remote sensing

Article

Smoothing Linear Multi-Target Tracking Using Integrated Track

Splitting Filter

Sufyan Ali Memon ¥, Thsan Ullah %', Uzair Khan >* and Taek Lyul Song >*

check for
updates

Citation: Memon, S.A.; Ullah, I;
Khan, U.; Song, T.L. Smoothing
Linear Multi-Target Tracking Using
Integrated Track Splitting Filter.
Remote Sens. 2022, 14,1289. https://
doi.org/10.3390/rs14051289

Academic Editors: Danilo Orlando,
Filippo Biondi, Domenico Ciuonzo

and Carmine Clemente

Received: 1 January 2022
Accepted: 3 March 2022
Published: 6 March 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Defense Systems Engineering, Sejong University, 209 Neungdong-ru, Gwangjin-gu,
Seoul 05006, Korea; sufyanahmedali@sejong.ac.kr

Department of Electrical and Computer Engineering, COMSATS University Islamabad,
Abbottabad 22060, Pakistan; ihsan@cuiatd.edu.pk (I.U.); uzairkhan@cuiatd.edu.pk (U.K.)
Department Electronic Systems Engineering, Hanyang University, Ansan 15588, Korea

*  Correspondence: tsong@hanyang.ac.kr

1t These authors contributed equally to this work.

Abstract: Multi-target tracking (MTT) is a challenging issue due to an unknown number of real
targets, motion uncertainties, and coalescence behavior of sensor (such as radar) measurements.
The conventional MTT systems deal with intractable computational complexities because they
enumerate all feasible joint measurement-to-track association hypotheses and recursively calculate
the a posteriori probabilities of each of these joint hypotheses. Therefore, the state-of-art MTT
system demands bypassing the entire joint data association procedure. This research work utilizes
linear multi-target (LM) tracking to treat feasible target detections followed by neighbored tracks as
clutters. The LM integrated track splitting (LMITS) algorithm was developed without a smoothing
application that produces substantial estimation errors. Smoothing refines the state estimation in
order to reduce estimation errors for an efficient MTT. Therefore, we propose a novel Fixed Interval
Smoothing LMITS (FISLMITS) algorithm in the existing LMITS algorithm framework to improve MTT
performance. This algorithm initializes forward and backward tracks employing LMITS separately
using measurements collected from the sensor in each scan. The forward track recursion starts
after the smoothing. Therefore, each forward track acquires backward multi-tracks that arrived
from upcoming scans (future scans) while simultaneously associating them in a forward track for
fusion and smoothing. Thus, forward tracks become more reliable for multi-target state estimation in
difficult cluttered environments. Monte Carlo simulations are carried out to demonstrate FISLMITS
with improved state estimation accuracy and false track discrimination (FTD) in comparison to the
existing MTT algorithms.

Keywords: detection; estimation; false-track discrimination (FTD); linear multi-target (LM) tracking;
smoothing; radar; target existence probability (TEP)

1. Introduction

The target tracking problem in general is a challenging problem due to measurement
origin uncertainty. In a multi-target tracking (MTT) system, this complexity is further
increased by the problem of measurement coalescence. The measurement origin uncer-
tainty along with coalescence results in producing inaccurate estimates of targets [1]. The
MTT system uses moving target indicator sensors such as radar but due to unknown
object’s sources (such as real targets, clouds, birds, terrain reflections, etc.) existing in the
surveillance region, it is often difficult to identify and detect target source. Thus, target
measurements are often misinterpreted because the majority of measurements received
by a radar belong to clutters. In this unreliable cluttered environment, the targets have
low detection probabilities Pp. In addition, tracking filter cannot determine the target
trajectories without prior information on position measurements.
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A target tracking system initializes tracks using measurements received from the radar.
The tracks are recognized as either true (which follow real targets) or false (which follow
clutter). Initially, all initialized tracks are referred as false tracks until the suitable tracking
algorithm updates the tracks based on the radar measurements in each scan. Therefore,
the tracking algorithms use the false track discrimination (FTD) method to measure track
quality [2]. An FTD attempts to identify true tracks based on the updated target existence
probability (TEP) and eliminate false tracks in each scan. The conventional integrated
probabilistic data association (IPDA) algorithm uses TEP as the track quality measure, but
it was developed only for single target tracking (STT) situations [3]. The IPDA algorithm
propagates and updates only one track state probability density function (pdf) using the
single-scan data association procedure. Compared to this, the integrated track splitting
(ITS) algorithm produces an exponentially increasing number of track state components
with their pdfs and obtains their estimates using multi-scan data association [4]. Thus, ITS
is a complex filter, but it is more efficient than IPDA in terms of track retention. The ITS
algorithm also provides FTD based on TEP.

The MTT algorithms process measurements originating from multi-targets as well
as clutter. In such situations, one measurement of target is often associated with another
target (i.e., joint association). Therefore, MTT applies multi-target data association to decide
a correct track-to-measurement association assignment in each scan. To incorporate MTT
scenario, IPDA and ITS were extended using joint data association based algorithms such as
JIPDA [5] and JITS [6], respectively. These algorithms utilize a group of clusters consisting
of multi-tracks and associated measurements. Multiple tracks often share measurements.
Thus, these algorithms form all measurement-to-track association hypotheses and recur-
sively calculate their a posteriori probabilities of the measurements in each scan. The
combinatorial representation in terms of the number of tracks and cluster measurements
increases numerical complexities so that these MTT algorithms often exceed the possible
computational resources. Similarly to JITS, the multiple hypothesis tracking algorithm eval-
uates an increasing number of multiple hypotheses followed by a global association that
considers all tracks and measurements over a period of scans [7]. Thus, the computation
complexity of the multiple hypothesis tracker is greater than JITS algorithm. Moreover, it
does not provide any FTD technique. To cope with intractable computational complexities,
the linear multi-target (LM) tracking technique was developed based on IPDA (LMIPDA)
in [8,9] and based on ITS (LMITS) in [6,8]. The LM method modifies the detected mea-
surements followed by neighbor tracks as clutter measurements in order to obtain state
estimates of the current track in each scan cycle. Thus, both LMIPDA and LMITS algorithms
allow the MTT system to avoid computations related to the joint measurement hypothesis
and joint data association procedure. Therefore, computational complexities in LMIPDA
and LMITS algorithms are reasonably limited, even in some scenarios similar to that of STT
algorithms. These algorithm employ TEP for track quality measure as well.

