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Abstract: Nutrients are important elements in marine ecosystems and water quality, and have a major
role in the eutrophication of water bodies. Monitoring nutrient loads is especially important for the
Baltic Sea, which is especially sensitive to the eutrophication. Using optical remote sensing data in
mapping total nitrogen (TN) and total phosphorus (TP) is challenging because these substances do
not have a direct influence on the water optics that remote sensing sensors can detect. On the other
hand, it would be very rewarding. In this study, more than 25,000 Sentinel-3 Ocean and Land Colour
Instrument (OLCI) data algorithms were tested in order to detect the TN and TP concentrations in
the Estonian marine waters between 2016–2021. The TN estimations were well derived for Estonian
marine waters (R2 = 0.73, RMSE = 4.87 µmolN L−1, MAPE = 14%, n = 708), while the TP estimations
were weaker (R2 = 0.38, RMSE = 0.23 µmolP L−1, MAPE = 24%, n = 730). The Estonian marine waters
were divided into six geographic regions in order to study the effect of regional water quality on
the TN and TP retrievals. The nutrient concentrations were derived in every region when spring
and summer periods were treated separately. In this study, the detection of both nutrients was more
successful in more closed areas with P deficiency, while in open sea areas it was more challenging.
This study shows that it is possible to estimate nutrients, especially TN, from remote sensing data.
Consequently, remote sensing could provide a reliable support to the conventional monitoring by
covering large marine areas with high temporal and spatial resolution data.

Keywords: nitrogen; phosphorus; nutrients; remote sensing; Sentinel-3; OLCI; Baltic Sea; Estonian
coastal water

1. Introduction

Baltic Sea is the world’s largest inland brackish water sea and is very well studied.
Eutrophication has been evident in the Baltic Sea for many decades, due to past high and
still excessive loads of total nitrogen (TN) and total phosphorus (TP) [1]. The combination
of a large catchment area with a high rate of human activities and a small body of water
with limited exchange with the Atlantic Ocean through the narrow and shallow Skagerrak
makes the Baltic Sea very sensitive to nutrient enrichment and eutrophication. Therefore,
in the Baltic Sea, the large input of nutrients like phosphorus and nitrogen is a major
environmental concern [2]. The conventional in situ water quality monitoring has failed
to characterize nutrient dynamics because of the limitations in spatial sampling and poor
availability of reliable data for nutrient loads [3,4].

Nutrient concentrations are very important because they cause eutrophication—an in-
crease in aquatic biomass. Phytoplankton biomass is usually characterised by chlorophyll-a
(Chl-a) concentration. Therefore, the Chl-a is the primary indicator of the waterbody eco-
logical state [4,5]. In the Baltic Sea, the open basins are mainly nitrogen limited, especially
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in spring, when the spring phytoplankton bloom is peaking. In summer, massive blooms
of nitrogen fixing cyanobacteria occur in the Baltic Sea. They are driven by excess phos-
phorus, along with high temperatures. The cyanobacterial blooms contribute significant
quantities of new nitrogen to the pelagic ecosystem, hence reducing phosphorus loads is
very important to reduce those blooms [4]. To develop an effective nutrient management
strategy, better understanding of the Baltic Sea ecosystem is required [1].

Although nutrient concentrations are important water quality indicators in coastal
waters, and at the same time the Baltic Sea is often claimed as the most studied sea in the
world, the quality of regional monitoring of the nutrient pollution entering the area remains
relatively poor [4,6]. Remote sensing has the abilities that could be highly beneficial to
marine monitoring—it provides high spatial and temporal resolution which is impossible to
achieve with in situ measurements. This is beneficial even if remote sensing cannot provide
similar accuracy as the time consuming and expensive laboratory methods. Consequently,
combining both conventional in situ sampling and remote sensing methods should be the
most optimal way to study the marine environment, provided the remote sensing methods
can provide sufficient accuracy.

The European Union’s Earth observation programme, the Copernicus program [7],
has launched a mission Sentinel-3, which is a constellation of two satellites (A and B,
launched in 2016 and 2018, respectively) [8]. Sentinel-3 has a medium resolution (300 m)
Ocean and Land Colour Instrument (OLCI) onboard for marine and land research. It has
21 spectral bands and provides global coverage (at the equator) every two days. OLCI
was built for marine monitoring and has well placed spectral bands for that purpose (ESA
Sentinel Online).

Remote sensing has been widely used for water quality monitoring [9–24], because
of its large advantage in temporal and spatial coverage compared with in situ methods.
So far, most studies have focused on water quality variables, such as Chl-a, turbidity or
transparency (measured with Secchi disk depth, SD), total suspended solids (TSS), and
coloured dissolved organic matter (CDOM), which all are optically active substances.
Remote sensing presents a challenge in estimating nutrients like TN and TP concentration
in water, because they have no direct optical properties and spectral characteristics [25].
However, nutrients like TN and TP can be highly correlated with optically active variables
that can be estimated by remote sensing [22,26]. When nutrients concentrations are in
good correlation with some optical properties of water, the optical parameter can be
used as a proxy for TN and/or TP. The previous work testing the retrieval of the optical
parameters in the Baltic Sea based on OLCI data with Case 2 Regional CoastColour (C2RCC)
atmospheric correction have given good results [27]. However, some studies have found
only the band ratios based on the reflectances to work well, and not the Level-2 products
themselves [11,17].

Remote sensing techniques have been used to estimate different forms (total, inorganic,
etc.) of nitrogen and phosphorus in freshwater bodies [18,26,28–38]. Although less studies
have been carried out in sea water [3,5,39,40], the results have been encouraging with
errors as low as 11% for TN and 13% for TP [3]. While most studies in marine waters are
focusing on detecting TN or/and other forms of nitrogen, there are only a few attempting to
detect TP [40]. The chosen methods are either the neural network [3] and machine learning
approaches [5,40], or multiple stepwise [39] regression models.

The main objective of current work was to find the best algorithms for estimating
the concentrations of TN and TP in Estonian marine waters using Sentinel-3 OLCI data.
In addition, the temporal and spatial variability of the best algorithms were studied to
estimate nutrients with the highest possible accuracy. Accurate algorithms would give
the possibility to monitor the nutrients over large spatial scales and with high temporally
frequency, which is not possible with conventional methods. This is the first time where
remote sensing with regionally tuned algorithms for nutrient estimations have been used
in the north-eastern Baltic Sea.
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2. Materials and Methods
2.1. In Situ Dataset and Study Area

In the current study, the measurements from the Estonian National Monitoring Pro-
gram were used. In total, 2103 TN and 2078 TP measurements were carried out during
2016–2021 in Estonian marine waters (approx. 36,500 km2 (~10%) area of the Baltic Sea).
Water samples for both nutrients were collected from 1 m depth. Unfortunately, the op-
tical parameters, like the Chl-a, SD, TSS and the absorption of CDOM at 400 nm (aCDOM)
were not always measured together with the nutrients. The database included 1387 Chl-a,
1162 SD, 49 TSS, and only 39 aCDOM measurements.

