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Abstract: Taking depth into consideration has been proven to improve the performance of semantic
segmentation through providing additional geometry information. Most existing works adopt a
two-stream network, extracting features from color images and depth images separately using two
branches of the same structure, which suffer from high memory and computation costs. We find
that depth features acquired by simple downsampling can also play a complementary part in the
semantic segmentation task, sometimes even better than the two-stream scheme with the same two
branches. In this paper, a novel and efficient depth fusion transformer network for aerial image
segmentation is proposed. The presented network utilizes patch merging to downsample depth
input and a depth-aware self-attention (DSA) module is designed to mitigate the gap caused by
difference between two branches and two modalities. Concretely, the DSA fuses depth features
and color features by computing depth similarity and impact on self-attention map calculated by
color feature. Extensive experiments on the ISPRS 2D semantic segmentation dataset validate the
efficiency and effectiveness of our method. With nearly half the parameters of traditional two-stream
scheme, our method acquires 83.82% mIoU on Vaihingen dataset outperforming other state-of-the-art
methods and 87.43% mIoU on Potsdam dataset comparable to the state-of-the-art.

Keywords: semantic segmentation; self-attention; depth fusion; transformer

1. Introduction

Semantic segmentation is a fundamental task in remote sensing and aims at assigning a
semantic label to each pixel. Most of the existing semantic segmentation networks are based
on the seminal work [1], a fully convolutional network (FCN). The standard paradigm of an
FCN model has an encoder–decoder architecture: The encoder learns feature representation,
while the decoder classifies features in a pixel level.

Although those FCN methods have achieved good results, there exists the problem
of induction bias in the process of image feature extraction, mainly caused by the weight
sharing mechanism of Convolution Neural Network (CNN) and local characteristics of
convolution operators. Convolution is insensitive to the global position of the feature and
only takes a small pixel region as input. In order to obtain the long-range dependence of
features, the pixel receptive field should be enlarged as much as possible. The proposal
of residual connection [2] and dilated convolution [3] alleviates this problem to a certain
extent, but it leads to the decrease in computational efficiency or the loss of details. Vision
Transformer [4], a network architecture based on self-attention, completely solves this
problem as self-attention computes on the whole image. At the same time, due to the
particularity of the form of self-attention calculation, the network does not need too many
parameters, and the training speed is faster. For the above reasons, the segmentation
method based on Transformer has achieved better results than the CNN method, and its
potential has not been tapped yet.
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On the other hand, the availability of point cloud acquired by Lidar or Photogrammetry
makes it possible to label an aerial image with additional elevation information. One way
to utilize the point cloud is to produce Digital Surface Models (DSM) or normalized Digital
Surface Models (nDSM) first [5,6]. Then, DSM is treated as a depth image, and thus the
problem converts to an RGB-D semantic segmentation problem, helping to distinguish
those ground objects that are easy to be confused with only appearance. However, fusing
depth into an existing semantic segmentation network is not trivial. Simply stacking
color and depth images together and inputting them to the network usually obtains an
unsatisfactory result [7].

Most works considering depth adopt a two-steam style [8–14]. Color images and
depth maps are fed separately into two branches with the same structure, and the learned
features are fused in the encoder or decoder phase. It is obvious that the later features are
to fuse, the more parameters and more computation are needed, as two branches double
the cost. There comes an urgent need to fuse depth information in a lightweight manner.
Moreover, color images contain more information than depth mapa, and their internal
information types are different. It is reasonable to treat depth maps differently. Meanwhile,
the depth map of a single view has limited power in presenting geometric features. It may
be better to use depth as an aid to color image segmentation.

Depth-aware CNN [15] designs the variant convolution and pooling modules to take
depth into account and do not introduce any parameters and computation complexity
to the conventional CNN. It is a feasible direction to solve the computational problem,
but several limitations exist. Firstly, the convolution operator computes on a fixed sized
window and thus can only fuse local depth information. Secondly, it is restricted to CNN
methods, and there remains space to explore the nowadays prevalent transformer network.
Thirdly, it and its following works [16–18] represent a trend to fuse depth in a handcraft
design, which loses the advantages of a two-stream scheme and is not easy to cooperate
with existing 2D networks. In order to extend those RGB segmentation networks to RGB-D,
we should replace convolution with the variant in the special locations which include extra
hyperparameters.

To overcome the aforementioned challenges, the proposed method still adopts different
branches to ease the burden on depth feature extraction, while still using the two-stream
scheme to ensure the network’s simplicity and flexibility. The depth-aware CNN’s success
reveals the probability of fusing depth features without too much extraction from depth
maps, which enlightens us on the design of a lightweight depth branch. In the presented
model, a simple image downsampling strategy through patch merging [19] is adopted to
form a multiscale structure and meanwhile maintain information by extending channel
numbers. Furthermore, in order to mitigate the gap caused by the different structures of
the branches, a novel depth-aware self-attention module is designed, which is able to fuse
depth in a global context.

