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Abstract: In recent years, with the development of deep learning in remotely sensed big data,
semantic segmentation has been widely used in large-scale landcover classification. Landsat imagery
has the advantages of wide coverage, easy acquisition, and good quality. However, there are two
significant challenges for the semantic segmentation of mid-resolution remote sensing images: the
insufficient feature extraction capability of deep convolutional neural network (DCNN); low edge
contour accuracy. In this paper, we propose a block shuffle module to enhance the feature extraction
capability of DCNN, a differentiable superpixel branch to optimize the feature of small objects
and the accuracy of edge contours, and a self-boosting method to fuse semantic information and
edge contour information to further optimize the fine-grained edge contour. We label three sets of
Landsat landcover classification datasets, and achieved an overall accuracy of 86.3%, 83.2%, and
73.4% on the three datasets, respectively. Compared with other mainstream semantic segmentation
networks, our proposed block shuffle network achieves state-of-the-art performance, and has good
generalization ability.

Keywords: semantic segmentation; superpixel; deep learning; Landsat; block shuffle; self-boosting;
large scale

1. Introduction

In recent years, with the development of remote sensing technology, remote sensing
data have grown exponentially [1]. Remotely sensed big data have 4V characteristics:
volume, variety, velocity, and veracity [2,3]. These characteristics reflect the rich informa-
tion in remote sensing data. Mining various valuable information from remote sensing
data has always been a significant research direction in the field of remote sensing. Image
segmentation is an essential technology in remote sensing information mining research. It
is widely used in land use [4–7], land cover [8–11], cultivated land extraction [12–15], wood-
land extraction [16–19], waterbody extraction [20–23], residential area extraction [24–27],
exploration of glacial landforms [28,29], mapping of underwater bedforms and benthic
habitats [30,31], etc.

Image segmentation based on traditional methods needs to use expert knowledge to
manually design feature extractors according to the characteristics of different objects [32].
Some basic feature extractors use index information, such as normalized difference vege-
tation index (NDVI), normalized difference water index (NDWI), normalized difference
built-up index (NDBI), or texture features such as edges and shapes, to extract feature
information. However, in the face of complex scenes, artificially designed feature extractors
are often not widely applicable to all types of target objects, and different feature patterns
and classifiers need to be selected for different target objects. Since the artificially designed
feature extractor needs to rely on empirical values as parameters, it is necessary to finetune
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parameters for different target objects in different environments in the actual application
scenarios. Because a feature extractor designed for one study area will fail after changing
a study area, the generalization ability of the feature extractor is very limited. Since the
artificially designed feature extractor introduces more expert knowledge, the classification
performance is simple, and only one or a few types of target objects can be distinguished.
The superpixel segmentation method based on image clustering information can segment
various categories on the image. However, this method is only an unsupervised learning
method, which can only perform segmentation, but cannot perform classification. It does
not extract any semantic information. The superpixel segmentation method is essentially an
over-segmentation method. Therefore, the same target block may be segmented into multi-
ple superpixel clusters. Some studies have also attempted to use machine learning-based
supervised classification methods for image segmentation [33,34]. These methods generally
use a small number of samples, mainly based on the spectral dimension information of
pixels for classification, and do not use spatial texture information. Limited by the small
number of samples, only a few selected points are used in the accuracy evaluation. Not
all image pixels are used for accuracy evaluation, which leads to the accuracy reported in
these papers being higher than the accuracy of deep learning methods.

With the development of deep learning, remote sensing image segmentation has
gradually transitioned from traditional methods to deep learning methods. Many of the
problems encountered with traditional methods are resolved by deep learning methods [35].
Semantic segmentation methods in the field of computer vision are introduced in the field
of remote sensing. Deep convolutional neural networks (DCNNs) can autonomously mine
the information contained in images and the deep features of different target objects. Se-
mantic segmentation methods achieve very complex mapping functions through a large
number of stacked convolutional neurons, various skip-layer links, and feature fusion
modules. DCNN converts input data into features through a mapping function called
feature representation. Therefore, the feature representation ability is strong when the
mapping function is complex. Since the mapping function is completely learned by the
network itself, it avoids the limitations of artificially designing feature extractors using
expert knowledge. Thanks to the feature representation ability of DCNNs, it is possi-
ble to simultaneously extract the features of multiple target objects in the same feature
extractor. At the same time, the semantic segmentation method can significantly im-
prove the accuracy and efficiency of image segmentation and has better generalization
ability [36–38]. Therefore, in the current image segmentation research direction, the deep
learning method has surpassed the traditional method, and has become the hottest topic.

There have been many research works published on semantic segmentation based on
Landsat images [39–43]. The semantic segmentation network includes multiple pooling
operations. The pooling operation will downsample the feature map, resulting in the
inevitable loss of spatial position information. It is more obvious on mid-resolution images
such as Landsat images, resulting in poor accuracy at the boundaries of different target
objects in the segmentation results. as shown in Figure 1. In 30 m resolution images,
some target objects are very small, only a few pixels wide. The network can easily miss
these small objects. After the pooling operation is removed, the abstraction ability of the
network will decrease, resulting in misclassification. How to improve the ability of DCNN
to extract small objects and edge details on mid-resolution images is a significant problem in
remote sensing deep learning. The superpixel segmentation method based on the clustering
method can accurately fit the boundaries of different target objects. Still, it is impossible
to merge the superpixel clusters of the same type in the over-segmentation result because
there is no semantic information. At the same time, image-based superpixel segmentation
methods use shallow features, and do not use segmentation labels for supervised learning.
Therefore, how to combine traditional superpixel segmentation methods with supervised
deep learning methods is a new problem to improve the accuracy of mid-resolution image
semantic segmentation.
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Figure 1. Effect of the pooling operation in DCNNs. (a) The pseudocolor Landsat image. (b) The
semantic segmentation label. (c) The prediction result of the UNet.

In this paper, to solve the above problems, we propose a block shuffle network (BSNet)
with superpixel optimization to optimize small object extraction and fine-grained category
boundaries, and improve the semantic segmentation accuracy of mid-resolution remote
sensing images. In summary, the contributions of this paper are described as follows:

• Inspired by the idea of pixel shuffle, we design a block shuffle structure. The block shuf-
fle encoder slices the feature map into smaller blocks to simulate the mid-resolution
image’s features into the high-resolution image’s features. The block shuffle decoder
finally fuses the high-resolution features with the original mid-resolution features.
The block shuffle network architecture can improve the feature extraction capability
of DCNN for small objects.

• we improve the differentiable superpixel sampling network (SSN) architecture and add
a superpixel segmentation branch. We use segmentation labels to perform supervised
learning on superpixel clusters and optimize the features and results of semantic
segmentation.

• We design a self-boosting method to optimize the fine-grainedness of category bound-
aries by using superpixel clusters.

• Compared with other mainstream semantic segmentation networks, our proposed
BSNet achieves state-of-the-art performance on our self-made large-scale Landsat
dataset.

The remainder of this paper is organized as follows: Section 2 presents the related
work. In Section 3, we introduce our proposed methodology about the block shuffle
structure, superpixel branch, and self-boosting. Section 4 experimentally validates the
BSNet on our self-made Landsat datasets. In Section 5, we discuss the impact of some
hyperparameters on BSNet and inspiration by this work. Section 6 presents the conclusion
of this paper.

2. Related Work
2.1. Semantic Segmentation

Image-level classification tasks dominated early deep learning network architectures.
The ResNet [44] proposed by He at al. designs a residual structure, which effectively
solves the problem of gradient vanishing/exploding in DCNN, deepens the DCNN to
hundreds or even thousands of layers, and improves the network’s performance. ResNet
is one of the most widely used networks and derived many variant architectures, such as
ResNeXt [45], ResNeSt [46], Dilated ResNet [47,48], and so on. Based on the image-level
classification task network, replacing the last two layers with the semantic segmentation
task head is the current mainstream semantic segmentation network architecture. The
above classification network is called the basic network in the semantic segmentation



Remote Sens. 2022, 14, 1432 4 of 37

network. Long et al. proposed FCN [49], which replaced the last two layers of the basic
network with upsampling layers for the first time, and used the pixel-wised loss to train
the network. FCN is the first end-to-end semantic segmentation network.

According to the shape and propagation path of the feature maps of each layer of
the network, the semantic segmentation network can be divided into two styles. One is
backbone style, such as PSPNet [48], DeepLabV3 [50], etc. In this network style, the basic
network is also called the backbone. This type of network replaces the original convolution
operation with dilated convolution in the backbone, thereby keeping the size of the feature
map unchanged without changing the network weights structure. Thus, the problem of
spatial location feature loss caused by multiple downsampling operations of the network is
avoided. In order to extract features at different scales and receptive fields, the backbone
style network uses spatial pooling pyramid (SPP) [48] or atrous spatial pyramid pooling
(ASPP) [47] as the semantic segmentation task head. Due to the use of dilated convolution,
the memory overhead of the network will increase significantly, and the running speed will
also decrease.

