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Abstract: With the rapid development of unmanned aerial vehicles (UAVs), object re-identification
(Re-ID) based on the UAV platforms has attracted increasing attention, and several excellent achieve-
ments have been shown in the traditional scenarios. However, object Re-ID in aerial imagery acquired
from the UAVs is still a challenging task, which is mainly due to the reason that variable locations and
diverse viewpoints in UAVs platform are always resulting in more appearance ambiguities among the
intra-objects and inter-objects. To address the above issues, in this paper, we proposed an adaptively
attention-driven cascade part-based graph embedding framework (AAD-CPGE) for UAV object
Re-ID. The AAD-CPGE aims to optimally fuse node features and their topological characteristics
on the multi-scale structured graphs of parts-based objects, and then adaptively learn the most
correlated information for improving the object Re-ID performance. Specifically, we first executed
GCNs on the parts-based cascade node feature graphs and topological feature graphs for acquiring
multi-scale structured-graph feature representations. After that, we designed a self-attention-based
module for adaptive node and topological features fusion on the constructed hierarchical parts-based
graphs. Finally, these learning hybrid graph-structured features with the most correlation discrimi-
native capability were applied for object Re-ID. Several experimental verifications on three widely
used UAVs-based benchmark datasets were carried out, and comparison with some state-of-the-
art object Re-ID approaches validated the effectiveness and benefits of our proposed AAD-CPGE
Re-ID framework.

Keywords: object re-identification; graph convolutional networks; unmanned aerial vehicle; attention
mechanism; embedding learning

1. Introduction

Object re-identification (Re-ID), which is intended to re-identify the same individual
from other non-overlapping cameras, has been drawing significant attention in the area
of intelligent video surveillance [1], as well as playing a crucial role in a large variety
of remote sensing and monitoring applications, such as urban planning [2], intelligent
transportation [3], security monitoring, cross-camera tracking [4] and so on. Meanwhile,
with the rapid development of modern intelligent technologies, unmanned aerial vehicles
(UAVs) have gradually expanded their application fields, which is mainly due to their
advantages, such as high mobility, flexible deployment, elastic service, etc. [5]. In addition,
the remarkable achievements of the current UAV systems in the perspective of accuracy,
efficiency and tracking have also been boosting the process and prosperity in adding
autonomous vehicles for navigation, surveillance and more applications [6]. With the
widespread availability of aerial images from the UAV platform, object Re-ID has become
an essential fundamental task for several visual surveillance applications. As an excellent
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supplementary tactic for the conventional surveillance scenarios, UAV-based object Re-
ID has been gaining interest and exhibits a prosperous development trend, which also
facilitates more and more efforts devoted to the study of UAV-based object Re-ID from both
industrial and academia [7,8]. Compared to object Re-ID in traditional scenarios where
the imagery acquisition relied on cameras in fixed location and viewpoint, object Re-ID in
aerial imagery taken from the UAV platform generally faces more challenges; some typical
challenges are shown in Figure 1. It is worth noting that the UAV platform possesses the
full coverage capability of complete viewpoints and a more comprehensive range of flight
altitudes, which brings with it large diversity, as well as object ambiguity in the aerial
images caused by circumstances, variations of viewpoints, poses, illumination [9–11], etc.
For example, in some special imaging conditions, such as the narrow oblique perspective
of UAVs, different objects of the collected aerial imagery always share identical contour
characteristics and similar visual appearance. As we know, the core of Re-ID is to find an
embedded feature space in which the objects within the same category gathers, but objects
belonging to different categories diverge [12,13]. In this situation, the implementation of
UAV-based object Re-ID requires feature representation, which enables it to develop a more
compact and robust feature to distinguish each object. In addition, different from object
detection, classification and tracking tasks, object Re-ID pays more attention to local regions
that contain fine-grained discriminative information, which is required for a more powerful
ability for feature discrimination. All of these, taken into account together, make object
Re-ID in the aerial imagery of UAVs a more challenging task.

Figure 1. Illustration of parts of the challenges faced by UAV-based object Re-ID platform: (a) object
appearance ambiguity by occlusions; (b) viewpoint variance resulted in dramatically different
appearances of the same object; (c) illumination variance led to appearance ambiguity of the same
objects; (d) illumination variances led to appearance ambiguity of the different objects; (e) resolution
variances led to a visual difference of the same objects in different distances; (f) resolution variances
led to the visual difference of the different objects in different distances.

Essentially, one main issue for UAV-based Re-ID is to learn discriminative and in-
variant features, which aims to ensure that the intra-object variations usually are more
significant than inter-object similarities. Following this, the executions of Re-ID methods
try to carry out a mapping operation for embedding object images into discriminative and
compact feature space, then compute the similarity between the query and gallery images.
In recent years, deep-learning-based approaches, such as feature representation learning
based [14], metric-learning-based [15] and adversarial-learning-based [16] methods, have
been achieved in some UAV-based Re-ID applications. Most of these kinds of Re-ID ap-
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proaches depend on the supervised learning strategy, which is generally implemented by
large-scale labeled training data to distinguish between objects with different identities. For
example, Zhang et al. [17] constructed a large-scale UAV-based Re-ID dataset (Person Re-ID
in Aerial Imagery, PRAI-1581) and then proposed to make use of subspace pooling opera-
tion on the feature maps that work by exacting the convolutional neural network (CNN) to
represent the object instances in the aerial imagery for Re-ID. Yu et al. [18] proposed an
asymmetric metric-based unsupervised learning framework for object Re-ID, which de-
rived an asymmetric distance metric based on cross-viewing clustering and also combined
it with a novel loss function for feature embedding under the deep neural network. In such
a way, this method can effectively learn the compact feature representations for alleviating
the view-specific distortions of object appearances and then further the Re-ID performance
using these highly discriminative features. Guo et al. [19] present a pedestrian multiview
generative adversarial networks (GAN)-based Re-ID method, which introduced the Monte
Carlo search (MCS) and the attention mechanism into the adversarial learning process of
the generator and the discriminator for learning enough detailed semantic features with
high discriminative ability.

Although these approaches have effectively enhanced the object representation capa-
bility, their performance often lies in a substantial amount of data annotations acquired by
tedious data collection and time-consuming processes. The robustness of these methods
always drops dramatically in some special UAV-based Re-ID applications. In addition,
most of the existing object Re-ID works mainly focus on identifying the intra-object varia-
tions and inter-object similarities from the perspective of visual appearance and neglect
the exploration of spatial information for object Re-ID; however, on the UAV platform, the
same object shows different visual appearances on the different spatial locations in some
special imaging conditions, which is mainly due to the variations of spatial resolutions
and different spatial implications. Furthermore, subtle cues deriving from implicitly and
explicitly spatial relations in global and local regions can help identify different categories
of objects with highly similar visual characteristics.

To further improve the performance of UAV-based object Re-ID platforms, in this
paper, we propose an adaptively attention-driven cascade part-based graph embedding
framework (AAD-CPGE). The AAD-CPEG Re-ID consisted of multiple part-based cascade
graph convolutional network (GCN) branches incorporated by the self attention-based
driven multi-graphs fusion module. The contributions of this paper can be summarized
as follows:

(1) We designed a hierarchical part-based graph construction module to effectively
derive multi-scale (or channel) spatial relations among different feature maps extracted
from the pre-trained CNN-based model. Then, two sets of parts-based cascade node feature
graphs and topological feature or (structure feature) graphs are constructed for exploring
the global and local spatial relation representations from the different perspectives of the
spatial domain.

(2) An self attention-driven based module was designed for adaptively fusing the
node and topological features of the constructed complex hierarchical subgraphs by impos-
ing the consistency and disparity constraints in the embedding feature space, as well as
yielding highly discriminative features for disguising the spatial variations and appearance
ambiguity among inter-objects and intra-objects.

(3) We also designed a novel loss function combined with the discrimination of graph
node feature, topological structures and their combination in the corresponding embedding
spaces, which can learn the explicitly and implicitly graph-based relations for further
boosting object performance Re-ID.

