basis of
spectral information. In order to further improve the classification performance, super-pixel
sparse representation and multi-core learning are also proposed [9–11]. A multi-core model
has more flexibility and stronger feature mapping ability than single kernel function, but
the algorithm of multi-core learning is more complex, inefficient and needs more memory
and time.

Using deep learning technology can automatically extract the nonlinear and hierar-
chical features of hyperspectral images. For example, image classification [12], semantic
segmentation [13] and target detection [14] in computer vision tasks, information extrac-
tion [15], machine translation [16], question answering system [17] in natural language
processing and image classification. have made great progress with the help of deep learn-
ing technology. As a typical classification task, hyperspectral image classification, as a
result of the progress of deep learning technology, the classification accuracy has also been
greatly improved. So far, a great deal of exploration on extracting spectral–spatial features
of hyperspectral images has been carried out. Some typical feature extraction methods [18],
such as the structural filtering method [19–21] and morphological contour method [22–24],
random field method [25,26], sparse representation method [27,28] and segmentation
method [29–31] have been proposed. Compared with the traditional feature extraction
method based on manual production, the deep learning method is an end-to-end method,
which can learn useful features automatically from a large number of hyperspectral data
through a multi-layer network. At present, the methods for extracting hyperspectral image
features using depth learning include stack automatic encoder (SAE) [32], depth belief
network (DBN) [33], CNNs [34], recursive neural network [35,36] and graph convolution
network [37].

In [33], Chen introduced the stacked automatic encoder (SAE) to extract important fea-
tures. Tao [38] extracted spectral–spatial features using two sparse SAE. Depth automatic
coding will reduce the dimension of the input data. Its dimension reduction is different
from PCA. Depth automatic coding is more complex because it carries out nonlinear opera-
tion. A new depth automatic encoder (DAE) was proposed by [39] who designed a new
collaborative representation method to process small training sets, which can obtain more
useful features from the neighborhood of target pixels in hyperspectral images. Zhang [40]
used a recursive automatic encoder (RAE) and weighted method to fuse the extracted
spatial information. In [34], a depth belief network (DBN) was used for hyperspectral
image classification. Although these methods can be classified, they are one-dimensional
classification methods with poor classification performance. Hu [41] proposed to directly
extract the spectral features of hyperspectral images by using a one-dimensional CNN
model and classified them by using the extracted spectral features; the model has five
layers. Li [42] proposed a new method for classifying hyperspectral images using pixels.

For hyperspectral image classification tasks, the 2D-CNNs model can directly extract
spatial information. Some features in hyperspectral images are highly similar. In [43], a
depth two-dimensional CNNs model based on depth hash neural network (DHNN) is
proposed. The proposed model can effectively learn the features with high similarity in
hyperspectral images. Because hyperspectral images are high-dimensional data, it is neces-
sary to reduce the dimension before classification, and then learn the spatial information in
hyperspectral image samples through 2D-CNNs. Chen [44] et al. proposed a method of
acquiring spatial–spectral information of hyperspectral images and feature fusion using
2D-CNNs, which is based on deep neural network (DNN). The different region convolution
neural network (DRCNN) to classify hyperspectral images was proposed by [45]. The
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input of different regions is used to learn the context features of different regions, and
better classification results are obtained. Zhu et al. [46] proposed to introduce deformable
convolution into the network to classify hyperspectral images, and adaptively adjust the
receptive field size of the activation unit of a convolution neural network to effectively
reflect the complex structure of hyperspectral images.

Hyperspectral image classification using 3D-CNNs has better performance, because
both 1D-CNNs and 2D-CNNs cannot extract spatial feature information and spectral feature
information at the same time. When using small training samples for hyperspectral image
classification, the 3D-CNNs model is a more effective classification method, because it can
capture the spatial–spectral information of hyperspectral images at the same time. Ding
et al. [47] proposed a convolutional neural network based on diverse branch modules (DBB).
It enriches the spatial feature by combining branches with different scales and different
complexities, including convolution sequence, multiscale convolution and average pooling.
Thus, the feature extraction ability of single convolution is improved. Each branch uses
convolution kernels with different scales to extract the spectral information of hyperspectral
images, so as to improve the classification performance. Usually, convolution neural
networks use pooling operations to reduce the size of feature map. This process is crucial
to realize local spatial invariance and increase the receptive field of subsequent convolution.
Therefore, the pooling operation should minimize the loss of information in the feature
map. At the same time, computing and memory overhead should be limited. In order
to meet these needs, Alexandros [48] and others proposed a fast and efficient pooling
method, 3D-Softpool, which can accumulate activation in an exponential weighted manner.
Compared with other pooling methods, 3D-Softpool retains more information in the down
sampling activation mapping. In hyperspectral image classification, finer down sampling
can obtain more spatial feature information and can improve the classification accuracy.

A new network of dual branch dual attention mechanism (DBDA) is proposed in [49].
One branch is used to extract spatial features and the other branch is used to extract
spectral features. A spatial attention module is applied to spatial branches and a channel
attention module is used to spectral branches. Some important spectral–spatial features
can be captured by using the attention module, which helps to improve classification
performance. The hyperspectral image classification methods based on 3D-CNNs can also
be divided into two categories: (1) 3D-CNNs are utilized as a whole to extract the spectral–
spatial features of hyperspectral images. In [50], the depth feature extraction network
of 3D-CNNs is proposed, which can capture spatial–spectral features at the same time.
Some 3D-CNNs frameworks directly obtain the features of hyperspectral cubes without
preprocessing and post-processing the input data. (2) Spectral features and spatial features
are extracted and classified after feature fusion. In order to fully extract the spatial–spectral
features of hyperspectral images from shallow layer to deep layer, a three-layer CNN is
constructed in [51]. Then, by fusing multi-layer spatial features and spectral features, more
complementary information can be provided. Finally, the fused features and classifiers
form a network, and the end-to-end performance optimization is carried out. Li et al. [52]
proposes deep CNN with double branch structure to extract spatial and spectral features.