The other is encoder-decoder style, such as UNet [51], SegNet [52], etc. In this network
style, the basic network is also called the encoder. This type of network will keep the
features of each stage in the encoder, gradually upsample and restore the pooled features
in the decoder, and fuse them with the low-level features of the corresponding stage in the
encoder. The low-level features contain relatively complete spatial position features, but
the semantic abstraction information is insufficient. Most spatial location features are lost
in the high-level features due to multiple pooling, but the semantic abstraction information
is complete. Therefore, the encoder-decoder-style network can effectively integrate the
low-level spatial position information and the deep semantic abstraction information to
realize the pixel-level image segmentation task. Compared to the backbone-style network,
it has lower memory overhead and runs faster.

2.2. Upsample

The operation of upsampling feature maps often occurs in DCNNs. Generally, inter-
polation or transposed convolution are mainly used in the semantic segmentation network.
Interpolation is the most commonly used image resampling operation in computer vi-
sion. When upsampling, the pixel value in the middle is calculated from the surrounding
pixel values according to a certain weight. Interpolation methods include nearest, linear,
bilinear, bicubic, trilinear, area, etc. The most commonly used are nearest and bilinear
modes. This upsampling method has no learnable weights, and the upsampling result is
fixed. Transposed convolution [53] is a method proposed by Zeiler that allows the network
to automatically learn the interpolated pixels, which is the opposite of the convolution
operation. This upsampling method contains learnable weights, and the network can learn
to derive the most effective interpolation information by itself.

Besides, Shi et al. proposed the pixel shuffle method for feature upsampling in super-
resolution networks [54]. Pixel shuffle achieves upsampling by flattening the pixels at
the same position on the much-channel feature map to the few-channel feature map. As
shown in Figure 2, we have a feature map of H ×W shape with 4C channels, we flatten
the 4 pixels of each position to 2× 2 shape, and finally get a feature map of 2H × 2W
shape with C channel. This upsampling method has no learnable weights, but the high-
resolution features after upsampling are completely obtained from the low-resolution
features, without the need for the network to derive by itself. The pixel shuffle method
makes the upsampling results more stable. However, the pixel shuffle method consumes
more memory than interpolation or transposed convolution. Therefore, interpolation and
transposed convolution are more commonly used in mainstream semantic segmentation
networks. However, the pixel shuffle is more used in the super-resolution network, which
requires higher accuracy for upsampling.
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Figure 2. Schematic diagram of the pixel shuffle.

2.3. Superpixel Segmentation

Superpixel segmentation divides the pixels in the image into clusters according to
the similarity, which is a method of over-segmentation. However, this segmentation
method lacks semantic information and cannot automatically merge the clusters of the
same categories. The same target objects may be divided into multiple clusters. But it can
accurately segment the boundaries of different target objects. The most classic superpixel
segmentation method is the simple linear iterative clustering (SLIC) [55] proposed by
Achanta et al. SLIC converts the RGB image to the CIELab color space and adds the initial
XY coordinates of each superpixel cluster to form 5-dimensional features (XYLab). Then,
SLIC uses the k-means clustering method to update the XY coordinates through multiple
iterations to obtain the superpixel segmentation results.

Based on the SLIC, some improved versions, including the LSC [56] and Manifold-
SLIC [57] algorithms, mainly improve the initial features. Achanta et al. [58] propose the
simple non-iterative clustering SNIC based on the SLIC, which can run superpixel segmen-
tation without iteration. Liu et al. [59] proposed the ERS method to extract superpixels
by maximizing the entropy rate of pixels. Bergh et al. [60] proposed the SEEDS method,
which is faster than SLIC. However, the parameter settings have a significant impact on the
results. All of the above methods are based on artificially designed features for superpixel
segmentation. Tu et al. [61] proposed the SEAL method, which can learn the deep features.
But this method is non-differentiable. Based on the SLIC, Jampani et al. [62] proposes super-
pixel sampling networks (SSN). SSN is a differentiable superpixel segmentation network,
which solves the problem of differentiable end-to-end learning. SSN introduces the idea of
supervised learning and uses semantic segmentation labels to train SSN. The superpixel
segmentation results of SSN are closer to the semantic segmentation results. However, SSN
is only for superpixel segmentation tasks. For complex semantic segmentation tasks, the
feature extraction network of SSN is too simple to obtain enough semantic features.

Yang et al. [63] proposed the Spixel FCN, which does not need to iterate through
k-means clustering and learns superpixel segmentation entirely through DCNN. However,
it cannot run the task of semantic segmentation. Lv et al. [64] concatenated the SLIC
results into the features of the semantic segmentation network, but the superpixel feature
branch is not learnable. Yuan et al. [65] proposed a method that combines DCNN and
superpixel segmentation to classify high-resolution images for land cover classification.
This method learned semantic segmentation and superpixel segmentation features through
two branches of DCNN and superpixel FCN, respectively. It fused the features of the two
branches to obtain semantic segmentation results. Mi et al. [66] proposed a deep neural
forest method based on superpixel optimization, which performs semantic segmentation
on very-high-resolution images. On mid-resolution images, due to the insufficient feature
extraction capability of DCNN, the latter two methods do not perform as well as the results
on high-resolution images.
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3. Methodology

In order to solve the problem of insufficient feature extraction capability and inaccu-
rate boundary details of DCNN on mid-resolution remote sensing images, we propose
a novel DCNN architecture called block shuffle network (BSNet) and introduce super-
pixel segmentation to optimize the fine-grained boundary of target objects. The details
of BSNet architecture are shown in Figure 3. We use UNet as the baseline network. In
order to improve the feature extraction ability of the network for small target objects, we
design the block shuffle structure as a parallel branch to upsample and reorganize the
input data. In order to refine the boundaries fine-grained of target objects, we design the
deep superpixel subnetwork to perform superpixel segmentation on the features extracted
by the encoder and use the gradient of the superpixel branch to assist in optimizing the
features of semantic segmentation. In order to optimize the semantic segmentation results
with superpixel segmentation results at the end of the network, we design a self-boosting
method to improve the fine-grainedness of semantic segmentation boundaries further.

Figure 3. Overview of the block shuffle network (BSNet) architecture.

3.1. Block Shuffle Structure

Since UNet belongs to the encoder-decoder style network, it has low memory overhead,
fast running speed, and robust scalability. Therefore, we choose UNet as the baseline
network. We choose ResNet-50 as the encoder of UNet for feature extraction. ResNet-50
will downsample the feature five times, the output feature map size is 1/32 of the input
image, and the position and boundary details of the small target objects will become
inaccurate. As shown in Figure 4, there are many small targets at mid-resolution images,
such as Landsat images. We could reduce the number of downsampling. However, the
features cannot be further aggregated and abstracted, the receptive field of the network
cannot be effectively increased. The network cannot learn the necessary global information.
We could maintain the ResNet-50 network structure as the original. That means the input
data is directly upsampled, turning the small target objects into large target objects for
training. It can improve the feature extraction ability of the network for small targets to a
certain extent. We assume that our input data size is 256× 256 pixels, the encoder outputs a
feature map of 8× 8 pixels after extracting features. At this time, the network has a strong
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ability to express global information. After upsampling the input data four times, we
obtained new data with 1024× 1024 pixels. The encoder extracts the features and outputs a
32× 32 pixels feature map. At this time, the receptive field of the network is reduced by
four times compared with the previous solution, and the global information aggregation
degree is not enough. The global information is necessary for some large-range distributed
target objects, such as woodland and cultivated land.

Figure 4. Small target objects in Landsat images. (a) The pseudocolor Landsat image. (b) The
semantic segmentation label.

Based on the UNet architecture, we introduce a new parallel branch and obtain a
two-branch network. One of the branches still passes the data through the encoder to
extract features and the decoder to fuse the low-level spatial position features and the
high-level abstract features in a common way. This branch is called the global branch.
The other branch is used for upsampling and pre-encoding the input data to improve
the feature representation ability of the network from the data level. Inspired by the idea
of pixel shuffle, we slice the upsampled input data, and each slice has the same size as
the original data. Unlike the regular operation of concatenating tensors in the channel
dimension, we concatenated sliced tensors in the batch dimension. Keeping the slice size
consistent with the original input data size enables the encoder to maintain the aggregate
abstraction capability of global features. We call this slicing and concatenating operation
block shuffle encoder. After the feature map passes through the UNet decoder, the tensor is
disassembled from the batch dimension, re-expanded and stitched into a large tensor of
the same size as before block shuffle encoding. We call this disassembling and stitching
operation block shuffle decoder. This branch is called the local branch. The global branch
maintains the network’s original global receptive field size, which makes the network have
a better feature extraction effect for large-scale objects. The local branch maintains the
features of small targets, while avoiding the problem of insufficient feature aggregation
caused by training an overly large image. Although both branches use the same UNet
architecture for feature learning, the weights are independent of each other. Because the
feature scales of the two branches are different, not sharing weights can avoid feature
learning confusion. The feature map output by the global branch decoder is upsampled to
the same size as the local branch. Then, we fused the two branch features. The network can
express large-scale target objects and small target objects simultaneously. The details of the
block shuffle encoder and block shuffle decoder are shown in Figure 5. The feature tensor
size in block shuffle encoder and block shuffle decoder are shown in Table 1.
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Figure 5. Details of the block shuffle encoder and decoder. Since the input data of the decoder
consitute the high-level feature map, we use gray blocks to represent the feature map.