The algorithms cited above are referred as non-smoothing algorithms that use only
current scan measurements received from a radar to estimate the target state. However, this
class of tracking algorithm results in high estimation errors and often limits the accuracy
of track quality measures. Smoothing is used to refine the state estimate in current scan k
based on state predictions evaluated beyond scan k [2,10]. This involves fusion of forward
and backward predictions followed by a two-way tracking from future scan measurements
up to and including kth scan measurement. Thus, estimation accuracy and FTD can be
significantly improved. The traditional smoothing MTT algorithms, for example, smoothing
joint PDA [11], smoothing probability density algorithm [12], and smoothing multiple
hypothesis filter [13], do not provide a measure of track quality required for FTD. The
fixed interval smoothing based on JIPDA was developed in [14], which extends smoothing
data association procedures of previously published algorithms [15,16] to improve multi-
target state estimations as well as the FID. In [17], the authors have used the conventional
Rauch-Tung-Striebel [10] in JIPDA, which utilizes forward track measurements to generate
corresponding backward tracks for smoothing. As an example of smoothing based on
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JITS (sJITS), the authors have applied the two-way pass filtering method of the Fraser and
Potter algorithm [18] in [19]. In [20], the fixed interval smoothing based on JITS (FIsJITS)
was developed for MTT, which outperformed the algorithms developed in [14,17,19].
However, due to involvement of clusters as well as ITS multi-track components, the joint
data association procedure in FIsJITS and s]ITS is computationally intensive and complex.
With the development of state-of-art MTT systems, fixed interval smoothing based on
LMIPDA (FLsLMIPDA) algorithm was developed with the integration of the LM technique
in [21,22].

In order to incorporate an extended number of unknown targets, we propose fixed
interval smoothing using LMITS (FISLMITS). Assuming fixed interval [k, N], where k is
the first scan and N is the last scan index of subsequent intervals, FISLMITS initializes
and estimates backward multi-tracks using measurements collected by sensor in each scan
(from Nth scan up to kth scan), which does not correspond to any forward tracks. This
implies that target state estimate is calculated up to and including scan k. For smoothing,
FIsLMITS initializes tentative forward multi-tracks using the measurements received from
the sensor and develops the validation gate in scan k assuming backward multi-track-multi-
components state prediction as measurements in the forward path track. Thus, backward
multi-tracks are not fused until they fall in the validation gate of the forward track. Each
forward track state component fuses with the associated backward state components
to obtain multiple smoothing components prediction. The a posteriori probabilities of
these predicted smoothing components are evaluated using modified clutter measurement
density to obtain smoothing component data association probabilities in each scan k. The
predicted smoothing components select the smoothing validation measurements from the
set of sensor measurements to obtain multi-target state estimation of FISLMITS track as
well as forward track in each scan k. This implies that a forward track is also refined using
the smoothing, and it becomes robust due to the smoothing in each subsequent scan in the
fixed interval. The smoothing target existence probabilities are also calculated to measure
the track quality in each scan k for FTD.

The main contribution of the proposed FISLMITS algorithm is the integration of LMITS
framework with the fixed interval smoothing algorithm, thus improving multi-target state
estimation in cluttered environments. Unlike the existing fixed interval smoothing algo-
rithms such as [17,19], the proposed novel FISLMITS algorithm fetches radar measurements
from future scans by employing a backward-running LMITS filter so that a priori smooth-
ing platforms could be anticipated for a forward track in past scan k. With the proposed
method, smoothing is achieved only when the backward multi-track-multi-components
fall in the validation gate of the forward track. Thus, the proposed smoothing idea refines
the state estimate of forward track for a significant improvement in FTD.

The target and sensor models are developed in Section 2. Section 3 proposes the
novelty and method of the FISLMITS algorithm. The statistical analysis of the FISLMITS
algorithm is compared to the existing MTT algorithms based on the ITS family such as
FISJITS, sJITS, LMITS, and FIsSLMIPDA and LMIPDA in Section 4. Finally, the discussion
on the FISLMITS results is concluded in Section 5.

2. Target and Sensor Models

Assume that target existence x[ is a random event and target trajectory state xf is a
random variable, where T represents an index of a target as well as a track and k indicates
an index of a scan. The target source (such as unmanned aerial vehicle (UAV)) produces at
most one measurement per scan with detection probability, Pp. In the two-dimensional
surveillance region, the target (UAV) consists of a two-dimensional position and velocity
vectors. The motion equation of the target trajectory state is derived using state transition
matrix F,, which is used to propagate the state vector from scan k — 1 to scan k, which is
as follows:

xp = Fpxg_q + v, 1)
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where vy_1 is the target white Gaussian noise, which has a zero-mean and a known
covariance matrix Q. The matrices of F, and Qy are expressed in [2,10], and they are
repeated here for clarity:

Lyxo TIhxo }
F - 7 2
k [ O2x2  Ix2 ()
0.25T%*L,n  0.5T3Ihy0
Qc=q ‘ ©)
0.5T312><2 T212><2

where I, is the 2 x 2 identity matrix, Oy is the 2 x 2 zeros matrix, T denotes the sensor
scan time, and g denotes the white noise acceleration uncertainty that is also known as
process noise.