In this paper, our main contributions can be summarized as follows:

• Differing from conventional two-stream networks of the same two branches, in order
to improve the computational efficiency, our network adopts two different branches,
which includes a novel depth branch of four downsampling convolution layers.

• Two kinds of self-attention module are proposed to mitigate the gap caused by teh
difference between two branches and two modalities. We validate their capability and
flexibility on the problem of multi-modal feature fusion.

• With the above two designs and the backbone transformer, we propose a more effi-
cient network for RGB-D semantic segmentation task: Efficient Depth Fusion Trans-
former (EDFT).

The code is published at https://github.com/h1063135843/EDFT accessed on 1 March
2022.

https://github.com/h1063135843/EDFT
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2. Related Works

Concerning the proposed transformer network model for RGB-D segmentation tasks
and the attention module for color and depth features fusion, this section discusses the
related works from three aspects:

2.1. Acquiring Long-Range Dependency

Limited by the characteristics of convolution, a pixel can only perceive a small area
around it, which is not good for segmentation. Statistically, Sun found that the central pixels
on a patch could obtain higher classification accuracy than the edge areas [20]. Because of
the padding and pooling operations, the pixels of edge areas have smaller receptive fields.

In CNN methods, deeper layers or bigger kernels are usually adopted to enlarge the
receptive fields. Under the balance between the size of receptive field and the computation
cost, how to improve the interaction ability of pixel features in the decoder phase becomes
important, which can indirectly expand the receptive field. By imitating the channel
attention mechanism [21], S-RA-FCN [22] designed a spatial relation module to capture
global spatial relations. Furthermore, HMANet [23] introduced class information to this
process of spatial interaction.

Self-attention could also be applied in the decoder phase to interact with the features,
which, however, comes with a high computational cost. Li reduced the time complexity
of the computation by exchanging matrix multiplication order through linearization [24].
HMANet [23] introduced a region shuffle attention module to improve the efficiency of the
self-attention mechanism through reducing redundant features and forming region-wise
representations.

With the development of computer vision and its related problems being solved, the
transformer-based network can use self-attention to obtain receptive fields as large as
the whole image. In the transformer-based network, self-attention is treated as the main
operation in the encoder phase and not only as a single module in the decoder phase.
References [25,26] applied a transformer model on remote imagery successfully. However,
they only considered color features as inputs. The performance of the transformer on an
RGB-D segmentation task also needs to be evaluated.

2.2. RGB-D Segmentation by Deep Learning

According to the fusion position, an RGB-D segmentation network can be partitioned
into three categories [27]. Usually, the stack scheme is considered as early fusion [1,5,28–31],
while the two-stream scheme fusing depth in the encoder phase tends to be middle fu-
sion [8–12] and in the decoder phase to be late fusion [13,14]. Chen et al. [28] adopted early
fusion but acquired promising results by learning two features independently with group
convolution. The article [8] compared these three categories and drew the conclusion that
middle fusion could improve segmentation accuracy by jointly learning stronger multi-
modal features, while late fusion can recover errors from those pixels easy to be confused
by a single modality.

Although middle fusion and late fusion could achieve satisfactory results from the
perspective of accuracy, they are not efficient enough. Hence, in this paper, we design a
lightweight depth branch to extract depth information.

2.3. Attention for RGB-D Fusion

Concerning the RGB-D segmentation problem, both the fusion position and fusion
strategy are taken into consideration. Performing concatenation or adding operations to
fuse color and depth is an equal-weight score fusion, ignoring the varying distributions of
color and depth on different categories. A channel attention mechanism was introduced
by SENet [21] and used to perform feature recalibration. It models the importance of
different channels by squeezing the feature map to a 1D vector and selectively emphasizing
informative features by multiplication of importance vector and original feature. Related
researchers also applied channel attention module (CAM) for RGB-D fusion problem [10,12].
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While CAM-DFCN [12] employs CAM solving both RGB-D fusion and multiscale feature
fusion with concatenation of inputs, ACNet [10] recalibrate color and depth separately and
forms a third virtual branch similar to [8]. Channel attention selects features from color
and depth from the channel perspective, but it lacks the global contrast to two modalities.
LSD-GF designed a gated fusion layer to weight color and depth on the whole and adjust
the contributions of RGB and depth over each pixel [13]. SA-Gate [11] combined the
gate design with channel attention and spatial attention bidirectionally and demonstrated
impressive performance.

Self-attention’s success in both fields of computer vision and natural language pro-
cessing shows its ability of feature modeling in different modalities. Inspired by this, in
this paper, we introduced it into the RGB-D fusion process. Furthermore, two kinds of DSA
are designed and compared to decide whether the global weighting paradigm or channel
weighting paradigm performs better through an ablation study.

3. Method

This section describes the proposed DSA module and the network architecture of
Efficient Depth Fusion Transformer (EDFT). EDFT is a two-steam style network with
different branches, and the color branch is a transformer encoder, while the depth branch
consists of only four convolution layers. DSA modules fuse color and depth features, and
then output multistage features to a lightweight All-MLP (multi-layer perceptron) decoder
adopted in Segformer.