Extensive experimental verifications on several benchmark datasets indicated the
effectiveness and superiority of the proposed method. The remainder of this paper can
be organized as follows. Section 2 introduced the related work. Section 3 described the
proposed AAD-CPGE framework. Section 4 presented a series of experimental verifications
and analyses to testify to the superiority. Section 5 gives the conclusion of this paper.
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2. Related Work

Over the past years, UAVs have been regarded as a potential solution to surveil public
spaces to refine public security and save labor costs. This kind of solution can be particularly
effective in a lot of real-world visual applications [20,21], especially for the object Re-ID task.
Meanwhile, a lot of the UAV-based datasets are available to the research community, which
allows further blooming of the popularization and development of object Re-ID in a broader
range of UAV-based applications [22–25]. Most of the existing approaches try to address
the problems of object Re-ID approaches from the perspectives of feature representation
and metric learning problem [26,27]. Before the emergence of deep learning, the Re-ID
approaches mainly resorted to various types of conventional hand-crafted features, such as
color, texture and gradient; however, these low-level feature representations are generally
limited for large-scale searches and lack the ability to capture more semantic information.
With the help of deep learning technologies, the traditional hand-crafted features are
gradually replaced by some more advanced learning-based features, which directly learn
highly discriminative representations from a large number of training data automatically.

Among the exiting deep-learning-based object Re-ID approaches, the unsupervised-
learning-based approach was the mainstream for dealing with the Re-ID problem [28,29].
The main reason is that unsupervised learning methods enable potentially addressing the
issues of Re-ID by drawing efficient deductive cues directly from the unlabeled image data.
For example, Deng et al. [30] proposed an unsupervised learning-based Re-ID framework,
which adopted the self-similarity and domain-dissimilarity measures for exploring the
underlying discriminative information. Wang et al. [31] presented an attribute-identity-
aware unsupervised learning approach, which learned high-level semantic information and
attributed characteristics from the source domain and transferred them to the target domain
for object Re-ID. Yu et al. [32] introduced a deep model into an unsupervised multi-label
learning process, whose execution is realized by a complex negative mining strategy with
the guidance of the soft multi-labeling procedure. Wu et al. [33] adopted a GAN to generate
unlabeled images for the dataset augmentation and utilized a CNN-based semi-supervised
learning strategy for object Re-ID; however, these approaches have achieved promising
results on the recent object Re-ID task. This kind of Re-ID approach can fully utilize the
annotation on color information; on the other hand, this approach requires many object
identities, which are hard to acquire in real-world scenarios.

To overcome the above drawbacks, metric learning-based have been widely explored
and achieved significant success in the Re-ID task. The core of metric learning is to learn
the similarity of input images under two-stream or multi-stream parallel networks, which
ensures that the distance of objects with the same category becomes closer, and the dis-
tance of objects with different categories becomes farther as much as possible [34,35]. For
object Re-ID, the implementation of metric learning aims to make the distance between
two vehicles with the same identity smaller than the distance between the vehicles with
different identities. For this purpose, several metric learning-based have been explored
for improving the object Re-ID performance. For example, Cui et al. [36] employed a
dual-stream multi-DNN fusion Siamese neural network (MFSNN), which integrated with
the color and structure information in the embedded feature space for feature discrimi-
nation. Bai et al. [37] proposed a group-sensitive-triplet embedding (GS-TRE) network,
which embedded the group-sensitive triplets into the feature space for object group-based
similarity discrimination. Zhang et al. [38] studied a triplet-wise-based training strategy
that captures the relative similarity among each triplet unit and also designed an advanced
classification-oriented loss function for improving the object Re-ID performance. Although
these state-of-the-art metric learning approaches have achieved excellent performance for
object Re-ID, there is still plenty of room for further enhancement. In addition, most of
these measured learning-based Re-ID approaches always perform poorly when lacking
training samples or imaging conditions changed drastically, etc.

In recent years, the attention mechanism has received huge concern and also achieved
great successes in the task of object Re-ID [39]. The attention mechanism provides guidance
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information for the network and helps it focus on the discriminative local information. Sev-
eral attention-based approaches for Re-ID generally employ hard attention, soft attention
and some variants from these two basic attention mechanisms to address the misalignment
issue for the task of object Re-ID, which is caused by the variations of object appearance,
location, viewpoints and other imaging conditions. For example, Yao et al. [40] proposed
an attention mask-based network for UAV vehicle Re-ID, which is combined with the prin-
cipal component analysis (PCA) method for obtaining the color annotation-based attention
masks (AMs), and also provided guidance for object Re-ID. Guo et al. [41] proposed a
two-level attention network supervised by a multi-grain ranking loss (TAMR) for object
Re-ID, this method fused hard part-level attention and soft pixel-level attention mechanism
and introduced them into the framework of the backbone for feature discrimination. The
kind of attention-based object Re-ID approach enables automatically learning the feature
representations on high discriminative regions, resulting in the improvement of accuracy
for object Re-ID; however, we find that most of the existing attention-based Re-ID methods
mainly pay attention to the appearance information of image regions and neglect the un-
derlying spatial relations of the set of more discriminative image regions. In this situation,
these attention-based approaches always perform poorly when the datasets are less labeled
and the background is more complex.

More recently, graph convolutional networks (GCNs) [42], as an extension of the
traditional CNN, have been demonstrated efficiently for graph-structured data represen-
tation and intelligent learning areas. The GCNs initially applied for learning features on
non-Euclidean data because it enables the flexibly aggregate of the information that passes
on the graph nodes. The operation of graph convolution is directly executed on the graph
nodes and their spatial neighbors. Recent works also show that the GCNs owns high
potential ability for several visual applications of computer vision, such as multi-label
recognition [43], action recognition [44], object Re-ID [45–48], etc.; however, these existing
GCN-based object Re-ID approaches mainly focus on learning the individual relations
of object categories and ignore the exploration for implicit semantic relations. The main
differences between the methods above of our proposed method can be summarized as the
following points: First, we present a method to construct the part-based hierarchical graph
model, which completely considers the spatial relations across multiple scales feature maps
among different parts of the inter-objects and inter-objects. Second, our method captures
the spatial relations among the part-based hierarchical graph and derives the underlying
topological relationships of the graph nodes in the embedding feature space. Meanwhile,
the similarity between graph node features and that are inferred by topological relations
are complementary and can be fused to derive deeper correlation information for learning
more discriminative features. Third, compared with other fusion or concatenation models,
our proposed method introduced the self-attention mechanism into the spatial and topo-
logical feature fusion process, which can select the important features on the constructed
hierarchical graph and make the context-aware hybrid feature representations more robust
for improving the object Re-ID performance.

3. Proposed Method

Due to the attributes of variable locations, flexible altitude-flights and adjustable
viewpoints in UAVs platforms, the object appearances in aerial imagery naturally exhibit
high ambiguity among different object categories. In this situation, learning discriminative
and robust feature representation is crucial for the UAV-based object Re-ID task, where
intra-object visual variations are always more considerable than inter-object similarities. To
address these drawbacks, we proposed the called AAD-CPGE framework for UAV-based
object Re-ID. The motivation of the proposed method is to derive more discriminative
and compact features from the varying spatial cues of obtained multi-scale feature maps,
which can effectively improve Re-ID performance by exploring the spatial significance
of hierarchical feature maps. As shown in Figure 2, the implementation of our proposed
AAD-CPGE framework includes three stages, which executes the task for UAV-based
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object re-identification (Re-ID). In the first stage, we adopt the pre-training CNN model to
obtain each imagery’s feature map and then extract the series of part-based features. In
the second stage, the cascade topological graphs and node feature graphs are constructed,
respectively, designed to explicitly represent hierarchical spatial relations and topological
structures of node features. Meanwhile, based on the cascade node feature graphs and their
topological graphs, we exploited a dual-stream multiscale graph convolutional operation
on the graph-structured feature space and topological space of two kinds of constructed
graphs to learn spatial topological embedding of the node features. We further utilized
the advantage of the attention mechanism for adaptively fusing the learned node features
and topological structures, which is achieved by automatically learning the importance
weights for the above two embeddings. In the last stage, the fused features with the most
correlations and highly discrimination are fed into the perceptron layer to enhance the
object Re-ID performance.