Table 1. Feature tensor shape in block shuffle encoder and block shuffle decoder.

Operation Number of Tensor Batch Channel Height Width

Block shuffle encoder

Input 1 N C H W
Upsample by U 1 N C U ×H U ×W

Slice U × U N C H W
Concatenate 1 U × U ×N C H W

Output 1 U × U ×N C H W

Block shuffle decoder

Input 1 U × U ×N C H W
Disassemble U × U N C H W

Stitch 1 N C U ×H U ×W
Output 1 N C U ×H U ×W

3.2. Superpixel Branch

Since superpixel segmentation can cluster the input data, the boundaries of different
target objects can be segmented very finely. The traditional SLIC method only performs
clustering iterations from the CIELab color space of the original image, which is an unsuper-
vised learning method. However, semantic segmentation labels can be used as supervised
learning samples for superpixel segmentation. The semantic information cannot be ob-
tained by superpixel segmentation. However, most superpixel segmentation boundaries
should be completely coincident with the semantic segmentation boundaries. Inspired by
the SSN, we add a differentiable SLIC branch in BSNet. We fuse the features extracted by
the global branch encoder, the initial superpixel coordinates XY, and the CIELab color space
of the input data. The fused feature is used for the input of the differentiable SLIC module.
Then, the differentiable SLIC module outputs the superpixel features. We use semantic
segmentation labels to calculate the superpixel gradients. Finally, we use the gradients
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to update the weights of the entire differentiable SLIC module. This branch is called the
superpixel branch.

However, there is a contradiction between superpixel high-level features and semantic
segmentation high-level features. In the superpixel feature, the pixels in each superpixel
cluster have the same value, and the values of different clusters are different. In the semantic
segmentation feature, the pixels of each category of target objects have the same value,
and the pixel values of different categories are different. At the same time, the superpixel
value does not have semantic information. It is only numbered from 1 and the upper
left corner. Therefore, the corresponding relationship between the semantic segmentation
category value and the superpixel value is not fixed on different images. There may be
cases where the same category of target objects corresponds to multiple unfixed superpixel
values, which will cause confusion in the semantic segmentation features. In order to
avoid the mutual interference between the semantic segmentation task head and superpixel
segmentation task head, we pull low-level features from the encoder of the global branch
to the superpixel branch, not pulling the high-level features from the decoder. The gradient
of the superpixel branch is backpropagated into the encoder to assist in optimizing the
features and results of semantic segmentation.

As shown in Figure 6, we pull out the features of each stage in the encoder of the
global branch. Assuming the encoder uses ResNet-50, the feature channels output by
each stage are 64, 256, 512, 1024, 2048. We use a 1× 1 convolution to unify the number
of channels to 64. Then we upsample the feature maps to the same size as the original
input and concatenate them in the channel dimension to obtain a 320-dimension fused
feature. We concatenate the initial superpixel coordinates XY with the CIELab color space
of the input data to obtain a 5-dimensional feature. Then we concatenate the 320-dimension
and 5-dimensional features to obtain a 325-dimensional feature. Finally, we use 1 × 1
convolution to exchange feature information internally. We feed the fused features into the
differentiable SLIC module. After k iterations, The differentiable SLIC module outputs the
superpixel segmentation result.

According to the differentiable SLIC in SSN, a soft association can be established
between pixel and superpixel. The soft association can be expressed as follows:

Qt
(p,sp) = e−‖Ip−St−1

sp ‖2

, (1)

where t represents the number of iterations, Ip represents the 325-dimensional fused
feature, and St−1

sp represents the center of superpixel cluster after t− 1 iterations. St−1
sp can

be updated by the weighted sum of pixel features, which can be expressed as follows:

St
sp =

1
Zt

sp

n

∑
p=1

Qt
(p,sp) Ip, (2)

where Zt
sp = ∑p Qt

(p,sp) represents the number of pixels in the superpixel cluster, which is a
normalization constant.

We use R to represent the semantic segmentation labels. Then, we use the column-
normalized association matrix Q̂ to map the pixel features to the superpixel features,
R′ = Q̂>R. After iterations, we use the row-normalized association matrix Q̃ to map the
superpixel features back to the pixel features, R∗ = Q̃R′. R∗ represents the superpixel
reconstruction result. The entire reconstruction process can be expressed as follows:

R∗ = Q̃Q̂>R (3)

In the differentiable SLIC module, three hyperparameters need to be set before training.
tmax represents the max number of iterations. Nsegments represents the number of superpixel
clusters. Sconnectivity represents whether to merge small superpixel clusters into adjacent
large ones. We will discuss the impact of these three hyperparameters in Section 5.2.
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Figure 6. Details of the superpixel branch.

3.3. Self-Boosting Method

Since semantic segmentation and superpixel segmentation only share the encoder
features of the global branch, the task heads are entirely different. Although the two tasks
can assist each other in feature extraction, some information that the network considers
useless may still be dropped in the task decoding stage. Each pixel inside the superpixel
cluster has very similar characteristics, so we can regard the whole cluster as the same type
of target object. As shown in Figure 7, the result of semantic segmentation is relatively
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smooth, and fits poorly with the natural boundary. There is also wrong noise inside the
red region. The edge of the result of superpixel segmentation is relatively fine, which
is consistent with the real natural scene, but the whole target object is divided into five
clusters. The contour of the superpixel cluster is close to the real contour of the ground
object, so we can assign semantic information with categories to the superpixel clusters.
Since the red object is the dominant class, we assign each pixel of the superpixel cluster
to the red class. It effectively eliminates the noise of internal errors and makes the edge
contour more precise. Therefore, we can use superpixel segmentation results to optimize
semantic segmentation results further.

Figure 7. Schematic diagram of optimizing semantic segmentation results by superpixel segmentation
result. (a) The result of the semantic segmentation. (b) The result of the superpixel segmentation.
(c) The overlay result (yellow represents the esult of the semantic segmentation, red represents the
result of the superpixel segmentation). (d) The optimized result of semantic segmentation.

First, we obtain the region of each superpixel cluster. We construct a region matrix Ri
sp

to represent the ith cluster. The position of the cluster is set to 1, and the rest are set to 0.{
Ri

sp{Rsp = i} ← 1
Ri

sp{Rsp 6= i} ← 0
, (4)

where Rsp represents the result of superpixel segmentation,← represents the assignment
operation, and i ∈ [1, Nsegments].

Then, the same region in the semantic segmentation result is taken out using the region
matrix Ri

sp.
Ri

s = Rs · Ri
sp, (5)

where Rs represents the result of semantic segmentation, · represents the dot multiply
operator, and i ∈ [1, Nsegments].

Then, we count the number of each class in the matrix Ri
s and compute the highest

number of class index mi.
Cj

i = count{Ri
s = j}, (6)

mi = argmax{C1
i , C2

i , · · · , Cn
i }, (7)

where n represents the number of classes in the semantic segmentation labels, argmax
function can compute the index of maximum of Ci, 1 6 mi 6 n, i ∈ [1, Nsegments], and
j ∈ [1, n].

Finally, we use mi to update the elements of the corresponding cluster in semantic
segmentation result.

Rs{Rsp = i} ← mi, (8)

where i ∈ [1, Nsegments].
We call this algorithm self-boosting. The algorithm essentially adds semantic informa-

tion to the superpixel segmentation results. Therefore adjacent superpixel clusters of the
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same category are automatically merged. The algorithm also retains the fine boundaries in
the superpixel segmentation results.

3.4. Loss Function

For the semantic segmentation task, the size of the feature map after fusion of the
global branch and local branch is the same as the size of the upsampled input data. We
also upsample the semantic segmentation labels to the same size to calculate the loss for
supervised learning with more detailed information. We use cross-entropy and Lovász-
softmax [67] loss as the loss function of BSNet.

The cross-entropy loss is calculated by

Lce =
1
N

N

∑
n=1

[ynlogŷn + (1− yn)log(1− ŷn)], (9)

where N represents the total number of samples, yn represents the probability that the
ground truth is true, 1− yn represents the probability that the ground truth is false, ŷn
represents the probability that the forward propagation result is true, and 1− ŷn represents
the probability that the forward propagation result is false.