The deep pyramid residual network (pResNet) proposed in [53] can make full use
of a large amount of information in hyperspectral images for classification, because the
network can increase the dimension of feature mapping between layers. In [54], an end-
to-end fast dense spectral spatial convolution (FDSSC) hyperspectral image classification
structure is proposed. Different convolution kernel sizes are used to extract spectral and
spatial features respectively, and an effective convolution method is used to reduce the
high dimension. Improving the running speed of the network can also effectively prevent
over fitting. In order to avoid the loss of context information caused by using only one or
several fixed windows as the input of hyperspectral image classification, an attention multi
branch CNN structure using adaptive region search (RS–AMCNN) is proposed in [55].
In [56], a method for classifying hyperspectral images using multiscale super pixels and
guided filter (MSS–GF) is proposed. MSS is used to obtain spatial local information from
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different scales in different regions, and a sparse representation classifier is used to generate
classification maps of different scales in each region. This method can effectively improve
the classification ability of hyperspectral images. Because RS–AMCNN can adaptively
search the position of spatial window in local areas according to the specific distribution of
samples, it can effectively extract edge information and evenly extract important features
in each area. In [57], a spectrum and context information set classification method based
on Markov random field (MRF) is proposed. In order to make full use of deep features,
a cascade MRF model is proposed to extract deep information. This method has good
classification performance. In [58], the proposed dual branch multi attention network
(DBMA) extracts spectral spatial features, and uses the attention mechanism on both
branches, which has a good classification effect. Sun et al. proposed a new method, low
rank component induced spatial spectral kernel method based on patch, called lrcissk,
for HSI classification. Through the low rank matrix recovery (LRMR) technology, the
low rank features of the spectrum in HSI are reconstructed to explore more accurate
spatial information, which is used to identify the homogeneous neighborhood pixels
(i.e., centroid pixels) of the target [59]. In [60], this paper proposed a spectral–spatial
feature tokenization transformer (SSFTT) method, which has a Gaussian weighted feature
marker for function transformation, capturing spectral spatial features and advanced
semantic features for hyperspectral image classification. Hong et al. proposed a method
called invariant attribute profile (IAP) to extract invariant features from the spatial and
frequency domain of hyperspectral images and classify hyperspectral images [24]. Aletti,
G. et al. proposed a new semi-supervised method for multilabel segmentation of HSI,
which combines appropriate linear discriminant analysis and can be used to compare the
similarity indexes of different spectra [61]. Christos G. Bampis et al. proposed a graph
driven image segmentation method. By developing the diffusion process defined on any
graph, this method has less computational burden through experiments [62].

The content of hyperspectral images is usually complex; many different substances
show similar texture features, which means the performance of many CNN models cannot
be brought into full play. Due to the existence of noise and redundancy in hyperspectral
image data, standard CNNs cannot capture all features. In addition, when additional
layers are added, the deeper CNNs architecture will also affect the convergence of the
network and produce lower classification accuracy. In order to alleviate these problems,
Ding et al. [47] proposed DBB, which combines multiple branches with different scales and
complexity to extract richer spectral feature information, including convolution sequence,
multiscale convolution and average pooling. When using 3D-CNNs to extract features,
the more layers of the network, the more complex the network structure will be, resulting
in more parameters and more computing and memory overhead. In order to reduce
information loss, 3D-Softpool [48] is used to extract spatial features, and 3D-Softpool can
be cumulatively activated in an exponentially weighted manner. Compared with a series of
other pooling methods, 3D-Softpool retains more information in down sampling activation
mapping, which can effectively improve the performance and generalization ability of
hyperspectral image classification. Inspired by DBB and 3D-Softpool methods, in order
to fully extract spatial–spectral information and solve the problem of small sample over
fitting, a spectral–spatial attention fusion method based on four branch multiscale blocks
(FBMB) and sampling activation network based on 3D-Softpool module is proposed. The
contributions of this study are as follows:

This paper proposes a FBMB structure different from other multi branches. The module
enriches the feature spatial by combining multiple branches with different scales and com-
plexity, and adds spectral attention blocks to each branch to further extract important spectral
features. Finally, the extracted features of these branches are concatenated. The module can
fully capture spatial–spectral features and improve the classification performance.

In the process of extracting spatial features, 3D-Softpool is introduced, and 3D-Softpool
will be cumulatively activated in an exponential weighted manner. Compared with other
pooling methods, 3D-Softpool retains more information in the down sampling activation
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mapping. A fusion method similar to dense connection is designed to extract the spectral and
spatial features again to further improve the classification accuracy of hyperspectral images.

Experiments on four public data sets show that the experimental results of the proposed
method for hyperspectral image classification are better than other advanced methods.

The rest of this paper is arranged as follows. Section 2 introduces each part of the
proposed method in detail. Section 3 gives the experimental results and analysis. Section 4
provides a discussion of the proposed method. In Section 5, some conclusions are provided.

2. Materials and Methods
2.1. Overall Structure of the Proposed Method

The overall framework of the proposed network based on spectral four branch multi-
scale network (SFBMSN) for hyperspectral image classification is shown in Figure 1.

Figure 1. The overall framework of the proposed SFBMSN network.

The SFBMSN network is composed of three parts. In the first part, the FBMB structure
with a channel attention module is designed to extract and select spectral features, so as
to fully extract important spectral features. The second part uses the dense connection
structure to further extract the spectral features and fully extract the information. In
the third part, the dense connection structure of the first convolution layer including
a 3D-Softpool module is used to extract spatial features, increase the receiving field of
subsequent convolution and extract more spatial features, so as to improve the classification
performance. In addition, some optimization strategies are used to prevent over fitting.
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In the first part, FBMB includes four branches, and the convolution kernel size of each
branch is not the same. A spectral attention mechanism is introduced into each branch
to obtain spectral features more conducive to classification. Then, the spectral features
extracted by four branches are fused. In the second part, based on the DenseNet [63]
structure and the idea of reusing spectral features, the fused features are input into the
DenseNet network, and the dense blocks with three convolution layers are used to extract
spectral features. The third part is similar to the extraction of spectral features. The
original hyperspectral data are input into the dense block containing 3D-Softpool. The
3D-Softpool module is added to the first convolution layer of dense blocks to extract spatial
neighborhood features combined with spatial attention mechanism. Then, the feature maps
obtained from spectral branches and spatial branches are added element by element, and
the features after spatial–spectral fusion are input into global average pool (GAP), full
connection layer and linear classifier to obtain the classification results.

2.2. FBMB and Spectral Self-Attention Module

The FBMB and spectral self-attention module are important modules in the first part
of the proposed method. In Figure 1, the first part is the proposed FBMB structure with
spectral self-attention mechanism. Firstly, principal component analysis (PCA) is performed
on the original hyperspectral image data, and the data after PCA is P ∈ R9×9×band, where
9 × 9 represents the length and width of the data, and band represents the number of
channels of the data. Next, a three-dimensional convolution operation is carried out on
the data P ∈ R9×9×band. The size of the convolution kernel of the three-dimensional
convolution layer is set to (1 × 1 × 7), the padding is set to (0 × 0 × 0) and the stride is set
to (1 × 1 × 2). In this way, the length and width of the data after the convolution operation
remain unchanged, which is 9 and 9, respectively, and the number of channels becomes a,
that is, a is the number of channels of the data after the convolution layer operation.