3.1. Network Architecture

Firstly, the Segformer [32] used as our baseline method is briefly introduced. Then, a
conventional two-stream scheme to handle RGB-D input is designed and explained. Finally,
we improve the two-stream scheme and propose the EDFT to achieve both high accuracy
and efficiency.

3.1.1. Segformer Network

In this section, towards a better understanding of our baseline method, the features of
Segformer are clarified.

Segformer adopts an encoder–decoder architecture. The encoder is a hierarchical
transformer and generates multiscale and multistage features like most CNN methods.
There is a series of encoders, Segformer-B0 to Segformer-B5, with the same size outputs but
different depth of layers in each stage. The decoder consists of only MLP layers and fuses
multi-level features. Due to its simplicity and efficiency, the Segformer is chosen as our
baseline method. In addition, it is also very convenient for other transformer backbones to
be adapted to our proposed network.

Segformer does not use position embedding to introduce local information, but uses
Mix-FFN and overlapped patch merging instead. Mix-FFN insert a 3 × 3 Convolution
between two layers of MLP in the feed-forward network. Overlapped patch merging
unifies the formal of the patch operations such as patch embedding and patch merging,
both of which could be performed by the convolution of odd kernel sizes.

Input image sizes of H ×W × 3 (or 1) are embedded to feature sizes of H
4 ×

W
4 × C

after the first overlapped patch merging module, where C is the embedding dimension.
Take an input feature size of h × w × c, for example: The other three overlapped patch-
merging modules output a feature size of h

2 ×
w
2 × 2c. The word “overlap” represents the

odd kernel size of the convolution, and it helps the transformer consider local information.
The encoder in Figure 1a and the decoder in Figure 1d form the Segformer network.
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Figure 1. Connection between Segformer and our method EDFT. There are three networks depicted
in Section 3, differing in the encoder structure. While Segformer only handles color input, the other
two networks are designed for RGB-D segmentation.

3.1.2. Conventional Two-Stream Scheme

As simple stacking color and depth input can’t get satisfactory results, it is better to
adapt Segformer to a two-stream network, fusing depth information in the encoder phase
or decoder phase.

According to [8], the network adopts a middle fusion strategy and fuses color and
depth features in the encoder phase to obtain a higher accuracy. Therefore, the network
consists of two encoders and one decoder. The only difference between the two encoders
lies in the first convolution layer, as color and depth inputs have different channels. Simple
addition operation fuses two kinds of features in the same stage.

Moreover, where to fuse features in the encoder phase also needs to be decided. For
the SegNet-like [33] network whose encoder outputs only the last stage feature, it is better
to use the FuseNet [9] architecture, which passes the fused features in the previous stage to
the next stage. However, our baseline method is a UNet-like [34] network whose encoder
has multi-stage outputs. We argue that maybe it is better to pass the fused features to the
decoder directly after the fusion process, as introducing depth information to color feature
learning too early could harm the forming process of multiscale features. The encoder in
Figure 1b and the decoder in Figure 1d form the Two-Stream Segformer network to handle
the RGB-D segmentation task.

3.1.3. EDFT Network

To fuse depth information in a lightweight manner, a novel EDFT Network is proposed,
which is a two-stream network with two different branches. It is reasonable for the two
branches to adopt different structure, as color and depth modalities are complementary as
they contain different kinds of information.

In Depth-Aware CNN [15], the pixel weight in the convolution process is determined
by the trained parameter and difference between its corresponding depth and the center
pixel’s depth. To keep a one-to-one mapping between color feature and original depth map,
the depth map should be downsampled at the same time the color feature’ resolution de-
creases. We add a branch handling depth with a downsampling module to the existing RGB
network explicitly and use overlap patch merging to downsample the image; meanwhile,
we maintain information that may be lost in the downsampling process. Furthermore, it
provides convenience for the following fusion process, as the depth branch outputs features
the same size as the color branch.
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We evaluate the experimental performance of the model with depth branch consisting
of only downsample modules, which uses add operation to fuse features. This kind of
model is denoted as “two-stream-differ” in this paper, while the conventional two-stream
model is denoted as “two-stream-same”. As the experimental result shows, it is also
beneficial for improving the model accuracy to fuse depth features only extracted by patch
merging, and the “two-stream-differ” is even better than the “two-stream-same” in some
situations. Nonetheless, it is also sometimes worse than the “two-stream-same”.

To make the best use of two kinds of features and mitigate the gaps between different
branches and modalities, we propose the depth-aware self-attention module and replace
simple addition with it to fuse features. The encoder in Figure 1c and the decoder in
Figure 1d form our proposed EDFT network for RGB-D segmentation tasks.

3.2. Depth-Aware Self-Attention Module

Owing to the flexibility of similarity measurement, self-attention mechanism is very
suited to fusing multi-modal features (not only between color and depth). Self similarity
in each modality is computed first, and then the results of similarity measurements are
combined to acquire a complex similarity considering two sides. It fuses features of different
properties and different categories easily, which assign the Transformer the ability of very
powerful joint feature modeling. Leveraging advantages of different data sources, the
model can achieve higher accuracy and reliability.