Figure 2. The whole architecture of our proposed AAD-CPGE framework of object Re-ID.

3.1. Part-Based Feature Extraction Using the Pre-Trained CNN Model

For the given series of object images, I = {I1, I2, . . . , IN}, we first utilized the modified
ResNet50 [49] network pre-trained on ImageNet [50] for extracting the corresponding
feature representation. Following the work in Reference [51], we first disregarded the
global average pooling layer and the fully connected layer, and the stride of conv4_1 is
empirically set to 1. In this way, for the extracted feature map, we adopted the pooling
strategy that carried out spatial down-sampling operations on the uniform feature layers
(partitions) by setting three different down-sampling factors, which were intended to
acquire part-based multi-scale feature representations of each imagery. In here, the union
of feature representations with different parts of the k-th partition of the imagery I can
be denoted as X(k) =

(
xk

1, xk
2, · · · , xk

i , · · · , xk
nk

)
. Then, we leveraged one-layer orthodox

convolutional for dimensionality reduction in the part-based visual feature in each of the
partitions, whose formulation can be defined as:

f k
i = Conv

(
xk

i

)
, i = 1, 2, . . . , nk; (1)

where f k
i ∈ Rd×1 denotes the feature representation of the i-th part of the k-th partition scale.

d is the dimension of each part-based feature vector and nk is the number of parts in the k-th
partition scale. Based the series of part-based feature representations of feature maps with
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the corresponding spatial scale, we denoted the feature collection at each partition scale as
F(k) =

(
f k
1 , f k

2 , · · · , f k
nk

)
∈ Rd×nk . In here, we note that the partition scale (or feature scale)

is empirically set to k = 1, 2, 3 in our following experimental verifications.

3.2. Part-Based Multi-Scale Graph Construction

To explore and utilize the spatial and topological relations among hierarchical part-
based visual feature maps, we adopted an part-based multi-scale graph construction
strategy for hierarchical graph-structured representation, and then applied it for graph em-
bedding in node feature space and the topology space. Let G(V , E) denote the constructed
multi-scale (hierarchical) spatial graphs with three feature channels, where the collection of
node features in all the hierarchical graphs can be described as V = {V(k), k = 1, 2, 3}, V(k)

represented the graph nodes at the k-th channel of the feature map, E = {e(k)ij , k = 1, 2, 3}.

In each hierarchical feature map, v(k)i ∈ V(k) denotes each part-based graph node, which is

assigned with a corresponding feature vector v(k)i , the concatenation of node features in each
channel of feature map can be denoted as X = [X(1)‖X(2)‖X(3)], where X(k) = (xk

1, xk
2 · · · xk

nk
)

is the collection of all the part-based features vectors that extracted from the k-th feature
map. Meanwhile, among the edges collection E, each edge depicted the pairwise rela-
tions between every two patches in the hierarchical graphs. Inspired by [52], the pairwise
relations between every two parts of the feature maps can be formulated as:

e
(
xi, xj

)
= φ(xi)

T ϕ
(
xj
)
; (2)

where φ and ϕ indicated, two symmetrical transformations applied for mapping the original
part-based appearance features into the latent feature spaces. More specifically, the above
two kinds of mapping functions can be defined as φ(x) = wx and φ′(x) = w′x. The
matrices of weight parameters W and W′ owned some dimensions with d× d, which can
be achieved by learning the GCNs via backpropagation. Introducing these transformations
into the procedure for relations modeling allows us to learn the correlations among different
parts of the objects within the same channel of the feature map and derive the relations
of different object parts based across different channels of feature maps. Following this
way, we could acquire the adjacency matrix A ∈ RN×N associated to the hierarchical
graph G, where each entry of Aij indicated the relations of each pair of node vi and vj,
then the adjacency can be regarded as the key component for relations learning through
the GCNs. As we know, the affinity matrix A(i,j) should satisfy two conditions for the
implementation of matrix-based graph convolutional operations: (1) In each row of the
constructed affinity matrix, the sum of all the edge values that indicated the connectivity
of different parts should be 1; (2) each entry of the adjacency should be non-negative, the
weight coefficient should be in the range of (0, 1). For achieving the aforementioned points,
we exploited the normalization operation on each row of the adjacent matrix A by the
following formulations:

A(i,j) =
e2(xi, xj

)
∑N

j=1 e2
(
xi, xj

) ; (3)

To construct the node embedding of hierarchical graph L, spectral filtering on graph is
defined as a signal x filtered by gθ = diag(θ) in the Fourier domain, namely:

gθ ? x = UgθU>x; (4)

where U is the matrix composed of the eigenvectors of the normalized graph Laplacian
matrix L = In − D−1/2AD−1/2 = UΛU>. Λ denotes a diagonal matrix containing
the eigenvalues of L, D is the degree matrix Dii = ∑j Aij and In is the identity matrix
In = diag(1, 1, . . . , 1). In order to reduce the computational consumption of eigenvec-
tor decomposition of Equation (4), Hanmond et al. [53] simplified it as the following
approximation:
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gθ′?x ≈
K

∑
k=0

θ′kTk(L̃)x; (5)

where Tk(x) = 2xTk−1(x)− Tk−2(x) denotes the Chebyshev polynomials with T0(x) = 1
and T1(x) = x, L̃ = 2/(rmax)L − In is the scaled Laplacian matrix, rmax is the largest
eigenvalue of L; therefore, the above equation can be verified by using the formulation(
UΛU>

)k
= UΛkU>. As can be seen, this expression is a kth-order polynomial regarding

the Laplacian. In this paper, we only considered the first-order neighborhood, i.e., k = 1,
and thus, Equation (5) can be defined as a linear function on the graph Laplacian spectrum.
Then, inspired by the work in reference [54], Equation (5) can be further simplified to the
following definition:

gθ′ ? x ≈ θ′0x + θ′1(L− I)x = θ′0x− θ′1D−
1
2 AD−

1
2 x; (6)

where θ′0 and θ′1 denotes two free parameters. For reducing the number of parameters to
address overfitting, the above equation can be converted to:

gθ ? x ≈ θ
(

I + D−
1
2 AD−

1
2

)
x; (7)

In here, let θ = θ′0 = −θ′1. To improve the robustness of the graph learning, we
adopted a re-normalization trick to approximate the graph-Laplacian as follows:

Â = D̃−
1
2 ÃD̃−

1
2 ; (8)

where Ã = A + In indicated the self-loop adjacency matrix, In ∈ RN×N is the identity
matrix and In = diag(1, 1, . . . , 1), D̃(i,i) = ∑j Ã(i,j) is the diagonal degree matrix of the
adjacency. Then, we can acquire the whole adjacent matrix Â f of the node features in the
above hierarchical graph G(A, X). Since in the topology space, the input for construct-
ing hierarchical topological graphs is similar to the node feature graphs, that is, let the
topological graph be Gt = (At, Xt), which satisfies the conditions At = A and Xt = X.
Following this perspective, the strategy for graph embedding on the topological graph
can be implemented in the same way as the node feature space; therefore, the part-based
specific information encoded in topology space can be obtained. After that, we can further
explore the company relation’s learning and the most optimal integration between node
features and topological structures of the part-based hierarchical graphs in the embedded
feature space and the topology space.

4. Graph Embedding on Features and Topology Spaces of Hierarchical Graphs

The primary purpose of our proposed AAD-CPGE framework is to learn a contextual
and compact representation for each object by exploring different parts-based hierarchical
spatial and topological graphs. It can result in more discriminative feature representations,
which own the most correlated information from both node features and topological
structures, thus improving the performance of object Re-ID; therefore, we designed the
node feature hierarchical graph-based GCNs module and hierarchical topological graph
GCN module to capture the compact relationships between parts in the feature space and
topology space.