The output data are input into the four branches of the FBMB module at the same
time, and retain the useful spectral information as much as possible through the spectral
self-attention mechanism in each branch. For the first branch of the FBMB module, the
convolution layers with 6 convolution kernels are utilized for convolution. The population
strategy is used for all branches to make the input and output data size consistent. After the
convolution layer, the batch normalization (BN) layer is used. The BN layer can normalize
and linearly scale the channel to speed up the convergence of the model. Suppose the input
data are B = {x1...m}, the output data are yi = BNλ,β(xi) and the trainable parameters are
λ, β, then the process of BN can be represented as

1
m

m

∑
i=1

xi → µB (1)

1
m

m

∑
i=1

(xi − µB)
2 → δ2

B (2)

xi − µB√
δ2

B + ε
→ xi (3)

λxi + β→ yi (4)

Firstly, the mean and variance of the input data are calculated according to Equations (1)
and (2), then the input data are normalized to [0, 1] corresponding to Equation (3), and
finally multiply each element in B by γ and add β to output yi. γ and β are trainable
parameters. The purpose of normalization is to adjust the data to a unified interval, reduce
the divergence of data and reduce the learning difficulty of the network. Using BN and
Mish activation function after convolution layer can effectively avoid gradient explosion
and gradient disappearance. Then, continue to use the spectral self-attention mechanism
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to capture important spectral information. The schematic diagram of the mechanism of
spectral self-attention is shown in Figure 2.

Figure 2. The schematic diagram of spectral self-attention module.

Using the spectral attention mechanism, we can mine the interdependence between
spectral feature maps, extract feature maps with strong dependence, and improve the
feature representation of specific semantics. As shown in Figure 2, U represents the spectral
features, which is the initial input of U ∈ Rc×p×p. Here, p× p is the input patch size and c
represents the number of input channels. Y represents the spectral attention map, and the
size of Y is c× c. Y is calculated from the initial input spectral feature map U. yij is used
to measure the influence of the ith spectral feature on the jth spectral feature. Ui is the ith
spectral feature and Uj is the jth spectral feature. The calculation process is

yij =
exp(Ui ×Uj)

∑C
i=1 exp(Ui ×Uj)

(5)

Then, the results of matrix multiplication between Y and U are reshape into Rc×p×p.
Finally, the reshape result is weighted by the scale α parameter, and input U is added to
obtain the final spectral attention map E ∈ Rc×p×p:

Ej = α
C

∑
i=1

(yijUj) + Uj (6)

where α is initialized to zero and can be learned gradually. The final map E includes
the weighted summations of features of all channels, which can improve the resolution
of features.

In the second branch, the size of the convolution kernel in the first convolution layer
is (1× 1× 1), the number of the convolution kernel is 6, and BN + Mish is used. The
size of convolution kernel in the second convolution layer is (3× 3× 7), the number of
convolution kernels is 6 and BN + Mish is used. At the end of the second branch, spectral
self-attention is utilized, and the input size is (9× 9× a). The third branch has the same
structure as the fourth branch, and the size of convolution kernel is different. The size of
convolution kernel in the third branch is (3× 3× 7) and the number of convolution kernel
is 6. For the fourth branch, the size of convolution kernel is (5× 5× 7) and the number of
convolution kernel is 6. After the convolution layer, BN + Mish and spectral self-attention
mechanism are adopted to avoid data explosion and gradient disappearance. Because
data padding is used in all four branches, the output size is (9× 9× a, 6). Finally, the data
outputs from the four branches are added, and the added cube size is (9× 9× a, 24). The
cube output by the FBMB module contains a large amount of important spectral feature
information, which provides rich spectral feature information for subsequent operations.
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2.3. Dense Connection Network

Dense connection network is an important network of the second and third parts of
the proposed method. In order to avoid the gradient disappearance problem caused by
the deepening of the network depth, the dense connection module is adopted behind the
FBMB module to further extract the effective spectral features. On the premise of ensuring
full transmission of information between the middle layers of the network, all layers are
directly connected. Each layer connects the inputs of all previous layers, and then transmits
those output feature maps to all subsequent layers. This can ensure the maximum spectral
information flow between network layers and make full use of spectral features. The
structure diagram of DenseNet is shown in Figure 3.

Figure 3. The schematic diagram of DenseNet.

DenseNet used in this paper has three layers, and each layer is composed of con-
volution, BN, and Mish. Each layer has a nonlinear transformation function Hl . Hl is
the combined function of the three operations. xl−1 is the output of layer l − 1. In the
traditional feedback network, the output of layer l− 1 is the input of layer l, and the output
xl of layer l can be obtained, which can be represented as

xl = Hl(xl−1) (7)

DenseNet can effectively improve inter layer information transmission by connecting
one layer with all subsequent layers. Therefore, the output [x0, x1, . . . , xl−1] of all layers
before layer l is used as the input of layer l, and the output of layer l is represented as

xl = Hl([x0, x1, . . . , xl−1]) (8)

After dense connection, the key information of spectral features is extracted by spectral
self-attention mechanism again.

2.4. Spatial Dense Connection Network with 3D-Softpool

As dense connection network has already been introduced, it will not be repeated
in this section. 3D-Softpool is an important module in the third part of the proposed
method. The principle of 3D-Softpool will be introduced in detail in this section. The dense
connection is utilized to capture spatial features. This dense connection has three layers,
and each layer is composed of convolution, BN and Mish. The Mish layer is replaced with
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3D-Softpool in the first layer of dense connection. 3D-Softpool is a fast and efficient pooling
method, which accumulates activation in an exponentially weighted manner. Compared to
other pooling methods, 3D-Softpool retains more information during the down sampling
activation mapping, which helps to improve classification performance. 3D-Softpool is
based on the natural index (e), which can result in a large activation value and have a
greater impact on the output. 3D-Softpool is differentiable, which means that all activation
in the local neighborhood will be assigned at least one minimum gradient value during
back propagation. The process of 3D-Softpool is shown in Figure 4.

Figure 4. The schematic diagram of 3D-Softpool.

3D-Softpool uses the maximum approximation R in the activation area, and each
activation ai is assigned a weight Wi, which can be represented as

Wi =
eai

∑
j∈R

eaj
(9)

The output value of 3D-Softpool is obtained by summing all weighted activation in an
activation map:

a = ∑
i∈R

Wiai (10)

The output is

a = ∑
i∈R

eai ai

∑
j∈R

eaj
(11)

The probability distribution of the normalized results generated using SoftMax is
proportional to the adjacent activation value of each activation value relative to the adjacent
region. It can make all activation contribute to the final classification output, extract more
useful spatial features and improve the classification accuracy.