To eliminate the possible effect from the coast or the seafloor on the remote sensing
signal, 29 sampling stations (382 TN and 378 TP measurements) that were closer than
1 km from the shore were removed from the analysis. After this elimination, the database
contained 63 sampling stations with 1721 TN and 1700 TP measurements in total. All the
stations used in the study are shown in Figure 1.
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Figure 1. The different geographic regions in Estonian marine waters (R1–R6) with the locations of in
situ sampling stations (black stars).

In this study, the Estonian marine waters were divided into six geographical regions
(R1–R6; Figure 1) based on the § 324(4) of the Estonian Water Act [41], because there are
large differences in the characteristics of the regions. Division used in the current study is
similar to the state classification of the coastal waters in the Estonian Water Act, with the
difference being that we included the territorial waters and the exclusive economic zone
(EEZ) of the six regions together with the internal waters. The main characteristics of the
six regions are:

• R1: south-east area of the Gulf of Finland. It is oligohaline (2.5–6 ppt) open water with
measured max Chl-a 29.5 mg m−3 and min SD 0.8 m during 2016–2021. The largest
inlet in region R1 is the Narva River. Twelve sampling stations were in this region.

• R2: Pärnu Bay is located in the north-eastern part of the Gulf of Riga. The bay is
semi-enclosed, oligohaline (4.0–5.5 ppt), with a large inlet of nutrient rich Pärnu river.
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During 2016–2021, the measured max Chl-a was 45 mg m−3 and min SD 0.4 m. It is
the smallest region by area (411 km2), and the max depth in the mouth of the bay is
12 m. Four sampling stations were included in this region.

• R3: western part of Gulf of Finland, it has mesohaline (4.5–6.5 ppt) and deep water
with measured max Chl-a 25.3 mg m−3 and min SD 2 m during 2016–2021. Sixteen
sampling stations were in this region.

• R4: Baltic Proper area of the West Estonian archipelago, open sea, with mesohaline
(6–7 ppt) water. Region R4 is a shallow area open to waves with measured max Chl-a
15.6 mg m−3 and min SD 3 m during 2016–2021. Seventeen sampling stations were in
this region.

• R5: Väinameri Sea or the Sea of Straits (2200 km2); it has mesohaline (3–6.5 ppt)
unstratified water, and it is a shallow, concealed area with measured max Chl-a
6.7 mg m−3 and min SD 1.2 m during 2016–2021. Seven sampling stations were in
this region.

• R6: north half of Gulf of Riga with mesohaline (4–6 ppt), shallow, sheltered and
seasonally stratified waters with measured max Chl-a 71.8 mg m−3 and min SD 0.5 m
during 2016–2021. Seven sampling stations were in this region.

2.2. In Situ Parameters

The TN and TP concentrations were measured by the accredited Estonian Marine
Institute’s laboratory with a continuous flow automated wet chemistry analyser Skalar
SANplus (Skalar Analytic B.V.,DeBreda, The Netherlands), using the standard methods EN
ISO 11905-1 and EN ISO 15681-2. Detection limits were 10 µg L−1 for both TN and TP, and
measurement uncertainty did not exceed 25%.

Temperature and salinity data were extracted from the CTD profiles, measured with
the Sea and Sun Technology M90 or SAIV SD201 probes. The Chl-a concentration in a
sample was determined spectrophotometrically (light absorption) using ISO 10260 standard
and HELCOM guidelines [42]. Water transparency (SD) was measured with a standard
Secchi disk.

Absorption by CDOM, aCDOM, was measured spectrophotometrically with a PERKIN
ELMER Lambda 35 UV/VIS spectrometer in the range 350–750 nm from a filtered (Millex
0.22 µm) water sample in a 10 cm cuvette against distilled water. The measurements were
corrected for residual scattering according to Davies-Colley and Vant [43], and a final
calculation for aCDOM at 400 nm was conducted by Lindell et al. [44].

2.3. Sentinel-3 Dataset

The processing of the Copernicus Sentinel-3 OLCI Level-1 (300 × 300 m resolution)
data was done using the Estonian national satellite data centre portal for Earth observation
data processing [45]. This platform has Sentinel-3 OLCI Level-1 archive and atmospheric
correction tools. For atmospheric correction, the C2RCC v.1.5 processor [46] with the multi-
sensor pixel identification tool (IdePix) were used. In extracting the match-ups, the same
day 1 × 1 pixels with the sampling stations date and location were used. The 1 × 1 pixel
size was used because a single OLCI pixel is large, and many in situ locations were close to
each other. Pixels with cloud or other quality flags (except the “quality_flags.sun_glint_risk”
flag) were removed from further analyses.

In total, 741 same-day cloud-free match ups (including Sentinel-3A and -3B) during
2016–2021 were found for TP and 719 for TN. The most match ups were from May to July
(Table 1). There were no cloud-, ice- or snow-free match-ups in January, February, March
and December.
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Table 1. The distribution of the match-ups for total phosphorus (TP) and nitrogen (TN) between
study regions (R1–R6) and months (April–November 2016–2021). In the case that there was a different
number of match ups for TN, it is shown in parentheses.

TP (TN)

R1 R2 R3 R4 R5 R6 Total

April 20 10 (5) 33 (29) 18 4 16 (12) 101
May 22 33 (28) 49 25 5 32 (28) 166
June 31 12 56 21 13 23 156
July 37 18 44 33 20 34 186

August 25 14 23 18 5 8 93
September 4 10 3 2 0 9 28
October 4 0 0 3 0 2 9

November 0 0 1 1 0 0 2

Total 143 97
(87)

209
(205) 121 47 125

(117)
741

(719)

2.4. TN and TP Retrieval Methods

Fifteen different formulas were used with the atmospherically corrected angular
dependent water-leaving reflectance (C2RCC reflectances) and the C2RCC processor Level-
2 (L2) products for the retrieval of TN and TP (Table 2). Only the general formulas
used in this study are shown in the Table 2. Every formula was tested with different
combinations by altering C2RCC reflectances on the 15 bands, and the 13 different C2RCC
L2 products (Table 3) were included only to the simplest formulas (1–4 in Table 2). In total,
25,013 different algorithms were made for testing.

