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Abstract: Deep learning has been used in inverse synthetic aperture radar (ISAR) imaging to improve
resolution performance, but there still exist some problems: the loss of weak scattering points, over-
smoothed imaging results, and the universality and generalization. To address these problems,
an ISAR resolution enhancement method of exploiting a generative adversarial network (GAN) is
proposed in this paper. We adopt a relativistic average discriminator (RaD) to enhance the ability
of the network to describe target details. The proposed loss function is composed of feature loss,
adversarial loss, and absolute loss. The feature loss is used to get the main characteristics of the
target. The adversarial loss ensures that the proposed GAN recovers more target details. The absolute
loss is adopted to make the imaging results not over-smoothed. Experiments based on simulated
and measured data under different conditions demonstrate that the proposed method has good
imaging performance. In addition, the universality and generalization of the proposed GAN are also
well verified.

Keywords: inverse synthetic aperture radar (ISAR) imaging; generative adversarial network (GAN);
resolution enhancement; detailed features; weak scattering points

1. Introduction

With its rapid development, inverse synthetic aperture radar (ISAR) technology can
acquire high-resolution radar images of non-cooperative targets under the conditions of an
all-day and all-weather environment, which are widely used in military and civil fields [1].
The high range resolution of ISAR is due to the broadband of the transmitted signal, while
the high azimuth resolution is determined by the virtual aperture synthesized by the
relative motion between the radar and the target. ISAR images contain a lot of feature
information of targets, which is vital for target recognition [2]. However, it is not easy to
obtain the satisfactory ISAR images in the actual imaging process. The actual ISAR images
are often blurred and the resolution is limited. That is because of non-cooperation of targets
and noise interference. In addition, the radar echo of the target is often incomplete, which
further degrades the quality of the ISAR image. Therefore, it is important to find a method
to improve the resolution of the ISAR image.

Since the non-cooperative targets can always be regarded as a combination of scattering
points, the sparse reconstruction algorithms based on compressive sensing (CS) are used
to handle the imaging problems, which have attracted the attention of many scholars in
recent years [3–5]. The echo received by ISAR physically has the sparsity characteristic.
So, the CS method is very suitable for ISAR imaging with sparse aperture (SA). Many
well-known CS algorithms have been applied to ISAR imaging, such as the orthogonal
matching pursuit (OMP) algorithm [6], smoothed l0-norm (SL0) algorithm [7], fast iterative
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shrinkage-thresholding algorithm (FISTA) [8], alternating direction method of multipliers
(ADMM) [9], and so on. These CS methods obtain the high-resolution ISAR images by the
l0-norm or l1-norm optimization. Compared with traditional ways, the CS method has
better resolution performance on ISAR images. However, the image quality obtained by
the CS method is limited by the sparse observation model and it will inevitably produce
some fake points if the model is not accurate, which will affect the resolution performance.
In addition, the computational complexity of the CS method is high, which results in the
time consumption of the CS method being too long to realize real-time imaging.

Recently, deep learning has shown great potential in the field of radar signal processing,
including ISAR imaging. Scholars utilize the powerful end-to-end learning ability of
neural networks to solve the nonlinear mapping. Deep learning breaks the limitations of
traditional ways and gets better results. Many specific neural networks have been applied
in ISAR imaging. A complex-valued convolutional neural network (CV-CNN) is proposed
in [10] and has advantages in imaging quality and computational efficiency. A deep neural
network needs mass data for training, but adequate training data cannot be guaranteed
in the field of radar imaging. So, a fully convolutional neural network (FCNN) is applied
to ISAR imaging in [11]. FCNN does not have fully connected layers, and the number of
weights to be trained is lower. So, it can be trained with a smaller training set. In [12], a
deep residual network is proposed to achieve resolution enhancement for ISAR images,
which obtains a better performance than the CS method. In [13], a novel U-net-based
imaging method is proposed to improve the quality of ISAR images. A super-resolution
ISAR imaging method based on deep-learning-assisted time-frequency analysis (TFA) is
proposed in [14], in which the basic structure of the neural network also adopts the U-net.
In [15], the author proposes a joint FISTA and Visual Geometry Group Network (VGGNet)
ISAR imaging method to improve imaging performance and reduce complexity. In [16],
the author notices that many articles use the generative adversarial network (GAN) for
SAR image translation, while few articles apply GAN to ISAR imaging. At the same time,
most studies aim to minimize reconstruction error based on mean-square-error (MSE),
which affects the quality of an ISAR image. So, a GAN-based framework using a combined
loss is proposed in [16]. Besides, many scholars use the deep unrolling methodology to
design the deep neural networks. They usually extend a CS algorithm into the iterative
procedure to form a deep network. Specifically, one layer of the network represents one
iteration of the algorithm step and the parameters of the algorithm are transferred into
the network parameters. Deep unrolling methodology makes the network physically
interpretable. A complex-valued ADMM net is proposed in [17] to achieve SA ISAR
imaging and autofocusing simultaneously. With the same purpose, a joint approximate
message-passing (AMP) and phase error estimation method is proposed in [18] and the
corresponding deep learning network is constructed. In [19], a 2D ADMM method is
unrolled to form a deep network for high-resolution 2D ISAR imaging and autofocusing
under the condition of a low signal-to-noise ratio (SNR) and SA.

