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Abstract: To solve the difficulty associated with radar signal classification in the case of few-shot
signals, we propose an adaptive focus loss algorithm based on transfer learning. Firstly, we trained
a one-dimensional convolutional neural network (CNN) with radar signals of three intra-pulse
modulation types in the source domain, which were effortlessly obtained and had sufficient samples.
Then, we transferred the knowledge obtained by the convolutional layer to nine types of few-shot
complex intra-pulse modulation classification tasks in the target domain. We propose an adaptive
focal loss function based on the focal loss function, which can estimate the parameters based on the
ratio of hard samples to easy samples in the data set. Compared with other existing algorithms, our
proposed algorithm makes good use of transfer learning to transfer the acquired prior knowledge
to new domains, allowing the CNN model to converge quickly and achieve good recognition
performance in case of insufficient samples. The improvement based on the focal loss function allows
the model to focus on the hard samples while estimating the focusing parameter adaptively instead
of tediously repeating experiments. The experimental results show that the proposed algorithm had
the best recognition rate at different sample sizes with an average recognition rate improvement of
4.8%, and the average recognition rate was better than 90% for different signal-to-noise ratios (SNRs).
In addition, upon comparing the training processes of different models, the proposed method could
converge with the least number of generations and the shortest time under the same experimental
conditions.

Keywords: intra-pulse modulation classification; convolutional neural network; transfer learning;
adaptive focal loss

1. Introduction

Intra-pulse modulation classification of radar signals is an essential area within the
field of electronic countermeasures (ECM), which determine the system, usage, and type
of enemy radar by analyzing the data received from radar reconnaissance systems [1].
Generally, the classification of intra-pulse modulation can be divided into feature-based
and data-based classification [2]. Feature-based classification needs to extract features
from the radar signal and carefully design classifiers based on these features [3], while
data-based classification can fully retain the data of the radar signal, and is the focus of this
paper.

Deep learning is a new research direction in the field of machine learning and is a col-
lective term for a class of pattern analysis methods [4]. With the rapid development of deep
learning [4], many researchers now use deep learning to study the classification of intra-
pulse modulation of radar signals. Compared to traditional feature extraction, deep learning
can automatically extract depth features from radar signals. In [5], Z Huang proposed a
deep convolutional neural network-based approach that used the amplitude information
of single-polarization SAR images as input to automatically extract the hierarchical spatial
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characteristics. These features may be more abstract, but they are representative and suit-
able for classification. Deep learning models can learn all the representation layers together
at the same time. By learning the common features, once the model modifies an internal
feature, all other features that depend on it will automatically make the corresponding
adaptation. To improve the classification accuracy of radar signals, various methods have
been proposed. Many researchers convert one-dimensional (1D) radar signals into two-
dimensional (2D) time-frequency images for classification. For example, short-time Fourier
transformation and CNNs were used to identify six different intra-pulse modulations
signals, and the overall classification success rate was over 90% [6]. Ma, XR et al. [3] de-
signed a combination of the short-time Ramanujan Fourier transform and pseudo-Zernike
moments invariant feature-based method to recognize different modulation schemes under
different parameter variation conditions. To improve classification performance under
a low signal-to-noise ratio (SNR), an improved convolutional de-noising automatic en-
coder [7] was proposed. When the SNR was −9 dB, the encoder could classify 12 kinds
of modulated signals, and the classification accuracy was over 95%. Gao, LP et al. [8]
proposed an image fusion algorithm using non-multi-scale decomposition to fuse images of
a single signal with different time-frequency methods. Liu et al. [9] proposed an algorithm
for radar emitter signal recognition transforming raw radio signals into time-frequency
image using the Choi–Williams distribution function. Moreover, various studies show
that using one-dimensional radar signals for identification makes sense, which is also
the focus of this paper. Sun, J et al. [10] designed a novel encoding method to generate
high-dimension sequences of equal length as new features in cases of inconsistent features
between samples, and proposed a unidimensional convolutional neural network to classify
the encoded high-dimension radar signals. Li, X et al. [11] proposed an attention-based
approach for radar emitter classification using recurrent neural networks to classify the
radar signals. To improve the classification accuracy of radar signals with different SNRs of
−14~20 dB, a novel network was proposed, which combines a shallow convolutional neural
network (CNN), a long-term memory network (LSTM), and a deep neural network (DNN).
Wu, B et al. [12] proposed a novel 1D CNN with an attention mechanism to extract more
discriminative features and recognize radar emitter signals. Although methods such as
deep CNN can omit feature engineering and automatically extract and learn features from
the data [5], at the same time, the number of samples required restricts the development
of deep learning in the field of radar signal classification. Most researchers only focus on
signal classification under different SNRs. These methods fail to overcome the obstacle
of training the depth network with limited radar signals, which is a few-shot recognition
problem [13].

To solve these issues, we propose a novel deep network based on transfer learning.
Transfer learning is good at applying knowledge or patterns learned in one domain or task
to a different but related domain or problem [14]. In general, transfer learning can be classi-
fied into three categories: instance-based, feature-based, and shared parameter-based [15].
Instance-based transfer learning studies how to select instances from the source domain
that are useful for training in the target domain. For example, an effective assignment
of weight to labeled data instances in the source domain can make the distribution of
instances in the source and target domains close, so that a reliable learning model with
high classification accuracy can be built in the target domain. Dai WY et al. [16] proposed
the TrAdaBoost algorithm to improve the classification effect by adjusting the weights
of misclassified samples in the source and target domains. Feature-based approaches
extract and identify representative features shared between the source and target domains
and then use these features to transfer knowledge [17]. Shared parameter-based methods
investigate how to find common parameters or prior distributions between the spatial
models of source and target data [18]. For few-shot Synthetic Aperture Radar (SAR) im-
age classification, shared parameter-based methods are good at migrating labeled data
or learned knowledge structures from related domains with sufficient samples [18–22].
Huang, Z et al. [18] designed an assembled CNN architecture consisting of a classification
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pathway and a reconstruction pathway, together with an additional feedback bypass. A
novel method, deep memory convolution neural networks, for alleviating the problem of
overfitting caused by insufficient SAR image samples was proposed in [19]. Rostami, M
et al. [22] proposed a novel deep neural network for classifying SAR images that eliminates
the need for a huge labeled dataset.