4.1. Graph Embedding in Feature and Topology Spaces

For the given hierarchical feature graph G = (A, X), we executed the graph convolu-
tional operation to mine the relations of the parts among all the feature maps. Concretely,
the implementation of the graph convolutional operations were carried out on L-layers
GCNs, and the graph operations of the whole GCNs can be defined as:

Zl
f = LeakyReLU(ÂZl−1

f Wl
f ); (9)
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where Z(l)
f ∈ RN×dl denotes the set of hidden features for all the parts at l-th layer where

(1 ≤ l ≤ L), and dl indicates the dimension of node features, Z0
f ∈ RN×d represents the

initial parts-based features that are extracted by the pre-trained CNN model. W(l)
f ∈ Rdl×dl

denotes the parameter matrix to be learned in each graph convolution layer. In here, we
utilized LeakyReLU as the activation function whose formulation can be defined as:

LeakyReLU(Z f ) =

{
αZ f if Z f < 0
Z f otherwise

; (10)

where the slope parameter was empirically set to α = 0.1, the LeakyReLU function is
adopted for non-linear transformation on the feature maps of GCNs. We note that the
following types of GCNs are all set to the same α values for the non-linear transformations.
After the graph convolutional operations in every layer of GCNs, a normalization layer and
the LeakyReLU activation function are connected following the final output layer of GCNs.
Motivated by the works in Reference [49], we exploited shortcut connection to ensure the
effectiveness and robustness of the whole operation in GCNs as:

Zl
f := Zl

f + Zl−1
f , 2 ≤ l ≤ L; (11)

Afterward, we can achieve the final layer output embedding of hierarchical features
as Z f .

In addition, given the above operations, we obtain the topology embedding output Zt
by changing the input of the GCNs as follows:

Zl
t = LeakyReLU(ÂtZl−1

t Wl
t); (12)

Zl
t := Zl

t + Zl−1
t , 2 ≤ l ≤ L; (13)

In this way, we can also learn the topology embedding that captured the topological
relations Zt of the hierarchical part-based graphs in the topology space, Wl

t denotes the l-th
layer weight matrix.

It is widely recognized that the spaces of the structured-graph node features and their
topology spaces are not completely irrelevant. Recent studies [55,56] on GCNs have shown
that the correlation between graph node features and their topological features is a critical
factor that affects the ability of GCN-based embedded feature learning. From this point,
we believe that the similarity between hierarchical graph node features and that derived
from their topological structure are complementary to each other, and the optimal fusion
among the node features, topological structures and their combinations are also significant
for improving the object Re-ID performance; therefore, we exploited a Siamese architecture-
based common-GCN module [57] on our constructed hierarchical graphs, which aimed to
extract the most correlated information between graph node features and their topological
features. The implementation of the common-GCN module made use of a parameter
sharing strategy to achieve the embedding shared in the above two spaces. Specifically, we
first acquired the node embedding Zl

t from the hierarchical topology graph G = (At, X)
by utilizing Equation (7), and the l-th layer weight matrix Wl

t was also obtained. For ease
of the common-GCN embedding description, we replaced the common node topology
embedding Zl

t and the corresponding weight matrix Wl
t by Zl

St and Wl
St, respectively. Then,

to obtain the shared information between the topology and feature spaces, we introduced
the common weight matrix Wl

S into the node embedding procedure of the common module
from the hierarchical node feature graph whose implementation can be formulated as:

Zl
S f = LeakyReLU(ÂStZl−1

S f Wl
S); (14)

Zl
S f := Zl

S f + Zl−1
S f ; (15)
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where Zl
S f indicates the l-th layer output embedding and Z(0)

S f = X. Following this, the
shared weight matrix can efficiently filter out the shared characteristics from the feature
and topology spaces. By changing different hierarchical graphs to apply the above weight
parameter sharing strategy, we can acquire the node feature embedding Zl

S f , topology

embedding Zl
St. Then, their common embedding Zl

S can also be obtained as follows:

ZS =
(

ZS f + ZSt

)
/2; (16)

4.2. Attention-Driven Embedded Features Fusion in the Uniform Latent Spaces

Based on the aforementioned three categories of embedding, we take advantage of the
self-attention mechanism to adaptively learn the importance of their weights for assigning
the corresponding optimal combination weights for feature fusion. The mechanism of our
adopted attention module is shown in Figure 3.

Figure 3. The diagram of the attention module.

The conventional way to implement feature fusion is regarding every relation graph
embedding equally by conducting the element-wise, mean operation or concatenating
them using a linear transformation. Nevertheless, every category of graph embedding that
contains their specific underlying meaning should not be dealt with identically; therefore,
we explored strategies to adaptively learn an important weight for every graph embedding
and exploited the attention mechanism for implementation. Concretely, for each category
of graph embedding, we performed a three-step process to learn their corresponding im-
portance: (1) we first retrieved their corresponding embedding of all related graph nodes
and transformed them by a non-linear transformation; (2) then, we aggregated the con-
catenations of their embeddings by utilizing the averaging function for their transformed
embeddings; (3) finally, we computed their corresponding attention coefficients by measur-
ing the similarity between their aggregated embedding with their attention vectors. This
whole learning process can be formulated as:

ul
S f =

[
Ql

S f

]>
· 1∣∣∣VS f

∣∣∣ ∑
v′∈Vl

S f

[
tanh

(
Wl

S f · h
l
v′ ,S f + b

)]
; (17)

where ul
S f denotes the attention coefficients, VS f represents the series of graph nodes

connected by the relation S f , b ∈ Rd is the bias vector, Wl
S f ∈ Rd×d and Ql

S f ∈ Rd are the
corresponding trainable transformation matrix and attention vector, respectively. Using
the same approach, we can achieve the attention coefficients ul

St and ul
S in the embedding

adjacency matrices Zl
St and Zl

S, respectively. Then, the normalized importance of node
feature embedding S f with regard to v can be obtained by:

ηS f = softmax
(

ul
S f

)
=

exp
(

ul
s f

)
exp

(
ul

S f

)
+ exp

(
ul

St
)
+ exp

(
ul

S
) ; (18)
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Similarly, we can achieve the normalized attention weights ηSt = softmax(ul
St) and

ηS = softmax(ul
S). Then, we incorporated the above three embeddings to obtain the final

embedding ZE as follows:

ZE = ηS f · ZS f + ηSt · ZSt + ηS · ZS; (19)

Then, for the concatenation of the above three types of hierarchical part-based graph
embedding features, we utilized it to optimize our proposed AAD-CPGE framework and
predicted the identity label of the corresponding object for the task of Re-ID.