Although deep learning has made progress in ISAR resolution enhancement, there are
still some problems to be solved. First, the ISAR images reconstructed by deep networks
often lose weak scattering points, resulting in the loss of many target details. Second, most
existing deep neural networks often adopt the MSE as the loss function. However, the
reconstructed ISAR image obtained by using this loss function is often over-smoothed,
which is not conducive to target recognition. Third, the universality and generalization of
deep neural networks are not good enough. For example, the U-net in [13] is trained in a
noisy environment and SA respectively, which makes the trained network only suitable for
its specific situation.

To tackle the above problems, this paper proposes a GAN-based ISAR resolution
enhancement method to obtain better ISAR images. The key novelties are as follows:
(1) inspired by [16,20], we adopt the GAN as our basic deep neural network structure.
Compared with other networks, GAN has a more powerful ability to describe the target
details. We adopt the relativistic average discriminator (RaD) to improve the resolution of



Remote Sens. 2022, 14, 1291 3 of 18

the ISAR image. In the generator network, the Residual-in-Residual Dense Block (RRDB) is
used. (2) The loss function of the proposed GAN is composed of feature loss, adversarial
loss, and absolute loss. Feature loss is to maintain the main characteristics of ISAR images.
Adversarial loss is used to recover the detailed features of weak scattering points. Absolute
loss is designed to make the ISAR images not over-smoothed. The proposed loss function
can achieve superior reconstruction with resolution enhancement. (3) We only train the
proposed GAN under the condition of no noise and full aperture; furthermore, the trained
network is used to recontruct ISAR images under the condition of low SNRs and SA,
respectively. Simulated data and measured data under different parameter conditions are
used to verify the effectiveness and universality of the proposed GAN. The simulation
results obtain better-focused performance.

The rest of this article is organized as follows. In Section 2, the ISAR imaging model
is constructed. Section 3 introduces the proposed GAN in detail and gives the network
loss function. Section 4 describes the details of data acquisition and testing strategy. In
Section 5, various experiments are carried out to evaluate the performance of the proposed
GAN. Section 6 draws a conclusion.

2. ISAR Imaging Model

After translational motion of target compensation, the model can be simplified to a
classic turntable model. When the target is in uniform motion status and the coherent
processing interval (CPI) is short, the target motion can be equivalent as uniform rotation.
Here, we take the monostatic radar as an example. Taking the origin as the phase center
and a point scatterer P(x0, y0) is situated on the target, as shown in Figure 1.
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The radar echo from the point scatterer can be expressed as

Es(k, φ) ∼= A0· exp
(
−j2

→
k ·→r0

)
(1)

where φ is azimuth angle, A0 is scattering coefficient of P(x0, y0),
→
k is vector wave number

in the propagation direction, and
→
r0 stands for the vector from origin to point scatterer

P(x0, y0).

As for
→
k , it can be represented by the wave numbers in x and y directions in Equation (2):

→
k = k·k̂ = k·(x̂· cos φ + ŷ· sin φ) (2)

where k̂, x̂, and ŷ stand for the unit vectors in k, x, and y directions respectively. So, the
→
k ·→r0 in Equation (1) can be reorganized to obtain:

→
k ·→r0 = k·(x̂· cos φ + ŷ· sin φ)·(x̂·x0 + ŷ·y0) = k·(cos φ·x0 + sin φ·y0) = kx·x0 + ky·y0 (3)
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Therefore, Es(k, φ) can be written as:

Es(k, φ) ∼= A0· exp(−j2k cos φ·x0)· exp(−j2k sin φ·y0) (4)

Under the condition of narrow-bandwidth and small azimuth-angle, the k in the
second phase term of Equation (4) can be approximated as k ∼= kc = 2π fc/c and cos φ ∼= 1,
sin φ ∼= φ, where kc is the wave number corresponding to the center frequency fc and c is
the electromagnetic wave velocity. So, Equation (4) can be further simplified to:

Es(k, φ) ∼= A0· exp(−j2kx0)· exp(−j2kcφy0) = A0· exp
(
−j2π

2 f
c

x0

)
· exp

(
−j2π

kcφ

π
y0

)
(5)

So, the radar echo from all the scattering centers can be expressed as:

