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Table S1.1. Existing approaches to infill gaps in latent heat flux, carbon flux or directly for ETa. 
Orange cells highlight models that rely on additional input variable other than the variable to infill. 
Green cells highlight the only two existing parsimonious gap-filling models, the mean diurnal 
variation (MDV) and the analogue period (AP). 

Ref. Variable to infill Approach Input Data required  Case study used 
[1] Net ecosystem 

CO2 exchange 
(NEE) flux 

Mean diurnal variation 
(MDV)  

This method only uses the variable to infill 
itself. 
Gaps are filled by averaging valid values at the 
same time of measurement in m days before and 
m days ahead of the day with gaps, within a (at 
most) 2-week window 
around the gap. 

18 sites from 
EUROFLUX and 
AmeriFlux over crops, 
grasslands and conifer 
and broad-leaved 
forests 

Lookup table (multi-
variate) 

NEE data are binned by meteorological 
conditions and missing values are filled with 
available records under similar meteorological 
conditions. 

[2] Latent heat flux 
(LE) 

Analog period (AP) This method only uses the variable to infill 
itself. 
The full data record is scanned to identify similar 
periods similar to the periods just preceding and 
following the gaps. These periods are then used in 
simple or multiple regressions to fill the missing 
information. 
The simplest form uses only LE data itself. 

Six AmeriFlux stations 
with 3 in forests (1 
Mediterranean, 2 * 
humid subtropical), 1 
in cropland (humid 
continental) and 1 in 
shrubland 
(Mediterranean) 

[3] Net ecosystem 
CO2 exchange 
(NEE) flux 

Non-linear regressions The infilling is based on NEE =  GP – ER, where 
meteorological data are used to predict each 
component. 

Six forested European 
sites that are 
representative of 
European forests and 
climates, including 
Mediterranean, 
deciduous broadleaf, 
and evergreen 
coniferous sites over a 
20° latitudinal range. 

Unscented Kalman filter 
(UKF) 

Meteorological data are used to predict NEE and 
serial correlation is used to continuously improve 
the prediction. 

ANN This is a black-box non-linear regression model to 
predict NEE from meteorological data. 

Lookup table (LUT) NEE data are binned by meteorological conditions 
and missing values filled with available records 
under similar meteorological conditions. 

Marginal distribution 
sampling (MDS) 

This is an improvement of standard LUT, where 
similar meteorological conditions (of a fixed 
margin) are sampled in the temporal vicinity of 
the gap to be filled. 

Semi-parametric model 
(SPM) 

This method uses a 3-dimensional, non-linear 
look-up table sorted with meteorological 
variables and time as a 
continuous representation of NEE. 

Mean diurnal variation 
(MDV) 

This method only uses the variable to infill 
itself. 
Missing NEE value for a certain 0.5-h is replaced 
with the averaged value of the adjacent days at 
exactly that time of day 

Multiple imputation (MI) 
method 

The method uses multivariate correlation to 
replace the missing NEE data with several 
simulated (imputed) values as a distribution, and 
taking the mean of the distribution 



Terrestrial biosphere 
model 

This is a process-based model to predict NEE with 
meteorological data and LAI, soil type, texture, 
depth, canopy height and tower height 

[4] NEE flux 
 

Look up table (LUT) The fluxes are binned by similar meteorological 
conditions within a certain time window. The 
missing value of the flux is then calculated as the 
average value of the binned records. 

25 sites from the 
LaThuile FLUXNET 
dataset which covers 
cropland, various 
broadleaf/needleleaf 
forest, grassland, 
shrubland, wetland 
and wood savanna. 

mean diurnal course 
(MDC) – equivalent to 
MDV 

This method only uses the variable to infill 
itself. 
Autocorrelation of the fluxes is exploited by 
taking the average value at the same time of day 
within a moving time window of adjacent days 

Sampling from marginal 
distribution of NEE and 
climate variables 
 

The infilling is based on the covariation of the 
fluxes with the meteorological variables and their 
temporal autocorrelation 

[5] Latent heat flux 
(LE) 

Simple linear regression A linear function is developed between LE and Rn 
thus needing solar radiation 

Native forest in Middle 
Rio Grande in New 
Mexico 

[6] Latent heat flux 
(LE) 

ERddyProc - Mean diurnal 
variation (MDV) and 
Lookup table (LUT) 

The method fills missing LE data with those 
collected under similar meteorological conditions 
or with averaged values over adjacent days. 

Three 
wheat crop fields – two 
sloping ones and one 
flat one in NE Tunisia 
(subhumid 
Mediterranean)  
 

Multiple linear regression  
 

A regression is developed between LE and other 
energy fluxes. 

Evaporative Fraction (EF)  The infilling is based on EF = LE/(Rn-G). 
Assuming EF at midday is statistically 
representative of daily EF, and infill missing LE 
based on EF (requiring other energy fluxes). 

[7] Latent heat flux 
(LE) 

Mean diurnal variation 
(MDV) 

This method only uses the variable to infill 
itself. 
A missing observation is replaced by 
the mean for that time of day based on 
observations from the previous and subsequent 
days. 

18ha winter wheat in 
NW of Guelph, 
Ontario, Canada. 

Multiple regression A regression was developed between LE and 
available energy flux (Rn-G) and VPD 

Two-week average 
Priestley and Taylor 
coefficient 

Missing measurements of half hourly latent heat 
flux were estimated using the product of 
equilibrium evaporation for the half hour and the 
2-week average Priestley and Taylor coefficient 
(needing meteorological variables and energy 
fluxes). 

Multiple imputation (MI) 
method 

The method used the distributions of 
meteorological variables and LE to impute LE 
distribution. 

Kalman filter applied to a 
dynamic linear regression 

A parametric model was developed to relate 
temporal variations of LE with net radiation and 
VPD. 



[8] Latent heat flux 
(LE) 

Non-linear interpolation of 
LE with either Multiple 
regressions (MRS) and K-
nearest neighbours (KNNs) 
informed by a principal 
component analysis (PCA) 
 

The infilling used input environmental variables 
including meteorological variables, soil water 
deficit and LAI. 

Forest with mixed 
evergreens and 
hardwoods in central 
Taiwan (humid 
subtropical) 

[9] 
 

Carbon, vapour 
and sensible heat 
fluxes 

Self-organizing linear 
output (SOLO) artificial 
neural network (ANN) 

A self-organising feature map (SOFM) is 
constructed from the meteorological variables to 
identify dependencies between predictor 
variables. Then the responses of measured fluxes 
can be predicted with the SOFM. 
 

A savanna woodland 
within tropical arid 
zone in central 
Australia 

[10] Daily ET data Feed-forward (FF) artificial 
neural 
networks (ANN) with 
different climate inputs 

An ANN is developed between ET and 
meteorological data. 

Saltcedar forest in New 
Mexico, SW of United 
States 

 

 

 

Figure S1.1. Percentage 30-min ETa data availability within each day, sorted from the lowest to highest across the 
full monitoring dataset. 

 



 
Figure S1.2. Split of the training and evaluation subsets to represent missing data Types B i.e., missing mid-day.  

 

 
Figure S1.3. Split of the training and evaluation subsets to represent missing data Types C i.e., missing afternoon.  

 
Figure S1.4. Daily RMSE of the four gap-filling models under the three typical patterns of missing data (A – 
missing morning; B – missing mid-day; and C – missing afternoon), plotted against the daily ratio of actual solar 



radiation to clear-sky solar radiation. Each panel shows one gap-filling model where the three missing data types 
are differentiated by colours. 
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