If the target is identified and detected by a radar with Pp in scan k, then the equation
of sensor position measurement of the target state is derived using a measurement matrix,
Hy = [Irx2, O2x2], in the following:

Z; = Hyxp + wy, (4)

where wy denotes the white noise of the position measurement which has a zero-mean and
a known covariance matrix Ry. Other than target measurements, a radar also observes a
random number of clutter measurements. These clutter measurements are generated using
the nonhomogeneous Poisson distribution process [23]. Let Zj be the set of measurements
with cardinality Mj received in scan k and Z¥ = {Z, Zy1, ..., Zy} be the cumulative set
of fixed measurement interval which starts from first scan k and ending with last scan
N, which is the measurement set of an interval. This fixed interval is the sequence of
measurement sets received from consecutive scans. In the cluttered environment, target
measurement Zf is often misinterpreted because the source of each measurement in zk
is not known. The density of clutter measurements denoted by py is assumed to be
known, which is a function of My measurements specified in the X and Y coordinates of
Zy. For example, the density of the ith measurement Z ; of the measurement set equals

Pk = p(Zi)-

3. Fixed Interval Smoothing in Linear Multi-Target Based on ITS (FIsSLMITS)

This manuscript extends the non-smoothing LMITS algorithm by using the smoothing
data association idea to improve the weakness of LMITS for tracking the motion of multi-
targets in the cluttered environment. The proposed FISLMITS algorithm applies the fixed
measurement interval approach [24] for smoothing. Each fixed interval [k, N] has N —k + 1
scans, for example, if the first interval starts at k = 1 and ends at N = 8; then, the interval
length becomes 8. Each fixed interval follows three steps:

1.  Calculate the backward multi-tracks multi-components state estimations from scan N
up to scan k based on the measurements Z;+ received in each scan k™ (where subscript
k™ on Z;+ indicates the backward-time scan).

2. After the arrival of the backward multi-tracks at first scan k of an interval, the forward
multi-tracks are initialized using the corresponding component pdf measured by
the sensor measurements. Each forward track forms a validation gate based on the
backward multi-track-multi-components predictions. In the validation gate, each
forward component prediction fuses with the associated backward multi-components
predictions to obtain the smoothing multi-components predictions in each scan k (for
example, 55;";\3)-

3. Calculate the smoothing and forward estimates using the step 2 in each scan k, for

example, &3 and 5‘;\;1' respectively.

Thus, the estimates of forward track components are refined in a smoothing fashion to
make the smoothing track more robust for multi-target tracking in clutters. Consequently,
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the forward and smoothing estimates are computed recursively in each scan k of the fixed
interval [k, N]. To verify the robustness of FISLMITS, the smoothing probability of the
potential target existence is also calculated in each scan k , which is used as a performance
parametric to measure the track quality as well as FTD. Figure 1 illustrates the fixed interval
smoothing implementation of the FISLMITS algorithm.

statistics

t T T >

Forward estimation S5 66 77 88 k|k

} -

P =
Forward predictions s4 65 76 8[7 k|k-1

k 1% Interval N
Backward estimations | WL 22 33 44 _ 55 466 Kk
Backward predictions | 12 2i3 3|'4 4'|5 5|'6 c:|7-' 7 8 kk+1
. | + t t +—p S
Forward predictions | 1 2 32 43 klk-1 Track initialization
Fusion | ; : g T
) ! 2 B3 B AN Backward: conditioned on scan f+1
. . . Forward: conditioned on scan k-1
Smoothing estimation 38 48 kN FIsLMITS Fusion: {-1,k+1}; not conditioned on scan k
y . : > statistics Smoothing: conditioned on scan V
Forward estimation | 33 44 o K|k
Forward predictions | |I 2 3\I2 4\I3 g k|k-1
| Track
rac .
S k 2™ Interval N
_|initialization
Backward estimations 5|5 6|6 7|7 88 919 10/10 k| k
Backward predictions | Cisle 67 78 s 10 1051 11 12 k]
. —— : —_
Forward predictions | 54 65 76 87 klk-1 Track initialization
Fusion | t ; t -
uston | 51225 6126 7127 |12’ KN
Smoothing estimation | 5112 e[12 712 R|12L kIN FIsLMITS

Figure 1. Fixed measurement interval smoothing.

In each scan k, the existing forward tracks are concatenated with newly initialized
forward tracks for subsequent fusion and smoothing. Thus, an FISLMITS filters two types
of information: smoothing and forward state estimates followed by fusion in each scan
k. To obtain a maximum smoothing performance, the next interval is overlapped to the
current interval, for example, the next interval includes k = 5,6, ..., 12 scans as depicted
in Figure 1. In other words, the FISLMITS smoothing statistics are accumulated for the
first four scans only, and the rest of measurement scans are overlapped to the next four
consecutive scans. This smoothing process limits the significant smoothing-time delay and
reduces position estimation errors.

3.1. Backward Multi-Track State Estimation

The LMITS algorithm is applied in the reverse-time measurements sequence from Nth
scan to kth scan using the fixed interval set Z¥. The two-point measurement difference
technique [2] is utilized, which uses each pair of measurement from two consecutive scans
to generate a backward track. For example, an ith pair of measurement {Zy;, Zn_1,}
initializes a backward track in scan N — 1 using a generalized two-point position difference
formula expressed in (5). Similarly, an ith pair of measurement {Zk,i, Zk+1,i} initializes a
backward track in scan k + 1 using following constraint:

(Xir1,i — Xii) > + (Yirni — Yei)®
Vk+1,l — \/ —T : S VI’I’ILIX/ (5)

where V1 ; is the resultant velocity of the ith measurement calculated in scan k 4 1 using
coordinates Xjq;, Xii, Ykt+14, and Yy ; of the ith measurement of the two consecutive
scans, Vy.x represents the target maximum velocity, and (—) sign with the T implies the
reverse-time backward scanning. Thus, backward track recursion starts from scan k + 1
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with the updated component state pdf p { X1 %K |Zk+1} = [Z}41, Vk41] and component

existence probability @,:fl (where superscript ¢ denotes a component index), which initially
equals to 1. In addition, each track has an initial target existance probability (TEP) and a
unique track identity number. The component state pdf is updated using Kalman Filter
update equations [25] to obtain the backward track state prediction in scan k conditioning
on measurements Zy 1 and on scan k 4 1, which is as follows:

=T,C —1a7,C
Y1 = Fr %

, (6)
ST p—1pTC —t
Py =B Pl B + Qx

where the cap-accent on ilxl\ f41 and on P represents the state estimate and its

k+1 k+1
covariance, respectively, the bar-accent on xk| k +l and on PIZ\ i 1 Tepresents state prediction
and its covariance, respectively, superscript —t on F; indicates the inverse transpose, and
Qi = Fk_lePk_t denotes the the covariance matrix of the backward state trajectory. It
is noted that the inverse and inverse transpose terminologies on matrix F, implies the
perception of backward tracking.