In this section, the computation of self-attention is introduced first, and then two ways
to cooperate depth into self-attention computation are explored.

3.2.1. Computation of Self-Attention

Given a feature F of size h × w × c, self-attention first reshapes it into an n × c vector,
where n = h × w is the pixel number. Then, three linear layers project the input feature to
the query, key, and value matrices, which have the same dimensions as the input:

Q = W1F, K = W2F, V = W3F (1)

where W1, W2, W3 are the learned weight matrices of three linear layers, and F is the input
feature of self-attention.

Query and key perform a dot product operation to measure similarity between two
pixels i and j along channel dimension: sim(i, j) = qikT

j , where qi means the ith column
vector of query matrix Q in Equation (1), and k j means the jth column vector of key
matrix K.

Similarity is scaled by a factor, the square of channel dimension, and normalized by
softmax operation on account of all pixels to generate the contribution of pixel i to pixel

j wij : wij =
esim(i,j)/

√
c

∑j esim(i,j)/
√

c , where c is the dimension of the input feature. The final result of

computation ai is a weighted sum of value matrices: ai = ∑j wijvj, where vj means the jth
column vector of value matrix V in Equation (1).

The above process of computing self-attention could be written in the format of matrix
multiplication:

Attention(Q, K, V) = So f tMax(
QKT
√

c
)V (2)

where Q, K, V is calculated by Equation (1), and c is the dimension of the input feature.

3.2.2. Fusing Depth in a Concat Mode

This subsection describes the module DSA-concat. There is a simple but effective
solution to take consideration of depth during the process of computing self-attention. By
concatenating color feature C and depth feature D and taking the concatenation result
as input F, it extends the feature from the channel perspective, leverages the channel
interaction of self-attention mechanism, and reaches the goal of fusing the two features.
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As illustrated in Figure 2, residual learning is used to propagate better, preventing
from gradient vanish. Furthermore, we slice the output and fetch only the front half part
corresponding to the input color feature. It is designed for the purpose of considering depth
features as a complementary data source. The computation of depth-aware self-attention
in a concat mode could be depicted by the following formula:

F = concat(C, D) (3)

DSA(F) = slice(SA(F) + F) (4)

where C is the input color feature, and D is the input depth feature. SA is the abbreviation
of self-attention depicted in Section 3.2.1, and it equals to Equations (1) and (2).

Figure 2. Depth-aware Self-attention Module in a concat mode.

3.2.3. Fusing Depth in an Addition Mode

This subsection describes the moudle DSA-add. Although we use slice operation to
highlight color features, DSA-concat still lacks discriminatory actions over color and depth
in a global manner. We propose a more lightweight and more flexible module to handle
this problem.

As known to us, the core of self-attention mechanism lies in the similarity measurement.
However, inner product by which color measures similarity may not be suited for depth.
On intuition, the absolute difference between two pixels’ depth can measure the similarity:
simdepth(i, j) = −|di − dj|, where di means the depth of pixel i. The minus sign ensures that
pixels of closer depth are more similar. In addition, depth similarity could be also regarded
as the subtraction format of vector attention [35]. Then, a weight coefficient λ is applied to
balance color and depth items in the formula of composite similarity measurement:

simcomposite(i, j) = qikT
j − λ|di − dj| (5)

where qi means the ith column vector of query matrix Q in Equation (1), and k j means the
jth column vector of key matrix K. di is the depth of pixel i, and λ is a weight coefficient.

To obtain the depth difference between two pixels from a depth feature of size
h × w × c, global average pooling (GAP) operation [36] along channel dimension is used
to restore depth features to size of h × w × 1. Then, the feature is reshaped to an n × 1
vector, and copied n times to expand into an n × n matrix De. These processes ensure
that depth similarity measurement could be depicted in matrix format, which is vital for
acceleration. Depth-aware self-attention in an addition mode is illustrated as Figure 3 and
computed as:

DSA(Q, K, V, De) = So f tMax(
QKT − λ|De − DT

e |√
c

)V (6)

De = expand ◦ reshape ◦ GAP(D) (7)

where ◦ means the functional composite operation. Q, K, V is calculated by Equation (1). D
is the input depth feature, and De is an intermediate format of depth feature.
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Figure 3. Depth-aware Self-attention Module in an addition mode.

4. Experiments

To validate the proposed network, we conduct comprehensive experiments on IS-
PRS Semantic Labeling Contest (2D) (http://www2.isprs.org/commissions/comm3/wg4
/semantic-labeling.html (accessed on 27 May 2021)). The experimental results demonstrate
that EDFT achieves comparable performance to the state-of-the-art on two datasets. This
section first introduces experimental settings such as experimental datasets, accuracy met-
rics, and some implementation details. Then, the efficiency and effectiveness of the model
are verified over two datasets. A series of experiments are conducted to study the effect of
different modules and different parameters.