Different from the classification of 2D SAR images, we recognize the received 1D radar
signals instead of converting them into images via time-frequency analysis. First, we trained
a 1D deep CNN using three large numbers of simple radar signals with labels as the source
dataset, and the source task was to classify the three radar signals as correctly as possible.
We could easily obtain an optimal depth CNN, because the number of samples was simple
and sufficient, and then discard the classifier and higher convolution layers, leaving only
the structure and parameters of the lower layer to transfer to the target domain. The lower
convolutional layers of the CNN (those layers closer to the input) extracted more general
features, while some higher layers of classifier and convolutional layers were applied to
specific features, with the higher layers containing more feature semantics and the lower
layers containing less feature semantics but more location information. Meanwhile, we
proposed an adaptive focus loss function based on focal loss [23], which can adjust the
parameter according to the ratio of hard samples to easy samples in the data set. The
experimental results demonstrate that, compared with existing algorithms, the proposed
algorithm had significantly improved classification accuracy and convergence speed while
using less training data.

The remainder of the paper proceeds as follows. Section 2 is concerned with the
methodology used for this study. Detailed experimental procedures and discussion of the
results are given in Section 3. Section 4 is the conclusion of this paper.

2. Methods
2.1. Related Work
2.1.1. Convolutional Neural Network

Deep learning arose rapidly in the first decade of the 21st century as computing power
increased. The Convolutional Neural Network (CNN), the exemplar of deep learning, was
first established by Y. L. Cun [24], who designed the famous LeNet-5 to classify handwritten
numbers, drawing on artificial neurons and visual perception mechanisms. CNNs share
many similarities with ordinary neural networks, in that both of them mimic the structure
of human nerves and consist of neurons with learnable weights and bias constants [24].
However, CNNs are more widely used because they avoid complex pre-processing of data
and can directly input raw data relying on convolution layers to extract feature maps [25].
In the following years, CNNs evolved based on their classical structure. In 2012 Geoffrey
and his student Alex designed the Alex network [26], introducing a nonlinear activation
function based on LeNet (ReLU) and a method to prevent overfitting (Dropout, Data
augmentation). In 2014, K. S et al. [27] proposed VGG-Net, which contains more layers and
uses the same size convolutional filter. The Inception structure of GoogLeNet [28] allows
the entire network structure to be expanded in both width and depth. ResNet [29] proposes
a residual learning framework that reduces the training burden on the network.

2.1.2. Radar Signal Intra-Pulse Module Classification

Radar emitter signal identification, which aims to obtain information concerning radar
systems by analyzing the emitter signals, is an important aspect of electronic warfare
and has been extensively studied by numerous researchers. All the CNNs mentioned in
Section 2.1.1 have achieved good results in many fields, so it is reasonable to use CNNs
to learn temporal correlations and deep features from radar signals for classification. Wei,
SJ et al. [30] used sequences in the time, frequency, and autocorrelation domains of the
original signal as inputs to a shallow CNN, after which the deep features extracted by the
CNN were used as the input to an LSTM network, and finally, a DNN, as the classification
network, would directly output the modulation type of the signal. This could achieve high
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accuracies for four common kinds of measured radar signals. In [9], Z. Liu created a deep
CNN using the input of time-frequency spectrums of radar signal intra-pulse modulation
to substitute manually constructed features that are time-demanding and neglect delicate
characteristics. In [31], Y. Pan et al. used the Hilbert–Huang transform to obtain a wealth
of information on the nonlinear and non-stationary properties of radar signals and built a
deep residual network to avoid the degradation problem.

2.1.3. Transfer Learning

Transfer learning is a machine learning technique that can transfer knowledge learned
in the source domain to the target domain for enhancing the learning of the target task.
Transfer learning typically includes the following elements: a source domain DS, a target
domain DT, a source learning task TS, and a target learning task TT. Based on the dif-
ferences between the source/target domains and tasks, S.J. Pan et al. classified transfer
learning into inductive transfer learning, unsupervised transfer learning, and transductive
transfer learning [15]. The above three types of transfer learning can be further grouped
into four cases: instance transfer learning, feature-representation transfer learning, param-
eter transfer learning, and relational-knowledge transfer learning [15]. Transfer learning
has been successfully adopted in many fields, such as image and video quality, visual
categorization, and machinery fault diagnosis. Ling, S et al. [32] surveyed state-of-the-art
transfer learning algorithms in visual categorization applications such as object recogni-
tion, image classification, and human action recognition. Varga, D et al. [33] pre-trained
different types of CNNs based on fusing the decisions of multiple image quality scores
that can better characterize authentic image distortion and effectively estimate perceived
image quality. In [34], an ImageNet database pre-trained CNN with global average pooling
layers was proposed in order to transfer the learned knowledge so that the module can
be easily generalized to any input image size and pre-trained CNNs. In [35], Li, C et al.
reviews the research progress on deep transfer learning for machinery fault diagnosis in
recent years. In the field of radar target classification, Huang, ZL et al. [18] used inductive
transfer learning to transfer reconstructed knowledge from convolutional self-encoders to
the SAR target classification task. They innovatively used a large number of unlabeled SAR
scene images to train the convolutional self-encoder to reconstruct the features well and
transferred only the encoder results during the target classification task. Qing, W et al. [36]
designed a two-channel CNN combined with bi-directional LSTM architecture to improve
the classification performance of the waveforms of cognitive passive radar. They used
transductive transfer learning to initialize the target domain classifier with source domain
parameters. In this paper, since the source and target domains have different but related
distributions, we used parameter transfer learning, in which the source and target tasks
share some of the network parameters.