2.5. Spatial Self-Attention Mechanism

The spatial self-attention mechanism is an important module in the third part of the
proposed method. The principle of spatial self-attention mechanism will be introduced in
detail in this section. The data generated after 3D-Conv, BN and Mish operations are input
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to the spatial self-attention module. For spatial attention mechanism, by establishing the
context relationships between local spatial features, more extensive context information
can be encoded into local spatial features to improve the representation ability of features.
The spatial self-attention mechanism is shown in Figure 5.

Figure 5. Schematic diagram of spatial self-attention module.

F ∈ Rc×h×h is the input feature map, B, C and D are three new spatial feature maps
generated after three convolution operations, among which {B, C and E} ∈ Rc×h×h. Then
B, C and D are reshaped into Rc×t, where t = h2 and t represent the number of pixels. B
and C perform matrix multiplication, and then obtain the spatial attention feature map
S ∈ Rt×t through SoftMax layer calculation.

Sij =
exp(Bi × Cj)

∑b
i=1 exp(Bi × Cj)

(12)

where, Sij is the influence of the ith pixel on the jth pixel. D and ST perform matrix
multiplication, and the result is reshaped into Rc×h×h;

Zj = η
b

∑
i=1

(SjiDj) + Fj (13)

Among them, the initial value of η is zero, which can gradually assign more weights.
By observing Equation (13), we can find that all positions and original input feature maps
will be added with a certain weight to obtain the final output spatial attention feature map
Z ∈ Rc×h×h.

3. Experiment and Results
3.1. Data Set and Parameter Setting

The performance of the proposed method is verified by using four classical hyperspec-
tral image data sets: Indian pine (IN), Pavia University (UP), Kennedy Space Center (KSC)
and Salinas Valley (SV).

The IN data set shown in Table 1 is the earliest test data used for hyperspectral image
classification. An Indian pine tree in Indiana was imaged by airborne visible infrared
imaging spectrometer (AVIRIS) in 1992, and then intercepted with a size of 145 × 145. The
size of 145 is labeled for hyperspectral image classification test. The spatial resolution
of the image generated by the spectral imager is about 20 m. After eliminating useless
bands, 200 bands are left for experimental research. There are 21,025 pixels in the data
set, but only 10,249 pixels are ground object pixels, and the remaining 10,776 pixels are
background pixels. In the actual classification, these pixels need to be eliminated. Because
the intercepted area is crops, there are 16 classes in total, so different ground objects have



Remote Sens. 2022, 14, 1951 11 of 26

relatively similar spectral curves, and in these 16 classes, the distribution of samples is
extremely uneven.

Table 1. Number of training samples and test samples in IN data set.

Class Number of Samples
NO. Color Name Training Test

C1 Alfalfa 3 43
C2 Corn-notill 42 1386
C3 Corn-mintill 24 806
C4 Corn 7 230
C5 Grass-pasture 14 469
C6 Grass–Tress 21 709
C7 Grass-pasture-mowed 3 25
C8 Hay-windrowed 14 464
C9 Oats 3 17

C10 Soybean-notill 29 943

C11 Soybean-mintill 73 2382

C12 Soybean-clean 17 576

C13 Wheat 6 199

C14 Woods 37 1228
C15 Buildings–Grass–Trees–Drives 11 375
C16 Stone–Steel–Towers 3 90

Total 307 9942

The UP data set shown in Table 2 is part of the hyperspectral data imaged by the
airborne reflective optical system imaging spectrometer (rosis) of Germany in Pavia City,
Italy in 2003. The spatial resolution of the image is 1.3 m and the data size is 610 × 340; The
spectral imager imaged 115 bands in the wavelength range of 0.43–0.86 µm , eliminated
12 bands affected by noise, and left 103 available bands. Among them, the data set contains
9 types of features, including trees, asphalt roads, bricks, meadows, etc.

Table 2. Number of training samples and test samples in UP data set.

Class Number of Samples
NO. Color Name Training Test

C1 Asphalt 33 6598
C2 Meadows 93 18,556
C3 Gravel 10 2089
C4 Trees 15 3049
C5 Painted metal sheets 6 1339
C6 Bare soil 25 5004
C7 Bitumen 6 1324
C8 Self-blocking bricks 18 3664
C9 Shadows 4 943

Total 210 42,566

The KSC data set shown in Table 3 represent the data collected by NASA AVIRIS
(airborne visible/infrared imaging spectrometer) instrument at Kennedy Space Center
(KSC) in Florida on 23 March 1996. AVIRIS collected 224 bands with a width of 10 nm and
a central wavelength of 400–2500 nm. The spatial resolution of KSC data obtained from
an altitude of about 20 km is 18 M. After removing the water absorption and low SNR
bands, 176 bands were used for analysis. Training data were selected using land cover
maps provided by color infrared photography and Landsat thermal mapper (TM) images
provided by Kennedy Space Center. The vegetation classification scheme was developed
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by KSC personnel to define the types of functions that can be distinguished at the spatial
resolution of Landsat and these AVIRIS data. Because the spectral characteristics of some
vegetation types are similar, it is difficult to distinguish land cover in this environment.
For classification purposes, 13 categories are defined for the site, representing various land
cover types that occur in this environment.

Table 3. Number of training samples and test samples in KSC data set.

Class Number of Samples
NO. Color Name Training Test

C1 Scrub 38 723
C2 Willow swamp 12 231
C3 CP hammock 12 244
C4 Slash pine 12 240
C5 Oakbroadleaf 8 153
C6 Hard wood 11 218
C7 Swamp 5 100
C8 Graminoid marsh 21 410
C9 Spartina marsh 26 494

C10 Cattail marsh 20 384

C11 Sait marsh 20 399

C12 Mud flats 25 478

C13 Water 46 881
Total 256 4955

The SV data set shown in Table 4 is the same as the Indian pines image. The Salinas
data were also obtained by AVIRIS imaging spectrometer, which is an image of the Salinas
Valley in California, USA. Different from Indian pines, its spatial resolution reaches 3.7 m.
The image originally has 224 bands. Similarly, we generally use the image of the remaining
204 bands after excluding the 108-112154-167 and the 224th band that cannot be reflected
by water. The size of the image is 512 × 217. Therefore, it contains 111,104 pixels, of which
56,975 pixels are background pixels, and 54,129 pixels can be applied to classification. These
pixels are divided into 16 categories, including fallow and celery.

Table 4. Number of training samples and test samples in SV data set.