Es(k, φ) ∼=
N

∑
i=1

Ai· exp
(
−j2π

2 f
c

xi

)
· exp

(
−j2π

kcφ

π
yi

)
(6)

where N is number of scattering centers. Finally, the ISAR image can be obtained by taking
the 2D inverse Fourier transform of Equation (6) in the x− y plane:

ISAR(x, y) =
∫ ∞

−∞

∫ ∞

−∞
Es(k, φ)ej2π

2 f
c xej2π

kcφ
π yd

(
2 f
c

)
d
(

kcφ

π

)
=

N

∑
i=1

Ai·δ(x− xi, y− yi) (7)

where δ(x, y) represents 2D impulse function. However, the values of variables are finite.
With Equation derivations, the Equation (7) can be expressed as [21]:

ISAR(x, y) =
N

∑
i=1

Ai·δ(x− xi, y− yi) ∗ h(x, y) (8)

where ∗ is convolution operation and h(x, y) is the point spread function (PSF), which is
the Sinc function. According to Equation (8), PSF can be regarded as the impulse response
of the system to an ideal point scatterer and Ai·δ(x− xi, y− yi) represents the scattering
function of target.

3. Proposed GAN-Based Resolution Enhancement Method
3.1. Framework of the Proposed GAN

The GAN has a powerful processing capacity to improve the resolution of the ISAR
images. The main mechanism lies in its strong end-to-end mapping learning ability, which
reconstructs high-resolution (HR) images using low-resolution (LR) images by supervised
learning. According to Equation (7), LR ISAR images can be obtained by taking the Inverse
fast Fourier transform (IFFT) to the radar echo, while the HR ISAR images can be acquired
by the convolution between target scattering function and PSF of HR ISAR system in
Equation (8). The framework of the proposed GAN is shown in Figure 2.

The final purpose is to reconstruct the HR ISAR images based on LR ISAR images by
the trained generator network. It can be transformed into an optimization problem shown
in Equation (9):

θ̂G = argmin
θG

1
M

M

∑
i=1

LG

(
G
(

ILR
i

)
, IHR

i

)
= argmin

θG

1
M

M

∑
i=1

LG

(
ISR
i , IHR

i

)
(9)

where G represents generator network, ILR
i , i = 1, 2, · · · , M are LR ISAR images to input

G, ISR
i , i = 1, 2, · · · , M are the outputs of G, IHR

i , i = 1, 2, · · · , M are real HR images
corresponding to ILR

i as labels, LG is the loss function of G and θG stands for the network
parameters set of G. To achieve this goal, the training procedure continues until the
generator network G succeeds in fooling the discriminator network D. In this situation,
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the resolution of ISR
i will get improved and G is the trained generator network that we

will require.
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To solve the optimization problem in (9), standard discriminator Dst is adopted in [16],
which is common for the GAN, shown in Equation (10):

min
θG

max
θD

EIHR∼ptrain(IHR)

[
log Dst

(
IHR

)]
+ EILR∼pG(ILR)

[
log Dst

(
G
(

ILR
))]

, (10)

where E represents taking average value, ptrain
(

IHR) is the distribution of HR ISAR images,
and pG

(
ILR) is the distribution of LR ISAR images. According to this criterion, adversarial

loss is introduced into LG, which improves the ability to recover weak scatter points
correctly for G.

Different from literature [16], we replace the standard discriminator with the rela-
tivistic average discriminator (RaD) [22] to provide more target details, which can be
represented by DRa. In general, the standard discriminator Dst describes whether the
super-resolution (SR) ISAR image is real or fake, and the relativistic average discriminator
DRa estimates the probability that a HR ISAR image is more realistic than a SR ISAR image.
Equations (11) and (12) show their definitions respectively:

Dst(x) = σ(C(x)), x = ISR, IHR (11)

DRa

(
IHR, ISR

)
= σ

(
C
(

IHR
)
− EISR

[
C
(

ISR
)])

(12)

where σ is the sigmoid function, C(x) is the output of non-transformed discriminator, and
EISR [·] represents the operation of taking average value in mini batch. So, the discriminator
loss LRa

D can be expressed as:

LRa
D = −EIHR

[
log
(

DRa

(
IHR, ISR

))]
− EISR

[
log
(

1− DRa

(
ISR, IHR

))]
(13)

Also, the adversarial loss for generator is:

LRa
ad = −EIHR

[
log
(

1− DRa

(
IHR, ISR

))]
− EISR

[
log
(

DRa

(
ISR, IHR

))]
(14)