2.1.4. The Focal Loss Function

The imbalance of different sample categories in target detection is a critical issue
impacting accuracy. Online hard example mining (OHEM) [37], a typical algorithm to
deal with class imbalance, increases the weight of misclassified samples but ignores the
easy-to-classify samples. Focal loss is proposed in [23] to solve the category imbalance
problem, and is obtained by modifying the standard cross-entropy loss. Compared to
OHEM, the focal loss function allows the model to focus more on difficult samples by
reducing the weights of easy-to-classify samples during the training process [23]. Currently,
focal loss is commonly used in different fields. In the area of text detection in computer
vision, X. Tian et al. [38] designed a focal text detection network that uses focal loss to train
the network well with an uneven number of samples; it could obtain better performance
when the number of samples was insufficient. In the field of medical image processing,
where sample imbalance is a serious problem, [39] proposed a network framework using
residual neural networks (Res-Net) [29] combined with focal loss for determining left
ventricle segmentation from cardiac MRI images. For the problem of ship detection in
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high-resolution SAR images, ref. [40] designed a RetinaNet-Plus method based on the
RetinaNet network, which uses focal loss in the training process to resolve class imbalance
and reduce the loss weights of easy-to-classify samples.

2.2. The Proposed Methods
2.2.1. Transfer Learning-Based Convolutional Neural Network

Based on parameter transfer learning, we constructed the network frameworks for the
source and target tasks separately, and the source domain used three simple intra-pulse
modulation types of radar signals, which were effortlessly obtained and had sufficient
samples. The goal was to classify these three radar signals as accurately as possible. In the
target domain, we trained with a small number of complex intra-pulse modulation type
signals, nine in total, and initialized the convolutional layers of the target domain network
using the parameters learned in the source domain instead of random initialization. In the
following, we describe the details of the method.

A sequential structure is a convolutional neural network in which the output of each
layer is superimposed sequentially as the input of the next layer. Because of its simple
structure, it has been widely used as a classical structure. VGG is a typical sequential
structured network model, first proposed by K. Simonyan et al. [27]. They added convolu-
tional layers to AlexNet one by one to study the effect of network depth on the recognition
effect. Experiments showed that the deeper the network, the better the recognition effect;
when the network structure increased to 16 and 19 layers, the effect improved significantly,
and therefore these algorithms were called VGG-16 and VGG-19. Therefore, to keep the
training simple and the model effortlessly transferred and tuned, we used a sequential
structure and simplified the VGG network to build the source and target networks. To
ensure that the layer parameters could transfer properly between the source and target
domains, we construct a sequential structure with part of the same convolutional layers
in the source and target domains. We designed a 1D CNN for the input 1D radar signal
intra-pulse modulated sequence; the receptive field of the 1D convolution kernel was
continuously translated over the data sequence to observe significant features due to the
translation-invariant property of convolution. Each convolution filter of the convolution
layer acted iteratively throughout the receptive field to convolve the input sequence, and
the convolution result formed a feature map of the input sequence containing the local
features of the radar signals. Each convolution filter shared the same parameters, including
the same weight matrix and bias term, which were transferred to the target domain after the
training of the source domain. The convolved 1D feature map was fed to the pooling layer,
and maximum pooling was used for sampling, which was a nonlinear down-sampling
method [41]. After acquiring radar signal sequence features by convolution, directly us-
ing all the extracted feature data to train the classifier for classification usually expends
great computational effort, so the maximum pooling sampling method can be used to
down-sample the convolutional features. The convolution and pooling process is shown in
Figure 1.
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By training the source domain network, we continuously optimized the feature ex-
traction capability of the convolutional layers for 1D radar signals. Thus, these pre-trained
convolutional layers could extract data features well in the face of complex target tasks
with few-shot samples and inconsistent sample distribution.

To better assemble and train the network and highlight the effect of transfer learning,
we designed a single-input, single-output convolutional network structure based on the
above structure, as shown in Figure 2.
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As shown in Figure 2, the source network consisted of five convolutional layers,
each followed by batch normalization to prevent gradient disappearance and speed up
training. To transfer the parameters properly between networks, we kept the structure of
the lower convolutional layers of the source the same as that of the target network, with
the same number and size of convolutional kernels. Table 1 shows the number of feature
maps and the size of the convolutional kernels for each convolutional layer. We used
multiple 1 × 3 (or 1 × 5) convolutional kernels instead of large-sized kernels to minimize
the number of parameters and amount of computational effort while ensuring that the
perceptual field of view was not altered [42]. As the number of layers deepened, we
increased the number of convolutional kernels to extract more deep features and then
down-sampled the feature maps via maximum pooling to prevent overfitting. This design
gave the network an inverted triangular shape, i.e., the closer to the input layer, the
smaller the number of parameters, and the closer to the output layer, the larger the number
of parameters. Such an inverted triangular structure prevents the neural network from
losing gradients too quickly during backpropagation [27]. In terms of activation function
selection, the Rectifier Linear Unit (ReLU) is widely used because it can solve the gradient
disappearance problem [43], but its sparsity tends to lead to dying ReLU, so we used Leaky
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ReLUs, which assign a non-zero slope to all negative values after each layer of convolution,
to solve this problem [44,45].

Table 1. The design scheme for the source and target networks.

Layer Kernel Size Channel Max Pooling

Source Network
Target Network

Conv1 1 × 5 32 1 × 2
Conv2 1 × 5 64 1 × 2
Conv3 1 × 5 128 1 × 4
Conv4 1 × 3 256 1 × 4

Source Network Conv5 1 × 3 256 1 × 4

In ref. [46], Y, W. et al. proved that different convolutional layers extract different-
level feature information, and therefore that during the transfer learning process the
appropriate convolutional layer parameters should be selected for transfer, instead of all of
them. The lower convolutional layers of CNN (the layers closer to the input) extract more
general features, i.e., the lower layers contain few feature semantics but have more location
information, while some of the higher classifier and convolutional layers apply to specific
features which extract more feature semantics, and the semantic features learned in the last
few layers are quite different for different datasets. Therefore, the higher convolutional
layers are generally related to task objectives and classification, and the lower convolutional
layers are more suitable as feature extractors to extract general features for transfer learning.
As a result, in the transfer process, we only kept the first four convolutional layers of the
source network and discarded the other layers, which contained more semantic information.
These optimized lower convolutional layers were more general and could effectively extract
structural and detailed features in the radar signal, even in the face of new data.

2.2.2. Adaptive Focus Loss Function (AFL)

To further improve the classification performance of radar signals under few-shot
learning, we replaced the original cross-entropy loss with adaptive focal loss, which could
automatically adjust its application range depending on the number of samples determined
via focal loss.

The focal loss function is widely used and has achieved good results in the field of
target detection. The authors proposed focal loss (FL) based on cross-entropy (CE) loss:

CE(p, y) =
{
− log(p) i f y = 1
− log(1− p) otherwise.