Class Number of Samples
NO. Color Name Training Test

C1 Brocoli_green_weeds_1 10 1999
C2 Brocoli_green_weeds_2 18 3708
C3 Fallow 9 1967
C4 Fallow_rough_plow 6 1388
C5 Fallow_smooth 13 2665
C6 Stubble 19 3940
C7 Celery 17 3562
C8 Graps_untrained 56 11,215
C9 Soil_vinyard_develop 31 6172

C10 Corn_cenesced_green_weed 16 3262
C11 Lettuce_romaine_4wk 5 1063
C12 Lettuce_romaine_5wk 9 1833
C13 Lettuce_romaine_6wk 4 912
C14 Lettuce_romaine_7wk 5 1065
C15 Vinyard_untrained 36 7232
C16 Vinyard_vertical_trellis 9 1798

Total 263 53,886
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In the experiment, in order to verify that small training samples can also achieve high
classification accuracy, we randomly selected 3%, 0.5%, 3% and 0.5% samples in IN, UP, KSC
and SV for training, and the remaining samples in each data set were used for testing. The
next section will prove that the proposed method can achieve high classification accuracy
in the case of small samples. Tables 1–4 show the number of training samples and test
samples in the four data sets of IN, UP, KSC and SV.

The experimental hardware platform is a server with NVIDIA GeForceRTX2060 GPU
and 16 GB random access memory. The experimental software platform is based on
Windows 10 VisualStudioCode operating system, using CUDA 10.0, Pytorch 1.2.0 and
Python 3.7.4. All experiments randomly selected different training data and were repeated
10 times. The final results of all experiments were the average results of 10 experiments.
The experiment uses Adam optimizer, and the learning rate is set to 0.0001. We used
real positive (TP) to represent the positive samples correctly classified by the model, false
negative (FN) to represent the positive samples incorrectly classified by the model, false
positive (FP) to represent the negative samples incorrectly classified by the model, and
true negative (TN) to represent the negative samples correctly classified by the model. The
overall accuracy (OA), average accuracy (AA) and Kappa coefficient (Kappa) were used as
evaluation indexes [64]. OA is the ratio of the number of correctly classified samples to the
total number of samples. The OA is calculated as

OA =
TP + TN

TP + FN + FP + TN
(14)

AA is the classification accuracy of each category. The calculation of AA is

AA =
TP

TP+FN + TN
TN+FP

2
(15)

Kappa coefficient measures the consistency between classification map and ground
real map. The calculation of Kappa is

Kappa =
po − pe

1− pe
(16)

where po is the sum of the number of correctly classified samples of each category divided
by the total number of samples; pe is the actual quantity of each category multiplied by the
sum of the predicted quantity of this category divided by the square of the total number of
all categories.

Some traditional and advanced hyperspectral image classification methods based on
convolutional neural network are used to compare the classification performance with
the proposed method. These methods include SVM, CDCNN, SSRN, FDSSC, DBMA, and
DBDA. SVM uses radial basis function to solve nonlinear classification problem; CDCNN
is a 2D-CNN model. Other methods and proposed methods are 3D-CNN model.

The design of network structure and the selection of parameters determine the classifi-
cation performance of the network. In our experiments, the main parameters of SFBMSN
are shown in Table 5. Hyperspectral images data are dimensionally reduced by PCA, and
then put into the network for feature extraction. Assuming that the size of the input data
is 9× 9× n, the data pass through the input module, FBMB module of spectral branch,
3D-Softpool module of spatial branch, dense connection block, attention block and final
classification block. Obviously, spatial size and n are important factors affecting the classifi-
cation performance. Therefore, this section will analyze the impact of these parameters in
detail. Table 5 shows the parameter configurations of the proposed methods.
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Table 5. Experimental parameters and configurations.

Laryer Setting Input Size Kernel Size Output Size

Spectral
branch

Input-3D-Conv - - 9 × 9 × 200
DiverseBranchBlock (9 × 9 × n, 24) - (9 × 9 × 97, 24)
BN-Relu-3D-Conv1 (9 × 9 × n, 24) 1× 1× 200, stride = [1, 1, 1] (9 × 9 × 97, 12)

Concatenate - - (9 × 9 × 97, 36)
BN-Relu-3D-Conv2 (9 × 9 × n, 36) 1× 1× 7, stride = [1, 1, 1] (9 × 9 × 97, 12)

Concatenate - - (9 × 9 × 97, 48)
BN-Relu-3D-Conv3 (9 × 9 × n, 48) 1× 1× 7, stride = [1, 1, 1] (9 × 9 × 97, 12)

Concatenate - - (9 × 9 × 97, 60)
Channel Attention Block (9 × 9 × n, 60) - (9 × 9 × 97, 60)

BN-Dropout-GAP (9 × 9 × n, 60) - (1 × 60)

Spatail
branch

input - - 9 × 9 × 200
CONV 1 × 1 × 200 1× 1× band, stride = [1, 1, 1] (9 × 9 × 1, 24)

BN-Relu-3DSoftPool-
3DConv (9 × 9 × 1, 24) 3× 3× 1, stride = [1, 1, 1] (9 × 9 × 1, 12)

Concatenate - - (9 × 9 × 1, 36)
BN-Relu-3D-Conv1 (9 × 9 × 1, 36) 3× 3× 1, stride = [1, 1, 1] (9 × 9 × 1, 12)

Concatenate - - (9 × 9 × 1, 48)
BN-Relu-3D-Conv2 (9 × 9 × 1, 48) 3× 3× 1, stride = [1, 1, 1] (9 × 9 × 1, 12)

Concatenate - - (9 × 9 × 1, 60)
Spatail Attention Block (9 × 9 × 1, 60) 3× 3× 1, stride = [1, 1, 1] (9 × 9 × 1, 60)

BN-Dropout-GAP (9 × 9 × 1, 60) 3× 3× 1, stride = [1, 1, 1] (1 × 60)

Fc_Linear Concatenate-full_connection 260

Effect of n on classification performance: n determines the depth of the network. Here,
the influence of parameter n in spectral branch on the classification accuracy is discussed.
Generally speaking, with the increase in network depth, the classification accuracy will also
improve. Too many layers will bring problems such as over fitting, gradient disappearance
and gradient explosion. Figure 6 shows the impact of the number of n on OA of different
data sets. Set n of IN, UP, KSC, and SV data sets to 96, 97, 98 and 99, respectively, and the
spatial size is fixed. As can be seen from Figure 6a, when n is set to 97, the OA value is
the highest, and OA gradually decreases with the increase in n. For SV data set, OA value
will fluctuate slightly with the increase in n. In order to avoid information redundancy
caused by excessively densely connected networks and balance classification accuracy and
calculation, the n number of IN, UP, SV and KSC data sets is set to 97.