The region-level loss can optimize the features as whole target objects in the semantic
segmentation task. However, the cross-entropy loss is the pixel-level loss. Therefore, we
also use the Lovász-softmax loss to train the network. Lovász-softmax loss is a smoothed
Jaccard loss. The Jaccard index is the Intersection over Union (IoU). The Jaccard index of
class c can be expressed as follows:

Jc(y, ŷ) =
|{y = c} ∩ {ŷ = c}|
|{y = c} ∪ {ŷ = c}| , (10)

where y represents the ground truth labels, and ŷ represents the predicted labels.
Then, the Jaccard index is performed with smooth extensions. The mispredicted pixels

for class c can be expressed as follows:

Mc(y, ŷ) = {y = c, ŷ 6= c} ∪ {y 6= c, ŷ = c}, (11)

where y represents the ground truth labels, and ŷ represents the predicted labels.
At this time, Jaccard loss is smoothed as follows:

∆J c : Mc ∈ {0, 1}p 7→ |Mc|
|{y = c} ∪Mc|

, (12)

where y represents the ground truth labels, and p represents the forward probability.
Then, the smoothed Jaccard index can be expressed via error vector as follows:

mi(c) =
{

1− fi(c) i f c = yi
fi(c) otherwise

, (13)

loss( f (c)) = ∆J c(m(c)), (14)

where fi(c) represents the probability of class c, and m(c) ∈ {0, 1}p.
In order to ensure the class-averaged mean IoU (mIoU) metric, Lovász-softmax loss is

finally defined as follows:

LLovász = loss( f ) =
1
|C| ∑

c∈C
∆J c(m(c)) (15)

Combined with the cross-entropy loss, the semantic segmentation task loss is expressed
as follows:

Lseg = Lce + LLovász (16)
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We adopt the reconstruction loss and compactness loss in SSN for the superpixel
segmentation task. The reconstruction loss is to calculate the cross-entropy loss between
the semantic segmentation label R and the superpixel reconstruction result R∗, which can
be expressed as follows:

Lrecon = Lce(R, R∗) = Lce(R, Q̃Q̂>R), (17)

where R represents the semantic segmentation labels, R∗ represents the superpixel recon-
struction result, Q̂ represents the column-normalized association matrix, and Q̃ represents
the row-normalized association matrix.

Compactness loss is used to make superpixel clusters to be spatially compact. We
use Ixy to represent the positional pixel features. First, we use the column-normalized
association matrix Q̂ to map the positional features to superpixel features, Sxy = Q̂> Ixy.
Then, we use hard association H instead of soft association Q, map the superpixel features
back to pixel features, Îxy

sp = Sxy
sp |Hsp = i. Finally, the compactness loss is expressed as

follows:
Lcompact =

∥∥Ixy − Îxy∥∥
2 (18)

Combined with reconstruction loss, the superpixel segmentation loss is expressed as
follows:

Lsp = Lrecon + λcompactnessLcompact, (19)

where λcompactness represents the regularity of superpixel clusters, which is a hyperparame-
ter for adjusting the degree of compactness.

Finally, the loss function for BSNet can be expressed as follows:

L = Lseg + λspLsp = Lce + Llovász + λsp(Lrecon + λcompactnessLcompact), (20)

where λsp represents the weight of superpixel loss, which is a hyperparameter for adjusting
the order of magnitude balance of the two losses, which is more conducive to the learning
and convergence of the network.

3.5. Evaluation Metrics

The overall accuracy (OA) is the ratio of the number of correctly classified pixels to
the total number of pixels. The OA can be expressed as follows:

OA =
{y = ŷ}

{y = ŷ} ∪ {y 6= ŷ} , (21)

where y represents the ground truth labels, and ŷ represents the predicted labels.
The accuracy of each category is evaluated using the F1 score. In the confusion

matrix [68], true positives (TPs) are the elements on the main diagonal, false positives (FPs)
are the sum of the elements in each column except the elements on the main diagonal, and
false negatives (FNs) are the sum of the elements in each row except the elements on the
main diagonal. The precision and recall are calculated by the confusion matrix and can be
defined as follows:

precision =
TP

TP + FP
, (22)

recall =
TP

TP + FN
(23)

Therefore, the F1 score is defined as follows:

F1 = 2 · precision · recall
precision + recall

(24)
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Since the OA is not adequately sensitive to the small categories [69], the mean F1
score (mF1) is also used for an overall evaluation. The mF1 is the average F1 score of each
category.

4. Experimental Results
4.1. Datasets

Since there is currently no publicly available large-scale Landsat semantic segmenta-
tion dataset, in order to test the performance and generalization ability of our proposed
BSNet on large-scale Landsat images, we made two sets of Landsat datasets to test our pro-
posed method. Our research area is located in parts of North China and parts of Southwest
China. We downloaded 102 scenes of the 2010 Landsat-5 images and mosaiced the images
of the study area, removing the redundant images outside the study area. We finally get
20 tiles of images, each with a size of 10,240 × 10,240 pixels. It covers two study areas. One
is an area of approximately 1,440,000 km2 and is between 110.933◦ E ∼ 122.311◦ E and be-
tween 34.133◦ N ∼ 45.511◦ N. We name it Region N. The other is an area of approximately
360,000 km2 and is between 102.400◦ E ∼ 108.088◦ E and between 28.444◦ N ∼ 34.133◦ N.
We name it Region SW. We labeled all the images at the pixel level, including seven cate-
gories: woodland (WO), grassland (GL), wetland (WE), waterbody (WB), cultivated land
(CL), artificial surface (AS), and bare land (BL).

All labels were manually visually interpreted by a team of more than a dozen people
and generated from ArcGIS polygons, which took about six months in total. Since many of
the small features in Landsat cannot be identified by the naked eye, the work team also
resorted to high-resolution satellite images of multiple time series for reference. To ensure
that the labels are of high quality, the whole work team has basic knowledge of landcover,
and some disputed label points have been confirmed through on-the-spot inspections.

The more difficult to label category is wetland, which looks between grassland and
water body. We label those three categories according to the following criteria: (1) areas
that are chronically water throughout the year are labeled as waterbody; (2) if there is water
for more than two months of the year and there is also vegetation, it is labeled as wetland;
(3) those with no water present, or with both water and vegetation appearing in less than
two months, are labeled as grassland. According to this rule, we used multi-temporal high-
resolution satellite images to help judgment and field investigations in some disputed areas.
The textures of other categories are quite different and can be easily interpreted visually.

Because the distribution of target objects has a certain geographical correlation, that is
to say, the distribution of target objects in adjacent geographical areas is similar. Therefore,
if the training set and the test set are randomly divided based on all image slicing, the two
datasets will have a strong geographical correlation, which will affect the evaluation of
the generalization ability of the model. Therefore, the training dataset and the test dataset
are completely independent of each other in terms of geographical distribution. As shown
in Figure 8, we use the inner 4 tiles (IDs 2-2, 2-3, 3-2, 3-3) as the training and validation
dataset, named Landsat core dataset (LSC dataset), and the outer 12 tiles (IDs 1-1, 1-2, 1-3,
1-4, 2-1, 2-4, 3-1, 3-4, 4-1, 4-2, 4-3, 4-4) as the test dataset to evaluate the generalization
ability, named Landsat extend dataset (LSE dataset). To further evaluate the generalization
ability of our proposed method, we choose the images in Region SW for prediction, which
is farther from Region N. As shown in Figure 9, we use all 4 tiles (IDs 5-1, 5-2, 5-3, 5-4) as
the test dataset to evaluate the generalization ability, named Landsat supplement dataset
(LSS dataset).
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Figure 8. Geographical distribution of Landsat core dataset and Landsat extend dataset in Region N.
LSC dataset IDs: 2-2, 2-3, 3-2, 3-3. LSE dataset IDs: 1-1, 1-2, 1-3, 1-4, 2-1, 2-4, 3-1, 3-4, 4-1, 4-2, 4-3, 4-4.
(a) Landsat images. (b) Labels.

Figure 9. Geographical distribution of Landsat supplement dataset in Region SW. LSS dataset IDs:
5-1, 5-2, 5-3, 5-4. (a) Landsat images. (b) Labels.
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4.2. Implement Details
4.2.1. Data Preprocessing

To train the LSC dataset, we perform sliding window cropping on the big tiles to
obtain 25,600 small tiles with 256× 256 pixels. We randomly divided the cropped LSC
dataset into the training set and validation set with the ratio of 8:2. Since the input data
size correlates with the hyperparameter Nsegments in the superpixel branch of our proposed
BSNet. In order to ensure that the superpixel branch is consistent in the inference phase
and the training phase, we also perform the same sliding window cropping on the LSE
dataset to obtain 76,800 small tiles with 256× 256 pixels. All bands of data are used for
training and prediction.

According to Equation (25), we normalize the multi-spectral Landsat input data to
speed up the model convergence.

D′ =
D−mean

stddev
, (25)

where D′ represents the normalized data, D represents the input data, mean represents
the mean value of the corresponding channel in the input data, and stddev represents the
standard deviation of the corresponding channel in the input data.