(1)

where p ∈ [0, 1] is the model’s estimated probability and y ∈ {−1, 1} indicates the ground-
truth class. Facing the problem of sample imbalance, the authors added a factor to the CE
loss that assigns different weights to the samples:

FL(pt) = −(1− pt)
γ log(pt) (2)

pt =

{
p i f y = 1
1− p otherwise.

(3)

The focusing parameter γ ≥ 0. When γ = 0, the focal loss is the traditional cross-entropy
loss, and when γ increases, the modulation coefficient also increases. γ smoothly adjusts
the proportion of loss accounted for by samples of different difficulties. If a hard sample is
misclassified, the pt value is small:

pt → 0 (4)

(1− pt)
γ → 1 (5)

and focal loss has not changed significantly compared to the original loss. By contrast,
when the easily classified samples are correctly classified, pt → 0 , and the contribution
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to the total loss is small. Based on this principle, focal loss solves most of the sample
imbalance problems very well, but in some scenarios, its effect is not ideal.

Focal loss solves the sample imbalance problem by adjusting the parameter γ to give
more weight to the hard samples with poor classification. However, the value of γ is not
as large as possible. In ref. [23], the best recognition was achieved when γ = 2, and the
performance decreased when γ > 2. For other models, the optimal value of γ needs to be
determined through a large number of experiments. We can simplify the determination of
the optimal parameters by estimating the range of γ. Therefore, we propose an adaptive
focus loss function that estimates the value of γ based on the ratio of hard- to easy-to-
classify samples. According to the research [47], there is a huge difference in quantity
between easy and hard samples during the training process. First, we trained a base
classifier using CE, then we predicted the training set and counted the numbers of easy and
hard samples, denoted Ne and Nh, respectively (For radar signal intra-pulse modulation
classification, we considered pt ≤ 0.1 to be a hard sample and pt ≥ 0.9 to be an easy sample.
For different models and problems, one can change the judgment threshold of the hard and
easy samples). According to the focal loss function, the loss gap is:

losshard
losseasy

=
(1− 0.1)γ

(1− 0.9)γ = 9γ (6)

We defined the difficulty of the training set as the ratio of the number of easy samples
to the number of hard ones:

r =
Ne

Nh
(7)

The focusing parameter γ was used to adjust the contribution of easy and difficult
samples to the overall loss to balance their large quantitative differences. Therefore, the loss
gap should not be less than the ratio of the number of easy samples to the number of hard
ones, and the value of γ should increase as r increases, i.e., the more simple samples, the
greater the focus on hard samples. Then we derived the estimate of γ as γ̂, which should
satisfy the following:

9γ̂ ≥ r =
Ne

Nh
(8)

γ̂ ≥ log9
Ne

Nh
(9)

In summary, for the multi-classification problem of radar signal intra-pulse modula-
tion, we propose the Adaptive Focus Loss function (AFL) as follows:

AFL = −(1− pprediction × ygroundtruth)
γ̂ log(pprediction) (10)

In this paper, we obtained γ̂ = log9
Ne
Nh

, and pprediction was a 1 × 9 vector, which was
our model’s estimated probability for the nine radar signals classified. ygroundtruth was the
vector of the labels after one-hot encoding.

3. Experiments and Results

In this section, we simulated several radar signal datasets with different sample sizes
to simulate different small sample cases, which were used to train and test the proposed
method and other baseline methods. In all experiments, we used a computer equipped
with an Intel 10900K CPU, 64 GB of RAM, and a RTX 3070 GPU.

3.1. Dataset and Parameters Setting

Generally, the typical radar signal is dominated by high-power radio frequency (RF)
pulses with a carrier band range from 3 MHz to 100 GHz. The radar receiver in our
simulation used a local oscillator to mix with the high-frequency radar signal to reduce
the frequency of the received signal, and then output a lower-frequency signal through
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the intermediate frequency (IF) amplifier. Specifically, to ensure that the frequency of the
received signal was reduced to replicate a radar system operating in a real environment, a
mixer was simulated. The mixer multiplied the RF signal by the local oscillator signal to
obtain two output frequencies, the summation and the subtraction of the radio frequency
fRF and the local oscillator frequency fLO, which can be expressed as:

fRF + fLO (11)

fRF − fLO (12)

Through using a low-pass filter, the summed frequency fRF + fLO could be well
suppressed, so that we could obtain the subtracted frequency fRF − fLO, which is the IF
signal. In this paper, we simulated the low frequency radar signals from the receiver output
and used them to train and test our proposed method. For the source domain dataset,
we selected three modulation types of simple and widely obtainable radar signals: single-
carrier frequency (SCF) signals, linear frequency modulation (LFM) signals, and sinusoidal
frequency modulation (SFM) signals. For the target domain dataset, we used nine different
kinds of radar signals with complex modulation types comprising binary phase-shift
keying (BPSK) signals, binary frequency-shift keying (BFSK) signals, quadrature frequency-
shift keying (QFSK) signals, Frank phase-coded (Frank) signals, even quadratic frequency
modulation (EQFM) signals, dual-frequency modulation (DLFM) signals, multiple linear
frequency modulation (MLFM) signals, and two kinds of composite modulation (LFM–
BPSK, BPSK–BFSK) signals. The sampling frequency was 1 GHz, the pulse width of all
radar signals varied from 1 µs to 10 µs, and other signal parameters are shown in Table 2.

Table 2. Parameters of the twelve different intra-pulse modulations of the radar emitter signals.