3.2. Design of the Proposed GAN

For ISAR images, they do not have rich edges and color information like optical
images. The most prominent feature of ISAR images is image contrast, which is displayed
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in the form of bright spots. Skip connections in the residual network (Res-Net) can preserve
the image contrast [16], so we take Res-Net as the basic structure of G. Inspired by [20],
the architecture of G is shown in Figure 3a. To improve the detailed expression ability of
recovered ISAR images, the Residual-in-Residual Dense Block (RRDB) is adopted in the
generator network. RRDB contains multi-level residual network and dense connections,
which can describe the weak scatterers of ISAR images accurately and improve performance.
Here, each RRDB contains three dense blocks and the number of RRDB is 11. A dense block
is composed of four convolution layers and three leaky rectified linear unit (LeakyRelu)
layers. The convolution layer consists of 3× 3 kernels and 64 feature maps with stride 1 [20],
which can improve network performance. Also, batch normalization (BN) layers in dense
blocks are removed [23]. Besides, β is residual scaling to prevent instability and the value
of β is 0.2. Different from the image super-resolution task, our training data, namely HR
images and LR images, have the same size. And LR images are not obtained by down
sampling in the data generation stage. So, the up-sampling module is cancelled to fit our
task. The final convolution layer contains three output channels.
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The generator G has a strong representation ability, the corresponding network struc-
ture of discriminator D is shown in Figure 3b. First, ISR and IHR pass through a convolution
layer (3 channels and 64 feature maps) with a 3× 3 kernel and stride 1. A leaky ReLU with
a constant value of 0.2 is followed. Then consecutive convolution, BN, and leaky ReLU
is used. Number of filters starts with 64 and consecutively increases by 128, 256, and 512.
Next, two dense layers are used with output channel 1024 and 1. A leaky ReLU is also used
between them. Finally, a sigmod activation function is selected to estimate whether IHR is
more realistic than ISR.

3.3. Loss Function

The form of a loss function is vital for the generator to get the SR ISAR images.
In various networks, different designs have improved the performance of the images,
especially the Peak Signal-to-Noise Ratio (PSNR) value. These PSNR-oriented approaches
often select the MSE as the loss function, which can be expressed as:

LMSE =
1

XY

X

∑
x=1

Y

∑
y=1

(
IHR
xy − ISR

xy

)2
(15)

where X and Y represent the height and width of HR/SR ISAR images, respectively.
However, the results of MSE optimization problems are often over-smoothed, which will
make some weak scatterers disappear and the overall performance of SR ISAR images get
worse [20].

Instead of using MSE loss, we select the absolute loss L1 to enhance the resolution of
the SR ISAR images to get a better performance, which can be given as:

L1 =
1

XY

X

∑
x=1

Y

∑
y=1
‖IHR

xy − ISR
xy ‖1

(16)

At the same time, we introduce the feature loss L f eature into LG to maintain the main
characteristics of scattering points. Feature loss is based on the ReLU layers of the pre-
trained VGG19 network. We use φi,j to represent the features obtained by the j-th convolu-
tion before the i-th maxpooling layer. In this article, we select φ5,4 to get the feature loss [20],
which can be defined as:

L f eature =
1

XY

X

∑
x=1

Y

∑
y=1
‖φ5,4

(
IHR
xy

)
− φ5,4

(
ISR
xy

)
‖

1
(17)

In addition, the adversarial loss LRa
ad is also introduced into LG to recover the detailed

features of weak scatter points shown in Equation (14). Therefore, the definition of LG is:

LG = L f eature + λLRa
ad + ηL1 (18)

where λ and η are the coefficients to balance LRa
ad and L1. In ISAR images, the amplitude of

most areas is close to zero except for some strong scattering points. So, the values of λ and
η shuold be selected reasonably.

4. Processing Details
4.1. Data Acquisition

First, we randomly generate some scatterers in a specified area to obtain the radar
echo. As mentioned before, LR ISAR images can be obtained by taking IFFT to the radar
echo. The corresponding HR ISAR images can be acquired by convolving target scattering
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function with PSF. Here, the PSF is approximated by a 2-D Gaussian function instead of the
Sinc function and its expression is shown in Equation (19):

h(x, y) = exp

(
− x2

σ2
x
− y2

σ2
y

)
(19)

where σ2
x and σ2

y control the azimuth and range resolution, respectively. Then under the
condition of no noise and full aperture, the LR ISAR images and HR ISAR images are the
inputs and annotations of the proposed GAN, respectively.

In the generation stage of training data, the related parameters are as follows: radar
carrier frequency 10 GHz, bandwidth 400 MHz, pulse repetition frequency 400 Hz, pulse
width 25.6 µs, and pulse number 256. Each pulse contains 256 samples and 10–200 points
are randomly generated in an area with a width of 50. The different scattering coefficients
obey the standard complex Gaussian distribution. We obtain the LR/HR ISAR images by
the MATLAB and the size of images is set to 256× 256. The images are displayed in log
magnitude with a dynamic range of 30 dB. The 10,000 LR/HR ISAR image pairs are used
to train the proposed GAN. The randomly selected input and annotation image in training
process are shown in Figure 4.
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The training process can be divided into two steps. First, we only select the absolute
loss L1 in Equation (16) as the loss function for initialization, which can help the generator
obtain the pleasing SR ISAR images. Then we use the LG in Equation (18) to optimize
the network with λ = 5× 10−3 and η = 1× 10−2 [20]. The training process is performed
using an NVIDIA V100 GPU based on PyTorch. The Adam is adopted as our optimization
algorithm with β1 = 0.9, β2 = 0.999 [20]. The batch size is 4 and the learning rate is
1× 10−4 [20]. We alternately train the generator and discriminator network of the proposed
GAN for 5 epochs, which costs 6.5 h.