Effect of spatial size on classification performance: For hyperspectral images, too small
input data blocks will lead to insufficient feature extraction, while large data blocks easily
result in noise problems. Therefore, the spatial size of the input 3D data block will also
affect the classification accuracy. When n is fixed, the effect of spatial size on classification
performance is analyzed. The spatial size of the input sample is set to 5× 5, 7× 7, 9× 9,
11× 11, 13× 13 and 15× 15, respectively. Figure 6b shows the OAs with different input
spatial sizes on four data sets. As can be seen from Figure 6b, the OA increases with the
increase in spatial size. For UP and IN data sets, when the spatial size reaches 9× 9, the
OA accuracy begins to decrease. For SV and KSC data sets, when the spatial size reaches
9× 9, the OA is the highest. Therefore, the input block with spatial size 9× 9 is selected to
train the network.
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Figure 6. (a) The OA effect of n on the four hyperspectral image data sets. (b) The OA effect of spatial
size on the four hyperspectral image data sets.

3.2. Experimental Results and Analysis

All methods are tested with the same proportion of training samples, and the clas-
sification performance of these methods is compared. Tables 6–9 lists the classification
accuracy of all categories obtained by all methods on the four data sets of IN, UP, KSC
and SV. All results obtain the average of the experimental results 10 times, and the highest
classification results are shown in bold. It can be observed from Tables 6–9 that compared
with other methods, OA, AA and Kappa proposed by the method are all the highest. The
OA value of the proposed method is 28.29% higher than that of SVM, and 6.11%, 3.45%,
6.82%, 24.64%, 3.77% and 9.9% higher than that of DBMA, DBDA, SSRN, CDCNN, FDSSC
and pResNet, respectively. SVM does not use spatial neighborhood information and has
poor robustness, so its OA value is low at only 67.77%. CDCNN is a 2D-CNN structure,
and its robustness is better than SVM, so its OA value is 3.65% higher than that of SVM.
FDSSC adopts the dense connection, and its OA value is more than 3.05% higher than that
of SSRN using the residual connection. The DBMA method adopts the network structure
of double branches and double attention, and using small sample training will lead to over
fitting. The DBDA network uses double branch and double attention structure, which
has a more flexible feature extraction structure than the DBMA network. Therefore, the
OA value obtained by DBDA is higher than that of DBMA. The proposed method designs
the FBMB module to extract spectral features. The convolution kernels of different sizes
are used to fully extract the important spectral features on the four branches, and the
spectral attention mechanism is deployed on each branch to further extract the key spectral
features. Finally, the spectral features extracted from the four branches are fused to obtain
more effective spectral features. Observation of the experimental results shows that the
classification performance is significantly improved after using the 3D-Softpool module
to extract spatial features. After observing the experimental results of classification using
small samples, it is found that the proposed method has the best classification performance.
As can be seen from Tables 6–9, the classification accuracy of the proposed method is the
highest among the four data sets. The experimental results also show that the classification
performance of the CDCNN method using the shallow network to capture features is the
worst, the receptive field of the shallow network is smaller than that of the deep network
and it extracts low-level features. Other methods used for comparison also adopt feature
fusion strategies, including SSAN and FDSSC, which usually provide higher classification



Remote Sens. 2022, 14, 1951 16 of 26

accuracy than other methods (CDCNN, SVM). When using small samples for training,
the hierarchical fusion mechanism can fuse the complementary information and related
information output from different convolution layers, making the extracted features more
comprehensive. Moreover, in order to further verify the performance of the proposed
SFBMSN network, the classification maps of different methods on the four data sets of IN,
UP, SV and KSC are shown in Figures 7–10. By observing the classification map, it can be
seen that compared with the classification map of other methods, the classification map of
the proposed method has less noise, clear boundary and is closest to the ground truth map.
The effectiveness of the proposed method is further proved.

Table 6. KPI (OA, AA, Kappa) on Indian pines (IN) data set with 3% training samples.

Class SVM CDCNN pResNet SSRN DBMA FDSSC DBDA Proposed

C1 35.61 48.56 27.06 81.53 82.25 83.52 96.49 98.41
C2 56.48 66.86 81.72 88.18 85.93 90.44 92.25 92.05
C3 61.56 33.13 80.42 86.68 88.64 87.60 91.6 95.77
C4 41.55 54.91 61.07 83.27 87.99 91.24 92.63 94.41
C5 83.06 87.35 91.65 96.78 95.05 98.31 97.76 99.69
C6 84.34 91.16 94.74 95.44 97.53 98.25 96.85 99.14
C7 57.86 57.25 20.04 85.98 51.11 87.70 65.62 77.70
C8 88.68 92.92 99.28 95.75 98.62 98.45 98.75 99.95
C9 37.46 48.08 68.99 72.16 53.31 72.11 83.42 80.73
C10 63.33 64.95 83.24 84.93 86.22 83.95 86.47 91.76
C11 64.74 67.74 88.71 88.26 89.51 95.72 93.12 96.91
C12 51.56 41.31 60.21 85.34 83.18 90.50 91.22 92.72
C13 84.75 85.68 79.58 98.15 96.8 98.99 96.69 98.39
C14 89.68 87.25 97.47 94.53 96.52 95.95 96.15 99.41
C15 63.83 86.64 85.01 88.65 85.19 92.51 92.37 95.31
C16 97.67 91.43 89.26 94.48 95.47 98.01 90.83 94.91

OA (%) 67.77 ± 0 71.42 ± 2.56 86.13 ± 1.36 89.24 ± 0.41 89.95 ± 1.06 92.29 ± 2.56 92.58 ± 0.53 96.03 ± 0.03
AA (%) 68.74 ± 0 71.35 ± 1.21 75.31 ± 2.21 88.69 ± 0.95 86.80 ± 0.59 91.45 ± 2.56 91.17 ± 0.22 94.58 ± 0.41

Kappa (%) 64.97 ± 0 67.22 ± 2.74 84.11 ± 0.92 87.88 ± 0.47 88.24 ± 1.19 91.24 ± 2.56 91.6 ± 0.63 95.34 ± 0.61

Table 7. KPI (OA, AA, Kappa) on Pavia University (UP) data set with 0.5% training samples.