Type Carrier Frequency Parameter

Source
Domain

SCF 50~500 MHz None

LFM 100~400 MHz Bandwidth: 20 MHz~150 MHz

SFM 100~400 MHz Bandwidth: 20 MHz~100 MHz

Target
Domain

BPSK 100~300 MHz 5,7,11,13-bit Barker code

BFSK
100~400 MHz

5,7,11,13-bit Barker code100~400 MHz

QFSK

100~300 MHz

16-bit Frank code
100~300 MHz
100~300 MHz
100~300 MHz

FRANK 100~400 MHz Phase number: 4–6

EQFM 100~300 MHz Bandwidth: 5 MHz to 100 MHz

DLFM 100~300 MHz Bandwidth: 10 MHz to 150 MHz

MLFM
100~300 MHz Bandwidth: 30 MHz to 100 MHz

Bandwidth: 30 MHz to 100 MHz
Segment: 20–80%100~300 MHz

LFM-BPSK 100~300 MHz Bandwidth: 5 MHz to 150 MHz
5,7,11,13-bit Barker code

BPSK-BFSK
100~400 MHz

5,7,11,13-bit Barker code
100~400 MHz

To simulate the real electromagnetic environment, we added additive Gaussian white
noise (AWGN) to all signals. The model of the radar signal intercepted by the receiver is
given by:

x(t) = s(t) + n(t) (13)
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n(t) is white Gaussian noise, and s(t) is a radar signal. The SNR is defined as:

SNR = 10 log10
Ps

Pn
(14)

where Ps represents the effective power of the signal and Pn is the effective power of the
noise. In Figure 3, taking the LFM signal as an example, we simulated the time-domain
waveforms of the same signal at −5 dB, 0 dB, 5 dB, and noiseless, respectively.
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Different research fields require a different number of samples in each field. To better
investigate the relationship between the number of training samples and the classification
effect of the model in radar intra-pulse modulation classification, we introduced a learning
curve [48] to plot the classification accuracy versus the number of the training set. The
learning curve equation is as follows:

y = 100 + b1xb2 (15)

where y is the classification accuracy, x is the training dataset, and b1 and b2 correspond to
the learning rate and decay rate, respectively. Figure 4 shows the learning curve of classi-
fication accuracy versus number of samples for the nine types of intra-pulse modulated
radar signals in the target domain.
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According to the learning curve, the classification accuracy curve reaches smoothness
and the model converges when the total number of training samples is 2000, so in this paper,
we defined radar signal intra-pulse modulation classification with less than 2000 training
samples as small sample learning.
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To validate our proposed method on cases of different sample sizes, we randomly
generated samples from each type of signal in the target domain with numbers increasing
from 50 to 140 at increments of 10, constituting 10 training sets with different sample sizes.
For the three types of radar signals in the source domain, the number of samples for each
signal was 5000. The number of training sets for each type of radar signal is shown in
Table 3.

Table 3. The number of training sets for each type of radar signal.

Signal Number Type

Source Domain 5000 per signal
SCF
LFM
SFM

Target Domain
Each type of signal increase from 50 to 140 with a

step of 10, constituting 10 training sets with
different sample sizes respectively.

BPSK
BFSK
QFSK

FRANK
EQFM
DLFM
MLFM

LFM–BPSK
BPSK–BFSK

Each dataset was generated at the same SNR condition ranging from −5 dB to 5 dB,
with a 1 dB interval. An additional set of noise-free signals was generated as a control group
to verify the effect of noise on the model performance. For all the above training sets, we
produced validation and test sets corresponding to the ratio of 4:1:1. For example, when the
target domain training set had 450 samples for each SNR (−5~5 dB and a noise-free dataset
for a total of 12 SNRs), the validation set and test set contained 112 samples. Figures 5 and 6
respectively show the waveforms of the source-domain and target-domain intra-pulse
modulated radar signals over time when the SNR was 0 dB.
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3.2. Experiments on 1D-TLAFLCNN
3.2.1. Experiments on the Source Domain Network

In this section, the source domain network in Section 2 was trained with only three
intra-pulse modulation radar signals. The source task was to classify these three radar
signals as accurately as possible to optimize the feature extraction capability of the convo-
lutional layers for 1D radar signals. In this stage of training the source domain network,
we added three fully connected layers after the convolutional layer, which contained a
hidden layer of 256 neurons and a “Leaky ReLU” activation function. The cross-entropy
loss function and Adam optimizer were used with a 0.001 learning rate, the batch size was
64, and the network weights were saved for migration when the validation set had the
highest accuracy. The result of the classification task is shown in Table 4.

Table 4. The classification accuracy for the source domain at different SNRs.

SNR/dB −5 −4 −3 −2 −1 0 1 2 3 4 5

SCF 0.9897 0.9923 0.9980 0.9990 0.9969 0.9980 1.0000 1.0000 1.0000 1.0000 1.0000
LFM 0.9840 0.9884 0.9917 0.9915 0.9990 1.0000 0.9990 1.0000 1.0000 1.0000 1.0000
SMF 0.9812 0.9842 0.9863 0.9888 0.9990 0.9969 0.9970 0.9983 1.0000 1.0000 1.0000

Average 0.9850 0.9883 0.9920 0.9931 0.9983 0.9983 0.9987 0.9994 1.0000 1.0000 1.0000

In the subsequent transfer process, we only kept the first four convolutional layers
of the source network and discarded the other layers, which contained more semantic
information. These optimized lower convolutional layers were more general and could
extract structural and detailed features in the radar signal well, even in the face of new
data.
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3.2.2. Experiments on the Target Domain Network

In this section, we transferred the learned weights to the target network and trained
the proposed 1D-TLAFLCNN using the different datasets in the target domain generated
in Section 3.1, through the following procedure:

1. Initialize the corresponding convolutional layers of the target domain network with
the weights learned from the first four convolutional layers of the source domain
network, and freeze these weights;

2. Randomly initialize the parameters of the fully connected layers using a Gaussian
distribution;

3. Train the classification layers using the target domain dataset;
4. Fine-tune the entire network by unfreezing all convolutional layers and setting a low

learning rate (set to 0.0001) to retrain the entire network in order to incrementally fit
the pre-trained features to the new data.

When the SNR is 0 dB and the number of training samples is 450 (50 for each signal),
the average accuracy value during the training process is shown in Figure 7.
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Figure 7 shows that the accuracy of the model stabilized using the validation dataset
as the epoch increased, and the accuracy became essentially constant when the epoch
reached 90, which indicates that the model converged. Subsequently, we repeated these
experiments on training datasets with different SNRs and different sample sizes and tested
the classification performance of the proposed model using the highest accuracy weights
from the validation dataset. The experiment was repeated 20 times for each case and the
average accuracy was taken as the final classification accuracy. The classification accuracies
for the nine intra-pulse modulation signals, based on 1D-TLAFLCNN for different cases,
are given in Table 5.