Table 2. The general formulas used in this study. B indicates the atmospherically corrected angular
dependent water-leaving reflectance band, and index a, b, or c indicates different Ocean and Land
Colour Instrument (OLCI) bands (15 bands in different options) or the Level-2 product.

Formula

1. Ba + Bb
2. Ba − Bb
3. Ba/Bb
4. Ba * Bb

5. Ba + Bb + Bc
6. Ba + Bb * Bc

7. (Ba + Bb) * Bc
8. (Ba − Bb) * Bc
9. (Ba + Bb)/Bc
10. Ba * Bb/Bc

11. (Ba − Bb)/(Ba + Bb)
12. (Ba/Bb) * (Ba/Bb)
13. Ba/Bb − Ba/Bc

14. Ba − (Bb + Bc)/2
15. Ba/(Bb + Bc)



Remote Sens. 2022, 14, 1487 6 of 21

Table 3. Sentinel-3 OLCI spectral bands, their central wavelengths for Case 2 Regional CoastColour
(C2RCC) reflectances, and C2RCC Level-2 (L2) products [46].

Band Centre (nm) L2 Product L2 Product Description

1 400 iop_apig Absorption coefficient of phytoplankton pigments at 443 nm (m−1)
2 412.5 iop_adet Absorption coefficient of detritus at 443 nm (m−1)
3 442.5 iop_agelb Absorption coefficient of coloured dissolved organic matter (CDOM) at 443 nm (m−1)
4 490 iop_bpart Scattering coefficient of marine particles at 443 nm (m−1)
5 510 iop_bwit Scattering coefficient of white particles at 443 nm (m−1)
6 560 iop_adg Detritus + CDOM absorption at 443 nm (m−1)
7 620 iop_atot Phytoplankton + detritus + CDOM absorption at 443 nm (m−1)
8 665 iop_btot Total particle scattering at 443 nm (m−1)
9 673.75 kd489 Irradiance attenuation coefficient (Kd) at 489 nm (m−1)

10 681.25 kdmin Mean Kd at the three bands with minimum Kd (m−1)
11 708.75 kd_z90max Depth where 90% of the water-leaving irradiance comes from (m−1)
12 753.75 conc_tsm TSS dry weight concentration (g m−3)
16 778.75 conc_chl Chl-a concentration (µg L−1)
17 865
18 885

To find the best algorithm for deriving TN and TP, a quadratic polynomial regression
model was used similarly by Huang et al. [35] in Xiangxi Bay, China. Equation (1) was
used to derive TN or TP concentrations.

y = ax2 + bx + c (1)

where y is the derived TN or TP, x is the algorithm of L2 product or band ratios, and a, b,
and c are the polynomial regression coefficients.

The entire match up database was tested with over 25,000 algorithms, but also every
region (R1–R6) separately was tested on six different temporal divisions:

1. April to November;
2. May to September;
3. April to May;
4. June to September;
5. April to June;
6. July to September.

The first period includes all data. The second period (May to September) is agreed in
the monitoring program as the biologically active period. For example, the indicator for
eutrophication in the monitoring program is mean Chl-a for the May–September period.
The third and fourth periods are the traditional way to divide spring and summer between
months (April to May and June to September, accordingly). Lastly, the fifth and sixth peri-
ods are the new way to define spring and summer seasons, to distinguish the spring bloom
from the summer cyanobacteria bloom (April to June and July to September, accordingly).

In addition, three combined regions were formed: the Gulf of Finland (R1 + R3), west
Estonian archipelago waters and the Baltic Proper (R4 + R5), and the Gulf of Riga (R2 + R6).
All of them were used to test all the algorithms on the six temporal divisions.

2.5. Statistical Analysis

Mean values were used to describe in situ characteristics. The mean is the average
value of the dataset.

The performance of algorithms was evaluated using the determination coefficient (R2).
R2 is used to analyze how well observed in situ values are predicted by the model based on



Remote Sens. 2022, 14, 1487 7 of 21

the proportion of total variation of outcomes explained by the model; it is calculated using
Equation (2).

R2 = 1 − ∑n
i=1(yi − ŷ)2

∑n
i=1(yi − y)2 (2)

where, ŷ is the predicted value, y is the observed value, y is the mean value of observed y
values, and n is the number of observations.

To evaluate the error of the derived nutrients, root mean squared error (RMSE) and
bias were used (both are in the same units as the quantity being estimated). RMSE is a
frequently used measure of differences between values observed in situ and predicted by a
model; it is calculated using Equation (3). Bias shows a systematic error, and it is calculated
using Equation (4).

RMSE =

√
1
n

n

∑
i=1

(ŷ − yi)
2 (3)

bias =
1
n

n

∑
i=1

(ŷ − yi) (4)

where, ŷ is the predicted value, y is the observed value, and n is the number of observations.
In addition, the performance of algorithms was evaluated using accuracy through

the mean absolute percentage error (MAPE). MAPE measures the percentage error of the
estimated values in relation to the actual values; it is calculated using Equation (5).

MAPE =
100%

n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (5)

where, ŷ is the predicted value, y is the observed value, and n is the number of observations.
Accuracy represents correctly predicted values (expressed as a percentage). Accuracy is
calculated as 100 − MAPE.

The 95% confidence interval value (95%CI) is used to describe the uncertainties associ-
ated with the quadratic polynomial regression model, and it is presented for the coefficients
of the regression model. It is calculated using Equations (6) and (7), where sefit is the unbi-
ased estimate of the standard error of the fit, and tcrit is the critical value of the t distribution
with degrees of freedom of the residuals with significance level 0.05/2.

CI = ±se f it × tcrit (6)

sefit =

√
ssres

d fres
× XT

0 (XTX)
−1X0 (7)

where, ssres is the sum of squares for the residuals, dfres is the degrees of freedom for the
residuals, X0 is the column array and X is the design matrix of the observed values, and T

notes the transposed matrix.

3. Results
3.1. Match-Up In Situ Database

The means of the in situ TN, TP, TN:TP, Chl-a and SD in different regions and seasons
of the match-ups stations are shown in Table 4. The means of the nutrients, and especially
the TN:TP ratios, are not very different between the seasons, except in some regions like
R2 and R5. The SD in region R2 is significantly lower than in other regions. The Chl-a in
spring is the highest in regions R2 and R6 (Table 4).
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Table 4. The number of in situ unique sampling stations in different Estonian coastal regions (R1–R6),
the in situ mean values for total nitrogen (TN), total phosphorus (TP), TN:TP ratio, chlorophyll-a
concentration (Chl-a), and Secchi disk depth (SD) in April to September, spring (April to June), and
summer (July to September) of the match ups during 2016–2021. The number of measurements is
shown in the parentheses.