4.3. Objective Functions

As depicted in Figure 2, the entire architecture of our proposed AAD-CPGE model
consisted of three branches: the graph node feature embedding branch, a graph topology
embedding branch and a branch of their combination that was designed to learn the
most correlation information between the former two branches. Specifically, the graph
feature embedding branch was designed for modeling the hierarchical spatial relations of
parts among different scales of feature maps, which can effectively capture the global and
local information among hierarchical part-based graphs. Then, the topology embedding
branch is proposed for extracting the underlying complete structural information. Since the
similarity between hierarchical graph node feature and their derived topological structures
are complementary to each other, then we employed the combination of these two types
of embeddings for adaptively deriving more deeper correlation information for the task
of object Re-ID. Following this way, we utilized the softmax cross-entropy loss function
and the batch hard triplet loss function to train the proposed AAD-CPGE network. For the
definition of softmax cross-entropy loss, we first denoted the object label predictions for n
hierarchical graph nodes as Ŷ = [ŷvim ] ∈ Rn×C, where ŷvim indicates the probability of the
i-th graph node vi belonging to the object class m. Then, the predictions for each class of
graph node Ŷm can be calculated as:

Ŷm = softmax(Wm · ZE + bm); (20)

where softmax(x) = exp(x)
∑M

m=1 exp(xm)
denotes a normalizer across all the object identity classes;

therefore, for the given selected training set C, where each c ∈ C, the real object label class
is Yc and the predicted object label class is ŶC. By this way, the cross-entropy loss for
hierarchical graph node class prediction over all the series of training nodes is defined as
Lp, which can be formulated as:

Lp = − ∑
c∈C

M

∑
m=1

YC ln ŶC; (21)

In addition, for the definition of the triplet loss function, we defined the triplet loss for
three types of embedding features and the whole triplet loss can be represented as the sum
of them. The uniform form of soft hard triplet loss can be defined as:

Ltriplet(x) =
P

∑
i=1

K

∑
a=1

ln(1 + exp(

hardest positive︷ ︸︸ ︷
max

p=1,··· ,K
D(xi,a, xi,p))

− min
n=1,...,K
j=1,...,P

j 6=i

D(xi,a, xj,n)))

︸ ︷︷ ︸
hardest negative

(22)

where P and K denote the number of identity labels and sampled imagery of every object
identity label. Supposed that there are P · K images in a mini-batch, xi,a, xi,p and xj,n
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indicate the features that obtained from anchor, positive and negative samples, respectively,
D(·) represents the L2-norm distance between two feature vectors. By adjusting different
inputs of the above uniform soft triplet loss function, we can achieve three types of triplet
loss function, including graph node feature embedding loss LS f

triplet , topological structures

embedding loss LSt
triplet and their combination embedding LE

triplet . Then, the final triplet
loss can be formulated as:

LS
triplet = LE

triplet + LS f
triplet + LSt

triplet ; (23)

Thus, the total loss function Ltotal can be defined as the combination of the above loss
functions as:

Ltotal = Lp + λLS
triplet ; (24)

where λ is a balancing hyper parameter. After that, with the guidance of the set of labeled
object samples, we were able to train the whole AAD-CPGE framework and optimize its
model via the back-propagation algorithm, as well as learning all types of embeddings
based on our constructed hierarchical part-based graphs for the task of object Re-ID.

5. Experiments and Results

In this section, we present comprehensive experimental validation and analysis, con-
sisting of the datasets description, evaluation measure and the implementation details,
which are first introduced in detail. After that, a series of ablation experiments were
performed by adjusting different combinations of sub-networks, whose implementations
aimed to demonstrate the contributions of each component of the whole architecture of
our proposed Re-ID framework. We also carried out quantitative comparisons with several
state-of-the-art object Re-ID approaches and showed their corresponding qualitative results.

5.1. Datasets and Evaluation Metrics

(1) Dataset: The experimental verifications of our proposed object Re-ID were mainly
conducted on two publicly available datasets collected on the UAV platform, including the
benchmark on unmanned aerial vehicle re-identification in video imagery (UAV-VeID) [8]
and person Re-ID in aerial imagery (PRAI-1581) [17]. In addition, we also implemented a
group of experiments on the traditional dataset VeRi-776 [58] for testifying the robustness
of our proposed method. In the following, we first review the necessary information about
the above two datasets that were adopted in our verified experiments in this paper.

The UAV-VeID [8] dataset consists of 41,917 images of 4601 vehicles, which are split
into three subsets, the training set, testing set and validation set. The numbers of the images
in the training set, testing set and validation set are 5862, 11,738, and 5683, respectively.
The images of UAV-VeID are collected from video sequences that are acquired on the UAV
platform, and these images are captured by UAV-mounted cameras from different locations
with various backgrounds and lighting conditions, e.g., including the crossroads in urban
areas, the highway intersections, parking lots and so on. The flying altitude of the UAV
platform ranges from 15 to 60 m, and the vertical angle of the UAV camera is set in the
range from 40 to 80◦, which results in multi-scale objects, and also various viewpoints of
the vehicle objects in the images.

PRAI-1581 [17] collects images by using two UAVs whose flight altitudes range from
20 to 60 m above the ground; these two UAV-based platforms are controlled by two different
pilots to allow effectively monitoring different non-overlapping areas and covering most of
the complex surveillance scenes. To capture enough videos in complete imaging conditions,
such as more diverse viewpoints and backgrounds, the imagery collection process of
PRAI-158 is adopted as the hovering, curing and rotating sports models to control the
two UAVs. In this way, the PRAI-158 dataset contains a total number of 39,461 images
for 1581 individual identities. During the process of our experimental verifications, we
randomly divided the dataset into the training set and testing set. For a fair comparison,
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the ratio of image numbers between the training set and testing set is set to 1:1. Concretely,
the training set contains 19,523 images of 782 identities, the remaining images of the dataset
are regarded as the testing set with 19,938 images of 799 identities.

VeRi-776 [59,60] is constructed from unconstrained traffic scenarios where the object
images are captured by 20 cameras. Similar to the former dataset, VeRi-776 has also
been divided into a training set and a testing set. Specifically, the training set consists
of 37,746 images of 576 objects, the testing set contains a query subset with 1678 images
of 200 objects and a gallery subset with 11,579 images with the same 200 objects. It
is worth recognizing that each object imagery in the VeRi-776 has been equipped with
color annotation. During the testing process, we adopted the default data split ratio for
experimental validation and analysis.

During the process of experimental verifications, we have given the specific acquired
conditions for each experimental dataset and detailed information about the imagery
information of the aforementioned dataset as listed in Table 1.

Table 1. Detailed setting comparisons between different experimental datasets.

Dataset Cameras Viewpoint Total
Image Number

Object
Identities

Training
Images

Testing
Image

UAV-VeID
(Experiment.1) Mobile UAV Flexible 41,917 4061 18,709 3742
PRAI-1581
(Experiment.2) Mobile UAV Flexible 39,461 1581 19,523 19,938
VeRi-776
(Experiment.3) Fixed 3 51,035 776 37,746 11,579

(2) Evaluation Metric: To validate the superiority of our proposed method, we
adopted the mean average precision (mAP) and the cumulative matching precision (CMC)
for quantitative comparison. During the process of our experimental verification, each ob-
ject imagery in the query sequence aimed to retrieve the same object in the gallery sequence
in terms of the Euclidean distance, which is computed among the embedding features of
queries and galleries. Note that there is only one ground truth that matches for an arbitrary
input query in the testing set of UAV-VeID, we employed the CMC-k to estimate the Re-ID
performance of the series of compared approaches, and indicate the probability of correct
matching in the top-k ranked retrieved results. For the PRAI-158 and VeRi-776 datasets,
the CMC-k and mAP are utilized as the evaluating metric for object Re-ID.

5.2. Implementation Details

We first utilized ResNet as our backbone network that was pre-trained on the ImageNet
to acquire a convolutional feature map for two-stream networks. Afterward, we adopted the
one-layer orthodox convolutional operation and multi-layer graph convolutional operations
for dealing with the hierarchical learned part-based features. During the training process,
we resized all the input samples into the size of 256× 256 with random horizontal flips
for data augmentation, the total number of epochs is set to 800 and the batch size is set
as 80 in general for all the datasets, and then to initialize the leaning rate of the backbone
network, we set it to 0.01. Meanwhile, the initial learning rate of the GCNs is set to 0.0003,
which then decayed by 10 for every 200 epochs; the Adam is selected for optimizing our
proposed network. For the parameters of our proposed GCNs-based modules, the number
of GCN layers is set to 3. In the training stage of our proposed model, we concatenated all
types of the hierarchical part-based graph features for each query imagery to generate its
corresponding final feature descriptions. All the experimental verifications were employed
with two NVIDIA Titan X GPUs on the same machine for a fair comparison. In order to
completely compare and verify the effectiveness of our proposed method, we compare
the proposed AAD-CPGE framework with several state-of-the-art Re-ID approaches on
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different datasets, the whole diagram of the set of experimental verifications is depicted
in Figure 4:

Figure 4. The whole diagram of experimental verification on different datasets.