4.1. Experimental Settings
4.1.1. DataSets

ISPRS Semantic Labling Contest (2D) contains two image datasets acquired over
Vaihingen and Potsdam (two citys in Germany), consisting of very high-resolution aerial
images, corresponding DSMs, and ground labeling truth. Each pixel in the image is
assigned to the one of six classes: impervious surface, building, low vegetation, tree, car,
and clutter. To reduce the impact of uncertain border definitions on the evaluation, we use
the annotation with eroded boundary provided by the organizer and ignore the eroded
areas during evaluation.

Vaihingen Dataset has 16 training images and 17 testing images, following the previous
works [22,23,29–31,37]. Images are resized to the average size of 2048× 1536, and randomly
cropped into images with a size of 256 × 256 when training. The Potsdam Dataset has
24 training images and 14 testing images. All are images have a size of 6000 × 6000. To
save the loading time in the training phase, images are parted into 2000 × 2000 tiles and
randomly cropped into 512 × 512 to augment data.

Both datasets provide DSM data extracted from the Lidar point cloud. In all experi-
ments, we only use nDSM and treat it as a depth image. On the Vaihingen dataset, we use
nDSM from [38], while on the Potsdam dataset, we use that from ISPRS official.

4.1.2. Metrics

All models are evaluated based on the pixel-based confusion matrices. Confusion
matrices represent counts from predicted values in the column direction and the actual
values in the row direction. The True Positives (TP) are the pixels on the main diagonal. The
False Positive (FP) is the accumulation per column, excluding the main diagonal element,
while the False Negative (FN) is along the row.

From the TPs, FPs, and FNs per class, the following measures are derived: Recall,
Precision, F1 score, Intersection over Union (IoU), and Overall Accuracy (OA). They are
defined as follows:

F1 = (1+β2s)
Precision · Recall

β2 · Precision + Recall
(8)

http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html
http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html
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Precision =
TP

TP + FP
, Recall =

TP
TP + FN

(9)

IoU =
TP

TP + FP + FN
, OA =

TP + FN
N

(10)

where β = 1, and N is the number of all pixels. OA is evaluated over a whole image, while
F1 and IoU are evaluated for a specific class. Mean F1 and mIoU are the average of those
for the six classes.

4.1.3. Implementation Details

Segformer in mmseg (https://github.com/open-mmlab/mmsegmentation.(accessed
on 26 August 2021)) is utilized as our baseline method for its simplicity and efficiency. All
experiments are conducted on a single GeForce RTX 3090. Most experimental settings are
the same as the original Segformer, but several following parameters differ. We train the
model for 80k iterations and set the batch size to 2. The normalization parameters are
acquired by statistics from corresponding datasets, as color data contain IR bands and there
is no reference for depth. PhotoMetric distortion is discarded as it is not suitable for depth.
We test images with a sliding window size of 256 × 256 for the Vaihingen dataset and
512 × 512 for the Potsdam dataset, as remote images have the higher resolution.

4.2. Compare to the State-of-the-Art
4.2.1. Efficiency Contrast

To verify the universality and efficiency, the baseline models of different sizes (from B0
to B5) are adapted according to the proposed method presented in this paper and measured
by Params, GFlops, and other accuracy metrics. The results are shown in Figure 4. As
shown in the figure, “two-stream-differ” and EDFT network using only the downsampling
module can only increase the computational cost and the number of parameters by a
fixed small value, unlike the “two-stream-same”, which increases by nearly two times.
On the whole, the accuracy of the “two-stream-differ” is higher than that of the baseline
method and lower than that of the “two-stream-same”, but in some cases, the results are
the opposite (B2 is higher than that of the “two-stream-same”, and B4 is lower than that of
the baseline method).

When the color branch size changes, the structure of depth branch is fixed, and we
infer that the inconsistency of the experimental results may be the embodiment of the
structural difference between the two branches. The disadvantage of addition fusion
is further enlarged in the case of “two-stream-differ”. DSA module in EDFT network
considers the difference between two modalities and the difference between two branches,
fuses the extracted features of two modalities, and achieves the highest accuracy without
significantly increasing the computational cost and parameter number.

4.2.2. Results on Vaihingen and Potsdam

Experimental results on Vaihingen and Potsdam datasets are shown in Tables 1 and 2.
The results of [8,20,22,23,29,31,39–41] are quoted from their papers, while the results
of [4,19,32,42] and our models EDFT are trained and tested by the implementation in
mmseg with multiscale inference. These two tables show that EDFT obtains comparable
performance to the state-of-the-art. Almost all the items obtain the best or the second best
performance. The performance on Potsdam may look a little worse than on Vaihingen,
and it is caused by the attribute of the baseline model Segformer. The spatial resolution of
Potsdam tiles are 5 cm, while one of the Vaihingen tiles are 9 cm. In addition, the average
size of Potsdam tiles is almost three times than the one of Vaihingen tiles. Segformer
decoder is lightweight but not friendly to the high-resolution and big size images (Table 3
verifies it. With uperhead [42], both of Segformer and EDFT obtain a higher accuracy on
the Potsdam test set). On the contrary, our method’s improvements over the baseline are
relatively consistent on two datasets.

https://github.com/open-mmlab/mmsegmentation.
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Figure 4. Performance and model efficiency on Vaihingen test set. For each best configuration, EDFT
obtains 0.56% mIoU gains over the baseline method with additional 3.09 millions parameter, while
traditional two-stream network (add-same) obtains 0.18% mIoU gains over the baseline method with
additional 60.84 millions parameter.

