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Abstract: The Soil Moisture Active Passive (SMAP) mission includes a unique combination of
instruments intended to provide daily global soil moisture data with high accuracy and resolution.
Due to radar instrument failure, the default resolution of the data product decreased from the
intended 9 km to 36 km shortly after the mission started to return data. To improve this, we employed
the Scatterometer Image Reconstruction algorithm in its radiometer form (rSIR) to enhance the
resolution of the radiometer brightness temperature measurements from which the soil moisture was
derived. This paper compares the soil moisture estimates created from the rSIR-enhanced brightness
temperatures with SMAP project radiometer L2_SM_SP and SMAP-Sentinel L2_SM_P products
reported on 9 km and 3 km grids, respectively. We find that the difference of the rSIR-enhanced
passive soil moisture product is generally within 0.020 cm3 cm−3 RMS of the 9 km SMAP radiometer
L2_SM_SP and 0.045 cm3 cm−3 RMS of the 3 km SMAP-Sentinel L2_SM_P soil moisture products.
The accuracy of the rSIR soil moisture can be improved by including better antenna pattern correction
methods applied to the input TB measurements.

Keywords: soil moisture; radiometer; resolution enhancement; SMAP

1. Introduction

The 2007 Earth Science Decadal Survey [1] prioritized the need for improved flood
prediction and drought monitoring, improved weather forecasting, and an enhanced
understanding of the role of surface water in the energy and carbon cycles. This led to the
launch of the Soil Moisture Active Passive (SMAP) mission in 2015. The mission included
both radiometer and radar observations.

Radar measures microwave radar scattering off the Earth’s surface [2] which is sensi-
tive to soil moisture. Radiometry uses passive observations of thermal emissions which
are closely related to soil moisture. The SMAP team created and validated algorithms to
convert the radar and/or radiometer measurements to volumetric soil moisture measure-
ments which were found to be accurate within the mission goal of 0.04 cm3/cm3 error [3,4].
However, due to the failure of the SMAP radar, the baseline spatial resolution of the soil
moisture measurements dropped from 9 km to 36 km. To address this, the Backus–Gilbert
(BG) [5,6] algorithm is used to improve the effective resolution of the radiometer brightness
temperature [7–10].

An alternate resolution enhancement technique is used in this paper. The radiometer
form of the Scatterometer Image Reconstruction algorithm (rSIR) is faster than BG and has
the potential to provide even higher resolution images than BG [11,12]. In this paper, we
further the discussion in [12] by applying the rSIR technique to several months of SMAP
radiometer observations, and comparing the derived soil moisture product to other SMAP
project products, L2_SM_SP and L2_SM_P.

In the following sections, we first briefly describe the SMAP mission and instrument.
Then, a brief description of the rSIR algorithm is presented as applied to SMAP brightness
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temperature data. Third, the algorithm used to extract soil moisture from the brightness
temperature radiometer data is briefly summarized. Then, the results are analyzed and
compared to the separately validated data sets. Finally, conclusions are provided.

2. SMAP Instruments

The SMAP platform is unique in that it was designed with both a radar and radiometer
for soil moisture retrieval, which enable the exploitation of the benefits of both active and
passive soil moisture retrieval. While the radar failed shortly after the mission began,
the radiometer continues to operate.

The SMAP instrument includes a rotating six-meter deployable mesh reflector an-
tenna that is used by both the radiometer and radar instruments which share a single feed
horn [9,13]. SMAP is also the first spaceborne radiometer to include a dedicated subsys-
tem for detecting and correcting radio frequency interference (RFI) [4,14]. The conically
scanning antenna rotates at approximately 13.0 rpm which maintains the overlap of mea-
surements in the along-track direction. The measurements also overlap in the along-scan
(rotation) direction [12]. Both the radiometer and the radar receive signals at an incidence
angle of approximately 40◦ over a 1000 km wide swath [4,7]. The radiometer retrieves
brightness temperature measurements at vertical and horizontal polarizations, as well as
the third and fourth Stokes parameters, which are mapped to a 36 km resolution Equal-Area
Scalable Earth grid (EASE-2) grid [15] using inverse distance gridding [4,7]. The total-power
radiometer operates in the L-band (1.41 GHz center frequency) with a 24 MHz bandwidth.