4.2.2. Training Settings

We use the PyTorch deep learning framework [70] to implement many published
mainstream models and the BSNet proposed in this paper. We use four NVIDIA RTX 3090
GPUs for training, and the memory of the GPU is 24 GB. We use random horizontal flip,
random vertical flip, and random rotation as the data augmentation methods. The batch
size is set to 16. We choose Adam as the optimizer with betas set to default values of 0.9 and
0.999, eps set to a default value 1× 10−8, and weight decay set to 1× 10−4. The learning
rate uses the warm-up strategy and reduce-LR-on-plateau strategy. The initial learning rate
is set to 1× 10−5. According to the warm-up strategy (see Equation (26)), the learning rate
rises to 1× 10−3 at the 10th epoch. Then, according to the reduce-LR-on-plateau strategy
(see Equation (28)), when the validation accuracy is no longer improved in every 20 epochs,
the learning rate is multiplied by 0.3. The training is stopped when the learning rate is
lower than 1× 10−7.

lr = lr0 · (
lr∗

lr0
)

t
n , (26)

where lr presents the current learning rate, lr0 represents the initial learning rate, lr∗

represents the learning rate at the end of the warm-up strategy, t represents the current
number of iterations, and n represents the total number of iterations in the warm-up
strategy. n is calculated as follows:

n = e× k, (27)

where e represents the total number of epochs in the warm-up strategy, and k represents
the number of iterations per epoch.

lr′ = α · lr, (28)

where lr′ represents the current learning rate, lr represents the last old learning rate, and α
represents the factor in the reduce-LR-on-plateau strategy.

For the hyperparameters in BSNet, the upsample scale in block shuffle structure is set
to 4. In superpixel branch, Nsegments is set to 1024, tmax is set to 10, and Sconnectivity is set to
false. In loss function, λcompactness is set to 0.01, and λsp is set to 1. To avoid random errors
in the training stage, we trained all models 10 times to calculate the average accuracy of
each model.
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4.3. Experiments on the Landsat Core Dataset
4.3.1. Ablation Study

We gradually integrate the modules and structures proposed in this paper on the
baseline UNet to show the effects of each module and structure. Table 2 shows the quan-
titative accuracy evaluation of our method on the validation set of the LSC dataset. The
baseline is UNet using ResNet-50 as encoder, and the OA is 81.3%. Based on UNet, we
added a block shuffle structure as the local branch to build a basic BSNet. The upsample
scale is set to 4. The block shuffle structure can improve the feature extraction ability of
the network for small target objects and keep more feature details. Therefore, the accuracy
of each category has been significantly improved, and the OA has increased to 83.7%. In
order to test the performance of the superpixel branch, we added this branch to UNet and
BSNet, respectively. We build UNet-SP and BSNet-SP networks, with the Nsegments of 1024,
tmax of 10, and Sconnectivity is false. Helped by the superpixel segmentation branch based on
supervised learning of semantic segmentation labels, the encoder pays more attention to
small target objects and more fragmented object features. The OA of UNet-SP reaches 83.9%,
and the OA of BSNet-SP reaches 85.6%. In order to use the superpixel segmentation results
to optimize the semantic segmentation results, we finally apply the self-boosting method
to the UNet-SP and BSNet-SP networks and name them UNet-SP-SB and BSNet-SP-SB,
respectively. As some small details of object boundaries are optimized, the OA reaches
84.8% and 86.3%, respectively. Compared with baseline UNet, our proposed best network
architecture, BSNet-SP-SB, achieves 5.0% accuracy improvement.

Table 2. The effect of the block shuffle structure, superpixel branch and self-boosting on Landsat core
dataset.

Method WO GL WE WB CL AS BL Mean F1 OA

UNet 78.7 61.5 66.5 63.9 84.5 79.6 30.0 66.3 81.3
UNet-SP 80.2 63.1 67.9 66.5 85.7 82.3 31.6 68.1 83.9

UNet-SP-SB 81.1 64.6 68.7 67.7 86.2 83.9 32.3 69.2 84.8
BSNet 80.5 64.1 71.0 68.2 86.3 81.5 30.0 68.8 83.7

BSNet-SP 82.3 66.2 72.6 69.4 87.5 82.8 31.8 70.3 85.6
BSNet-SP-SB 82.8 66.9 73.0 71.1 87.7 83.9 32.6 71.1 86.3

The visualized comparison of our proposed block shuffle structure and superpixel
branch on the LSC dataset is shown in Figure 10. In order to show more overall ground
object distribution and effects, we stitched together four adjacent tiles of 256× 256 pixels to
obtain one big tile of 512× 512 pixels. We used the stitched big tiles for visual analysis of
the results. In the first row, when extracting the fragmented artificial surface by the UNet,
there will be a lot of missed detections. Most of the grassland is classified as woodland.
The small grass clusters in the upper left area cannot be extracted. The BSNet extracts more
fragmented artificial surfaces and has a stronger ability to extract small target features than
the UNet. However, the confusion between grassland and woodland is still a trouble. With
the help of superpixel branch, the UNet-SP and the BSNet-SP can keep more details of
small target objects in hidden layers of the network. So the ability to distinguish between
grassland and woodland is improved. Thanks to the feature extraction ability of the block
shuffle structure for small target objects, the BSNet-SP has more details than the UNet-SP.
The fragmented grass in the upper left area has been extracted correctly.

In the second row, the UNet can only extract rough outlines for medium-sized towns,
while the BSNet can extract richer outline details and interior texture structures. After
adding the superpixel branch, the UNet-SP can extract more accurate contour details. The
the BSNet-SP adds a more detailed optimization for the inner details of the town. For small
villages, the UNet will have a large number of missed detections due to insufficient feature
extraction capabilities for small target objects. The BSNet can extract most small villages,
but the contours are relatively smooth. The UNet-SP and the BSNet-SP can optimize the
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outline details of small villages, making the classification results more in line with the
natural geographical morphology.

Figure 10. Ablation study with the block shuffle structure and superpixel branch on Landsat core
dataset. (a) Landsat image. (b) Ground truth. Inference result of (c) the UNet, (d) the UNet with the
block shuffle structure (BSNet), (e) the UNet with the superpixel branch (UNet-SP), and (f) the BSNet
with the superpixel branch (BSNet-SP).

In the third row, for the fragmented and staggered distribution of woodland, grassland,
and cultivated land, the UNet cannot extract enough classification information since the
features are very complex. Therefore, most of the areas are misclassified as grassland. The
BSNet relies on strong feature extraction ability to distinguish most cultivated land from
grassland, but there are still many missed detections for small villages. The UNet-SP and
the BSNet-SP effectively distinguish woodland and grassland. The BSNet-SP has a higher
extraction ability for small villages than the UNet-SP. The narrow river is successfully
extracted by none of the four networks. So more research on slender targets is needed in
the future.

In the fourth row, the UNet fails to extract slender roads. Many small villages are
missed, and the boundaries of small and medium-sized contiguous townships are very
rough. The BSNet successfully extracts slender roads and optimizes the edge contour
details of villages and towns. However, some village features are still ignored. The UNet-
SP and the BSNet-SP strengthen the attention to detail on small objects. Most of the villages
and towns are extracted successfully, and the woodland next to the river is also correctly
extracted. Without the help of the block shuffle structure, the UNet-SP has a poor road
extraction effect and many disconnections in the road result. The BSNet-SP can extract the
slender features of the road. It can be seen that our proposed block shuffle structure and
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superpixel branch are very effective for small and fragmented target objects on Landsat
images.

The visualized comparison of our proposed self-boosting method on the LSC dataset
is shown in Figure 11. Since this method mainly optimizes the classification results at the
fine-grained edge, in order to show clearer details, we use small tiles of 256× 256 pixels
for visual analysis of the results. In the first row, the edge contours of the UNet-SP and
the BSNet-SP are relatively smooth because the semantic segmentation decoder cannot
preserve the comparatively detailed edge position features. After using the superpixel
segmentation results to refine the edge of the semantic segmentation results, the edges of
the woodland and grassland extracted by the UNet-SP-SB and the BSNet-SP-SB are more
refined and more in line with the natural geographic scene.

Figure 11. Ablation study with the self-boosting method on Landsat core dataset. (a) Landsat image.
(b) Ground truth. Inference result of (c) the UNet with the superpixel branch (UNet-SP), (d) the
UNet-SP with the self-boosting method (UNet-SP-SB), (e) the BSNet with the superpixel branch
(BSNet-SP), and (f) the BSNet-SP with the self-boosting method (BSNet-SP-SB).

In the second row, the outline should be rough for natural small villages and medium-
sized towns. Although the UNet-SP and the BSNet-SP have retained more edge contour
details, they are still smooth in the outlines. After optimized by superpixel segmentation
results, the semantic information is re-adjusted at the edges, and the details are more
realistic.

In the third row, grassland is a fragmented target object type, and villages are small
target objects with complex edge contours. The UNet-SP and the BSNet-SP can only extract
ground objects and relatively fine contours. The result of superpixel segmentation can finely
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fit the edges to the target object boundary. Therefore, the smooth semantic segmentation
results can be optimized into high fine-grained classification results.

In the fourth row, the edges of small contiguous villages and inter-fragmented wood-
lands are more complex. Combining the semantic information with the refined edge
contour information in superpixel segmentation can significantly optimize the results of
complex edges. It can be seen that our proposed self-boosting method is very effective for
fine-grained optimization of edge contours of classification results on Landsat images.