Unique
Stations

TN
µmolN L−1

TP
µmolP L−1 TN:TP Chl-a

mg m−3
SD
m

R1 12 23.2 (139) 0.82 (139) 32.5 (139) 6.8 (105) 3.3 (113)
Spring 22.5 (73) 0.88 (73) 30.4 (73) 7.8 (59) 3.4 (60)

Summer 23.9 (66) 0.75 (66) 34.8 (66) 5.6 (46) 3.2 (53)

R2 4 37.6 (87) 0.61 (97) 65 (87) 8.9 (78) 1.2 (93)
Spring 45.1 (45) 0.57 (55) 80.9 (45) 10.7 (42) 1.3 (52)

Summer 29.6 (42) 0.66 (42) 47.9 (42) 6.7 (36) 1.1 (41)

R3 16 20.9 (204) 0.74 (208) 31.8 (204) 6.4 (205) 4.7 (170)
Spring 20.6 (135) 0.78 (138) 29.8 (134) 6.9 (136) 5.3 (115)

Summer 21.5 (70) 0.64 (70) 35.7 (70) 5.3 (69) 3.7 (55)

R4 17 18.6 (117) 0.56 (117) 35.7 (117) 4.5 (106) 5.8 (89)
Spring 17.6 (64) 0.59 (64) 32.7 (64) 5.0 (57) 6.6 (49)

Summer 19.9 (53) 0.53 (53) 39.3 (53) 4.0 (49) 4.7 (40)

R5 7 20.6 (47) 0.44 (47) 58.5 (47) 2.1 (26) 4.1 (41)
Spring 21.8 (22) 0.38 (22) 76.8 (22) 1.2 (13) 4.5 (21)

Summer 19.6 (25) 0.49 (25) 42.3 (25) 2.9 (12) 3.8 (20)

R6 7 25.9 (114) 0.62 (122) 45.6 (114) 7.2 (121) 2.4 (95)
Spring 26.8 (63) 0.63 (71) 46.0 (63) 9.0 (70) 2.4 (54)

Summer 24.9 (51) 0.60 (51) 45.2 (51) 4.8 (51) 2.4 (41)

R1–R6 63 23.8 (708) 0.67 (730) 40.7 (708) 6.4 (641) 3.7 (601)
Spring 24.3 (401) 0.70 (423) 41.2 (401) 7.4 (377) 4.0 (351)

Summer 23.3 (307) 0.63 (307) 39.9 (307) 5.1 (264) 3.1 (250)

The strongest relationships between in situ Chl-a and in situ TN were in the region
R1 summer season, and in the rest of the regions no remarkable relationship was shown.
The TP did also not have any relationship with Chl-a, except in the region R4 in spring
(Figure 2A). The transparency and TP had the strongest relationship in only region R5
(spring and summer) and in the summer periods of regions R2 and R4 (Table 5). The
relationship between in situ TN and SD seems to be exponential rather than linear. For
example, in spring period the R2 was 0.27 with linear regression, but 0.39 with exponential
regression (Table 5; Figure 2B). All the linear regressions between the in situ TN and TP
and the in situ optically active substances within the match-up dataset according to the
regions and seasons are shown in Table 5.
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and total phosphorus (TP) and (A) chlorophyll-a concentration (Chl-a), and (B) transparency of the
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Table 5. Determination coefficients (R2) of the linear regression, count (n) and the p-value (p) between
total nitrogen (TN, µmolN L−1) or total phosphorus (TP, µmolP L−1) and chlorophyll-a concentration
(Chl-a, mg m−3) or Secchi disk transparency (SD, m) in different regions and seasons: spring (April to
June) and summer (July to September) of the in situ match-up dataset. Cases where p-value is > 0.05
is marked with red colour.

Chl-a SD

TN TP TN TP

R2 n p R2 n p R2 n p R2 n p

All
dataset

Spring 0.05 355 0.000 0.07 377 0.000 0.27 329 0.000 0.00 351 0.685
Summer 0.06 264 0.000 0.12 264 0.000 0.20 250 0.000 0.06 250 0.000

R1
Spring 0.18 59 0.001 0.08 59 0.035 0.14 60 0.003 0.00 60 0.858
Summer 0.30 46 0.000 0.11 46 0.021 0.05 53 0.006 0.02 53 0.367

R2
Spring 0.03 32 0.307 0.01 42 0.646 0.01 42 0.651 0.10 52 0.024
Summer 0.07 36 0.108 0.07 36 0.124 0.15 41 0.013 0.24 41 0.001

R3 Spring 0.04 132 0.021 0.18 136 0.000 0.02 111 0.123 0.10 115 0.001
Summer 0.04 69 0.094 0.01 69 0.375 0.10 55 0.020 0.00 55 0.700

R4 Spring 0.00 57 0.768 0.36 57 0.000 0.01 49 0.418 0.00 49 0.828
Summer 0.03 49 0.233 0.11 49 0.019 0.03 40 0.269 0.26 40 0.001

R5 Spring 0.01 13 0.717 0.11 13 0.280 0.04 21 0.385 0.24 21 0.025
Summer 0.30 13 0.054 0.00 13 0.999 0.09 20 0.208 0.38 20 0.004

R6 Spring 0.00 62 0.792 0.00 70 0.633 0.11 46 0.022 0.02 54 0.373
Summer 0.04 51 0.164 0.07 51 0.053 0.01 41 0.520 0.16 41 0.009

The match-up in situ database showed strong dependence of TN with aCDOM (R2 = 0.78,
n = 21, p-value = 1E−07), but only a weak relationship between TP and aCDOM (R2 = 0.19,
n = 21, p-value = 0.05) (Figure 3). Within the match-up in situ dataset, the relationships
with TSS were not significant (TP: R2 = 0.13, n = 18, p-value = 0.15 and TN: R2 = 0.09, n = 18,
p-value = 0.22), though with a larger dataset some relationships might occur.
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3.2. Total Nitrogen

After testing over 25,000 band/product ratio combinations on the 719 TN match-ups,
the highest R2 for each region (R1–R6) and each temporal division is shown in Table 4
with the combinations of regions and with no regions results. The highest R2 was usually
in the shortest period: April to May. Although the highest R2 was in April to May, the
combination of April to June + July to September periods was chosen in the current study.
There are two reasons for that: (1) the algorithms worked much better in all regions in
the July to September period than in the June to September period; (2) too low count of
match-ups in the April to May period in R5 (n = 9) made the polynomial regression results
unreliable (Table 6).

Table 6. The number of match-ups (n) and the determination coefficients (R2) of the quadratic
polynomial regression model for the best algorithm out of 25,013 for different regions (R1–R6) or
region combinations for deriving total nitrogen (TN).