3. rSIR Algorithm

The rSIR algorithm [11] takes advantage of irregular sampling theory and knowledge
of the measurement response function (MRF) to construct an image of the brightness
temperature measurements at a finer resolution than the baseline 36 km [12]. For SMAP,
the MRF is primarily defined by the antenna pattern. rSIR is a signal reconstruction
algorithm which assumes that the original signal to be reconstructed in the image is
bandlimited, the irregular sampling meets generalized Nyquist requirements, and the
frequency response of the MRF is non-zero over the signal bandwidth [16]. The rSIR
algorithm is described in detail in [11] and its performance as applied to SMAP brightness
temperature measurements is given in [12]. It provides up to a 30% improvement in the
effective resolution compared to the drop-in-the-bucket (DIB) gridding. In the following,
we provide a brief overview the rSIR algorithm. The input radiometer measurements were
obtained from SMAP product LPL1BTB [17].

The rSIR algorithm is an iterative method to solve for the vector of actual surface
brightness temperatures (~a) in the equation:

~TB = H~a, (1)

where ~TB is the observed brightness temperature measurements and H is the discrete
samples of the MRF for each measurement [12]. The MRF includes the effects of integration
over the measurement period. rSIR results in an approximate maximum-entropy solution
if the system is underdetermined, and a least-squares solution if it is overdetermined.
In the zero-noise case with appropriate sampling, rSIR can exactly estimate the original
signal [11].

Unfortunately, since real brightness temperature measurements are not noise free,
the reconstruction also enhances the noise. To reduce the noise effects, the processing is
regularized by stopping the iteration before full reconstruction is achieved [11,12]. The goal
of regularization is to find a balance between signal reconstruction accuracy and noise
enhancement [11], and can be varied for different applications. The optimization of rSIR
for SMAP is given in [12].

To illustrate the effectiveness of the fine resolution reconstruction, Figure 1 shows an
example of a single-pass brightness temperature image in a study region of west Africa at
the original 36 km resolution created using the standard DIB gridding technique, and rSIR-
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enhanced resolution images produced at posting resolutions [12] of 9 km and 3 km. The im-
provement in the effective resolution of the rSIR images is evident. The validation of the
rSIR to SMAP radiometer measurements and comparison of rSIR and BG can be found
in [12], where rSIR is shown to have finer effective resolution than BG. We note that to meet
the sampling requirements, the rSIR images are computed on oversampled grids and as
expected and required, the effective resolution is less than the grid spacing.

Figure 1. Example SMAP brightness temperature products from a 1050 km by 500 km region of west
Africa. The resolution of the images are (left) unenhanced (36 km); (center) rSIR-enhanced 9 km;
and (right) rSIR-enhanced 3 km resolution. These data are from day 300 in 2016. As the resolution is
made finer, edges become increasingly clear and finer scale patterns become increasingly apparent.
The color scale is in Kelvin. A later figure shows the location of the study area.

While it is visibly apparent that finer-scale details are revealed in higher resolution
images using the rSIR algorithm, it is instructive to also look at the pixel spatial response
function (PRF), sometimes also called the impulse response function. The spatial extent
of PRF determines the details resolvable in the images. The PRF is a combination of the
measurement locations, the MRF, and the imaging algorithm employed [12].

In practice, the PRF varies from location to location due to variations in the geometry
over the swath. However, the PRF can be estimated using overlapping measurements of
a small, bright target on a darker background using a simulation [11,12]. Figure 2 illus-
trates the nominal single-pass SMAP PRF for conventional and rSIR imaging. Though the
improvement is limited in the single-pass case, note the tighter contours of the rSIR PRF
compared to the conventional gridded PRF. Comparisons of rSIR and BG PRFs are shown
in [12].) The multi-pass PRF provides more improvement and potentially finer reso-
lution [11]. The half-power resolution of the enhanced brightness temperature images,
as determined by the PRF derived from actual single-pass data, is approximately 18 km [12],
but finer details can be apparent. Regardless of the algorithm, radiometer-derived soil
moisture estimates the benefit from the use of high resolution ancillary data in the esti-
mation algorithm and so the soil moisture can exhibit finer effective resolution than the
brightness temperature data [7].
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Figure 2. Comparison of (top) the drop-in-the-bucket (DIB) PRF and (bottom) the rSIR PRF. Black
contours are at −3 dB; the red contours are at −6 dB; and the white contours are at −10 dB from the
normalized peak at the center. Note the tighter contours of rSIR compared to DIB.