4.3.2. Comparing Methods

To compare with the mainstream semantic segmentation models, we trained many
mainstream models on the LSC dataset and compared the results with our best BSNet-SP-
SB model. Table 3 shows that 81.3% OA is the bottleneck of mainstream models, but the
BSNet-SP-SB model can reach 86.3%. The accuracy of most categories is much higher than
that of mainstream models, and the improvement is about 2.6–7.2% compared to the UNet.

The semantic segmentation models we compared are listed as follows:

(1) UNet++: This method is proposed by Zhou et al. [71] The UNet++ adds more nodes
to the UNet decoder and fuses features from different stages in a very dense form.

(2) LinkNet: This method is proposed by Chaurasia et al. [72] The LinkNet achieves
real-time semantic segmentation by reducing the complexity of the network and
ensuring high accuracy.

(3) PSPNet: This method is proposed by Zhao et al. [48] The PSPNet uses dilated con-
volutions to keep the resolution of feature maps, and uses the SPP module to extract
features at different scales.

(4) DeepLabV3+: This method is proposed by Chen et al. [73] The DeepLabV3+ is a
hybrid architecture based on backbone-style and encoder-decoder-style networks. It
uses atrous convolutions to keep the resolution of feature maps, and uses the ASPP
module to extract features at different scales.

(5) PAN: This method is proposed by Li et al. [74] The PAN uses the feature pyramid
attention (FPA) module to extract features at different scales, and uses the global
attention upsample (GAU) module to fuse features at different stages.

(6) UNet: This method is proposed by Ronneberger et al. [51] The UNet keeps the features
of each stage in the encoder, gradually upsample and restore the pooled features in
the decoder, and fuse them with the low-level features of the corresponding stage in
the encoder.

(7) BSNet: Our BSNet is the UNet with the block shuffle structure, the superpixel
branch, and the self-boosting method. For convenience, we note the BSNet-SP-SB in
Section 4.3.1 as BSNet here.

Table 3. Accuracy comparison between our BSNet and other methods on the Landsat core dataset.

Method WO GL WE WB CL AS BL Mean F1 OA

UNet++ 78.0 60.6 64.9 61.8 83.2 80.2 28.9 65.3 80.2
LinkNet 78.1 60.3 63.7 60.9 83.4 78.7 27.6 64.6 79.9
PSPNet 77.5 59.9 62.7 59.4 83.1 77.4 29.2 64.1 79.3

DeepLabV3+ 78.2 60.1 65.3 61.8 83.5 79.8 29.4 65.4 80.8
PAN 78.6 60.7 68.5 61.3 83.9 78.8 29.5 65.9 81.0
UNet 78.7 61.5 66.5 63.9 84.5 79.6 30.0 66.3 81.3

BSNet (Ours) 82.8 66.9 73.0 71.1 87.7 83.9 32.6 71.1 86.3

The visualized comparison of the mainstream models and our proposed BSNet model
on the LSC dataset is shown in Figure 12. In order to show more overall ground object
distribution and effects, we stitched together four adjacent tiles of 256× 256 pixels to obtain
one big tile of 512× 512 pixels. We used the stitched big tiles for visual analysis of the
results. In the first row, the distribution of woodland, grassland, cultivated land, and
small villages is complex. The mainstream models cannot effectively extract and maintain
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small target features and fine-grained features, so the grassland classification results are
erroneously combined together, and the cultivated land reversely occupies the grassland.
Some smaller villages are missed. With the help of the block shuffle structure and the
superpixel branch, our proposed BSNet optimizes extracting and keeping detailed features.
It can effectively distinguish grassland and cultivated land and extract smaller villages.

In the second row, medium-sized towns and small villages are distributed in flecks
and fragments, which requires the network to extract small objects and keep features.
The results of the mainstream models will link the artificial surface areas together and
ignore most of the cultivated land between the artificial surfaces. Also, some very small
villages have been missed. Our proposed BSNet effectively extracts these fragmented
cultivated land features, solves the problem of missed detection of cultivated land, and
greatly optimizes the results of small villages.

Figure 12. Some examples of the results on the Landsat core dataset. Comparison between our BSNet
and other methods. (a) Landsat image. (b) Ground truth. Inference result of (c) the UNet++, (d) the
LinkNet, (e) the PSPNet, (f) the DeepLabV3+, (g) the PAN, (h) the UNet, and (i) our proposed BSNet.

In the third row, grassland, woodland, bare land, cultivated land, and wetlands are
very complex and intertwined. There are also several small villages in this complex scene.
When the mainstream models face such a complex scene, the features of small targets
are easily occupied by the features of large targets. Therefore, in the classification results
of the mainstream models, some particular ground objects will dominate in the whole
scene, and many small target objects will be misclassified and ignored. For example, it is
wrongly classified as the wrong combination of bare land/grassland, wetland/bare land,
and wetland/woodland. Our proposed BSNet effectively distinguishes complex objects,
correctly classifies complex scenes, and keeps the features of small targets simultaneously.

In the fourth row, grassland and cultivated land are fragmented together, with grass-
land more dispersed and cultivated land more aggregated. Therefore, the cultivated land
encroaches on the grassland in the result of the mainstream models. That is, many grass-
lands are wrongly classified into cultivated land. Our proposed BSNet has a stronger
ability for small target feature extraction and fine-grained retention. Therefore, the frag-
mented grassland is extracted as much as possible, and the edge details are closer to the
natural scene. Although there are still a small number of missed detections, a significant
improvement has been achieved compared to the mainstream models.
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4.4. Experiments on the Landsat Extend Dataset
4.4.1. Ablation Study

To test the generalization ability of the modules and structures proposed in this paper
on Landsat images, we performed prediction and accuracy evaluation on the LSE dataset,
which was not involved in the training stage. As shown in Table 4, the accuracy of all
models is slightly lower than that of the LSC dataset. The reason is that the LSC dataset
participated in the accuracy validation during the training phase. We selected the optimal
model based on the accuracy of the validation set of the LSC dataset, and this model
performed the best in the LSC dataset. However, if the LSE dataset does not participate
in the training stage, it is normal that the accuracy will be relatively lower than that of
the LSC dataset. Because the geographic distributions of the two datasets are relatively
independent, a slight drop in accuracy indicates that the model has good generalization
ability, otherwise the accuracy on the LSE dataset will drop significantly. Our proposed
BSNet-SP-SB can still achieve 83.2% OA on the LSE dataset.

Table 4. The effect of the block shuffle structure, superpixel branch and self-boosting on Landsat
extend dataset.

Method WO GL WE WB CL AS BL Mean F1 OA

UNet 70.1 83.6 41.3 62.2 81.6 73.8 25.9 62.6 79.4
UNet-SP 71.3 84.7 43.9 64.0 82.2 75.9 26.3 64.0 81.4

UNet-SP-SB 71.9 85.0 44.4 65.2 82.6 76.6 26.9 64.6 81.8
BSNet 71.5 84.4 44.3 64.6 82.1 75.0 25.8 63.9 81.1

BSNet-SP 72.9 85.8 45.1 65.9 82.9 76.2 26.5 65.0 82.6
BSNet-SP-SB 73.3 86.1 45.2 66.7 83.4 77.1 27.0 65.5 83.2

The visualized comparison of our proposed block shuffle structure and superpixel
branch on the LSE dataset is shown in Figure 13. In order to show more overall ground
object distribution and effects, we stitched together four adjacent tiles of 256× 256 pixels
to obtain one big tile of 512× 512 pixels. We used the stitched big tiles for visual analysis
of the results. In the first row, the UNet misses many small fragmented woodland targets,
and the artificial surface has rough outlines. The BSNet extracts a small part of finely
fragmented woodland, and obtains more abundant artificial surface contour details. The
UNet-SP and the BSNet-SP extracted most of the finely fragmented woodland, and greatly
optimized the outlines of small villages and medium-sized towns.

In the second row, grassland, cultivated land, and small villages are staggered in the
upper left area. The UNet cannot effectively distinguish fragmented distributed features,
all of which are classified as grassland. The BSNet can extract the outline of the grassland,
but ignore most villages. The UNet-SP and the BSNet-SP correctly distinguish villages, and
optimize the details of interlaced outlines of woodland and grassland in other areas.

In the third row, in the large city scene, the UNet will ignore other small targets in the
middle of the city, and the contours of most target objects are relatively smooth. The BSNet
has improved some fine-grained features in the city area, such as smaller woodlands and
urban-rural fringe where cultivated land and towns are staggered together. The UNet-SP
and the BSNet-SP extract more small target objects in the city. The large woodland in the
upper left area and the intertwined area of the woodland/city on the right are all correctly
extracted. Compared with the UNet-SP, the BSNet-SP can keep more small target features.

In the fourth row, many small villages are ignored by the UNet. The BSNet extracts
most villages, but their edge contours are relatively smooth and incorrect. The UNet-SP
and the BSNet-SP significantly optimize the outlines of small villages and medium-sized
towns, making the boundaries more in line with the natural shapes of objects. It can be seen
that our proposed block shuffle structure and superpixel branch have good generalization
ability on Landsat images.
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Figure 13. Ablation study with the block shuffle structure and superpixel branch on Landsat extend
dataset. (a) Landsat image. (b) Ground truth. Inference result of (c) the UNet, (d) the UNet with the
block shuffle structure (BSNet), (e) the UNet with the superpixel branch (UNet-SP), and (f) the BSNet
with the superpixel branch (BSNet-SP).