5.3. Comparisons with State-of-the-Art Re-ID Approaches on Different Datasets

To testify the effectiveness and the robustness of our proposed AAD-CPGE framework
for object Re-ID, we compared our AAD-CPGE with several state-of-the-art object Re-ID
approaches on the datasets of UAV-ReID, VeRi-776 and PRAI-1581, respectively. Specifi-
cally, we made comprehensive experimental comparisons with seven state-of-the-art Re-ID
approaches, including the Bayes merging of multiple vocabularies (BoW-Shift) [61], the
bag-of-words model with color names descriptors (Bow-CN) [62], part regularized model
(PRM) [63], adaptive attention vehicle re-identification (AAVER) [14], self-supervised atten-
tion for vehicle re-identification (SAVER) [64], vehicle re-identification based on vehicle-
orientation-camera (VOC-ReID) [65], parsing-based view-aware embedding network for
vehicle re-identification (PVEN) [66], spatial–temporal graph convolutional networks (ST-
GCN) [46], similarity-guided graph neural network (SG-GCN) [48] and hybrid pyramidal
graph network (HPGN) [67].

5.3.1. Comparisons on the UAV-ReID Dataset

The comparisons of the object UAV-based Re-ID of different kinds of approaches on
the UAV-ReID dataset are summarized in Table 2. As the set of quantitatively compared
results in Table 2, we can find that our proposed AAD-CPGE framework using the hierar-
chical spatial and topological information generally achieves better performance than the
traditional Re-ID methods with handcrafted features, and surpassed some of the recent
unsupervised learning-based approaches and GCN-based Re-ID approaches.

Specifically, compared with the traditional hand-crafted features methods BoW-Shift
and Bow-CN, the proposed AAD-CPGE, respectively, improved the CMC-1 matching
accuracy and mAP by (56.90%, 66.59%), (54.25%, 61.51%). Similarly, compared with the
baseline CNN-based methods (the PRM and VOC-ReID) by using mAP and CMC-1, the
proposed method also performed obvious advantages for object Re-ID, which brought
about an improvement of (32.1%, 53.52%) and (30.35%, 50.37%), respectively. Meanwhile,
the AAD-CPGE also obtained notable improvement compared with the recent attention
mechanism-based Re-ID methods including SAVER, PVEN and AAVER. We can see that in
the comparisons in terms of mAP, our method achieved an improvement of 17.64%, 17.16%
and 14.14% respectively. This indicated the effectiveness of our AAD-CPGE by exploiting
the spatial and topological information via GCNs learning for the task of object Re-ID. In
addition, compared to the kind of graph-based approaches, the proposed method achieved
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further improvement. The proposed AAD-CPGE outperformed SG-GCN by +12.14% in
mAP and +27.01% in CMC-1, ST-GCN by +5.62% in mAP and +16.96% in CMC-1, and
HPGN by +53.46% in mAP and +1.47% in CMC-1, respectively.

Table 2. Comparisons results(%) of object Re-ID on UAV-ReID dataset by using the metrics of mAP,
CMC-1, CMC-5, CMC-10 and CMC-20, respectively.

Methods mAP CMC-1 CMC-5 CMC-10 CMC-20

BoW-Shift 27.69 30.56 36.87 40.12 50.14
BoW-CN 30.34 35.64 39.75 46.68 56.32
PRM 52.49 43.63 56.72 67.65 73.93
VOC-ReID 54.24 46.78 59.89 68.94 75.03
SAVER 66.95 62.37 69.85 71.74 77.86
PVEN 67.43 68.35 70.64 75.34 78.19
AAVER 70.45 71.21 74.16 78.95 84.57
SG-GCN 72.45 70.14 85.24 87.56 94.32
ST-GCN 78.97 80.19 84.67 88.46 96.34
HPGN 81.13 95.68 96.12 97.87 98.04
Ours 84.59 97.15 97.46 98.57 98.89

Although SG-GCN employed the spatial relation inferring between the set of gallery
images for improving the feature discriminative ability, it only focused on modeling the
inter-gallery-image relations and lacked considering the intra-object relations between
each pair of gallery images. In contrast, the proposed framework jointly optimizes the
correspondence learning among the series of intra-objects and inter-objects of gallery
images, thus yielding better Re-ID performance. In addition, compared with the ST-GCN
and HPGN, our proposed AAD-CPGE also jointly takes into account the node features and
topological features in two embedding spaces, and also employs the attention mechanism
for adaptively fusing the important features for improving the compact and completely
discrimination for further enhancing the Re-ID performance. As a result, the proposed
AAD-CPGE framework is capable of resulting in the best Re-ID performance compared
with a lot of recent Re-ID approaches. In addition, several mAP curves and CMC curves
comparisons that indicated the effectiveness of our proposed method are shown in Figure 5.
These quantitative and qualitative compared results with some state-of-the-art Re-ID
approaches demonstrated the effectiveness of the proposed AAD-CPGE framework by
further exploiting the intrinsic spatial and structure information of object parts via an
attention-driven embedding graph learning model. In addition, the AAD-CPEG performed
better than some recent and traditional approaches, which demonstrates the superiority of
our method for the object Re-ID task.

Figure 5. The mAP and CMC curve comparison of our method and several state-of-the-art approaches
on UAV-ReID dataset. (a) mAP curve comparison on the UAV-ReID; (b) CMC curve comparison on
the UAV-ReID.
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5.3.2. Comparisons on the VeRi-776 Dataset

To demonstrate the effectiveness and robustness of our proposed AAD-CPGE frame-
work for the task of object Re-ID, we also conducted another group of comparative experi-
ments on the VeRi-776 dataset. Table 3 shows the quantitative results in terms of mAP and
the CMC-k (k = 1, 5, 10, 20) values, which were aimed to evaluate the Re-ID performance of
the approaches.

Table 3. Comparisons results(%) of object Re-ID on VeRi-776 dataset by using the metrics of mAP,
CMC-1, CMC-5, CMC-10 and CMC-20, respectively.

Methods mAP CMC-1 CMC-5 CMC-10 CMC-20

BoW-Shift 31.37 37.09 44.91 48.57 60.86
BoW-CN 32.29 43.98 46.52 50.68 62.15
PRM 54.84 44.28 57.18 69.36 75.83
VOC-ReID 59.98 46.97 60.12 70.37 76.18
PVEN 68.79 52.65 62.83 75.47 80.56
AAVER 71.39 63.27 71.34 79.56 85.12
SAVER 75.96 73.57 86.79 88.24 95.43
SG-GCN 79.48 89.08 82.19 89.37 97.21
ST-GCN 79.60 92.43 97.08 97.35 98.01
HPGN 80.18 96.72 97.64 97.87 98.19
Ours 83.78 97.13 97.59 98.29 98.71