4. Soil Moisture Algorithm

This section briefly details the algorithm to retrieve rSIR-enhanced soil moisture from
the brightness temperature values in this paper. It is the same as the JPL SMAP passive soil
moisture extraction algorithm [8], but does not include some antenna pattern corrections
which we could not exactly replicate. The algorithm uses ancillary data included in the
SMAP soil moisture products [4,18]. The following is a high-level description with some
of the lower-level details left to documentation in [8,19]. The original active soil moisture
extraction algorithm and methods to combine the active and passive measurements are
described in [7,13,20,21].

4.1. Algorithm Description

The soil moisture retrieval algorithm overall flow is as follows: first, over a range
of soil moistures, compute the corresponding emissivity using theoretical soil dielectric
mixing model based on the soil composition given in ancillary products and the soil
moisture. The value of emissivity which minimizes the error between the theoretically
calculated emissivity and the observation-calculated emissivity is then selected, and the
corresponding soil moisture value is reported. This algorithm is separately repeated for
each pixel.

The first part of this process, estimating emissivity from the brightness temperature
observation, requires several ancillary data sets. We use the ancillary data provided in
the standard SMAP products [4,18]. These were mapped to the same grid as the products,
simplifying calculation on a per pixel basis. After antenna pattern correction, the emis-
sivity was calculated by converting brightness temperature (TB) into total emissivity (etot)
according to:
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etot =
TB

T
, (2)

where T represents the surface temperature in the target pixel. Then, using information
about the local single scattering albedo, vegetation opacity, and measurement incidence
angle, we remove the estimated effects of the vegetation on the observed emissivity. Finally,
the effects of soil roughness are estimated and removed to yield the final estimate of the
smooth surface soil emissivity. Details of the steps to account for vegetation and soil
roughness are described in [7,8].

The second part of the process, calculating a theoretical soil emissivity from a mixing
model, starts with a range of possible soil moisture values (evenly spread from 0.02 to
0.50 cm3 cm−3 for most SMAP soil moisture products) as well asthe local soil clay fraction
value provided from an ancillary data set that is included in standard products [18]. The soil
moisture values are passed into a soil dielectric mixing model which calculates a dielectric
value for soil with a specified composition. The specific model used is known as the
mineralogy-based soil dielectric model (MBSDM), which is described and validated in [22].
With the range of possible dielectric values after MBSDM, we calculate a range of possible
theoretical emissivities using Fresnel’s equations. Following current SMAP passive data
products, only vertically polarized brightness temperature measurements are used [8].

Finally, the soil composition and corresponding soil moisture which minimize the
error between the theoretically based emissivity and the observation-based smooth surface
emissivity are selected. An example global brightness temperature and corresponding soil
moisture map calculated with this algorithm are shown in Figure 3.

Figure 3. Nine kilometer pixel resolution examples of a global map of the v-pol SMAP brightness
temperature (top) and derived soil moisture (bottom) for day 2 of 2016. The brightness temperature
is reported in Kelvin, and the soil moisture is reported in cm3 cm−3. The white boxes show the
locations of the study areas in Figures 1, 4, and 5.

4.2. Algorithm Limitations

In this study, there are circumstances under which brightness temperature is observed
but soil moisture is not extracted. This especially occurs in the far northern regions of the
globe due to the soil freeze state. Other factors which result in poor performance of the
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retrieval algorithm include brightness temperature measurement quality and land cover
type: if the target pixel has excessively noisy measurements, a nearby water body, frozen
ground, or excessively dense foliage covering the ground, the soil moisture accuracy is
not trusted and is thus not reported. In general, however, consistent, reliable retrieval are
obtained between 45◦ North and 45◦ South [8].