The visualized comparison of our proposed self-boosting method on the LSE dataset
is shown in Figure 14. Since this method mainly optimizes the classification results at the
fine-grained edge, in order to show clearer details, we use small tiles of 256× 256 pixels
for visual analysis of the results. In natural scenes, for cultivated forests, grasslands, small
villages, and medium-sized towns with complex edge contours, the sawtooth shape at the
edge is more in line with the natural geographical scene. Since the decoder for semantic
segmentation loses jagged-shape details during upsampling, the semantic segmentation
results are inevitably smooth. Using the results of superpixel segmentation to refine and
correct the boundaries of semantic segmentation can greatly improve the fine-grainedness
of segmentation results. It can be seen that our proposed self-boosting method has good
generalization ability on Landsat images.
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Figure 14. Ablation study with the self-boosting method on Landsat extend dataset. (a) Landsat
image. (b) Ground truth. Inference result of (c) the UNet with the superpixel branch (UNet-SP),
(d) the UNet-SP with the self-boosting method (UNet-SP-SB), (e) the BSNet with the superpixel
branch (BSNet-SP), and (f) the BSNet-SP with the self-boosting method (BSNet-SP-SB).

4.4.2. Comparing Methods

To test and compare the generalization ability of the mainstream model and the BSNet-
SP-SB proposed in this paper, we performed predictions and accuracy evaluations on
the LSE dataset, which did not participate in the training stage. As shown in Table 5,
the accuracy of all models decreases slightly on the LSE dataset. Even so, our proposed
BSNet-SP-SB still surpasses other mainstream models on the LSE dataset, with an accuracy
of 83.2%. The mainstream semantic segmentation models are the same as Section 4.3.2. For
convenience, our BSNet-SP-SB is still noted as BSNet here.

Table 5. Accuracy comparison between our BSNet and other methods on the Landsat extend dataset.

Method WO GL WE WB CL AS BL Mean F1 OA

UNet++ 69.3 82.9 38.1 61.5 80.5 73.4 23.5 61.3 78.1
LinkNet 69.6 82.8 37.9 61.1 80.2 73.1 24.7 61.3 78.2
PSPNet 68.8 82.3 36.6 59.0 79.6 71.6 24.4 60.3 77.5

DeepLabV3+ 69.3 82.9 39.7 61.6 80.9 73.2 25.6 61.8 78.8
PAN 69.9 83.3 44.5 61.8 81.0 72.9 24.9 62.6 79.3
UNet 70.1 83.6 41.3 62.2 81.6 73.8 25.9 62.6 79.4

BSNet (Ours) 73.3 86.1 45.2 66.7 83.4 77.1 27.0 65.5 83.2
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The visualized comparison of the mainstream models and our proposed BSNet model
on the LSE dataset is shown in Figure 15. In order to show more overall ground object
distribution and effects, we stitched together four adjacent tiles of 256× 256 pixels to obtain
one big tile of 512× 512 pixels. We used the stitched big tiles for visual analysis of the
results. In the first row, the mainstream models lose the features of small villages and
grassland in the network. Therefore, these two categories of target objects are ignored or
occupied by cultivated land. Our proposed BSNet effectively extracts the features of these
small objects. In mainstream models, many patchy cultivated land inside medium-sized
towns will be occupied by artificial surfaces. In our method, most of them are correctly
classified.

In the second row, there are many small grassland targets in the large woodland in the
middle area, which is an absolute advantage over the grassland. The mainstream models
wrongly classify them into the woodland. The cultivated land around the woodland is
mixed with many small village targets. The mainstream models are also unable to extract
all the villages effectively. Our proposed BSNet can effectively extract the small objects that
are geographically disadvantaged to surrounding objects. It also shows that our method is
very effective for small object extraction.

Figure 15. Some examples of the results on the Landsat extend dataset. Comparison between our
BSNet and other methods. (a) Landsat image. (b) Ground truth. Inference result of (c) the UNet++,
(d) the LinkNet, (e) the PSPNet, (f) the DeepLabV3+, (g) the PAN, (h) the UNet, and (i) our proposed
BSNet.

In the third row, some small grasslands, woodlands, and water bodies are mixed
in large cities. The mainstream models cannot extract these small objects, and the cities
occupy these small objects in the result. Our proposed BSNet can still separate these small
objects from the dominant large ones. Besides, our edge details are also more accurate in
the surrounding small villages.

In the fourth row, the wetland features are similar to other categories, but the main-
stream models have limited feature extraction ability to distinguish similar features. There-
fore, the wetlands are wrongly classified into other categories in the result. The UNet can
extract wetlands correctly, but there are still misclassified water bodies inside the wetlands.
Our proposed BSNet has the stronger feature extraction ability and can keep more details
of features. So, the wetlands are successfully discriminated against from other classes in
the result.
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4.5. Experiments on the Landsat Supplement Dataset

To further test the generalization ability of the modules and structures proposed in
this paper on Landsat images, we performed prediction and accuracy evaluation on the
LSS dataset, which was further away from the training region. As shown in Table 6, the
accuracy of all models is lower than that of the LSC dataset and LSE dataset. The reason
is that Region SW is far away from Region N. There will be some scenes in the image
that have not appeared in the training set. Since DCNN is a fully data-driven supervised
learning method, there may be a reduction in accuracy in the face of unseen scenarios.
However, the reduction in accuracy is relatively small. We believe that the model still has
good generalization ability. Our method can still achieve 73.4% on the LSS dataset. The
visualized comparison of the mainstream models and our proposed BSNet model on the
LSS dataset is shown in Figure 16. Our proposed BSNet has better performance for small
objects and feature boundaries.

Table 6. Accuracy comparison between our BSNet and other methods on the Landsat supplement
dataset.

Method WO GL WE WB CL AS BL Mean F1 OA

UNet++ 73.7 66.7 31.1 55.7 73.2 71.1 19.7 55.8 67.8
LinkNet 72.2 69.8 27.5 51.1 74.0 68.2 19.4 54.6 65.9
PSPNet 73.2 60.8 30.8 51.9 70.2 73.8 22.2 54.7 66.3

DeepLabV3+ 73.7 65.3 32.6 53.1 72.2 68.0 24.2 55.5 67.2
PAN 75.1 63.3 31.6 51.2 72.5 72.5 22.0 55.4 67.0
UNet 72.6 67.5 33.6 58.2 74.4 73.0 22.0 57.3 68.8

BSNet (Ours) 78.0 72.6 39.4 61.9 76.3 77.5 26.9 61.8 73.4

Figure 16. Some examples of the results on the Landsat supplement dataset. Comparison between
our BSNet and other methods. (a) Landsat image. (b) Ground truth. Inference result of (c) the
UNet++, (d) the LinkNet, (e) the PSPNet, (f) the DeepLabV3+, (g) the PAN, (h) the UNet, and (i) our
proposed BSNet.

4.6. Large-Scale Landcover Mapping

We use the trained BSNet-SP-SB model with the highest accuracy to predict all the 16
tiles of Landsat images in the study area Region N. All prediction results are optimized
with superpixel segmentation results through the self-boosting method. Finally, we stitch
the classification results into a large map, as shown in Figure 17.
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We also use the trained BSNet-SP-SB model with the highest accuracy to predict all
the 4 tiles of Landsat images in the study area Region SW, as shown in Figure 18. It shows
that our proposed BSNet has a good generalization ability in Landsat images.

Figure 17. Large-scale classification results in parts of North China.
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Figure 18. Large-scale classification results in parts of Southwest China.

5. Discussion
5.1. Trade-Off in the Block Shuffle Structure

In the block shuffle structure, upsample scale significantly impacts model accuracy and
running efficiency. When the upsample scale is two times the original, the computational
overhead will reach four times. Although the model accuracy will increase with the
upsample scale, choosing between the computational cost and the model accuracy is a
trade-off problem.

We choose the upsample scale as 1, 2, 4, and 8 for comparative experiments. The
correspondence between upsample scale, GPU memory overhead, training/prediction
duration, and accuracy on the LSC dataset is shown in Table 7. The upsample scale equals
1 as the reference baseline.
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Table 7. The correspondence between upsample scale, GPU memory overhead, training/prediction
duration, and accuracy on the LSC dataset.

Upsample Scale GPU Memory Overhead Training/Prediction Duration Accuracy

1 1 1 81.33
2 5 4 82.70
4 17 16 83.71
8 65 64 83.86

We can find that with the increase of the upsample scale, the computation resources,
and running time overhead increase exponentially, but the model accuracy is improved
less and less. The visualized comparison of different upsample scale values is shown in
Figure 19. When the upsample scale is set to 2, the small target features extracted by the
network have improved, but some small objects are still missing. When the upsample scale
is set to 4, the network can extract more small target features, such as very small villages
or slender rivers and roads. When the upsample scale is set to 8, the improvement is very
slight, and there is no noticeable improvement in the result. Combined with its computing
overhead, the cost is too high to set a big upsample scale value.