Class SVM CDCNN pResNet SSRN DBMA FDSSC DBDA Proposed

C1 82.27 87.78 87.21 94.10 88.83 91.64 92.52 97.28
C2 83.54 94.73 98.02 96.66 97.07 97.06 98.07 99.16
C3 57.55 65.28 31.22 76.75 77.08 86.22 87.86 94.35
C4 93.33 96.13 85.36 99.29 96.71 96.75 96.27 98.27
C5 94.37 97.53 95.57 99.64 97.46 99.74 97.84 99.17
C6 81.66 89.62 55.37 93.85 93.66 96.83 98.47 98.98
C7 48.14 78.28 37.99 86.48 87.73 71.04 92.62 94.64
C8 72.15 78.53 76.32 83.71 81.17 77.84 89.43 87.07
C9 98.96 92.05 92.48 98.97 95.37 98.73 97.47 97.84

OA (%) 83.03 ± 0 87.94 ± 0.13 82.2 ± 1.98 92.50 ± 1.32 91.8 ± 0.56 93.16 ± 2.56 96.01 ± 0.03 97.13 ± 0.04
AA (%) 78.24 ± 0 85.32 ± 0.19 72.91 ± 2.15 92.16 ± 1.31 90.01 ± 2.64 90.58 ± 2.56 94.72 ± 0.59 96.31 ± 0.39

Kappa (%) 76.45 ± 0 83.95 ± 0.16 77.71 ± 3.01 90.89 ± 1.61 89.04 ± 0.75 90.88 ± 2.56 94.71 ± 0.04 96.19 ± 0.05
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Table 8. KPI (OA, AA, Kappa) on Salinas Valley (SV) data set with 0.5% training samples.

Class SVM CDCNN pResNet SSRN DBMA FDSSC DBDA Proposed

C1 99.41 97.75 89.22 96.17 97.53 100 98.74 99.24
C2 97.89 97.47 94.93 97.85 98.63 96.99 98.18 99.43
C3 88.99 88.54 86.13 95.26 95.82 98.01 96.48 96.84
C4 96.59 94.56 94.25 98.66 91.16 96.96 95.31 95.57
C5 96.08 95.09 99.33 97.25 95.75 99.58 97.15 99.66
C6 99.91 96.35 98.99 98.95 98.33 99.66 98.85 97.40
C7 96.62 93.88 98.63 98.33 96.69 92.07 99.33 92.45
C8 73.17 81.45 84.67 87.26 88.39 99.56 92.84 99.32
C9 97.09 97.59 98.7 99.37 98.16 97.03 98.06 96.99
C10 86.37 85.83 97.07 96.37 94.88 97.30 98.53 95.17
C11 86.97 83.66 89.64 96.82 92.63 96.06 96.74 99.34
C12 96.21 96.77 98.94 97.42 96.78 98.41 97.85 100
C13 92.45 97.87 99.06 97.24 97.28 99.90 98.48 99.91
C14 93.02 93.22 97.34 97.81 96.96 96.75 97.56 97.98
C15 76.02 73.85 88.95 84.33 84.03 88.87 84.23 85.98
C16 98.82 96.81 95.26 99.54 98.04 99.66 98.96 99.67

OA (%) 86.98 ± 0 88.36 ± 0.28 92.82 ± 2.1 92.04 ± 0.96 92.95 ± 0.33 95.79 ± 0.36 93.74 ± 0.74 97.23 ± 0.55
AA (%) 91.56 ± 0 91.95 ± 0.66 94.32 ± 0.72 95.95 ± 0.21 95.68 ± 0.2 97.50 ± 0.54 96.76 ± 0.17 98.11 ± 0.31

Kappa (%) 85.45 ± 0 87.05 ± 0.3 91.84 ± 2.08 91.14 ± 1.08 92.16 ± 0.34 95.31 ± 0.32 93.05 ± 0.8 96.91 ± 0.75

Table 9. KPI (OA, AA, Kappa) on Kennedy Space Center (KSC) data set with 5% training samples.

Class SVM CDCNN pResNet SSRN DBMA FDSSC DBDA Proposed

C1 92.43 96.81 99.61 98.4 99.39 99.73 99.67 99.71
C2 87.14 83.65 92.64 94.52 93.8 93.99 96.58 99.67
C3 72.47 83.92 82.37 85.2 80.2 82.50 88.72 88.32
C4 54.45 58.61 45.73 74.55 75.31 78.78 80.82 91.07
C5 64.11 52.83 73.06 75.13 69.6 68.55 78.14 92.29
C6 65.23 77.17 90.22 94.35 95.06 93.31 97.75 99.25
C7 75.5 75.34 97.44 84.64 87.08 88.69 95.15 95.52
C8 87.33 85.83 96.93 96.97 95.4 98.83 99.08 99.84
C9 87.94 91.65 99.81 97.83 96.21 99.80 99.98 100
C10 96.01 93.87 97.14 98.84 96.13 100 99.92 98.98
C11 96.03 98.77 98.26 99.14 99.64 99.15 98.92 99.17
C12 93.75 94.08 99.13 99.17 98.19 99.07 98.95 100
C13 99.72 99.8 100 100 100 1.00 99.97 99.51

OA (%) 87.96 ± 0 89.33 ± 0.65 94.04 ± 2.55 94.52 ± 0.9 94.12 ± 0.27 95.62 ± 0.03 96.76 ± 0.51 98.83 ± 0.52
AA (%) 82.55 ± 0 84.03 ± 0.95 90.17 ± 23.73 92.15 ± 1.87 91.23 ± 0.75 92.49 ± 0.06 94.9 ± 0.2 97.72 ± 0.21

Kappa (%) 86.59 ± 0 88.13 ± 0.73 93.68 ± 2.71 93.9 ± 1 93.45 ± 0.31 95.12 ± 0.03 96.4 ± 0.57 98.58 ± 0.7

Figure 7. Classification maps of IN data set using 3% training samples: (a) false color image,
(b) ground truth map (GT) and (c–j) the classification map and overall accuracy of different
algorithms.
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Figure 8. Classification maps of UP data set using 0.3% training samples: (a) false color image,
(b) ground truth map (GT) and (c–j) classification map and overall accuracy of different algorithms.

Figure 9. Classification maps of SV data set using 0.5% training samples: (a) false color image, (b) ground
truth map (GT) and (c–j) the classification map and overall accuracy of different algorithms.
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Figure 10. Classification maps of KSC data set using 5% training samples: (a) false color image,
(b) ground truth map (GT) and (c–j) the classification map and overall accuracy of different algorithms.