As can be seen in Table 3, the proposed AAD-CPGE can achieve 83.78% mAP and
93.13% on CMC-1 when jointly learning the embedded node features space and topology
space derived from the hierarchical part-based graph, which performed a higher accuracy
than the GCNs-based Re-ID approaches only exploring spatial relations in the feature
space of graph nodes. It is obvious that our proposed AAD-CPGE brought about an
improvement of 4.3%, 4.18% and 3.6% with SG-GCN, ST-GCN and HPGN, respectively,
which were evaluated by the metric of mAP. Meanwhile, the AAD-CPGE also obtained
slightly high CMC-1 matching accuracy against SG-GCN (97.13% vs. 89.08%), ST-GCN
(97.13% vs. 92.43%) and HPGN (97.13% vs. 96.72%), respectively. Actually, the results
are not difficult to understand, the main reason is that the AAD-CPEG introducing the
attention module into the fusing the hierarchical graph nodes-based spatial and topological
features, which was not only capturing the underlying spatial relations among different
kinds intra-objects and inter-objects, but also provided incremental learning in the topology
embedding spaces for further distinguish the ambiguity of objects with high correlations,
and thus improving the performance for object Re-ID. Moreover, compared the traditional
hand-crafted features-based approaches and the CNN baseline-based approaches for the
task of Re-ID on the VeRi-776, our AAD-CPGE also superior to a large margin. Specifically,
in terms of mAP, the proposed framework improved Re-ID performance by 52.1%, 51.49%,
28.94% and 23.8%, which were compared with BoW-Shift, BoW-CN, PRM and VOC-Re-
ID, respectively. Similarly, based on the CMC-1 values, we also compared the Re-ID
performances by using our proposed AAD-CPGE with the above hand-craft features-based
methods and CNN-based methods, including BoW-Shift, BoW-CN, PRM and VOC-Re-ID,
respectively. Concretely, collaborating with the BoW-Shift and BoW-CN, our AAD-CPGE
brought about an improvement of 60.04% (97.13% vs. 37.09%) and 53.15% (97.13% vs.
43.98%), respectively. Comparing with the PRM and VOC-Re-ID, our proposed AAD-CPGE
obtained an improvement of 52.85% (97.13% vs. 44.28%) and 50.16% (97.13% vs. 46.97%),
respectively. These comparative results demonstrated the effectiveness of our method for
the task of object Re-ID. After that, compared with the recent attention mechanism-based
methods such as PVEN, AAVER and SAVER, our proposed AAD-CPGE framework also
significantly outperformed them by 15.09%, 12.39% and 7.82% in terms mAP, as well as
achieved an improvement of 44.48%, 33.86% and 23.56% in terms of CMC-1 matching
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accuracy, respectively. These comparison results reported in the above table demonstrated
that our proposed AAD-CPGE Re-ID framework is superior to several state-of-the-art
object Re-ID approaches. Moreover, the mAP curve and CMC curve as shown in Figure 6
also indicated the superiority of the proposed AAD-CPGE framework for the task of
object Re-ID.

Figure 6. The mAP and CMC curve comparison of our method and several state-of-the-art approaches
on VeRi-776 dataset. (a) mAP curve comparison on the VeRi-776; (b) CMC curve comparison on
the VeRi-776.

5.3.3. Comparisons on the PRAI-1581 Dataset

To further testify the generality and the robustness of the proposed AAD-CPGE
framework, we also provided quantitative comparisons in terms of mAP and CMC-k (k = 1,
5, 10, 20) values, which aimed at indicating the superiority of the proposed method on the
larger and more challenging PRAI-1581 dataset UAV-based platform, where the images
of object categories have ambiguous appearances, and also more variations of imaging
conditions, such as the illumination, occlusion, background, viewpoint and so on. With
the proposed method and also the compared object Re-ID approaches, we further carried
out object Re-ID experiments on the PRAI-1581 dataset and demonstrated the quantitative
comparisons with the existing state-of-the-art Re-ID approaches in Table 4.

Table 4. Comparisons results(%) of object Re-ID on PRAI-1581 dataset by using the metrics of mAP,
CMC-1, CMC-5, CMC-10 and CMC-20, respectively.

Methods mAP CMC-1 CMC-5 CMC-10 CMC-20

BoW-Shift 52.34 44.64 57.75 68.86 71.23
BoW-CN 54.94 48.98 56.65 70.32 74.15

PRM 55.84 50.98 62.43 70.46 75.94
VOC-ReID 62.98 52.97 63.42 74.56 77.16

PVEN 69.78 64.65 73.76 76.91 83.18
AAVER 78.45 64.76 78.39 84.36 86.19
SAVER 80.76 84.76 92.12 92.56 94.01

SG-GCN 83.70 89.95 96.41 97.06 97.48
ST-GCN 84.64 90.23 96.78 97.54 97.96
HPGN 85.12 92.45 97.32 97.65 98.21
Ours 90.34 95.23 97.68 98.53 98.89

As indicated in Table 4, among all kinds of the comparative Re-ID approaches, the
proposed AAD-CPGE consistently boosted the state-of-the-art methods on average with
90.34% mAP and 95.23% CMC-1 values. Compared with the traditional methods that
consist of the hand-crafted feature-based BoW-Shift, BoW-CN, the CNN-baseline PRM and
VOC-ReID, the proposed AAD-CDGE, respectively, surpassed them in terms of mAP by
38.00% (90.34% vs. 52.34%), 35.40% (90.34% vs. 54.94%), 34.50% (90.34% vs. 55.84%) and
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27.36% (90.34% vs. 62.98%), respectively. Meanwhile, the proposed method also brought
about improvements of 50.59% (95.23% vs. 44.64%), 46.25% (95.23% vs. 48.98%), 44.25%
(95.23% vs. 50.98%) and 42.26% (95.23% vs. 52.97%), which were notable margins based
on the CMC-1 matching accuracy. The large improvements are because the proposed
AAD-CPGE can effectively address the problems of the potential ambiguous appearance
of part-based objects by exploring the spatial relations from the graph node feature space
and their topology spaces. Meanwhile, compared with the recent attention model-based
approaches, such as PVEN, AAVER and SAVER, our method also obtained large mAP and
CMC gains, and the performance for both mAP and CMC-1 were significantly improved
from 69.78% (PVEN) to 90.34% (AAD-CDGE) and 64.65% (PVEN) to 95.23% (AAD-CDGE).

Moreover, although some recent work utilized GCNs and attention models for training
their network, our method still outperformed several GCNs-based approaches, including
the SG-GCN, ST-GCN and HPGN. Specifically, the AAD-CDGE brought about an improve-
ment of 6.64%, 5.7% and 5.22%, which were evaluated by the mAP, as well as achieving
the set of gains of 5.28%, 5.00% and 2.78%, respectively. Meanwhile, the superiority of our
proposed AAD-CPGE framework can be seen from the mAP curves and CMC curves as
shown in Figure 7 , showing that the proposed approach can achieve better performance
than several comparative state-of-the-art Re-ID methods. The aforementioned experimental
comparisons provide strong evidence of the effectiveness and superiority of our proposed
AAD-CDGE framework for the UAV-based object Re-ID. The significant improvements
achieved by our AAD-CDGE can be attributed to the following two reasons: On the one
hand, the AAD-CDGE can effectively learn the completely intrinsic spatial and topological
relationships from the multi-scale feature maps of the constructed graphs. On the other
hand, introducing an attention mechanism can highlight the more useful spatial and topo-
logical information for feature fusion, which also resulted in more powerful hybrid feature
representations for effectively distinguishing the appearance ambiguities among different
kinds of objects as enhance the performance for Re-ID task.

Figure 7. The mAP and CMC curve comparison of our method and several state-of-the-art approaches
on PRAI-1581 dataset. (a) mAP curve comparison on the PRAI-1581; (b) CMC curve comparison on
the PRAI-1581.

5.4. Object Re-ID Comparisons under Different Configurations of AAD-CPGE

To explicitly understand the contributions of different embedding modules designed
for Re-ID under our proposed AAD-CPGE framework, we first demonstrated their Re-ID
performances using different embedded learning network configurations. For the sake of
completely assessing each contribution of the AAD-CPGE for object Re-ID, we adjusted
the configurations of our method to verify their performance on the UAV-ReID, VeRi-776
and PARI-1581 datasets, respectively. Meanwhile, the mAP, CMC-1 and CMC-5 were
adopted to evaluate their Re-ID performances. Concretely, during the implementation of
the embedded learning of the AAD-CPGE framework, we employed its configurations by
utilizing GCNs-based spatial embedding module (Baseline), hierarchical part-based graph
spatial embedding module (HP-SE), attention-based driven hierarchical graph spatial em-
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bedding module (HP-SE-Attn), hierarchical part-based spatial and topological embedding
module (HD-SET) and hierarchical part-based graph spatial and topological embedding
driven by attention module (HP-SET-Attn). The quantitative comparisons under the above
configurations on the three datasets are summarized in Table 5.