As shown in Table 5, we used the training sets of the target domain mentioned in
Section 3.1. Each type of signal increased from 50 to 140 with a step of 10, constituting ten
training sets with different sample sizes. It can be concluded that the proposed algorithm
had good performance in the case of different numbers of small samples, and the average
classification accuracy improved as the number of samples increased. Moreover, the
proposed method, both in noiseless and noisy environments, had good performance and
the classification accuracy steadily improved with increasing SNR. When the SNR was
greater than or equal to −1dB, the classification accuracy of the different data sets was over
90%.
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Table 5. The classification accuracies of target domain signals, based on 1D-TLAFLCNN for different
cases.

SNR
Size −5 dB −4 dB −3 dB −2 dB −1 dB 0 dB 1 dB 2 dB 3 dB 4 dB 5 dB Noiseless

50 0.8353 0.8444 0.8781 0.8996 0.9031 0.9116 0.9148 0.9227 0.9347 0.9353 0.9365 0.9646
60 0.8400 0.8549 0.8841 0.9059 0.9208 0.9219 0.9171 0.9246 0.9348 0.9372 0.9440 0.9735
70 0.8448 0.8616 0.8966 0.9172 0.9264 0.9287 0.9377 0.9391 0.9441 0.9506 0.9511 0.9746
80 0.8463 0.8637 0.9067 0.9211 0.9273 0.9296 0.9433 0.9444 0.9454 0.9516 0.9512 0.9754
90 0.8480 0.8661 0.9168 0.9238 0.9381 0.9333 0.9452 0.9461 0.9456 0.9529 0.9539 0.9778

100 0.8496 0.8777 0.9201 0.9265 0.9416 0.9405 0.9487 0.9464 0.9468 0.9549 0.9588 0.9798
110 0.8557 0.8804 0.9216 0.9326 0.9423 0.9429 0.9511 0.9466 0.9480 0.9593 0.9594 0.9811
120 0.8581 0.8919 0.9266 0.9397 0.9427 0.9461 0.9525 0.9557 0.9589 0.9639 0.9648 0.9845
130 0.8701 0.9164 0.9278 0.9397 0.9464 0.9524 0.9562 0.9566 0.9642 0.9691 0.9767 0.9863
140 0.8777 0.9206 0.9341 0.9411 0.9514 0.9649 0.9674 0.9709 0.9698 0.9786 0.9854 0.9889

3.3. Comparisons with Other Baseline Methods

To show the effectiveness of transfer learning, focal loss, and our proposed adaptive
focus loss function (AFL), we constructed five models based on whether or not to add these
improvements, while ensuring that they had the same convolutional layer, convolutional
kernel size, fully connected layers, batch normalization layer, etc. We used the 1D-CNN as
a blank control group, denoted the 1D-CNN with only the focal loss function added (we
took the default optimal value as γ = 2 [23]) as 1D-FLCNN (γ = 2), the 1D-CNN with only
transfer learning added as 1D-TLCNN, the 1D-CNN with the focal loss function added
based on transfer learning as 1D-TLFLCNN (γ = 2), and the transfer learning-based AFL
proposed in this paper as 1D-TLAFLCNN, as shown in Table 6.

Table 6. Differences between the proposed method and other baseline methods.

Focal Loss Transfer
Learning Adaptive Focus Loss

1D-CNN no no no
1D-FLCNN (γ = 2 ) yes no no

1D-TLCNN no yes no
1D-TLFLCNN (γ = 2 ) yes yes no

1D-TLAFLCNN no yes yes
“yes” means that the model uses this improvement, “no” means it is not used.

During the training process, we found that the three methods using transfer learning
could have higher classification accuracy on the validation set at the beginning of the
iteration, instead of learning from scratch. Transfer learning allows the model to gain some
prior knowledge when facing new samples and converge at a faster speed. The accuracy
of the five models during the training process at a SNR of 0 dB and 450 training samples
(50 for each signal) is shown in Figure 8.

In addition, we compared the number of iterations used to reach convergence and the
total time required for the five models in Table 7 and Figure 9.

In addition, we used some representative algorithms as a baseline, including CNN-
Qu [7], CNN-Wu [12] and CNN-Wei [30]. All these methods are proposed for intra-pulse
modulation classification of radar signals, and have been proved to have good accuracy
advantages.

In Table 8 and Figure 10, we compare the classification accuracy of the method pro-
posed in this paper (1D-TLAFLCNN) with other baseline methods at different sample sizes
in the 0 dB case and calculate their average accuracy (AA).
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Table 8. The classification accuracy of different methods with different training sets at 0dB.

Datasets 50 60 70 80 90 100 110 120 130 140 AA

1D-TLAFLCNN 0.9116 0.9219 0.9287 0.9296 0.9333 0.9405 0.9429 0.9461 0.9524 0.9649 0.9372
1D-TLFLCNN (γ = 2 ) 0.9007 0.9177 0.9185 0.9278 0.9261 0.9378 0.9407 0.9370 0.9384 0.9587 0.9303

1D-TLCNN 0.8938 0.9111 0.9223 0.9278 0.9317 0.9389 0.9395 0.9407 0.9454 0.9619 0.9313
1D-FLCNN (γ = 2 ) 0.9027 0.8963 0.9114 0.9222 0.9212 0.9288 0.9153 0.9315 0.9352 0.9524 0.9217

1D-CNN 0.8074 0.8189 0.8351 0.8413 0.8456 0.8473 0.8504 0.8596 0.8704 0.8644 0.8441
CNN-Qu 0.8286 0.8293 0.8389 0.8373 0.8411 0.8423 0.8439 0.8501 0.8577 0.8633 0.8433
CNN-Wu 0.8751 0.8765 0.8801 0.8834 0.8862 0.8897 0.8935 0.8991 0.9033 0.9055 0.8892
CNN-Wei 0.8177 0.8209 0.8237 0.8277 0.8307 0.8348 0.8455 0.8397 0.8508 0.8559 0.8347
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In addition, we compared the classification accuracy of all methods on the test set for
different SNRs. Figure 11 shows the variation in average accuracy with different SNRs
when the sample size was 900 (100 for each signal).
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The experimental results demonstrate that 1D-TLAFLCNN performed best under
various SNR conditions, with different magnitudes of improvement compared to other
algorithms. The classification effectiveness under different training sets in Table 8 shows
that the addition of transfer learning and AFL resulted in a greater improvement than using
only transfer learning or FL separately, in which transfer learning could reduce the number
of convergence generations required for training and converge faster; AFL could estimate
γ adaptively based on FL and improved the accuracy of classification.