The Markov Chain One model of the target existence is applied to update and maintain
the track quality measure given the prior probability of target existence with respect to

track T [2,3] expressed as follows:

P{X}: | Zy1} = "‘P{X]:+1 | Zis1}, ()

where « denotes the target state transition probability that is used to update the prior TEP
with respect to Tth track from scan k 4- 1 to current scan k.

The validation measurement criterion [2] is applied to each measurement of set Z; to
select the component validation measurement z;f associated with a backward component
state prediction within a predetermined maximum gating threshold, which is as follows:

(Zkz Hkxk|k+1) (Sk)il (Zkz Hkxk‘k+1> Ny 8)

where S; = HkPkT‘ kc +1HI€ + Ry represents the covariance of the measurement innovation
and -y denotes the maximum threshold that selects component validation measurements

z,¢ from Z;. The value of the selection threshold is determined by the probability of the

validation gate, thatis, Pc =1 — e~957, where the value of P; should be at the maximum,
such as 0.99. Therefore, the set of selected component measurements corresponding to
backward track T is accumulated by the following.

zf = LCJZ;IC ©)

The likelihood of the validated component measurement zk * with respect to the
backward component prediction of the th track is calculated by the following.

t
Te 1 e_05<zk' Hi ) S (= Hk"k\kﬂ) (10)
Pri = s,

The backward track likelihood py ; of the ith validated measurement zj ; (obtained in
Equation (9)) is calculated by the followmg

ng-l-lpkl (11)
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For tracking the tth target, the LM technique avoids the influence of other targets
while treating them as clutters. Thus, LM calculates the probabilistic weight P(; of the Tth
target to assure that the selected measurement z; ; is the Tth target by using the following:

Pri/ P,
P¢; = PpPcP{x; | Zk+1}#/ (12)

;1 Pii/ Pk,

where m; denotes the number of validation measurements selected by (8). Equation (12)
determines the mutual exclusiveness of the prior probabilities of detected target measure-
ments; thus, only one measurement corresponds to the potential target. If there are no
measurements (i = 0) selected by (8), that is, all measurements fall outside the validation
gate, then pk i+ = Pr; = Pg; = 0. The tracks ¢ other than the 7th target track are treated as
modified clutter-tracks; therefore, they correspond to the modified clutter measurement
densities by the following:

_ 0=Ty Pz,lp;g;l 13
Hii = Pkt Y Wf (13)
ot ki

where modified clutter measurement density i ; is calculated at the coordinates of the
detected measurement zg ; being observed by a Tth track, 7, denotes the total number of
tracks, and the term in parentheses at the denominator represents the probability that the
target does not exist in the neighbored tracks ¢ (¢ # 7). The backward-running LMITS
filter applies Equation (13) to calculate likelihood ratio Af and the multi-target component
data association probabilities of measurements z; ; corresponding to each track 7. These
are expressed, respectively, by the following:

pkl

/\k =1—PpPg + PpPg (14)
i>0 kz
and the following is the case.
PpPcpyg;
Bei = =T (15)
kP

However, Equations (14) and (15) become equal to 1 — PpPg and 1 — PpPg/Af, re-
spectively, for i = 0. The backward track tth TEP conditioning on measurements Z;" and
on scan k™ is estimated by using the following.

AP{Xf|Zy 1}
T e k k -
P{Xir|Zes } = = (1= A0 P{xT1Zk1}

(16)

Each feasible validated component measurement zk 7 selected in scan k creates a new
track component with a component existence probability expressed as follows.

1, i=0
ﬁ e ’ (17)
G Pii. 50
Pr,i

The backward LMITS algorithm applies Kalman Filter estimation equations [25] to
backward track components based on backward validated component measurements z, ¢
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in order to calculate its components state estimation with respect to Tth track in scan k by
using the following:

AT, =T,C TC ~T,C
Xpferi = Fferr T Kk (Zk,z' Hkxk\k—H)
, (18)
PT'C — P _K.H.PY
klkt,i = Lklk+1 K k|41

where K = PkT|kc +1H,£Sk_ ! denotes the gain of the Kalman Filter at scan k. In the next scan k,
each estimated backward component with respect to track 7 is retrieved from scan k + 1
and updated using Equation (6), which is used to obtain the component state prediction
and its covariance represented by xlflli 4 and P;‘; 41 respectively. Similarly, the backward
LMITS recursively calculates the multi-track backward state components as well as the TEP

of the multi-tracks using Equations (6)—(18) in each scan k.

3.2. Backward Multi-Track State Fusion in a Forward Track

This section discusses the fusion of backward multi-tracks state components in a for-
ward track. Similarly to the initialization process of backward tracks, the tentative forward
tracks are initialized based on feasible gated measurements Z; ; selected by (5). Thus, each
paired measurement from two consecutive scans Z* = {Z, Z;_; } initializes a track in scan
k — 1. Thus, each forward LMITS track is initialized with an initial TEP P{x; |Z;_1}, a
state component pdf p{xf_,%;";|Zx_1}, and an initial component existence probability,
', = 1. The forward track updates and propagates the Tth TEP from scan k — 1 to the next
scan k and obtains the updated TEP P{x[|Z_1} at scan k by shifting the time-sequence
subscript from k 41 to k — 1 in (7). The forward track state component pdf is updated
based on Z;_; in scan k — 1, which propagates linearly in each scan using the following
Kalman Filter propagation equation.