4.2. Testing Strategy

In the test part, [16] has compared the performance of CV-CNN and Res-Net, so
we only select three different GAN networks to compare with the method proposed in
this paper, which can be simply defined as GAN1, GAN2, and GAN3. The network
structure of GAN1 and GAN2 is the same as that in literature [16], but they adopt dif-
ferent loss functions. In GAN1, the loss function is LG1 = L f eature + Lst

ad [24], where
Lst

ad is the adversarial loss adopting the standard discriminator Dst. In GAN2, the loss
function is LG2 = L f eature + λLRa

ad + ηL1, shown in Equation (18). As for GAN3, the
network structure uses the structure proposed in this paper, but its loss function is

LG3 = LMSE
f eature + λLRa

ad + ηLMSE, where LMSE
f eature =

1
XY

X
∑

x=1

Y
∑

y=1

(
φ5,4

(
IHR
xy

)
− φ5,4

(
ISR
xy

))2
.

To quantitatively evaluate the performance of different methods, we adopt three
metrics, namely PSNR, structural similarity (SSIM), and image entropy (IE). Supposing
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that the annotation image is recorded as I′ =
(

I′xy
)

X×Y and the reconstructed image is
recorded as I =

(
Ixy
)

X×Y, the definitions of these metrics are as follows [25]:

MSE =
1

XY

X

∑
x=1

Y

∑
y=1

(
Ixy − I′xy

)2 (20)

PSNR = 10 log10
MAX2

MSE
(21)

SSIM =
(2µIµI′ + c1)(2σI I′ + c2)(

µ2
I + µ2

I′ + c1
)(

σ2
I + σ2

I′ + c2
) (22)

IE = −
X

∑
x=1

Y

∑
y=1

I2
xy

sumI
ln

I2
xy

sumI
(23)

where MAX is maximum pixel value of I′, µI and µI′ are the mean value of I and I′, σ2
I

and σ2
I′ are the variance of I and I′, σI I′ is the covariance of I and I′, and sumI =

X
∑

x=1

Y
∑

y=1
I2
xy.

Among the above three metrics, we search to obtain a bigger PSNR, a bigger SSIM, and a
smaller IE for the better reconstructed image.

5. Experiment Results and Analysis

In the experiment part, we select simulated data and measured data to verify the
performance of different methods. In most articles, the number of scattering points for
simulated aircraft is relatively small. While in our experiment, simulated aircraft data
consists of 276 scattering points. The relevant parameters of simulated data are the same
as those of the training network. Measured data contains the Yak42 aircraft data and
F-16 airplane model data. The carrier frequency and bandwidth of the Yak42 aircraft data
are 5.52 GHz and 400 MHz, respectively. The F-16 airplane model is measured in the
microwave chamber. The frequency range is from 34.2857 to 37.9428 GHz.

Under the conditions of no noise and full aperture, we compare the performance of
different methods. Then we consider the influence of random Gaussian noise on ISAR
imaging performance for different methods. The random Gaussian noise is added to the
radar echo for simulated data and measured data. The corresponding SNR is 2 and −4 dB.
Next, the different methods are tested under the condition of sparse aperture. The echo data
of LR ISAR images needs to be under-sampled. Here, we just consider that 224 pulses are
recorded. In addition, zero padding is used to obtain test pictures. Finally, the universality
and generalization of the proposed GAN are verified by the F-16 airplane model data.

For the complexity of different networks, the training process of the proposed GAN
and GAN3 all cost 6.5 h, while GAN1 and GAN2 cost 3 h. Because of this, the proposed
GAN adopts a more complex network structure. For the trained networks, the imaging
time of the proposed GAN and GAN3 is 0.51 s, while the imaging time of GAN1 and GAN2
is 0.46 s.