4. Discussion
4.1. AFL Compared with Different Values of the Focusing Parameter Based on FL

To investigate the effect of different values of the focusing parameter γ in FL on the
classification effect and thus prove the effectiveness of our proposed method, we compared
the average accuracy of all SNRs with several different few-shot sample sizes, as shown in
Figure 12.
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As shown in the figure, for the same classification task, the value of the focusing
parameter affected the classification accuracy, as it represents how much attention the
model pays to the hard samples. A large value of the focusing parameter (e.g., γ= 5)
tended to over-focus the model on some hard samples and bias the trained model toward
these “outliers”, which is often fatal when the training sample is insufficient. In addition,
even if the focus parameter took the same value, the classification accuracy kept fluctuating
with the sample size. This is because the number of hard and easy samples changed with
the sample size, which means that the classification task also changed, and the same value
of the focusing parameter could not adjust to all classification tasks. Typically, for new
classification tasks, we must conduct quantitative testing to find the appropriate value of
the focus parameter γ, and our method is proposed to solve this problem. As we can see in
the figure, our proposed method could estimate the range of γ by calculating the proportion
of hard and easy samples in the dataset, which was a good improvement compared to
other integer values of γ.

4.2. Effect of Different Noise Environments on Experimental Results

The classification performance of the model in noisy environments is one measure of
model stability. To this end, we explored the effect of SNRs on the model in both noisy and
noiseless environments. We compared the model classification performance of different
models for a total of 12 scenarios from −5 dB to 5 dB along with pure signals without
noise pollution, as shown in Table 9 and Figure 13. The accuracy in the chart is the average
classification accuracy after repeating the experiment for ten different sample sets.

Table 9. Classification accuracies with different noise environments.

SNR −5
dB

−4
dB

−3
dB

−2
dB

−1
dB 0 dB 1 dB 2 dB 3 dB 4 dB 5 dB Noiseless

1D-TLAFLCNN 0.8525 0.8777 0.9112 0.9247 0.9340 0.9372 0.9434 0.9453 0.9492 0.9553 0.9581 0.9786
1D-TLFLCNN (γ = 2 ) 0.8486 0.8728 0.9063 0.9218 0.9306 0.9323 0.9365 0.9401 0.9444 0.9499 0.9557 0.9702

1D-TLCNN 0.8426 0.8619 0.8843 0.9049 0.9129 0.9235 0.9277 0.9302 0.9326 0.9405 0.9406 0.9605
1D-FLCNN (γ = 2 ) 0.8393 0.8652 0.8945 0.9039 0.9133 0.9176 0.9296 0.9344 0.9356 0.9403 0.9427 0.9642

1D-CNN 0.8117 0.8267 0.8524 0.8781 0.8947 0.9126 0.9205 0.9250 0.9268 0.9316 0.9338 0.9502
CNN-Qu 0.7436 0.7633 0.8161 0.8391 0.8498 0.8516 0.8636 0.8693 0.8702 0.8725 0.8746 0.9011
CNN-Wu 0.7624 0.7913 0.8218 0.8308 0.8474 0.8510 0.8588 0.8697 0.8711 0.8782 0.8868 0.9377
CNN-Wei 0.8095 0.8390 0.8511 0.8744 0.8962 0.8976 0.9159 0.9232 0.9322 0.9352 0.9361 0.9599
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Figure 13. Classification accuracies with different noise environments.

It can be seen that our proposed method had the highest average accuracy, 97.86%,
in a noise-free environment. The classification performance of all models for noise-free
signals was greatly improved compared to noisy environments, with an average accuracy
improvement of 2–5%, since the models are more likely to extract features in pure signals,
which are often masked in noisy environments. However, even in the −5 dB case, the aver-
age accuracy of our proposed algorithm was over 85%. Meanwhile, the model recognition
capability steadily improved as the SNR increased, which indicates that our algorithm has
certain anti-noise performance.

4.3. Effect of Different Sample Sizes on Experimental Results

As shown in Table 8 and Figure 10, the proposed method had the best accuracy
on different few-shot sample datasets, and the average accuracy improved by 8% com-
pared with the traditional CNN algorithm. The comparison between 1D-TLAFLCNN and
1D-TLFLCNN shows that the estimate of γ calculated using AFL had a slightly better
classification performance than the default value of taking γ = 2. Overall, the classification
results were better when using the transfer learning approach. The method using FL alone
(default value γ = 2) yielded improved results in most cases, but the classification accuracy
decreased in some cases, which may be because FL focuses excessively on outliers in the
sample and makes the model misclassify. In comparison with other baseline methods, the
proposed method had the best classification accuracy for all few-shot sample sizes. The
method using TL alone had a flatter accuracy curve. It increased steadily as the sample
size increased. Transfer learning enables the model to have some prior knowledge, which
makes it have good feature extraction ability and effective performance when facing new
few-shot problems.

However, as the number of samples increased, our method also showed certain
shortcomings: the improvement effect was not obvious in some sample sets, with the
accuracy improvement being less than 0.2%. We analyze that as the sample size increased,
the difficulty of model training decreased, and the ratio of hard to easy samples tended to
become balanced, which decreased the role of transfer learning and AFL.

4.4. Improvement in Training Model Time Consumption

Besides classification accuracy, fast classification is also necessary for radar recon-
naissance systems, which need real-time classification. Shorter training times and faster
convergence mean that our models could make predictions faster in real-world applications,
helping to speed up our analysis of enemy radar systems.

In real radar reconnaissance systems, real-time training and classification of few-shot
unknown signals for a new scene is an important aspect, which requires the model to have
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fast convergence capability. In X-band radar, the airborne radar pulse repetition frequency
is f Hz, which emits n pulses at one wave position; therefore, the radar time-on-target
collected in one scan is roughly n

f seconds. Then, we can calculate the duration of the
next received radar echo accordingly, which requires the model to finish converging when
the signal is received again. Therefore, considering this practical application, the model
convergence epoch and the time spent can be one of the judgments for the performance of
the method.