=T,C _ AT,C
X1 = Pl
. (19)
=5T,C _ ~5T,C t

Py = FlPrZy 1 Fy 4 Qe

Unlike the existing MTT algorithms [17,19,22], the recursion of the forward track is
followed by a smoothing estimation, which is obtained by fusing backward multi-tracks
components to each tentative forward track component. Thus, a forward component
develops a validation gate exploiting the set of backward multi-track-multi-components
state prediction p{x}, 1, % 1|Zk+1}, as a set of measurements. This implies that each
forward track is conditioned on a set of backward multi-components. Each forward state
component forms a certain number of true pairs in association with backward multi-tracks
components using the validation measurement selection criterion expressed in (20). This
procedure is illustrated in Figure 2.

£ xUe T PT,C _ I—)T,C -1 £ xUe < (20)
klk+1 ~ *kjk—1 klk+1 ~ Tklk—1 k41— Mkjk-1) S
In Figure 2, assume that a forward track 71 has two components with state pdf c; and
¢y as indicated by ‘squares’, whereas backward track 1; has three components (c1, ¢;, and
c3), T2 has two components (c; and c3), and so on, as indicated by “triangles’. Forward track

component c; makes a certain number of true pair of fusion components in association
with backward components, as depicted in Figure 2.
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|
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c B> 0O

not valid component

N
Ty . . T

Figure 2. Forward track fusion components associated with backward multi-track components.

The forward track component, for example, ¢; (Figure 2), uses information fusion
filter equations [26,27] to calculate the a priori smoothing component state prediction with
respect to the validated backward track as expressed by:

-1 -1
=T,C N, =T,C ~T,C =T,C ~T,C
i = Prink [(Pk|k1) X1t (Pk\k+1) xk|k+l} : (21)
where Pzﬁ\]\k denotes the associated a-priori smoothing component state covariance:

(P’Zﬁ\f\k) = (Plz[liﬂ) o + (PZ\'Ii—l) _1, (22)

where subscript N'\k indicates that the fused component is not conditioned on sensor
measurements (i.e., k is excluded from N). However, if none of the backward multi-track
components satisfy (20), then the component fusion state prediction becomes a correspond-
ing forward state component prediction. For example, the forward track component c,
does not select any backward track component in its validation gate as depicted in Figure 2
so that the a prior smoothing state component prediction and its covariance becomes
~T0,.C PT,.C =T,C pT,C

i Prini) = Fifeorr Pl )-

The likelihood of fused component p,* associated with Tth validated backward track
component is calculated by using the following:

t
ST,C 0 ST,C —1(z7c _:TcC
1 _0'5<xk\k+1 xk\k—l) Sk (xk\k+1 xk|k—1)’ (23)

e o
PN\ki = V2rer

where s, = I_’]f‘kc T 13;",571 represents the covariance of fused measurement innovation.
Equation (23) is used to calculate the likelihood of the Tth fusion track by the following.

C

C
PRk = 2 X GenGEa PN (24)
k—1k+1
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However, if the Tth backward track is not selected by (20), then the fused compo-
nent and fused track likelihoods become zero (i.e., plr\f\kl. = pIT\,\ki = 0). Assume that

Ph=1-(1- pp)N ¥ denotes the probability that the Tth target is detected by the fu-

sion track and exist either in scan k + 1 or k — 1 in the interval [k, N|. Furthermore, assume

that the density of the backward tracks per cross-sectional area A of the surveillance region

is dy ; = T,/ A. Based on these assumptions, the likelihood ratio of the fusion track A} Nk

derived as follows:

Paki
i’

Mok =1-PhPc +PpP ) (25)

i>0

which is used to calculate the a priori smoothing target existence probability as follows.
. AR P Zi-a } P{xge 1 Zi }

{Xk |ZN\k} - T T T !

1- (1 - AN\k)P{Xk|zk,1}P{Xk+ |Z )

(26)

In Equation (26), the original formulae of TEP [2—4] is modified using the proposed
FISLMITS algorithm, which utilizes the Tth backward TEP to update the a priori smoothing
TEP (i.e., TEP of the fusion track). Because the potential Tth target was already detected and
its state estimate was calculated in the kth scan using (18), each feasible true pair of fusion
component has an a priori smoothing component existence probability, which is calculated
by using the associated backward component existence probability in Equation (27). Based
on the above assumptions, we have the following:

g” 1— PSPg; if Tis not validated track
T,c
TR = o PNi e . 27)

Nk | Po P(;ék+1 Qo if Tisvalidated track

3.3. Forward Track State Estimation Using Smoothing Multi-Target Data Association

This section derives the multi-target state estimations corresponding to the forward
tracks that require the smoothing multi-target component state estimations, the component
validation measurements, and their data association probabilities. For the sake of simplicity,
apply the same notations of current track T and neighbored tracks ¢ in the smoothing
tracks. The predicted smoothing state component and associated state covariances obtained
from Equations (21) and (22) develop a validation gate around the smoothing component
validation measurements Z; ki * (where an acute accent indicates smoothing) that are selected
from sensor measurements Z; in scan k. Utilizing the validation selection method, we have
the following:

(Zk k\N\k)t(Sk) (Zk k|N\k)§% (28)

where S, = HkPkT| ;]\kHi + Rj denotes the measurement innovation covariance. Each
predicted smoothing component and a feasible smoothing validated measurement produce

a smoothing component with component likelihood p, 1 expressed by the following:

1 6—0.5(2,“ Hkxk\N\k> f]:l(zk’ Hk";qw\k) , (29)

TC =
pk’ ! \V Zﬂsk
which calculates the smoothing track likelihood g ; of the selected smoothing measurement
by using the following.
2 gN\kP i * (30)
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The a priori smoothing probability in which the selected smoothing measurement
z’; 7 is the detected tth target measurement being followed by a track 7 is evaluated by
the following.
Pk / Pk,
Y = PpPGP{x} | ZN\k}lil. (31)

‘21 Pri/ P,
1=

In the FISLMITS smoothing track’s T update step, smoothing clutter measurement
density is modulated by using Equations (30) and (31) in the following;:

. =Ty ﬁg,iplgi )
i =pki+ Y 1_prY (32)
7t ( - k,f)

which is used to compute the smoothing track likelihood ratio and smoothing multi-target
components data association probabilities, as expressed by the following:

AT
Pk,i

Af =1—-PpPs+PpPg Yy =2, (33)
i>0 Fk,i
and the following is the case.
. PpPcpy;
ABE,,IC = )\T T Z' (34)
kP

Each feasible validated smoothing measurement (selected by Equation (28)) and the
associated smoothing component predictions (obtained from Equation (21)) produce a new
component with a smoothing component existence probability that is calculated by using
Equation (34) in the following:

Pr.
gk\N N\k'BTC ni ’ (35)

where subscript k|N indicates that the component is smoothed in the kth scan using the
measurement from Nth scan up to kth scan (i.e., conditioning on measurements Zy).
Equation (26) is modulated by using the smoothing track likelihood ratio to estimate the
FIsLMITS-smoothing TEP of the potential Tth target, which is the following.