April–Nov May–Sept April–May June–Sept April–June July–Sept

n R2 n R2 n R2 n R2 n R2 n R2

No regions 719 0.49 620 0.50 245 0.64 463 0.31 401 0.53 307 0.44
R1 143 0.17 119 0.14 42 0.46 97 0.17 73 0.31 66 0.21
R2 87 0.66 82 0.68 33 0.55 54 0.65 45 0.66 42 0.71
R3 205 0.14 175 0.09 78 0.18 126 0.14 134 0.15 70 0.19
R4 121 0.10 99 0.14 43 0.32 74 0.15 64 0.13 53 0.22
R5 47 0.16 43 0.15 9 0.68 38 0.22 22 0.19 25 0.51
R6 116 0.08 102 0.11 40 0.20 74 0.12 63 0.12 51 0.17

R1 + R3 348 0.16 294 0.12 120 0.30 223 0.13 207 0.22 136 0.15
R2 + R6 203 0.59 184 0.62 73 0.60 128 0.46 108 0.61 93 0.61
R4 + R5 168 0.09 142 0.08 52 0.20 112 0.09 86 0.18 78 0.16

Generally, the option with no regions applied was performing rather well in all
temporal divisions (R2 ranged between 0.31–0.64). In comparison of different regions, the
algorithms were performing very well in R2. In the R3 and R6 regions, the performance
was the weakest along all the temporal divisions (Table 6). The combination of regions did
not improve the results and it was not used in the further study. Not using any regions
might be a simple option for fast results, but using regions improves the MAPE of the
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deriving TN for the entire vegetation season (April to September) from 18.2% to 14.2%
(Figure 4). The overall results in the different regions not applied and all regions combined
versions for the entire vegetation period were relatively good: R2 from 0.52 to 0.73, with
RMSE from 6.5 to 4.9 µmolN L−1, respectively (Figure 2).
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Figure 4. The comparison of the derived total nitrogen (TN, µmolN L−1) with the in situ TN: (A) the
derived TN is based on all the stations with no regions; (B) the TN is derived in all the regions (R1–R6)
separately. The statistics on the right and the linear regression trendline (black line) are combined
periods of spring (April to June: green rings) and summer (July to September: orange rings).

There were significant differences in deriving TN in different regions. The strongest
relationship with TN was in region R2 (Pärnu Bay) (R2 = 0.74), while the weakest relation-
ship was in regions R3 and R6 (R2 = 0.17 and 0.15, respectively) (Figure 5). The RMSE was
between 3.11 to 8.85 µmolN L−1 (regions R4 to R2, respectively). Although the region R2
had the strongest relationship towards TN, the accuracy was the lowest (81.4%), because
the absolute values of TN were at least twice as high compared with other regions. In
region R2, the TN max is 105.6 µmolN L−1, while in other regions, the TN max ranges from
29.8 µmolN L−1 to 48.6 µmolN L−1.

The statistics of the spring and summer seasons separately are shown in Table 7 with
the formulas used. All the results are significant, except in R5 spring, where the p-value is
0.05. In addition, the coefficients of the quadratic polynomial regression model (a, b and c
with the 95% confidence interval values (95%CI)) used in deriving TN are shown in Table 8.
Only regions R2 and R4 in the summer periods have the same band ratio formula with
the exact same bands. Almost half of the used formulas have the L2 product in them. In
regions R3 and R6, the total particle scattering and either TSS or Chl-a concentrations gave
the best results in summer period. In region R4, the best way to evaluate TN in spring
is through the phytoplankton pigments and CDOM. The transparency products (Kd) are
used in regions R3 and R5. Regions R1 and R2 algorithms used only reflectances in both
periods. Only the reflectance bands at 400 and 442.5 nm were not used (Table 7). From
the Tables 6 and 7 (and Figure 4), it is evident that deriving TN is challenging in most of
the regions (R1, R3, R4 and R6), and more in the spring period than in summer (MAPE is
always higher in spring).
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Table 7. The best formulas (B in the formulas indicates the C2RCC reflectance band, and the number
indicates the band number), the determination coefficient (R2), p-value, mean and the root mean
square error (RMSE) (both in µmolN L−1), the mean absolute percentage error (MAPE), and bias
(µmolN L−1) for each region in spring (April to June) and summer (July to September) for the derived
total nitrogen (TN).

Region Season Formula R2 p-Value Mean RMSE MAPE Bias

No
regions

Spring B16 * B17/B5 0.53 <0.001 24.3 7.6 19.9 0.0
Summer B18/B4 − B18/B5 0.44 <0.001 23.2 4.5 16.0 0.0

R1
Spring (B8 − B10) * B17 0.31 <0.001 23.2 3.9 14.3 0.0

Summer (B8 + B18)/B10 0.21 <0.001 23.9 3.6 11.3 0.0

R2
Spring (B4 + B17)/B5 0.66 <0.001 45.1 11.2 21.7 0.0

Summer B16/B6 − B16/B7 0.71 <0.001 29.6 5.2 15.3 0.0

R3
Spring B7 * kdmin 0.15 <0.001 20.6 3.4 12.2 0.0

Summer iop_btot/conc_tsm 0.19 <0.001 21.5 3.0 11.7 0.0

R4
Spring iop_apig/iop_agelb 0.13 <0.004 17.6 2.8 14.1 0.0

Summer B16/B6 − B16/B7 0.22 <0.001 19.9 3.4 12.4 0.0

R5
Spring B17/B11 − B17/B12 0.18 0.05 21.8 6.7 17.9 0.0

Summer kd_z90max/B5 0.51 <0.001 19.6 3.3 15.5 0.0

R6
Spring (B2 − B10) * B9 0.12 0.006 26.8 6.7 18.1 0.0

Summer conc_chl/iop_btot 0.17 0.003 25.0 3.7 13.7 0.0

R1–R6
combined

Spring - 0.75 <0.001 24.3 5.6 15.2 0.0
Summer - 0.62 <0.001 23.3 3.7 12.9 0.0

Table 8. The coefficients of the quadratic polynomial regression (a, b and c, used in Equation (1)) to
derive TN with the 95% confidence interval values (95%CI).