5.1. Comparison of No Noise and Full Aperture

The imaging results of simulated aircraft by different methods are shown in Figure 5
under the condition of no noise and full aperture. The corresponding metrics are presented
in Table 1. A LR ISAR image is shown in Figure 5b. We can see that its resolution is
limited, and strong sidelobes submerge many weak scattering points. It is observed that
four different methods all get better imaging performance than IFFT, which indicates the
superiority of GAN. The proposed GAN has the smallest IE, and acceptable PSNR and
SSIM. From Figure 5f, it is visually obvious that the proposed GAN has the best resolution
performance and correctly reconstructs the most weak scattering points, compared with
other methods. The proposed GAN describes the target details correctly, such as the tails
of simulated aircraft. Compared with Figure 5d,f, we can see that the reconstructed result
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from GAN2 recovers some weak points incorrectly, which shows that the network structure
proposed in this paper is better than that in [16]. Compared with Figure 5c,d, we can find
that GAN2 achieves better performance than GAN1 precisely because the loss function
proposed in this paper is adopted, which shows the effectiveness of the proposed loss
function. In addition, the metrics of GAN3 are not bad, but Figure 5e has some unpleasant
shadows around scattering points. Meanwhile, in Figure 5f the ISAR image has sharp
edges. So, it is verified that L1 loss has better performance than MSE loss in ISAR images.
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Figure 5. Imaging results of simulated aircraft under the condition of no noise and full aperture: (a) 
Ground truth; (b) IFFT; (c) GAN1; (d) GAN2; (e) GAN3; (f) Proposed GAN. 

Table 1. Numerical performance evaluation for simulated aircraft under ideal environment. 

Method PSNR (dB) SSIM IE 
IFFT 15.9432 0.7001 4.3366 

GAN1 22.2503 0.7172 3.0268 
GAN2 26.7698 0.8458 2.0156 
GAN3 26.7794 0.8320 2.1744 

Proposed 26.6372 0.8403 1.6376 

The imaging results of Yak42 by different methods are shown in Figure 6. The corre-
sponding metrics are shown in Table 2. As can be seen from Figure 6a, the imaging result 
of the traditional method is not focused and has many strong sidelobes. Compared with 
other methods, the proposed GAN obtains the better-focused image and gets the smallest 
IE. At the same time, the proposed GAN does not produce many fake points, while the 
imaging results of GAN1 and GAN2 have some fake points in the background. Just like 
the simulated aircraft experiment, GAN2 has better imaging effect than GAN1, which fur-
ther confirms the effectiveness of the proposed loss function. In addition, the imaging re-
sult of GAN3 is over-smoothed and has shadows in the background, which also confirms 
that the MSE loss is not good. 

Figure 5. Imaging results of simulated aircraft under the condition of no noise and full aperture:
(a) Ground truth; (b) IFFT; (c) GAN1; (d) GAN2; (e) GAN3; (f) Proposed GAN.

Table 1. Numerical performance evaluation for simulated aircraft under ideal environment.

Method PSNR (dB) SSIM IE

IFFT 15.9432 0.7001 4.3366
GAN1 22.2503 0.7172 3.0268
GAN2 26.7698 0.8458 2.0156
GAN3 26.7794 0.8320 2.1744

Proposed 26.6372 0.8403 1.6376

The imaging results of Yak42 by different methods are shown in Figure 6. The corre-
sponding metrics are shown in Table 2. As can be seen from Figure 6a, the imaging result
of the traditional method is not focused and has many strong sidelobes. Compared with
other methods, the proposed GAN obtains the better-focused image and gets the smallest
IE. At the same time, the proposed GAN does not produce many fake points, while the
imaging results of GAN1 and GAN2 have some fake points in the background. Just like the
simulated aircraft experiment, GAN2 has better imaging effect than GAN1, which further
confirms the effectiveness of the proposed loss function. In addition, the imaging result of
GAN3 is over-smoothed and has shadows in the background, which also confirms that the
MSE loss is not good.
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Figure 6. Imaging results of Yak42 under the condition of no noise and full aperture: (a) IFFT; (b) 
GAN1; (c) GAN2; (d) GAN3; (e) Proposed GAN. 

Table 2. Numerical performance evaluation for Yak42 under ideal environment. 

Method IFFT GAN1 GAN2 GAN3 Proposed 
IE 3.8012 2.4514 1.5298 1.9007 1.3477 

  

Figure 6. Imaging results of Yak42 under the condition of no noise and full aperture: (a) IFFT;
(b) GAN1; (c) GAN2; (d) GAN3; (e) Proposed GAN.

Table 2. Numerical performance evaluation for Yak42 under ideal environment.

Method IFFT GAN1 GAN2 GAN3 Proposed

IE 3.8012 2.4514 1.5298 1.9007 1.3477

5.2. Comparison of Different SNRs

The imaging results of simulated aircraft under different SNRs are shown in
Figures 7 and 8. The corresponding metrics are shown in Tables 3 and 4. The proposed
GAN gets the smallest IE, the highest SSIM, and acceptable PSNR when SNR is 2 dB and
−4 dB. As shown in Figure 8f, the ISAR image formed by the proposed GAN is focused
with a clearer background even when SNR is −4 dB. The proposed GAN improves resolu-
tion significantly. At the same time, it can recover the target details as much as possible.
Of course, it is inevitable to lose some scattering points information. While for other ISAR
images, there are some fake points appearing in the background because of the strong
noise. This can prove the superiority of the proposed method. Similarly, GAN2 has better
performance than GAN1 because of the proposed loss function. GAN3 has shadows around
the target because of the MSE loss.