This paper aims at providing an efficient way to cooperate with depth information
in the nowadays prevalent transformer architecture. EDFT obtains the best performance
among models employing nDSM. In the early works [22,29,31,39], IRRG input stacked
with nDSM are used. However, since [7,8] pointed out that simple stacking strategy is
harmful, few works use nDSM (GANet [41] uses it but in a different way, joint height
estimation). Rather than adopting a two-stream strategy to consider depth, researchers
prefer the design of sophisticated backbone and decoder, and devote limited GPU memory
to them. It is caused by the disproportion of costs and benefits of previous method using
depth information. Our method provides a solution to this problem and may help the later
emergent models to obtain a higher accuracy.
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Table 1. Comparisons with the state-of-the-art on Vaihingen test set, where * represents the method
employing DSM or nDSM, ** represents transformer backbone, and - represents missing data. The
values in bold are the best and the values underlined are the second best.

Method Backbone Imp.surf. Building Low Veg. Tree Car Mean F1 OA (%) mIoU (%)

UZ_1 * [29] CNN-FPL 89.20 92.50 81.60 86.90 57.30 81.50 87.30 -
Maggiori et al. * [31] FCN 91.69 95.24 79.44 88.12 78.42 86.58 88.92 -

S-RA-FCN [22] VGG-16 91.47 94.97 80.63 88.57 87.05 88.54 89.23 79.76
V-FuseNet * [8] VGG-16 91.00 94.40 84.50 89.90 86.30 89.22 90.00 -
TreeUNet * [39] VGG-16 92.50 94.90 83.60 89.60 85.90 89.30 90.40 -

VIT [4] Vit-L ** 92.7 95.32 84.36 89.73 82.28 88.88 90.67 80.33
UperNet [42] ResNet-101 92.37 95.62 84.44 89.97 87.92 90.06 90.71 82.14
CASIA [40] ResNet-101 93.20 96.00 84.70 89.90 86.70 90.10 91.10 -
Swin [19] Swin-S ** 93.21 95.97 84.9 90.21 87.74 90.41 91.26 82.73

GANet * [41] ResNet-101 93.10 95.90 84.60 90.10 88.40 90.42 91.30 -
HUSTW [20] ResegNet 93.30 96.10 86.40 90.80 74.60 88.24 91.60 -
HMANet [23] ResNet-101 93.50 95.86 85.41 90.40 89.63 90.96 91.44 83.49
Segformer [32] MiT-B4 ** 93.49 96.27 85.09 90.31 89.63 90.96 91.51 83.63
EDFT (ours) * MiT-B4 ** 93.40 96.35 85.52 90.57 89.55 91.08 91.65 83.82

Table 2. Comparisons with state-of-the-art on Potsdam test set, where * represents the method
employing DSM or NDSM, ** represents transformer backbone, and - represents missing data. The
values in bold are the best and the values underlined are the second best.

Method Backbone Imp.surf. Building Low Veg. Tree Car Mean F1 OA (%) mIoU (%)

UZ_1 * [29] CNN-FPL 89.30 95.40 81.80 80.50 86.50 86.70 85.80 -
Maggiori et al. * [31] FCN 89.31 94.37 84.83 81.10 93.56 86.62 87.02 -

S-RA-FCN [22] VGG-16 91.33 94.70 86.81 83.47 94.52 90.17 88.59 82.38
VIT [4] Vit-L ** 93.17 95.90 87.11 88.04 94.88 91.82 90.42 85.08

UperNet [42] Resnet-101 93.27 96.78 86.82 88.62 96.07 92.31 90.42 85.97
V-FuseNet * [8] VGG-16 92.70 96.30 87.30 88.50 95.40 92.04 90.60 -
TreeUNet * [39] VGG-16 93.10 97.30 86.60 87.10 95.80 91.98 90.70 -

CASIA [40] ResNet-101 93.40 96.80 87.60 88.30 96.10 92.44 91.00 -
GANet * [41] ResNet-101 93.00 97.30 88.20 89.50 96.80 92.96 91.30 -
HUSTW [20] ResegNet 93.60 97.60 88.50 88.80 94.60 92.62 91.60 -

Swin [19] Swin-S ** 94.02 97.24 88.39 89.08 96.32 93.01 91.70 87.15
Segformer [32] MiT-B4 ** 94.27 97.43 88.28 89.09 96.25 93.07 91.78 87.26
HMANet [23] ResNet101 93.85 97.56 88.65 89.12 96.84 93.20 92.21 87.28
EDFT (ours) * MiT-B4 ** 94.08 97.31 88.63 89.29 96.53 93.17 91.85 87.43

Table 3. Different decoder’s influence on the Potsdam test set. The values in bold are the best.