ArP{xf1Za |
1- (1= A)P{xf1Zwg

FIsLMITS utilizes Kalman Filter estimation equations (KFest) to estimate the smooth-
ing component state in scan k conditioning on measurement Zy by using the validated
smoothing component measurements £, in the following:

P{xrlZn} = (36)

_T,C HT,C . | =
. {ka\k'PklN\k}’ =0
~T,C DL —
] - Y
TC ;
KFest (Zkl/er k|N\k’ kIN\k) >0

which is approximated by one Gaussian state pdf mean and its covariance using the
Equation (35) in the following:

T T,0 AT,C
YN = ng\ka\Nz (38)
c
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and the following is the case:
ot , . . t RN
PN = XC:C;“C\] <Pk|N1 +xk‘N1( ;G\]l) ) — &N (x;,N) / (39)

where subscript k, N implies that the smoothing track state pdf is obtained at scan k given
the measurements up to N scans. The above smoothing Equations (38) are used recursively
for FISLMITS track output statistic computation in each scan k.

The recursion of the forward-running LMITS filter starts after the smoothing achieved
in the kth scan. The proposed FISLMITS algorithm does not apply the LM method for multi-
target data association evaluations in the forward tracks. Hence, it minimizes computational
time and resources. In fact, FISLMITS utilizes the validated smoothing measurements,
modulated smoothing clutter measurement densities, and smoothing multi-target data
association probabilities to calculate the forward track likelihoods, state estimations, and
TEPs. Thus, the forward tracks become more robust with the help of smoothing mea-
surements collected up to kth scan so that they become applicable even for the toughest
MTT situations. To deal with multi-target data association situations in the forward tracks,
the track component measurement likelihood of Zk ° corresponding to the propagated
forward component state prediction (obtained from Equation (19)) is calculated by us-
ing the weighted product of the smoothing component data association probabilities in
the following:

P b
pre = Pii 6*05(21“ —Hixg 1) S5 (zkz —Hixg 1) , (40)
k,i /278y
where S, = HkPkT‘ ]f 1H,£ + Ry, represents the measurement innovation covariance of a

forward track in scan k. To avoid the use of repeated equations, consider the same nomen-
clature in forward tracking as that used in backward tracking.

Equation (11) is applied with subscript k — 1 on ;“; (replacing the subscript k + 1
on {;’f) to obtain the forward track likelihood p ;- For forward track updates, the track
hkehhood ratio A ; is calculated using i ; (replacmg Hy ;) in Equation (14), which is used
to compute the a posteriori TEP P{ |Zk} corresponding to the potential Tth target in
forward-time scan k. Replacing the time-sequence subscript k + 1 by k — 1 on p{x[|Z_1}
in Equation (16), we obtain the a posteriori TEP P{x{|Z} in scan k. Each feasible smooth-
ing validated component measurement and a predicted forward track state component
develops a new component with component existence probability that is calculated in a
similar fashion as in Equation (35), and we have the following.

T,C

Pii
O =05 Efp]g/ (41)
1

7!

Finally, Equation (37) is used with the time-sequence subscript k — 1 on xk| 1 and

on Py, ; (replacing X\ and P\ to calculate the forward track multi-components

state estimates and their covariances represented by /7 - and PI:Uiz/ respectively. Similarly,

kl|k,i
Equation (19) is applied to propagate the state est1mat|es of the forward track components
to the next scan k, where the consequence of fusion and smoothing is to be performed in
smoothing interval [k, N]. Thus, the FISLMITS smoothing track state estimates obtained
from (38) becomes significantly improved for an efficient tracking of the potential targets in

each scan k, following the recursive equations from (5) to (41).

4. Numerical and Technical Analysis Using Simulations

This section discusses the numerical and technical analysis of the proposed FISLMITS
algorithm in comparison to existing MTT smoothing/non-smoothing algorithms such as
FLsLMIPDA, FISJITS, sJITS, LMITS, and LMIPDA.
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4.1. Technical Considerations

The FIsLMITS algorithm utilizes track component pruning and merging
techniques [2,28,29] in forward and backward tracks in order to limit the exponentially
increasing number of components. It is not required to apply these techniques in smooth-
ing tracks because they do not propagate. The FISLMITS algorithm uses a predetermined
pruning threshold to eliminate track components corresponding to their low component
existence probabilities. In addition, the component merging technique compares the
component measurement histories accumulated in the last four scans in order to merge
identical components. Identical track components are merged to one Gaussian pdf mean
accompanying by its covariance, thereby reducing the computational complexities in multi-
target data association evaluation. The FIsSLMITS, FIsJITS, and s]ITS algorithms apply
the same pruning threshold as well as same merging technique in this manuscript for a
fair comparison.