Table 3. Numerical performance evaluation for simulated aircraft at SNR = 2 dB.

Method PSNR (dB) SSIM IE

IFFT 16.8479 0.6560 4.4659
GAN1 22.3841 0.7267 2.6676
GAN2 26.1405 0.8434 1.9693
GAN3 26.5236 0.8471 2.1149

Proposed 26.2321 0.8507 1.8374
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Figure 7. Imaging results of simulated aircraft at SNR = 2 dB: (a) Ground truth; (b) IFFT; (c) GAN1; 
(d) GAN2; (e) GAN3; (f) Proposed GAN. Figure 7. Imaging results of simulated aircraft at SNR = 2 dB: (a) Ground truth; (b) IFFT; (c) GAN1;

(d) GAN2; (e) GAN3; (f) Proposed GAN.
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Figure 8. Imaging results of simulated aircraft at SNR = −4 dB: (a) Ground truth; (b) IFFT; (c) GAN1; 
(d) GAN2; (e) GAN3; (f) Proposed GAN. 

Table 3. Numerical performance evaluation for simulated aircraft at SNR = 2 dB. 

Method PSNR (dB) SSIM IE 
IFFT 16.8479 0.6560 4.4659 

GAN1 22.3841 0.7267 2.6676 
GAN2 26.1405 0.8434 1.9693 
GAN3 26.5236 0.8471 2.1149 

Proposed 26.2321 0.8507 1.8374 

Table 4. Numerical performance evaluation for simulated aircraft at SNR = −4 dB. 

Method PSNR (dB) SSIM IE 
IFFT 15.0749 0.1856 5.3295 

GAN1 22.9877 0.7218 2.7199 
GAN2 26.6015 0.8394 2.0603 
GAN3 26.8521 0.8432 2.1498 

Proposed 26.6683 0.8511 1.6324 

The imaging results of Yak42 under different SNRs are shown in Figures 9 and 10. 
The corresponding metrics are shown in Tables 5 and 6. The proposed GAN has the small-
est IE. It can recover the target details correctly and improve the resolution of Yak42. The 
image quality does not degrade significantly with the decrease of SNR. The proposed 
GAN depicts the outline of Yak42 clearly, which is helpful for target recognition. In addi-
tion, it produces as few fake points as possible with a clear background, while for GAN1 
and GAN2 some fake points still exist in the images. This phenomenon shows the effec-
tiveness of the proposed method. In addition, the outline of Yak42 for GAN3 is blurred 
because of the MSE loss. The above analysis can show that the proposed GAN is not sen-
sitive to low SNR. 

Figure 8. Imaging results of simulated aircraft at SNR = −4 dB: (a) Ground truth; (b) IFFT; (c) GAN1;
(d) GAN2; (e) GAN3; (f) Proposed GAN.
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Table 4. Numerical performance evaluation for simulated aircraft at SNR = −4 dB.

Method PSNR (dB) SSIM IE

IFFT 15.0749 0.1856 5.3295
GAN1 22.9877 0.7218 2.7199
GAN2 26.6015 0.8394 2.0603
GAN3 26.8521 0.8432 2.1498

Proposed 26.6683 0.8511 1.6324

The imaging results of Yak42 under different SNRs are shown in Figures 9 and 10. The
corresponding metrics are shown in Tables 5 and 6. The proposed GAN has the smallest
IE. It can recover the target details correctly and improve the resolution of Yak42. The
image quality does not degrade significantly with the decrease of SNR. The proposed GAN
depicts the outline of Yak42 clearly, which is helpful for target recognition. In addition,
it produces as few fake points as possible with a clear background, while for GAN1 and
GAN2 some fake points still exist in the images. This phenomenon shows the effectiveness
of the proposed method. In addition, the outline of Yak42 for GAN3 is blurred because
of the MSE loss. The above analysis can show that the proposed GAN is not sensitive to
low SNR.
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Figure 10. Imaging results of Yak42 at SNR = −4 dB: (a) IFFT; (b) GAN1; (c) GAN2; (d) GAN3; (e) 
Proposed GAN. 

  

Figure 9. Imaging results of Yak42 at SNR = 2 dB: (a) IFFT; (b) GAN1; (c) GAN2; (d) GAN3;
(e) Proposed GAN.

Table 5. Numerical performance evaluation for Yak42 at SNR = 2 dB.