Region Season a ± 95%CI b ± 95%CI c ± 95%CI

No
regions

Spring −7404652 ± 1171571 37505 ± 4133 18.7 ± 0.9
Summer 40004 ± 1810 114.4 ± 110.6 21.3 ± 0.86

R1
Spring 1.9E+14 ± 9.1E+13 −4.4E+07 ± 16436166 20.1 ± 1.3

Summer 134.6 ± 142.8 −259.8 ± 314.4 146.8 ± 173.3

R2
Spring 843.3 ± 490.1 −1452.6 ± 926.8 648.6 ± 431.9

Summer 6723.3 ± 2037.9 504.6 ± 106.2 33.4 ± 2.6

R3
Spring −8217.4 ± 89529.9 682.0 ± 811.6 19.1 ± 1.2

Summer 15.1 ± 29.7 −8.0 ± 38.9 22.2 ± 9.9

R4
Spring 0.4 ± 0.3 −2.7 ± 2.2 20.7 ± 3.0

Summer −28849.5 ± 18696.6 −3911.1 ± 2652.5 −111.7 ± 93.6

R5
Spring −101724 ± 125315 −65036 ± 80636 −10368 ± 12969

Summer 0.0002 ± 0.0001 −0.07 ± 0.04 25.4 ± 4.7

R6
Spring −9.2E+08 ± 667741628 −146626 ± 105740 26.5 ± 1.8

Summer 4.5 ± 3.9 −10.2 ± 7.3 29.2 ± 3.0

3.3. Total Phosphorus

There were more TP measurements than TN; the TP database contained 741 TP match-
ups. The highest R2 for each region (R1–R6) and each temporal division is shown in Table 9.
Additionally, similar to TN, combinations of different regions and no regions were used for
algorithm testing. Generally, the relationships between derived algorithms and TP were
weaker than with TN. The highest R2 was usually found for the shortest period, April
to May; however, at the same time, the July to September period gave very good results
compared to other time divisions. For the same reasons as for TN, April to June + July to
September periods were chosen for this study.
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Table 9. The number of match-ups (n) and the determination coefficients (R2) of the quadratic
polynomial regression model for the best algorithm out of 25,013 for different regions (R1–R6) or
region combinations for deriving total phosphorus (TP).

April–Nov May–Sept April–May June–Sept April–June July–Sept

n R2 n R2 n R2 n R2 n R2 n R2

No regions 741 0.11 629 0.06 267 0.16 463 0.09 423 0.14 307 0.15
R1 143 0.09 119 0.04 42 0.26 97 0.06 73 0.17 66 0.20
R2 97 0.30 87 0.37 43 0.26 54 0.47 55 0.24 42 0.70
R3 209 0.18 175 0.05 82 0.25 126 0.09 138 0.23 70 0.33
R4 121 0.26 99 0.17 43 0.46 74 0.18 64 0.42 53 0.32
R5 47 0.34 43 0.45 9 0.78 38 0.43 22 0.34 25 0.52
R6 124 0.08 106 0.15 48 0.27 74 0.21 71 0.20 51 0.41

R1 + R3 352 0.11 294 0.04 124 0.21 223 0.05 211 0.20 136 0.12
R2 + R6 221 0.10 193 0.20 91 0.15 128 0.27 126 0.09 93 0.43
R4 + R5 168 0.28 142 0.19 52 0.46 112 0.20 86 0.45 78 0.25

On the contrary to TN, the algorithms were performing very poorly in all temporal
divisions when no regions were differenced (R2 ranged 0.06–0.16). Using regions improves
the accuracy of the estimation of TP for all the temporal divisions (Table 8). Similarly
with TN estimations, algorithms performed better in regions R2 and R5; in the R1, R3
and R6 regions, the performance was the weakest along all the temporal divisions. The
combination of geographically-close regions (R1 + R3, R2 + R6, and R4 + R5) did not
improve the estimation of TP, and therefore was excluded from the further study (Table 9).
The accuracy of the TP estimation improves from 69.9% to 76.2% (R2 from 0.15 to 0.38) for
the entire vegetation period (April to September) when regions are applied to the dataset
(Figure 6).
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Figure 6. The comparison of the derived total phosphorus (TP, µmolP L−1) with the in situ TP: (A) the
derived TP is based on all the stations with no regions; (B) the TP is derived in all the regions (R1–R6)
separately. The statistics on the right and the linear regression trendline (black line) are combined
periods of spring (April to June: green rings) and summer (July to September: orange rings).

The accuracy of estimating TP concentrations had significant differences between
the different regions, being highest in region R2, at 84.7%, and lowest in region R1, at
67.6% (Figure 7). In all the cases, the remote sensing algorithms were underestimating TP
concentrations. Still, the detection of TP was better in regions R2, R4, and R5 (R2 was 0.60,
0.42 and 0.50, accordingly). The RMSE was between 0.11 and 0.36 µmolP L−1.
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Figure 7. The comparison of the derived total phosphorus (TP, µmolP L−1) with in situ TP in
each region of Estonian marine waters (A–F). The statistics on the right and the linear regression
trendline (black line) are combined periods of spring (April to June: green rings) and summer (July to
September: orange rings).

Tables 10 and 11 show the best formulas and the coefficients used in TP deriving
algorithms. Similarly with TN algorithms, almost half of the formulas have L2 products in
them. In region R5, Chl-a and scattering of the marine particles seems to be influencing
TP in spring, compared to CDOM together with TSS and pigments in summer. The best
algorithms for regions R1 and R6 have relationships with transparency L2 products (Kd).
The algorithms for regions R2 and R3 used only reflectance bands. The reflectance bands
on 560–620 nm and 709–754 nm were not used in any of the best algorithms. In deriving
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TP, the spring season had lower R2 and higher MAPE (with some exceptions (R2 and R4))
compared with the summer season (Table 10).

Table 10. The best formulas (B in formulas indicates the C2RCC reflectance band, and the number
indicates the band number), the determination coefficient (R2), p-value, mean and the root mean
square error (RMSE) (both in µmolP L−1), the mean absolute percentage error (MAPE), and bias
(µmolP L−1) for each region in spring (April to June) and summer (July to September) for the derived
total phosphorus (TP).