Table 5. Comparisons results(%) of object Re-ID on UAV-ReID, ReVi-776 and PRAI-1581 dataset by
using the metrics of mAP, CMC-1 and CMC-5, respectively.

AAD

-CPGE

Configuration UAV-ReID ReVi-776 PARI-1581

Baseline HP-SE HP-SET Atten MAP CMC-1 CMC-5 MAP CMC-1 CMC-5 MAP CMC-1 CMC-5

X - - - 80.57 85.92 89.36 80.16 87.95 90.45 82.64 86.39 91.45

X X - - 82.76 89.43 92.19 81.54 90.39 92.77 83.35 90.41 93.26

X X - X 83.45 92.13 94.42 82.12 92.94 94.18 85.17 91.52 93.89

X X X - 83.81 94.24 96.38 82.76 94.59 96.09 86.74 92.34 94.75

X X X X 84.59 97.15 97.46 83.78 97.13 97.59 90.34 95.23 97.68

5.4.1. Re-ID Performance Using Different Configurations on the UAV-ReID

We first constructed a group of experimental verifications using different configu-
rations of the AAD-CPGE on the UAV-ReID. As per the quantitative results in Table 5,
compared with the baseline module that obtained 80.57% mAP, 85.92% CMC-1 and 89.36%
CMC-5, respectively, adapting the HP-SE module yielded 82.76% mAP, 89.43% CMC-1 and
92.19%, which brought about improvements of 2.19%, 3.51% and 2.83%, respectively.

Then, by adding the attention module in the HP-SE module, the HP-SE-Attn can
precede the HP-SE by 0.69%, 2.7% and 2.23%, which were based on the mAP and CMC-K
(k = 1, 5) values. These indicated that the hierarchical graph constructed strategy and the
attention could effectively help the AAD-CPGE framework improve the Re-ID performance.
After that, we introduced the topology embedding module into implementing the proposed
method and achieved slight gains for the above three configurations for object Re-ID, which
also demonstrated the advantage of exploring topological information for improving the
Re-ID performance. In the final, we extracted the specific and joint embeddings from
hierarchical part-based graph node features, topological features and their combinations
attention-based simultaneously using the HP-SET-Attn module and made use of the fused
features for the task of object Re-ID. As can be seen in Table 4, the HP-SET-Attn achieved
the best mAP and CMC-k (k = 1, 5) values by 84.59%, 97.15% and 97.46%, respectively. By
observing these results, we can find that the configuration of HP-SET-Attn achieved the
best performance for object Re-ID, compared with other configurations in our proposed
AAD-CPGE. Moreover, as shown in Figure 8, we have shown part of the visualization Re-ID
results achieved by the baseline and the HP-SET-Attn configuration of the proposed AAD-
CPGE framework, we can see that the HP-SET-Attn had the best capability to distinguish
the match results from similar false-positive images in gallery set compared with the
baseline model.

5.4.2. Re-ID Performance Using Different Configurations on the VeRi-776

To further indicate the effectiveness of each module of the AAD-CPGE framework for
object Re-ID, we also explored another group of comparisons using different configurations
of the VeRi-776. As can be observed in Table 5, compared with the baseline module
that obtained 80.16% mAP, 87.95% CMC-1 and 90.46% CMC-5, respectively, employing
the HP-SE module yielded 81.54% mAP, 90.39% CMC-1 and 92.77%, which achieved an
improvement of 1.38%, 2.44% and 2.31%, respectively. The set of visual results of object
VeRi-776 shown in Figure 9.
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Figure 8. Parts of visual object Re-ID results on the UAV Re-ID using the baseline module and the
HP-SET-Attn configuration of the proposed AAD-CPGE framework.

Figure 9. Parts of visual object Re-ID results on the VeRi-776 using the baseline module and the
HP-SET-Attn configuration of the proposed AAD-CPGE framework.



Remote Sens. 2022, 14, 1436 21 of 25

5.4.3. Re-ID Performance Using Different Configurations on the PRAI-1581

At last, we carried out the last group of comparisons using different configurations
of the PRAI-1581. As can be observed in Table 5, compared with the baseline module
that obtained 82.64% mAP, 86.39% CMC-1 and 91.45% CMC-5, respectively, employing
the HP-SE module yielded 83.35% mAP, 90.41% CMC-1 and 93.26%, which achieved an
improvement of 0.71%, 4.02% and 1.81%, respectively.

Then, by adding the attention module in the HP-SE module, the HP-SE-Attn can
precede the HP-SE by 1.82%, 1.11% and 0.63% terms of the mAP and CMC-K (k = 1, 5)
values. These results demonstrated that the hierarchical graph constructed strategy and
the attention could effectively help the AAD-CPGE framework to improve the Re-ID
performance. After that, adding the topology embedding module into the whole learning
process of the proposed framework also boosted the aforementioned three configurations
for the Re-ID. Finally, we utilized the HP-SET-Attn module for the task of object Re-ID. As
can be seen in Table 5, the HP-SET-Attn achieved the best mAP and CMC-k (k = 1, 5) values
by 90.34%, 95.23% and 97.68%, respectively. By observing these results, we can find that the
configuration of HP-SET-Attn achieved the best performance for object Re-ID, compared
with other configurations in our proposed AAD-CPGE. Moreover, as shown in Figure 10,
we also reported the visualization results achieved by the baseline and the HP-SET-Attn
configuration of the proposed AAD-CPGE framework, which also indicate the superiority
of HP-SET-Attn for object Re-ID.

Figure 10. Parts of visual object Re-ID results on the PRAI-1581 using the baseline module and the
HP-SET-Attn configuration of the proposed AAD-CPGE framework.

6. Conclusions

In this paper, we proposed an adaptively attention-driven cascade part-based graph
embedding framework (AAD-CPGE) for the task of UAV-based object Re-ID platform.
The AAD-CPEG Re-ID consisted of multiple part-based cascade graph convolutional
networks (GCNs) branches, which are incorporated by the self attention-based driven
multi-graphs fusion module. Different from the existing GCNs, which mainly consider the
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spatial cues for relation inferring, we explore the explicit spatial relations of the constructed
hierarchical graphs and take into account their implicit topological characteristics to further
improve the discriminative ability of the learning graph-structured feature representations.
Meanwhile, we introduce the attention mechanism to adaptively fuse the graph features
and their inferred topological features. In this way, the correlations discrimination between
the graph features and the derived topological relations complement each other, which
can effectively identify the variations and appearance ambiguities among inter-objects
and intra-objects and then enhance the accuracy for object Re-ID. Our proposed AAD-
CPGE starts from constructing two kinds of parts-based cascade node feature graphs
and topological feature or (structure feature) graphs for exploring the global and local
spatial-relations representations. After that, we designed the self attention-driven based
module for adaptively fusing the node and topological features of the constructed graphs
by imposing the consistency and disparity constraints in the embedding feature spaces.
Then, we employed AAD-CPGE to learn the set of more discriminative features that derive
from multi-channel feature maps. Finally, these learning hybrid graph-structured features
with the most correlation discriminative capability are fed into a perceptron layer for object
prediction and Re-ID. Experiments on three public datasets demonstrated that the proposed
method outperformed state-of-the-art object Re-ID approaches.

Although our proposed AAD-CPGE framework has achieved desirable results in
most situations for object Re-ID, there are also a few limitations, such as lacking the
semantic relations discrimination between different kinds of multi-scale graphs, the high-
dimension graph-structured feature always contains several invalid datapoints and reduces
the accuracy and robustness for object Re-ID; therefore, in the future, we will impose
some sparsity-based constraints into our proposed AAD-CPGE framework, which aims
to improve the computational efficiency and ensure its performance for object Re-ID. In
addition, we will explore more optimal GCNs, such as graph attention networks (GATs), to
ensure more reliable parts for graph construction and learn more contextual and compact
feature representations to further boost the performance of object Re-ID.
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