Figure 4. Soil moisture images in cm3 cm−3 from eastern Africa (specifically South Sudan) at
36 km resolution (left), 9 km resolution (center), and 3 km resolution (right), from day 300 in
2016. The estimated soil moisture is extracted from rSIR-enhanced brightness temperature images.
The reduced coverage in the 3 km image is a result of limited ancillary data availability from the
SMAP-Sentinel 3 km soil moisture data set.

Figure 5. Soil moisture images in cm3 cm−3 from central South America at 36 km resolution (left),
9 km resolution (center), and 3 km resolution (right), from day 301 in 2016. The soil moisture is
extracted from rSIR-enhanced brightness temperature images. The reduced coverage in the 3 km
image is a result of the limited ancillary data availability in the SMAP-Sentinel 3 km soil moisture
data set.

5. Enhanced Resolution Soil Moisture Images

Examples of the results of different resolution enhanced soil moisture images from
rSIR-enhanced brightness temperature can be seen in Figures 4 and 5. The figures show
the 36 km, 9 km, and 3 km soil moisture for parts of eastern Africa and central South
America, respectively. Figure 6 shows 3 km resolution images for the Sentinel-derived
reference data set (described later in Section 5.1) compared with the rSIR-enhanced data
set. A visual inspection of these images shows that resolution enhancement using rSIR
can reveal fine scale soil moisture features and details that are over-smoothed or hidden
in lower-resolution images and that correlate well with the Sentinel product. The higher
resolution features of the enhanced resolution soil moisture images with respect to the
36 km product is visibly apparent, with some fine scale features visible in the 3 km product
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even though the brightness temperature images have a coarser resolution. The accuracy of
the enhanced resolution estimates is examined in the rest of this section.

Figure 6. Soil moisture images in cm3 cm−3 for day 300 in 2016 from eastern Africa at 3 km pixel
resolution comparing the SMAP-Sentinel merged product with the rSIR-enhanced passive soil
moisture. The relative smoothness of the rSIR product is the result of its coarser resolution.

5.1. Inter-Comparison

In this section, we compare the rSIR-enhanced results with previously validated data
products, as in Figure 6. For the 36 km and 9 km resolution grids, the SMAP radiometer-
only soil moisture products are used [7,23,24]. These products have reported accuracies
of 0.04 cm3 cm−3 compared to in situ measurements [8]. For the 3 km pixel resolution
comparison, a recently released product that combines the SMAP radiometer and Sentinel
radar data [25,26] is used. This product has a quoted accuracy of 0.05 cm3 cm−3 [27].

To produce the Sentinel-SMAP combined product, the Sentinel radar data are used as
a replacement for the SMAP radar in the active-passive merged soil moisture algorithm [21].
Sentinel is a C-band synthetic aperture radar and has several differences from the original
SMAP radar, but one key advantage is that Sentinel provides backscatter data at a higher
resolution than SMAP that enables production of a merged soil moisture product at 3 km,
albeit with limited coverage. Due to the narrow swath width of the Sentinel system,
there are relatively few SMAP and Sentinel measurements which correspond in time and
location closely enough to provide accurate results in soil moisture extraction [27]. Thus,
the SMAP/Sentinel combined soil moisture product comes in small 30-second scenes (as in
the 3 km pixel images in Figures 4–6). Though noisy, the high resolution Sentinel-SMAP
combined product is helpful in analyzing key fine resolution features of the rSIR product.

Figure 7 presents scatter plots of rSIR-derived soil moisture compared to the 9 km
JPL and the 3 km Sentinel products for day 300 in 2016 in South Sudan (Figures 4 and 6).
The correlation coefficients are 0.99 for 36 km; 0.96 for 9 km; and 0.80 for 3 km with dif-
ference standard deviations of 0.0107; 0.0254; and 0.0526, respectively. As subsequently
discussed, as the resolution is made finer, noise increases. However, the products re-
main correlated.
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Figure 7. Scatter plots of estimated soil moisture in cm3 cm−3 versus validated soil moisture products
for day 300 in 2016 from South Sudan at (from left to right) 36 km, 9 km, and 3 km where the 36 km
and 9 km are SMAP project products and the 3 km product is the SMAP-Sentinel merged product.