Method Decoder Imp.surf. Building Low Veg. Tree Car Mean F1 OA (%) mIoU (%)

Segformer [32] ALL-MLP 94.27 97.43 88.28 89.09 96.25 93.07 91.78 87.26
Segformer [32] Uperhead 94.33 97.48 88.38 89.24 96.27 93.14 91.87 87.38
EDFT (ours) ALL-MLP 94.08 97.31 88.63 89.29 96.53 93.17 91.85 87.43
EDFT (ours) Uperhead 94.17 97.50 88.64 89.66 96.42 93.28 91.91 87.61

4.2.3. Visual Comparison

This subsection demonstrates advantages of introducing depth information by compar-
ing visual inference of different methods. Figure 5 shows testing images and full inference
maps of three areas from Vaihingen dataset. Figure 6 shows details of seven regions framed
in Figure 5.

In depth maps, ground objects with higher elevation have brighter pixels. Introducing
depth helps the model to distinguish those pixels that are easy to be confused. Rectangle
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A (Swin and EDFT classify right) and C (only EDFT classifies right) are examples of
impervious surface misclassified to the building, while B (only Segformer classify wrong) is
an example of a building misclassified as an impervious surface. The appearance of A and
C (For the sake of illustration, we may use the label referring to the problematic part not the
whole patch) are very similar to the building, and especially in A there is a bounding wall
like the edge of the building. Near the edge of the building in B, some pixels are labeled
correctly, but more pixels are classified to impervious surface out of similar appearance.
D (only EDFT classifies right) is an example of a building misclassified as low vegetation.
Instead, EDFT can label these examples correctly by taking depth into consideration.

Figure 5. Visual comparison of different methods: (a) Color images(IRRG); (b) Depth images;
(c) Ground truth; (d) Upernet; (e) Swin; (f) Segformer-B4; (g) EDFT-B4. Three rows of images
represent the area 10, 27, and 33 from the Vaihingen dataset. The inference map is labeled with
impervious surface (white), building (blue), low vegetation (cyan), tree (green), car (yellow), and
clutter (red).

In addition to improving the model’s ability to distinguish impervious surface from
building, introducing depth helps the model tell apart low vegetation and tree. Obviously,
using absolute elevation of ground objects can distinguish low vegetation from tree like G
(Upernet and EDFT classify right), but EDFT does not work in this way. The model still
classifies those low vegetation pixels on the building correctly in F and B, although ground
truth regards them as buildings. There are also some disadvantages of introducing depth.
The segmentation accuracy is influenced by the accuracy of depth. As there is a height
mistake in E (only EDFT classifies wrong), EDFT misclassifies the road between two houses
as a building. To be noticed, there are some other factors not shown in the pictures, such as
mistakes of ground truth and boundary flaws of orthophoto.
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Figure 6. Details of the regions framed in green in Figure 5. From top to bottom, there are seven
subfigures labeled from (A–G). The palette and the meaning of each column are the same as above.

4.2.4. Confusion Matrices

This subsection displays the visualization results of confusion matrices. Figure 7e,f
demonstrate clearly the benefit of introducing depth, and the advantages of EDFT over
conventional two-stream network. From the quantitative result, we could also draw the
same conclusion as in the previous section.

Introducing depth helps the model to classify those classes that are easy to be confused.
It increases the building accuracy by decreasing the number of pixels which are impervious
surfaces or low vegetation but were misclassified as buildings. By correct handling those
“hard” pixels, the TP vales of four classes all increase. To be noticed, clutter are objects not
belong to the five other class and are less important.

EDFT has a stronger ability to distinguish low vegetation from tree than conventional
two-stream network. It may be owed to DSA-add, which treats depth in a softer way. As
Figure 7e shows, “two-stream-same” is likely to convert some pixels of the low vegetation
class to the tree class. However, in Figure 7f, the number of pixels which are trees but are
misclassified does not increase too much, and thus, the ability to distinguish the two classes
has improved.
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Figure 7. Visualization results of confusion matrices on Vaihingen test set. The top row displays three
compared models (Segformer, “two-stream-same”, EDFT), and the model size is B0. The bottom left is
the confusion matrix of EDFT without normalization. To make it easier to compare, we visualize the
difference between the confusion matrix of Segformer and the one of the other two models (bottom
middle and right).

4.3. Ablation Study
4.3.1. Downsample Scheme

EDFT differs from a traditional two-stream network in two main points: It only uses
downsampling to extract depth features and uses self-attention to fuse features of two
modalities. It is necessary to confirm through the experiment which sampling scheme is the
most appropriate. The experiments use convolution to downsample images, and discusses
whether it is necessary to introduce local information, and whether it is necessary to retain
information loss caused by the downsampling operation. The results in Table 4 show that
retaining the information lost in the downsampling operation by expanding the dimension
of the output feature channel is beneficial to improving the accuracy, while the introduction
of local information has its advantages and disadvantages. Simply put, the final EDFT
employs overlapped patch merging to conduct downsampling.
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Table 4. Different downsample scheme on Vaihingen test set. Model size is B4. Convolution on the
non-overlapped patch has an even kernel size the same as strides, while overlapped patch merging
uses odd kernel size convolution with stride half of kernel size. Patch embedding changes the
dimension of convolution output from 1 to C (a user parameter, influence of C, is studied in [32]).
Here, the method using no embedding just copies output and expands it to the C dimension.