By comparing the number of iterations and the total training time required to reach
convergence for the five models in Table 7 and Figure 9, the proposed method converged at
90 generations and 258 s, which reduced the time cost by at least 10%, but this improvement
is still far from enough to meet the time requirements for real-time training and testing in
practical applications. In future work, we will continue to improve the convergence speed
of the model and reduce the training time.

5. Conclusions

To solve the problems associated with the difficulty of training deep cellular neural
networks and the insufficient training data available for radar signals, which leads to
the low classification accuracy of intra-pulse modulation, a 1D-TLAFLCNN method is
proposed for the classification of few-shot intra-pulse modulation radar signals. We used
a transfer learning method to transfer the knowledge learned from a large number of
simple intra-pulse modulated radar signals in the source domain to a complex modulation
classification task in the target domain, and estimated the factor γ adaptively based on FL,
which ensured that the model could focus more on the hard samples.

The experimental results show that the proposed method could reduce the number
of generations to model convergence compared with other baseline methods, and the
model converged within 90 generations with the shortest time of 258 s. By comparing the
experiments with different values of focusing parameters, AFL had a maximum accuracy
improvement of approximately 1.5% based on FL and could reduce repeated experiments
by estimating the range of parameters. In addition, the proposed method displayed noise
immunity, and the average accuracy of our proposed method was over 85% in the −5 dB
case. From further experiments exploring its classification performance on different few-
shot datasets, we found that the application of transfer learning could well help the model
gain rich prior knowledge and feature extraction ability in few-shot cases, which improved
by 8% compared with the traditional CNN algorithm. However, we are also aware of the
shortcomings of our method. First, the focusing parameter derived from AFL was a fixed
value, but as training proceeded the proportion of hard and easy samples changed, and a
fixed focusing parameter could not adapt to the new sample proportion, which made the
focal loss function useless. Second, as the number of samples increased, the improvement
effect of transfer learning was not obvious. In future work, we hope to develop a method
to realize dynamic adjustment of the focusing parameters following changes in the ratio of
hard and easy samples.
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41. Nagi, J.; Ducatelle, F.; Caro, G.A.D.; Cireşan, D.; Meier, U.; Giusti, A.; Nagi, F.; Schmidhuber, J.; Gambardella, L.M. Max-
pooling convolutional neural networks for vision-based hand gesture recognition. In Proceedings of the 2011 IEEE International
Conference on Signal and Image Processing Applications (ICSIPA), Kuala Lumpur, Malaysia, 16–18 November 2011; pp. 342–347.
[CrossRef]

42. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings
of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp.
2818–2826. [CrossRef]

43. Glorot, X.; Bordes, A.; Bengio, Y. Deep sparse rectifier neural networks. In Proceedings of the 14th International Conference on
Artificial Intelligence and Statistics (AISTATS), Fort Lauderdale, FL, USA, 11–13 April 2011; pp. 315–323.

44. Xu, B.; Wang, N.Y.; Chen, T.Q.; Li, M. Empirical evaluation of rectified activations in convolutional network. arXiv 2015,
arXiv:1505.00853.

45. Xu, J.; Li, Z.S.; Du, B.W.; Zhang, M.M.; Liu, J. Reluplex made more practical: Leaky ReLU. In Proceedings of the 2020 IEEE
Symposium on Computers and Communications (ISCC), Rennes, France, 7–10 July 2020; pp. 1–7. [CrossRef]

46. Yu, W.; Yang, K.Y.; Yao, H.X.; Sun, X.S.; Xu, P.F. Exploiting the complementary strengths of multi-layer CNN features for image
retrieval. Neurocomputing 2017, 237, 235–241. [CrossRef]

47. Li, B.; Liu, Y.; Wang, X. Gradient Harmonized Single-Stage Detector. In Proceedings of the AAAI Conference on Artificial
Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 8577–8584. [CrossRef]

48. Figueroa, R.L.; Zeng-Treitler, Q.; Kandula, S.; Ngo, L.H. Predicting sample size required for classification performance. BMC Med.
Inform. Decis. Mak. 2012, 12, 8. [CrossRef]

http://doi.org/10.1109/CVPR.2015.7298594
http://doi.org/10.1109/CVPR.2016.90
http://doi.org/10.1049/iet-rsn.2019.0436
http://doi.org/10.1109/ACCESS.2019.2913759
http://doi.org/10.1109/TNNLS.2014.2330900
http://www.ncbi.nlm.nih.gov/pubmed/25014970
http://doi.org/10.3390/s22062209
http://www.ncbi.nlm.nih.gov/pubmed/35336380
http://doi.org/10.3390/app10062186
http://doi.org/10.1016/j.neucom.2020.04.045
http://doi.org/10.1016/j.sigpro.2018.09.038
http://doi.org/10.1109/CVPR.2016.89
http://doi.org/10.1109/ICIP.2018.8451241
http://doi.org/10.1109/ISBI.2019.8759556
http://doi.org/10.1109/APSAR46974.2019.9048269
http://doi.org/10.1109/ICSIPA.2011.6144164
http://doi.org/10.1109/CVPR.2016.308
http://doi.org/10.1109/ISCC50000.2020.9219587
http://doi.org/10.1016/j.neucom.2016.12.002
http://doi.org/10.1609/aaai.v33i01.33018577
http://doi.org/10.1186/1472-6947-12-8

	Introduction 
	Methods 
	Related Work 
	Convolutional Neural Network 
	Radar Signal Intra-Pulse Module Classification 
	Transfer Learning 
	The Focal Loss Function 

	The Proposed Methods 
	Transfer Learning-Based Convolutional Neural Network 
	Adaptive Focus Loss Function (AFL) 


	Experiments and Results 
	Dataset and Parameters Setting 
	Experiments on 1D-TLAFLCNN 
	Experiments on the Source Domain Network 
	Experiments on the Target Domain Network 

	Comparisons with Other Baseline Methods 

	Discussion 
	AFL Compared with Different Values of the Focusing Parameter Based on FL 
	Effect of Different Noise Environments on Experimental Results 
	Effect of Different Sample Sizes on Experimental Results 
	Improvement in Training Model Time Consumption 

	Conclusions 
	References