Method IFFT GAN1 GAN2 GAN3 Proposed

IE 3.9670 2.3316 1.5434 1.8926 1.4509
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Table 6. Numerical performance evaluation for Yak42 at SNR = −4 dB.

Method IFFT GAN1 GAN2 GAN3 Proposed

IE 4.7616 2.3161 1.5685 1.8593 1.5270
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Figure 10. Imaging results of Yak42 at SNR = −4 dB: (a) IFFT; (b) GAN1; (c) GAN2; (d) GAN3; (e) 
Proposed GAN. 

  

Figure 10. Imaging results of Yak42 at SNR = −4 dB: (a) IFFT; (b) GAN1; (c) GAN2; (d) GAN3;
(e) Proposed GAN.

5.3. Comparison of Sparse Aperture

The imaging results of simulated aircraft under SA are shown in Figure 11. The
corresponding metrics are shown in Table 7. It can be seen from Figure 11b that the ISAR
image of IFFT does not have good focusing performance. The scattering points are seriously
defocused in azimuth direction. The proposed GAN gets the smallest IE, the highest SSIM
and PSNR. The proposed GAN improves resolution significantly and describes more target
details. Weak scattering points are recovered as much as possible by the proposed GAN.
However, some weak scattering points inevitably vanish because of the existence of SA.
Compare with other ISAR images, Figure 11f does not generate many fake points around
the target. For other networks, there are many fake points in the background. So, the
proposed GAN gets the better imaging performance.

Table 7. Numerical performance evaluation for simulated aircraft under sparse aperture.

Method PSNR (dB) SSIM IE

IFFT 15.7553 0.5048 4.8516
GAN1 22.1140 0.6706 3.1566
GAN2 25.6569 0.7975 2.1496
GAN3 26.1744 0.8258 2.4644

Proposed 25.7515 0.8261 2.0390
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The imaging results of Yak42 under SA are shown in Figure 12. The corresponding
metrics are shown in Table 8. The proposed GAN has the smallest IE. It recovers more target
details than other networks and improves resolution performance of Yak42. However,
some fake points appear around the target, which shows the proposed GAN is sensitive to
SA. Similarly, GAN2 has better imaging performance than GAN1 because of the proposed
loss function. The ISAR image of GAN3 has a blurred outline of Yak42, which is the result
of using MSE loss.
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Figure 11. Imaging results of simulated aircraft under sparse aperture: (a) Ground truth; (b) IFFT; 
(c) GAN1; (d) GAN2; (e) GAN3; (f) Proposed GAN. 

Table 7. Numerical performance evaluation for simulated aircraft under sparse aperture. 

Method PSNR (dB) SSIM IE 
IFFT 15.7553 0.5048 4.8516 

GAN1 22.1140 0.6706 3.1566 
GAN2 25.6569 0.7975 2.1496 

Figure 11. Imaging results of simulated aircraft under sparse aperture: (a) Ground truth; (b) IFFT;
(c) GAN1; (d) GAN2; (e) GAN3; (f) Proposed GAN.

Table 8. Numerical performance evaluation for Yak42 under sparse aperture.

Method IFFT GAN1 GAN2 GAN3 Proposed

IE 4.1299 2.5353 1.6230 2.0888 1.5077

5.4. Universality and Generalization of the Proposed GAN

To validate the universality and generalization of the proposed GAN, an all-metal
scaling model of an F-16 is measured in the microwave chamber, as shown in Figure 13a.
From Figure 13b, we can see that the proposed GAN improves the resolution performance
and has a clear outline of the F-16. However, it does not describe scattering characteristics
of the F-16 perfectly. In fact, the carrier frequency of training data is different from Yak42
in previous experiments, which also proves the universality and generalization of the
proposed GAN.
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Figure 12. Imaging results of Yak42 under sparse aperture: (a) IFFT; (b) GAN1; (c) GAN2; (d) GAN3; 
(e) Proposed GAN. 
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Figure 13. Imaging results of F-16: (a) Original image in the microwave chamber; (b) Proposed GAN.

6. Conclusions

A resolution enhancement method for ISAR imaging based on GAN is proposed
in this paper. We adopt a relativistic average discriminator (RaD) to improve the ability
to describe target details. The Residual-in-Residual Dense Block (RRDB) is used in the
generator network. The loss function consists of feature loss, adversarial loss, and absolute
loss. Feature loss is used to maintain the main characteristics of ISAR images. Adversarial
loss is introduced to recover the weak scattering points. Absolute loss can make ISAR
images not over-smoothed. Compared with other networks, the simulation shows that the
proposed GAN can improve resolution performance significantly and describes the target
details well. At the same time, the proposed GAN produces as few fake points as possible.
In addition, it can work well under the condition of different SNRs. The proposed GAN
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is sensitive to sparse aperture, which will be improved in the future work. Besides, the
universality and generalization of the proposed GAN are also well verified.
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