4. Discussion

Experiment 1: In order to verify the effectiveness of the proposed attention block,
FBMB module, 3D-Softpool and dense connection, some ablation experiments were carried
out on four hyperspectral images data sets. Only the modules to be tested in the network
were deleted, and other parts remained unchanged. Figure 11 shows the experimental
results with or without specific modules. At the same time, it can be seen that the accuracy
of the network reaches the highest after adding the spatial and spectral attention module.
The reason is that the introduction of attention block to extract the features of hyperspectral
images can adaptively allocate different weights, different spectral features and different
spatial regions and selectively enhance the important features useful for classification, that
is, increase the weight of some important features, which will help to improve the accuracy
of classification. In addition, Figure 11b shows the effectiveness of fusing spatial–spectral
features of different scales. As shown in Figure 11b, the FBMB module improves the
classification accuracy of four data sets. This is because multiple branches can effectively
extract spectral features of different scales, which is helpful to improve the classification
accuracy. It is obvious from Figure 11c that after removing the 3D-Softpool module, the
OAs on the four data sets decrease significantly. 3D-Softpool block can reduce the loss of
information in feature mapping and retain more information in down sampling activation
mapping, so better classification results can be achieved on four data sets. As can be seen
from Figure 11d, if the dense connection is not used for the experiment, the OAS on the
four data sets of IN, UP, SV and KSC decreases significantly. Using dense connection, all
convolution layers can be connected, so that the spectral characteristic map output after
convolution operation of each convolution layer is the input of all subsequent layers. This
can ensure the maximum spectral information flow between network layers and make full
use of spectral features. Therefore, better classification performance can be obtained on
the four data sets of IN, UP, SV and KSC. As can be seen from Figure 11d, if the dense
connection is not adopted for the experiment, the OAs on the four data sets of IN, UP, SV
and KSC decreases significantly. Using dense connection, all convolution layers can be
connected, so that the spectral feature maps output by each convolution layer are the input
of all subsequent layers. This can ensure the maximum spectral information flow between
network layers and make full use of spectral features. Therefore, better classification
performance can be obtained on the four data sets of IN, UP, SV and KSC.
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Figure 11. Ablation experiments of three modules of the proposed method on different data sets:
(a) attention mechanism, (b) FBMB, (c) 3D-Softpool and (d) dense connection.

Experiment 2: Figure 12 is the schematic diagram of FBMB. In order to prove that our
proposed FBMB can effectively improve the classification performance of hyperspectral
image classification we carried out two groups of comparative experiments. Only the
structure of FBMB was changed, and other structures remained unchanged. Some compar-
ative experiments were carried out under the same conditions. The experimental results
of the two groups of experiments were compared with that of the proposed method. In
the first experiment, the convolution kernel size of all convolutions in FBMB were set to
7 × 7 × 7. We call the first group of comparative experiments the four-branch same scale
block (FBSSB). In the second experiment, we used any three branches of the four branches
B1, B2, B3 and B4 for experiments, which can have four combinations, namely C1 (B1, B2,
B3), C2 (B1, B2, B4), C3 (B2, B3, B4) and C4 (B1, B3, B4). The experimental results of the
three groups of comparative experiments on the four data sets of IN, UP, SV and KSC are
shown in Figure 13. As can be seen from Figure 13, FBMB has the highest OA value and
the best classification performance on the four data sets. The convolution kernel size of all
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convolutions in the first group of experiments is 7 × 7 × 7. The classification performance
of this structure is not good. The size of convolution kernel is large, which leads to large
number of parameters and slow operation in the experimental process. Compared with
the combination of three branches, the feature extraction of four branches in FBMB is more
sufficient and the classification performance is better.

Figure 12. Schematic diagram of FBMB.

Figure 13. Comparative experiments results of FBMB, FBSSB, C1, C2, C3 and C4 on different data sets.
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Experiment 3: In order to further verify the performance of the proposed method,
in comparison with other methods, the classification performance of different methods
under different proportions of training samples was compared. In the experiment, the
training ratios of IN, UP, KSC and SV were set to 1%, 5%, 10% and 15%, respectively. The
experimental results are shown in Figure 14. As can be seen from Figure 14, when there
are few training samples, the classification performance of CDCNN and SVM is relatively
poor, and the classification performance of the proposed method is the best. With the
increase in the number of samples, each method can obtain higher classification accuracy,
but the classification accuracy of the proposed method can still be higher than that of other
methods. This shows that this method has good generalization ability.

Figure 14. The classification performance of different methods is compared under different training
sample ratios in IN, UP, SV and KSC data sets. (a) Classification performance of different methods
on IN data set, (b) classification performance of different methods on UP data set, (c) classification
performance of different methods on SV data set and (d) classification performance of different
methods on KSC data set.

Experiment 4: Feature fusion merges the features extracted from the image into a
complete image as the input of the next layer network, which can input more discriminative
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features for the next layer network. According to the order of fusion and prediction, feature
fusion can be divided into early feature fusion and late feature fusion. Early feature fusion
is a commonly used classical feature fusion method. For example, in an Inside–Outside
Net (ION) [65] or HyperNet [66]), concatenation [67] or addition operations are used to
fuse certain layers. The feature fusion strategy in this experiment is an early fusion strategy
that directly connects two spectral and spatial scale features. The two input features
have the same size, and the output feature dimension is the sum of the two dimensions.
Table 10 shows the experimental results of whether to use the fusion strategy. It can be
seen from Table 10 that the OA values obtained on the four data sets after feature fusion
are significantly higher than those obtained without feature fusion strategy. After feature
fusion is used on each data set, the OA value obtained increases by more than 1.8%. The
results show that the processing effect of feature fusion strategy on hyperspectral image
classification is significantly improved compared with that without feature fusion strategy.

Table 10. Effective analysis of the feature fusion strategy (OA%).

Strategy IN UP SV KSC

With fusion 96.03 97.13 97.23 98.83
Without fusion 94.21 95.27 95.39 97.01

5. Conclusions

In this paper, the SFBMSN method is proposed for hyperspectral image classification.
The FBMB module, 3D-Softpool module, spatial attention module, channel attention mod-
ule and dense connection are used in the network structure of this method. Using FBMB
module, the spectral features of hyperspectral images can be extracted from multiple scales
and different levels, and the spectral attention module is introduced into each branch of
FBMB to obtain more important information and suppress useless information. Using a
dense connection structure to extract spatial features can directly splice spatial features
from different layers, realize feature reuse and improve the efficiency of feature extraction.
The 3D-Softpool module is used for the first time in the dense connection structure. The
3D-Softpool can retain more spatial feature information in the down sampling activation
mapping. The purpose of using spatial attention is to extract important spatial informa-
tion and suppress useless redundant information. Experiments on four commonly used
data sets using small training samples show that the proposed SFBMSN method is very
competitive in hyperspectral image classification tasks.

In future research, we will further explore how to fuse the extracted spatial–spectral
features more effectively, so that the spatial and spectral features at the edge can also be
fully applied to classification. Therefore, designing a more efficient fusion model is an
important direction of our future research.
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