Figure 19. The visualized comparison of different upsample scale values on the Landsat core dataset.
(a) Landsat image. (b) Ground truth. Inference result of (c) the BSNet with the upsample scale is 1,
(d) the BSNet with the upsample scale is 2, (e) the BSNet with the upsample scale is 4, and (f) the
BSNet with the upsample scale is 8.
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Therefore, we do not need to set the upsample scale too large in real projects. In this
paper, we set the upsample scale to 4 to improve the network feature extraction capability
while keeping the computational resources within an acceptable range.

5.2. Hyperparameters in Superpixel Branch

Nsegments represents the number of superpixel clusters. If this parameter is set too small,
different types of ground objects will be forced to be classified into the same superpixel
clusters. It results in wrong merging when using superpixel segmentation results to
optimize semantic segmentation results. Setting too large will cause the same category of
target objects to be segmented into too many small blocks. And it will also consume too
much GPU memory computing resources. We counted the semantic segmentation labels
in all samples, and the distribution of the number of target objects in each tile is shown in
Figure 20.

Figure 20. The distribution of the number of target objects in each tile of the sample.

We can see that most samples contain pixels between 1 to 400. The peak is around
90, the maximum value is 670, and the case of more than 400 is rare. Since the initial
positions of each superpixel cluster are regularly distributed in the image, there may be
multiple superpixel clusters in the same target objects. Some smaller target objects may not
match independent superpixel clusters without redundancy settings and are mistakenly
merged into adjacent superpixel clusters. Therefore, we set Nsegments to 1024, and there are
32 superpixel clusters in the height and width axis, which can solve the correspondence
problem between most superpixel clusters and semantic target objects. The computational
resource overhead caused by increasing the number of superpixel blocks to solve the
remaining few clusters is not cost-effective.

tmax represents the max number of iterations of the differentiable SLIC module. Since
the position of superpixel clusters is iteratively updated through k-means clustering, the
larger tmax, the more accurate the superpixel segmentation results. When tmax reaches a
certain number, the segmentation results tend to be stable, and continuing iterations will
not change the segmentation results. According to the SLIC and the SSN recommendations,
generally, tmax can be set to 10, and a larger value will only waste computing resources.
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Sconnectivity represents whether to merge small superpixel clusters into adjacent large
ones during the inference stage. We counted the semantic segmentation labels in the
samples, and the distribution of the pixel number by each target object is shown in Figure 21.
In the small tiles sample of 256× 256 pixels, there may exist target objects with more than
60,000 pixels, such as large areas of woodland or waterbodies, but this situation is rare.
Since superpixel segmentation is an over-segmentation method, it is inevitable that the
same target objects will be divided into multiple clusters, so we do not need to consider
the target objects with too many pixels. We take 500 pixels as the maximum value of the
statistics, see the inner small histogram. However, the histogram is mainly distributed
below 100, so we take 50 pixels as the maximum value of statistics, see the main histogram.

Figure 21. The distribution of the pixel number by each target object.

We can find that there are many target objects with a pixel count of less than 10,
and even more than 175,000 objects with only 1 pixel. There are also many small target
objects between 10 and 50. If we forcibly merge the small superpixel clusters, small
clusters may be merged into surrounding large clusters. If the two clusters themselves
have different semantic information, the small target objects will be occupied by the large
objects. Therefore, not merging small superpixel clusters is better for Landsat images.
Sconnectivity should be set to False. As shown in Figure 22, if Sconnectivity is set to True, some
small clusters are swallowed by the surrounding large clusters, resulting in more missed
detections. Merging the small clusters is a negative optimization.
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Figure 22. The effect of Sconnectivity on Landsat images. (a) Sconnectivity is set to False. (b) Sconnectivity is
set to True.

5.3. Compactness Weight in Loss Function

λcompactness represents the regularity of superpixel clusters. As shown in Figure 23, the
larger λcompactness is, the more regularity the superpixel cluster is, similar to the chessboard
distribution. The smaller λcompactness, the messier the superpixel cluster. The target objects
in nature are not distributed in a regular checkerboard, and most of the target objects’
distribution is very messy, so λcompactness should be set small. Superpixel segmentation will
have an obvious checkerboard effect when λcompactness is set too large, which is not suitable
for the geographically natural scene with the fragmented distribution. In this paper, we set
λcompactness to 0.01, which has a good superpixel segmentation effect on Landsat images.

Figure 23. The effect of λcompactness on Landsat images. (a) λcompactness is set to 0.01. (b) λcompactness is
set to 0.05. (c) λcompactness is set to 0.1. (d) λcompactness is set to 0.5.

5.4. Implications and Limitations

The BSNet proposed in this paper solves two problems encountered by DCNN in the
semantic segmentation of mid-resolution remote sensing images. The first problem is that
DCNN always ignores the small target objects. The second problem is that the edge contours
of the target objects are smooth and not refined enough. The Block Shuffle structure
enhances the Landsat image. It simulates the small target objects into larger target objects
so that the network encoder can retain the features of the small target object without being
lost. From the experimental results of this paper, the Block Shuffle structure can indeed
effectively solve the problem of small target objects missing in Landsat images. This method
is theoretically not limited to Landsat data, nor is it limited to mid-resolution images. It
theoretically has enhanced effects on small targets on all types of remote sensing images.
The Superpixel branch uses semantic segmentation labels to supervise the superpixel
reconstruction, and the entire branch is learnable. The gradient of the superpixel branch
can be passed to the semantic segmentation branch, and the two features are optimized
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and learned from each other. Therefore, it can also solve the missed detection of some
small target objects and poor boundary details to a certain extent. Deep learning semantic
segmentation is a purely data-driven method, while superpixel segmentation is a feature
extraction guided by specific rules. Information that pure data-driven methods may lose can
be extracted through guidance. Thus the two branches are complementary in methodology.
The self-boosting algorithm optimizes the semantic segmentation results through the
superpixel segmentation results. The results of semantic segmentation are smooth, and the
results of superpixel segmentation are more accurate but have no semantic information.
The two results just complement each other and optimize each other, which solves the
problem that the edge contour of the target object is not fine enough. This method is also
not limited to mid-resolution images and works in all pixel-level classification scenarios.
The more complex the target contour, the better the effect. In addition to the above two
problems that appear in mid-resolution images, there may be problems with small target
objects and imprecise contours in the entire field of remote sensing deep learning. Therefore,
the BSNet proposed in this paper can solve the general problems of remote sensing deep
learning and improve the performance of deep learning methods.

However, BSNet also has some flaws. The GPU computing resource overhead of BSNet
is too large, and the calculation speed is slow. Although the superpixel branch extracts
features from the semantic segmentation encoder, the two branches remain independent
of each other. The two branches are not completely unified at the level of loss function
optimization to learn features together. Because of this defect, the final result needs to be
optimized by the self-boosting method and cannot run BSNet training or inference by the
complete end-to-end process.

In future research, we will focus on more important features in the block shuffle
module, reduce feature redundancy, and try to optimize GPU computing resource overhead.
We will try to design a new loss function that calculates both semantic segmentation loss and
superpixel loss from the loss function level. So that semantic segmentation and superpixel
segmentation can learn as a whole, fully share feature weights, optimize each other, and
realize end-to-end training and inference. We will try to conduct experiments on different
data sources to find general problems that BSNet can solve in remote sensing deep learning.
We will not be limited to superpixels. We can try more feature extraction schemes with
specific rules and combine them with deep learning methods to solve more problems.

6. Conclusions

In this paper, we proposed a novel semantic segmentation method for Landsat images.
We designed a block shuffle structure to enhance the features of mid-resolution images
and improve the feature extraction capability of DCNN. We designed a superpixel branch
to supervise the superpixel segmentation with semantic segmentation labels, thereby
assisting the optimization of the feature extraction and improving the accuracy of semantic
segmentation. We designed a self-boosting method that integrates the semantic information
of the semantic segmentation results and the precise boundary information of the superpixel
segmentation results, which improves the fine-grainedness of the final segmentation results.
Our experiments with our proposed BSNet on our self-made large-scale Landsat land
cover dataset achieved state-of-the-art performance compared to other methods. In future
research, we will promote our proposed BSNet to more datasets.
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Abbreviations
The following abbreviations are used in this manuscript:

DCNN deep convolutional neural network
NDVI normalized difference vegetation index
NDWI normalized difference water index
NDBI normalized difference built-up index
BSNet block shuffle network
SSN superpixel sampling network
SPP spatial pooling pyramid
ASPP atrous spatial pyramid pooling
SLIC simple linear iterative clustering
IoU Intersection over Union
mIoU mean Intersection over Union
WO woodland
GL grassland
WE wetland
WB waterbody
CL cultivated land
AS artificial surface
BL bare land
LSC dataset Landsat core dataset
LSE dataset Landsat extend dataset
LSS dataset Landsat supplement dataset
OA overall accuracy
TP true positive
FP false positive
FN false negative
mF1 mean F1 score
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