Region Season Formula R2 p-Value Mean RMSE MAPE Bias

No
regions

Spring (B2 + B5)/B4 0.14 <0.001 0.70 0.31 33.5 0.0
Summer conc_tsm/B4 0.15 <0.001 0.63 0.20 25.4 0.0

R1 Spring (B8 − B10) * B1 0.17 <0.001 0.88 0.44 36.9 0.0
Summer kd489/iop_agelb 0.20 <0.001 0.75 0.23 27.5 0.0

R2 Spring (B9/B3) * (B9/B3) 0.24 <0.001 0.57 0.10 15.1 0.0
Summer B17 * B18/B3 0.70 <0.001 0.66 0.12 15.5 0.0

R3 Spring (B10/B9) * (B10/B9) 0.23 <0.001 0.78 0.28 25.9 0.0
Summer B5/(B4 + B10) 0.33 <0.001 0.64 0.15 18.9 0.0

R4 Spring iop_atot/iop_agelb 0.42 <0.001 0.60 0.15 22.8 0.0
Summer B16/B4 − B16/B9 0.32 <0.001 0.53 0.11 15.6 0.0

R5 Spring iop_bpart * conc_chl 0.34 0.004 0.38 0.13 43.8 0.0
Summer iop_apig * iop_adg 0.52 <0.001 0.49 0.11 20.6 0.0

R6 Spring (B16/B5) * (B16/B5) 0.20 <0.001 0.63 0.19 23.2 0.0
Summer iop_adg * kdmin 0.41 <0.001 0.60 0.14 20.6 0.0

R1–R6
combined

Spring - 0.34 <0.001 0.70 0.27 26.4 0.0
Summer - 0.46 <0.001 0.63 0.16 20.1 0.0

Table 11. The coefficients of the quadratic polynomial regression (a, b and c, used in Equation (1)) to
derive TP with the 95% confidence interval values (95%CI).

Region Season a ± 95%CI b ± 95%CI c ± 95%CI

No
regions

Spring 8.7 ± 5.4 −28.2 ± 18.5 23.4 ± 15.8
Summer 3.8E−10 ± 3.4E−09 4.5E−05 ± 2.9E−05 0.5 ± 0.04

R1
Spring 4.8E+11 ± 4.6E+11 −787,522 ± 429,007 0.7 ± 0.2

Summer 0.004 ± 0.002 −0.08 ± 0.04 1.1 ± 0.2

R2
Spring −0.0005 ± 0.0002 0.02 ± 0.009 0.5 ± 0.06

Summer −41,430 ± 46,114 342.2 ± 141.5 0.5 ± 0.06

R3
Spring 44.9 ± 32.1 −90.3 ± 67.2 46.0 ± 35.1

Summer 23.7 ± 8.2 −35.9 ± 12.5 14.1 ± 4.7

R4
Spring 0.001 ± 0.004 0.02 ± 0.06 0.4 ± 0.2

Summer −373.6 ± 210.5 −92.4 ± 55.3 −5.1 ± 3.6

R5
Spring −0.0009 ± 0.001 0.05 ± 0.05 0.2 ± 0.2

Summer 210.2 ± 104.9 −17.0 ± 10.3 0.7 ± 0.2

R6
Spring 16.3 ± 7.9 −3.5 ± 1.8 0.7 ± 0.08

Summer −0.15 ± 0.06 0.6 ± 0.2 0.5 ± 0.06

4. Discussion

The detection of nutrients from optical remote sensing data still remains a challenge be-
cause TN and TP have no spectral response in the visible and near-infrared regions [25]. Sev-
eral studies have estimated the nitrogen and phosphorus based on their strong relationships
with Chl-a, TSS, and other optically sensitive parameters in the water [5,26,34,35,47–49].
In addition, a previous study has shown that Chl-a and SD are able to explain 41% of the
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variance in TP for the Swedish rivers discharging into the Baltic Sea [30]. Unfortunately,
in the current study, no strong relationships were observed between the in situ Chl-a or
SD with the nutrients in the match-up dataset (Table 5). TN showed only a moderate
relationship with Chl-a in the R1 region. TP only had a significant relationship in the R4
region during spring (Figure 2A). The overall (all dataset) relationship between TN and
SD is stronger than the relationship with Chl-a (R2 = 0.27 and 0.05, accordingly), while
no significant relationships between TN and SD were in any of the regions separately
(R2 = 0.01–0.15) (Table 5).

The analysis of the relationships of the nutrients with the other two optically active
substances (aCDOM and TSS) are limited because of the small dataset of in situ aCDOM and
TSS. Nevertheless, the match-up in situ database showed strong dependence of TN with
aCDOM, but only a weak relationship between TP and aCDOM (Figure 3). The region R2
plays an important role in this strong relationship between aCDOM and TN because of the
optically dark river Pärnu, which is bringing freshwater rich with dissolved organic matter
into the Pärnu Bay (region R2). This strong relationship makes the detection of TN from
remote sensing data possible in the Pärnu Bay area. In the areas (or regions) where aCDOM
was lower, the results of deriving TN were weaker. The weak relationship between in
situ TP and aCDOM increases significantly (R2 = 0.48, n = 13, p-value = 0.008) when R6
data is removed, but the dataset is too limited to draw any significant conclusions. In
marine systems generally, N has been identified as the growth limiting nutrient, whereas
in estuaries, P may be limiting in the freshwater part and N in the marine part [50]. The
optimal TN:TP ratio for phytoplankton growth is 16:1; this is the so-called Redfield ratio [51].
However, except in deep-oceans, it is more of an exception than a rule. A TN:TP ratio > 50
indicates severe P limitation in the environment, a ratio < 20 indicates N limitation, and
anything in between could indicate either of the nutrient deficiencies [52]. In the Estonian
marine waters, the TN:TP ratio is very rarely <20, but at the same time, it is also not often
>50. Only regions R2 and R5 show P limitation with an average TN:TP ratio of 65 and
58.5, respectively (Table 4). Table 4 indicates that the TN:TP ratio is very high in R2 and R5
during the spring period; they are also the regions where nutrients have been estimated
rather well. In Guildford and Hecky [52], the TP was controlling the phytoplankton growth
only when its concentration was less than 0.5 µmolP L−1, regardless of the concentration of
the TN. Based on this, we can say that only the region R5 is P limited. This is an addition
to confirming the P deficiency in the R5 region, besides the TN:TP ratio being > 50 in the
spring period. As seen in Table 4, it is shown that the TN decreases and the TP increases
from spring to summer in regions R2 and R5, while the other regions show the opposite
trend (except a small decrease of TN in R6). This kind of TN:TP fluctuation is another sign
of the P limitation in the R2 and R5 regions, where TN can be depleted fast during the
growing season and P can be resuspended from the sediments. High TP loads can lead to
N-fixing cyanobacteria blooms in the summer [53]. Well-derived TP in the region R4 might
be related to the SD changes in the water. Although in the region R4, the nutrients and
Chl-a were quite stable throughout the seasons, the variability in the SD were the largest of
all the regions (Table 4). The low Chl-a values in the presence of high TN:TP ratios are a
sign of other factors that are limiting the growth of phytoplankton (other minerals, light,
etc.) [54].

Low TN:TP ratios may cause N-fixing cyanobacterial blooms. In the regions R1, R3 and
R4, N-fixing cyanobacteria can occur in summer [55,56], when the main driver for the phyto-
plankton growth might be temperature, wind speed, or an upwelling effect [57]. Therefore,
TN and TP detection is even more challenging when the optically active parameters, like
Chl-a, TSS, CDOM, have no major effect or relationship with nutrients.