Overlap Embedding mIoU (%) OA (%)

82.39 91.02
82.47 91.12
82.16 90.96
82.26 91.21

4.3.2. Attention Type

To mitigate the gap caused by the difference between two branches and two modalities,
we use an attention model fusing two features. Here, we discuss the effect of different
attention mechanisms towards multi-modal feature fusion in the case of “two stream-differ”.
Two common attention types (SE-Block [21], CBAM [43]) and two proposed self-attentions
(DSA-concat, DSA-add) are compared in Figure 8.To be fair, we replace the self-attention
module in Figure 2 with the SE-Block(implemented in mmseg) and CBAM (implemented
in the official codebase [43]), separately.

Surprisingly, two kinds of channel attention modules (SE-Block, CBAM) lower the
accuracy of models for all sizes. The following two reasons could lead to this result: residual
connection or slice operation in Figure 2 may not suit to channel attention, channel attention
may not work in the case of transformer architecture, or the two branches differ too much.

On the contrary, both of DSA-concat and DSA-add work well. It demonstrates the
capability of self-attention mechanism on the problem of multi-modal feature fusion. For
the small model (B0-B3), DSA-concat lives up to our expectation and performs better than
the baseline “two-stream-differ”. However, for the large model, the DSA-concat module is
out of function, and its performance is similar to “two-stream-differ”. We infer that when
color and depth come to choices, the DSA-concat module in large model tends to trust the
color feature and assigns more weight, as the color branch is deeper and bigger, and thus
the color feature is more reliable. The DSA-add module adopts another way to measure
and combine depth similarity. Using the weight parameter to force the network to consider
depth information, it obtains the best performance over all model sizes.

Figure 8. Effect of attention type on multi-modal feature fusion problem. SE-Block and CBAM don’t
work and are even harmful. DSA-add performs best over all model size. DSA-concat is slightly lower
than DSA-add on model B0–B3.
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4.3.3. Weight Parameter

To leverage the potential of the DSA-add module, different weight parameters are
tested on the model of each size. As color and depth features are normalized before self-
attention, the testing weight parameters range from 0.1 to 2.0, and the interval is set to 0.1.
Table 5 shows the best weight setting for each model. In general, the small model prefers a
depth attention of small weight.

Table 5. Best weight setting of different models on Vaihingen test set.

Model Weight Mean F1 OA (%) mIoU (%)

B0 0.5 89.00 90.53 80.49
B1 0.4 89.49 90.81 81.28
B2 0.9 90.05 91.09 82.17
B3 0.7 90.11 91.23 82.27
B4 0.8 90.58 91.35 83.02
B5 1.4 90.25 91.12 82.48

5. Discussion

Semantic segmentation, as one of the three basic tasks of computer vision, has been
greatly improved by the development of deep learning. We can achieve good results by
merely using visible images of existing remote sensing datasets, but it is still far from being
applied in practical remote sensing engineering. The introduction of ground object elevation
information can be treated as a means of auxiliary classification, helping to improve the
accuracy of some specific classes, which is preferred in some situations. Despite the fact that
with the increasing model size, the inference becomes more accurate and the experimental
results approach the upper limit of the segmentation accuracy of the dataset, our model
still benefits from introducing elevation information. Moreover, additional information can
improve the upper limit of segmentation accuracy, which may be highlighted in the future
when a more challenging remote sensing dataset is published.

This paper not only uses elevation information to improve segmentation accuracy but
also fuses elevation information by a lightweight way with a few extra computation costs.
The minimal model contains only 4.49 million parameters, suitable for carrying on a mobile
device and performing real-time segmentation.

The experimental results concerning two kinds of DSA modules show that adopting
weight parameters to balance color and depth features achieves higher segmentation
accuracy and prevents depth from losing its effect in the case of large models. Although
it is not easy to find the best weight, combining attention on different features may be
the correct way to exploit multi-modal data (not limited to RGB-D data but also includes
multispectral data, even point clouds and images). The best way to measure the similarity
of different modalities and the adaptive combination method without weight needs to be
studied in the future.

6. Conclusions

Based on the intuition that the original depth map is a feature in itself, this paper im-
proves the traditional two-stream network for RGB-D segmentation from the computational
aspect. The major conclusions are the following:

• Depth feature acquired by simple downsampling on the original depth map are
also beneficial to segmentation. Identical branches in two-stream network are not
necessary;

• Addition fusion ignores the gap between two modalities and two branches. Applying
attention in the fusion problem to decide which feature is more reliable achieves better
performance;

• Computing attention on multi-modal data by combining similarities can obtain better
results than concatenating data in the input phase.
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