5.2. Comparison Results and Analysis

To further inter-compare the rSIR-enhanced soil moisture, four months of global data
are analyzed spread across the year in order to include seasonal variability. Only pixels
with valid values are included in the comparison.

Summary results from the global inter-comparison are presented in Tables 1 and 2.
These tables list RMS and mean difference values for four separate months of soil moisture
data between the rSIR-enhanced products and the validated reference sets. We note that
these values are the differences between the two soil moisture products, not the accuracy of
the soil moisture measurement.

At 36 km resolution, there is no resolution enhancement, and thus the difference level
of 0.0125 RMS mostly results from differences in the soil moisture extraction calculations.
The application of the JPL antenna pattern correction methods to the rSIR brightness
temperature inputs would likely improve this baseline difference. We noted that rSIR
exhibits a small positive brightness temperature bias when generating enhanced resolution
images [12], which adds to the small positive bias in the baseline estimates.

Table 1. RMS difference in cm3 cm−3 between soil moisture produced at several resolutions and with
validated products. The 36 km column is the performance of this paper’s algorithm implementation
compared to the reference data where the difference is due to algorithms.

Month 36 km 9 km 3 km
Resolution Resolution Resolution

January 0.0130 0.0208 0.0436
April 0.0123 0.0200 0.0452
July 0.0123 0.0202 0.0450

October 0.0120 0.0195 0.0415

Table 2. Mean difference in cm3 cm−3 for soil moisture produced at several resolutions compared to
validated products. A positive difference suggests that the algorithm tends to overestimate, while a
negative difference suggests underestimation.

Month 36 km 9 km 3 km
Resolution Resolution Resolution

January 0.0010 0.0023 0.0074
April 0.0014 0.0028 0.0083
July 0.0019 0.0034 0.0082

October 0.0012 0.0025 0.0064

Using the 36 km RMS values in Tables 1 and 2 as a reference, the enhanced resolution
9 km and 3 km products allow us to observe the effects of the increased brightness temper-
ature noise. First, the mean difference reveals a tendency of the rSIR enhancement and soil
moisture algorithm (as implemented here) to slightly overestimate soil moisture compared
to the validated product.
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Then, observing the RMS difference table, it is seen that the RMS level increases as the
resolution is enhanced. This is expected since the spatial enhancement tends to act as a high
pass filter. However, part of the difference is the result of the inability of the coarser products
to reproduce the finer details visible in the enhanced resolution product. The increased
RMS difference in the 3 km product is at least partly due to the higher noise level in the
SMAP-Sentinel Data. As mentioned in previous sections, the 9 km SMAP passive product
was verified to within 0.04 cm3 cm−3, whereas the SMAP-Sentinel combined product was
only verified to within 0.05 cm3 cm−3. The 3 km products also have a larger dynamic
range of 0.02–0.6 cm3 cm−3, whereas the values of 9 km and 36 km range from 0.02 to
0.5 cm3 cm−3. Nonetheless, the overall difference performance at all three resolution levels
remains below 0.045 cm3 cm−3. The increase in overall noise in the soil moisture product
as the resolution is made finer is a classic tradeoff: spatial resolution versus noise which
must be determined for each particular application. The key advantage of the rSIR result is
its global availability compared to the limited coverage of the SMAP-Sentinel product.

6. Conclusions

The ability to retrieve soil moisture data on a global scale at good spatial and tem-
poral resolution is valuable in several weather prediction and climate study applications.
The SMAP instrument gives us this ability. In order to improve the resolution to achieve the
mission goals, resolution enhancement techniques such as rSIR can be applied [12]. This pa-
per has compared rSIR-enhanced resolution brightness temperature-derived soil moisture
products with existing SMAP products. Inter-comparisons with validated passive-only and
combined active-passive soil moisture product confirm that rSIR is a viable method for
producing enhanced resolution brightness temperature images that can produce accurate
fine resolution soil moisture estimates. The rSIR approach provides an improved perfor-
mance compared to the BG algorithm. Other resolution algorithms, e.g., [28,29], may offer
further improvements.
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