Since, a track is always tentative; therefore, the confirmation of the tracks is required.
The FISLMITS uses predetermined track confirmation and termination thresholds to deter-
mine the nature of the forward, backward, and smoothing tracks based on their updated
TEPs. In the case of smoothed tracks, it uses smoothing TEP as a track quality measure for
FTD evaluation. A confirmed track should exceed a confirmation threshold; otherwise, it
could be terminated if its updated TEP falls below a termination threshold value. Moreover,
a confirmed track remains confirmed regardless of the updated TEP until its termination.
Therefore, the TEP of forward, backward, and smoothing tracks is updated recursively in
each scan k to determine track quality measures. In the cluttered environment, a confirmed
track may often follow the clutters. FIsSLMITS applies the chi-squared statistical test [2,10]
to verify the confirmed tracks that is defined by the following:

T -1
(58 —27) (P5o) (3w —21) <7 @)

where POT|0 represents the initial covariance of target measurement noise sequence and
denotes the true track selection threshold of the statistical condition, which depends on
the false-alarm probability distribution [2,10]. If a confirmed track satisfies Equation (42)
with a threshold < 20; then, it is referred to as a confirmed true track (CTT); otherwise, it
is a confirmed false track (CFT). Moreover, a CTT may become a CFT due to the presence
of clutters and other targets if it exceeds false condition threshold > 40. These threshold
values are dependent on the target model, target velocities, and area of surveillance region.
This statistical test is evaluated between each confirmed track state estimate (Equation (38))
and each target state (Equation (1)) in each scan k.

Moreover, it is also possible that a potential target is followed by more than one CTT,
although only one CTT is required for tracking the corresponding targets. Therefore, the
FIsLMITS algorithm utilizes the auction algorithm [30], which is used to bid for asyn-
chronous CTTs. The auction algorithm measures the benefit score which calculates the
minimum normalized distance squared value (% \; — x;) with respect to each CTT 7. Then,
the benefit score evaluates the winning bid with respect to each CTT. A bid is placed when
the tth benefit score is greater than any other bid of CTT. Therefore, the auction algorithm
is explicitly used for selecting only one CTT corresponding to the potential target with the
highest winning bid.

4.2. Simulation Parameters and Scenario

Assume that the smoothing algorithms FISLMITS, FISLMIPDA, FIsJITS, and sJITS
have the same measurement interval length. Each smoothing/non-smoothing algorithm
was initialized with the same TEP (i.e., 0.01) and has a same track termination threshold
(same value as initial TEP) for a fair comparison. However, only the confirmation threshold
was tuned to obtain a similar number of CFTs (/25).

This research work was conducted using 200 Monte Carlo simulation runs in the
two-dimensional surveillance region that has a [700; 700] m dimension along X and Y
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axes. Each simulation run consists of 36 scans with sampling interval time T = 1 s.
In this region, the sensor (e.g., radar) returns the random number of clutters processed
by the Poisson distribution in each scan with a measurement density of p;; = 0.0001.
These measurements are additionally corrupted by sensor noise with known covariance
R; = 25I,,» m?. Thus, the average number of clutters observed in each scan k equals 48. In
this cluttered environment, each algorithm generated around 120,548 (603 per run) forward
tracks. In addition to this, the backward tracks of FISLMITS, FISLMIPDA, and FIsJITS
were initialized roughly around 167,380 (837 per run); therefore, they consumed more
computational time in comparison to that of non-smoothing algorithms. We assumed a
maximum target velocity of 25 m /s for track initialization using Equation (5) (i.e., two-point
initialization process). Each algorithm applies target model state transition probability
(« = 0.98) followed by Markov Chain One target existence event [3] in order to update and
maintain track propagation in each scan k. Moreover, the target model was also corrupted
with a process noise of g = 0.75 m?/s* and has a detection probability, Pp = 0.9. We
assumed that each target is untagged and has been shuffled by clutter measurements with
density p; .. Only the target initial position without its velocity information is known to
each algorithm. Given the Table 1, we have the following.

Table 1. Initial position of targets in meters.

Target No. Position
1 [100; 300]
2 [387;100]
3 [100; 200]
4 [100; 400]
5 [200; 100]
6 [600; 100]

The FIsSLMITS algorithm is implemented for tracking and estimating the state of six
targets in clutters, as shown in Figure 3. For reasons of simplicity and clarity, this figure
illustrates the smoothing trajectories of targets from one simulation run. The targets are
moving very closely near the intersection point of the coordinates and certainly crossing
at approximately [387;300] m at different times. It is assumed that each target moves
uniformly at a different corresponding velocity and has a different flight angle. Due
to this, the measurement of one target is often associated with other targets near the
intersection point.

Tracking of Six targets in the cluttered environment
. 150 L 2 T T*s L T ) T O T .

700 = o
. ' . Clutter =—#—FISLMITS 3 =—#—FISLMITS6[" T *

. o | =#—FIsLMITS 1 ——#—FIsLMITS 4 Targets L.

600 . FISLMITS 2 FISLMITS 5 e

n -
DI IR O X

.
.

0 100 200 300 400 500 600 700
x-axis [m]

Figure 3. Multi-target tracking scenario in the cluttered environment.
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Table 2 shows the statistics of the multi-track retention accounting from 200 simulation
runs that are accumulated before and after crossing of the multi-targets. Each algorithm
preserves the index of multi-track for statistics evaluation. The track retention has following
important parameters:

* nCases: It is the number of CTTs following a potential target that was counted in
scan 15;

¢ nOk: The number of CTTs that keep pursuing the original target (without switching
to other target track) in scan 30;

* nSwitched: It counts the number of CTTs that swapped the original target and are
now pursuing a different target in scan 30;

* nLost: The number of CTTs accounted from nCases that are not pursuing any target in
scan 30 because they were terminated due to low track TEP or low track component
existence probabilities or they became confirmed false tracks;

*  nResult: It counts the number of CTTs that is retained until the last scan k = 36.

Table 2. Multi-track retention statistics.