The overall detection of TN was successful (R2 = 0.73, MAPE = 14.2%,
RMSE = 4.87 µmolN L−1, n = 708) in the case that TN was first derived for each region
separately, and then all the results were combined (Figure 4: R1–R6 combined). The overall
success relies in a large part to the good results in the region R2 (Pärnu Bay) (R2 = 0.74,
MAPE = 18.6%, RMSE = 8.87 µmolN L−1, n = 87) (Figure 5). As discussed above, the good
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results of the TN estimations in Pärnu Bay were because of the strong dependence with
aCDOM in the region.

The means of the in situ and derived TN show slight difference only in theR1 region
in spring and the R6 region in summer (3% and 0.4%, accordingly) (Tables 4 and 7).
This suggests that remote sensing can be used to make the estimations on the spatio-
temporal means of TN, which are used for the determination of the ecological states of the
coastal waters.

The overall detection of TP was less successful compared to the TN results (R2 = 0.38,
MAPE = 23.8%, RMSE = 0.23 µmolP L−1, n = 730) (Figure 6: R1–R6 combined). However,
the TP detection was much more successful in four regions compared to TN: region R3
(R2 = 0.28), R4 (R2 = 0.42), R5 (R2 = 0.50), and R6 (R2 = 0.27), and only in R1 (R2 = 0.20) and
R2 (R2 = 0.60) were the results were somewhat weaker (Figures 5 and 7). In addition, the
means of in situ and derived TP in different regions and seasons were the same, except a
minor difference of 1.7% in the R4 region spring season (Tables 4 and 10). This also shows
the suitability of remote sensing for the TP estimations, especially where spatiotemporal
means are monitored.

The spatial variation of TN and TP can have discontinuity at the borders of regions
with the method used in the current study. Therefore, the algorithms of neighbouring
regions should be blended at the borderline. Algorithm blending has shown good re-
sults in chlorophyll retrieval studies by Moore et al. [58,59]. The overall work scheme
would include a weight determined by the distance from the border of the region for each
pixel in the border area, which is used to obtain a final blended TN or TP concentration.
This approach would be suitable for progressive transitions between regions, and blend
separately tuned algorithms without suffering from the discontinuity associated with
hard-classification schemes.

Past studies showed better results on TP than TN whenever the nutrients were derived
with remote sensing data from freshwater systems [29,32]. Moreover, most of the inland
nutrient studies derived only TP [28,30,31,33,34,36–38]. Only He et al. [18] and Huang
et al. [35] obtained better results with TN than with TP in a freshwater reservoir. The
studies performed in marine systems were more successful in detecting TN values [3], or
derived only TN values [5,35,39]. Our study confirms that, in marine waters, detecting TN
is more successful than deriving TP.

In coastal regions, which are influenced by large river run-off, nutrients are usually
conservatively mixed with the sea water and have quantitative relationships with salin-
ity [60]. Thus, Wang et al. [3] suggest that the use of salinity and spectral data may improve
retrieval accuracy. Our database showed only relationships between TN and salinity in
the spring period. In all the other periods, R2 was less than 0.1. TP did not show any
relationship with salinity in any period. As salinity cannot be directly detected in coastal
waters with remote sensing and our database shows weak relationships with the nutrients,
an optically active substance as a proxy is needed, and, at least in Baltic Sea, use of salinity
might not improve results.

None of the past studies have had as large a dataset as in current study with the
range of temporal and spatial variations (741 match-ups from 63 sampling stations over
36,500 km2 study area over six years). Yu et al. [39] based their study only on a single
remote sensing image. Wang et al. [3] had very high R2 values (for TN 0.98–0.99, and for TP
0.75–0.86), but based their study mostly on in situ measured reflectances and an artificial
database, and only 18 match-ups. In Tampa Bay (1000 km2), which is half of the size of
the region R5 in the current study, the TN estimations were based on 103 match-ups over
a three-year period, and had R2 values of 0.75 (calibration dataset) and 0.63 (validation
dataset) [5]. Only Chang et al. [40] had 740 match-ups from 52 cloud-free days in total
for Tampa Bay, where inverse modelling resulted with R2 0.53 and 0.58 based on the
calibration and validation datasets, respectively. Taking into consideration the large spatial
and temporal variability of the data that the current study is based on, the results show high
accuracy for the detection of nutrients with remote sensing data, and TN in particular is
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reliable for marine waters. Although not applicable for the entire year, remotely sensed data
with high spatial and temporal resolution could be used in nutrient monitoring, ecosystem
modelling, or estimation of the ecological state of the coastal and offshore waters during
the vegetation period. These algorithms developed in the current study can be used as
guidance for nutrient mapping in other coastal waters. The ranges of optically active
substances concentrations and TN:TP ratios should be used as an indication of whether the
same algorithms can be used in different coastal waters. However, coastal waters around
the world are extremely variable. Therefore, it is highly likely that the best approach to find
out whether TN and TP can be mapped with remote sensing in a particular site is simply to
repeat this study with the whole set of algorithms.

5. Conclusions

Nutrients play a major role in the eutrophication. Therefore, monitoring of the nu-
trients loads needs to be improved. The estimation of nutrients like TN and TP is very
challenging with optical remote sensing data, because TN and TP are not directly related
to the water colour that the remote sensing instruments are detecting. Nevertheless, we
showed that remote sensing is very useful in detecting those non-optically active substances
in the water. In this study, TN was well derived with R2 = 0.73, RMSE = 4.87 µmolN L−1,
MAPE = 14%, and n = 708. The TP estimations in Estonian marine waters were not as good,
with R2 = 0.38, RMSE = 0.23 µmolP L−1, MAPE = 24%, and n = 730. The estimations of both
nutrients were the most successful in the region R2. This region represents the semi-closed,
small, and turbid Pärnu Bay, which is a P limited water body with very high CDOM and
a nutrient rich river inlet. The deficiency of P seemed to have a positive influence on
the accuracy of the nutrient detection, which was also shown by the rather good results
derived in the region R5 (Väinameri Sea). Based on the results of this study, we may say
that deriving TN from optical remote sensing data is feasible in all Estonian coastal waters
throughout the whole ice-free season. Mapping of TP concentrations in Estonian marine
waters using remote sensing data should be taken more cautiously. Only the Pärnu Bay,
the Baltic Proper area of the west Estonian archipelago, and the Väinameri Sea (regions R2,
R4, and R5, accordingly) are the regions where TP can be mapped with sufficient accuracy.
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