Algorithm nCases nOk nSwitched nLost nResult Execution Time
FIsLMITS 1185 978 192 15 1197 11.2
FIsLMIPDA 1090 720 260 110 1094 5.4
FIsJITS 1154 611 497 46 1163 16.3
sJ]ITS 1119 648 390 81 1165 16.8
LMITS 996 595 197 204 1123 7.2
LMIPDA 1055 622 288 145 1145 0.7

Table 2 shows that the proposed FISLMITS algorithm produces the highest number
of nCases and nOk, and the lowest number of nSwitched and nLost. It is noted that
the number of nLost is not necessarily the same as the number of CFTs. Table 2 also
compares the algorithms in terms of execution time per run. The standard ITS filter is
computationally expensive due to an exponentially increasing number of track components.
Additionally, under the joint measurement assumption, the FIsJITS and sJITS consumed
a large amount of computation time in each run as compared to the linear multi-target
based algorithms. The proposed FISLMITS algorithm invested only 1.52 s in each run and
earned significant performance in terms of multi-track retention. The LMIPDA algorithm
is the simplest among the existing algorithms, which utilizes the standard IPDA algorithm;
therefore, it has a lowest execution time per run. Moreover, operating the FIsJITS and
sJITS for the estimation of more than six targets in clutters broken the simulation in the
middle of the scanning because the evaluation of the FIsJITS and sJITS algorithms exceeded
the available memory of resources. The numerical and technical analyses of FISLMITS,
FIsSLMIPDA, FIsJITS, sJITS, LMITS, and LMIPDA were carried out using MatLab R2020b
software in the 11th Intel Core™ i7-1165G7 (@2.80GHz, 2.80 GHz) platform. This software
was manufactured by MathsWorks at Natick, MA, USA, 20 September 2020.

4.3. Illustrative Results

Figure 4 compares the performance of FISLMITS against the existing algorithms
in terms of the number of CTTs corresponding to all targets. The FISLMITS algorithm
confirmed the true track of the potential target quite earlier in scan k = 5 and provided
the highest number of CTTs compared to other algorithms. Each smoothing algorithm
lost some CTTs near the intersection of multi-targets. However, LMITS and LMIPDA
lost the majority of the CTTs in scans k = 20 to 25. It was observed that both FIsJITS
and sJITS have almost similar rates of track confirmation. Thus, the proposed FISLMITS
algorithm demonstrates improved estimation accuracy and FID in comparison to the
existing algorithms.
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Figure 4. Number of CTTs produced by FISLMITS, FIsLMIPDA, FIsJITS, sJITS, LMITS, and LMIPDA.

The position root-mean square errors (RMSEs) statistics of the targets with re-
spect to CTTs were calculated using the FISLMITS, FIsSLMIPDA, FIs]JITS, sJITS, LMITS,
and LMIPDA algorithms for comparison. Since the RMSE trend of the algorithms is
almost the same, the RMSE results of only four targets 1, 2, 4, and 6 are shown in
Figure 5a, Figure 5b, Figure 5¢, and Figure 5d, respectively. LMITS and LMIPDA are
non-smoothing algorithms; therefore, they have produced the high estimation errors
as compared to smoothing algorithms. The fluctuating RMSE statistics of the FIsJITS
and sJITS algorithms corresponding to targets 1, 2, and 6 are observed mainly due
to the regular distraction of shared tracks within the vicinity of the neighbored mea-
surements that reflected the highest number of nSwitched (Table 2). In the situation
of target 6, FISLMIPDA, FIs]JITS, sJITS, LMITS, and LMIPDA algorithms consistently
produced high RMSEs than compared to FISLMITS algorithms due to the weak growth
of smoothing /non-smoothing target existence probabilities in each scan k. In the case
of target 4, all smoothing algorithms have almost the same RMSE statistics; however,
FIsLMIPDA and s]JITS resulted in some peak errors observed at different scans, as de-
picted in Figure 5c. The FIsSLMITS algorithm provides a significant RMSEs reduction
compared to the existing algorithms, as shown in Figure 5a—d.

The proposed FISLMITS algorithm demonstrated the optimum performance in multi-
targets cluttered environment in terms of improved state estimation accuracies, track quality
measure for FTD, RMSEs, and multi-track retention statisticsm as shown in Figures 3-5
and Table 2, respectively.
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Figure 5. Cont.
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Figure 5. Root mean square errors (RMSEs). (a) RMSE of Target 1; (b) RMSE of Target 2; (c) RMSE of
Target 4; (d) RMSE of Target 6.

5. Conclusions

The FIsSLMITS extended the LMITS algorithm by utilizing fixed interval smoothing,
which significantly improved multi-target state estimation and FTD. In this study, FIsSLMITS
was implemented for tracking six targets within the 1.67 s execution time per run (each
run comprised 36 scans). In view of the simulation setting and algorithm performance,
FIsLMITS can feasibly track more than six targets within a bearable execution time. Because
the LM-based method avoided the entire joint data association procedure of FIsJITS and
sJITS, it saved a huge amount of execution time for multi-target state estimations. To obtain
novelty findings, forward track recursion was followed by smoothing multi-tracks estima-
tion. For smoothing, the forward tracks acquired backward multi-tracks predictions that
played as a set of measurements in the forward-path track. The fusion of each individual
forward track state component with all associated backward multi-track-multi-components
consequently calculates the smoothing multi-components and their validation measure-
ments. Each forward track was supported by smoothing multi-component measurements
and their component existence probabilities, which significantly improved forward multi-
component state estimation, making an efficient forward track for fusion and smoothing in
subsequent scans. The Monte Carlo simulation demonstrated the FISLMITS algorithm to
be a useful asset for practical implantation with the highest multi-track retention statistics
comprising the highest number of nCases, nOk, and nResult, as well as lowest number of
nSwitched and nLost, at the cost of the limited smoothing-time delay.
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Abbreviations

The following abbreviations are used in this manuscript:

FTD False track discrimination

TEP Target existence probability

MTT Multi-target tracking

STT Single target tracking

LM Linear multi-target

IPDA Integrated probabilistic data association

ITS Integrated track splitting

JIPDA Joint integrated probabilistic data association

JITS Joint integrated track splitting

LMIPDA Linear multi-target integrated probabilistic data association
LMITS Linear multi-target integrated track splitting

FIsJIPDA Fixed interval smoothing joint integrated probabilistic data association
sJITS Smoothing joint integrated track splitting

FIsJITS Fixed interval smoothing joint integrated track splitting

FIsSLMIPDA  Fixed interval smoothing Linear multi-target integrated probabilistic data association
FIsLMITS Fixed interval smoothing Linear multi-target integrated track splitting
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