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Abstract: Urban photochemical ozone (O3) formation regimes (NOx- and VOC-limited regimes) at
nine megacities in East Asia were diagnosed based on near-surface O3 columns from 900 to 700 hPa,
nitrogen dioxide (NO2), and formaldehyde (HCHO), which were inferred from measurements by
ozone-monitoring instruments (OMI) for 2014–2018. The nine megacities included Beijing, Tianjin,
Hebei, Shandong, Shanghai, Seoul, Busan, Tokyo, and Osaka. The space-borne HCHO–to–NO2 ratio
(FNR) inferred from the OMI was applied to nine megacities and verified by a series of sensitivity tests
of Weather Research and Forecasting model with Chemistry (WRF-Chem) simulations by halving
the NOx and VOC emissions. The results showed that the satellite-based FNRs ranged from 1.20 to
2.62 and the regimes over the nine megacities were identified as almost NOx-saturated conditions,
while the domain-averaged FNR in East Asia was >2. The results of WRF–Chem sensitivity modeling
show that O3 increased when the NOx emissions reduced, whereas VOC emission reduction showed
a significant decrease in O3, confirming the characteristics of VOC-limited conditions in all of the
nine megacities. When both NOx and VOC emissions were reduced, O3 decreased in most cities, but
increased in the three lowest-FNRs megacities, such as Shanghai, Seoul, and Tokyo, where weakened
O3 titration caused by NOx reduction had a larger enough effect to offset O3 suppression induced
by the decrease in VOCs. Our model results, therefore, indicated that the immediate VOC emission
reduction is a key controlling factor to decrease megacity O3 in East Asia, and also suggested that
both VOC and NOx reductions may not be of broad utility in O3 abatement in megacities and should
be considered judiciously in highly NOx-saturated cities in East Asia.

Keywords: formaldehyde–to–nitrogen dioxide ratio (FNR); WRF–Chem modeling; ozone formation
regimes; megacities in East Asia

1. Introduction

Ozone (O3) is increasing in East Asia at a higher rate because of the rapid industrializa-
tion and urbanization over the years, and has been regulated since the 2000s in East Asian
countries [1–4]. In China, total nitrogen oxides (NOx = NO (nitric oxide) + NO2 (nitrogen
dioxide)) have been on a downward trend since 2013 due to China’s implementation of
China’s Five-Year Plan (FYP) air pollution control policies during 2013–2017 [1,2]. South
Korea has enforced stringent regulation policies for NOx since the early 2000s [3,4], and
in Japan, O3 reduction measures have been imposed to reduce traffic emissions since the
1990s, resulting in the reduction of volatile organic compounds (VOCs) and NOx emissions,
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which have decreased by 50% and 54%, respectively [5]. Nevertheless, a persistent increase
in ground-level O3 has been observed in many areas of East Asia [5–7]. Studies on the
impacts of O3 regulation and emission reduction policies have been conducted targeting
O3 abatement over East Asian megacities, including the Pearl River Delta region [8], Hebei
Province, [7,9], and Yangtze River Delta region [10] in China, and several megacities in
Japan and Korea [11,12]. These studies have shown non-linear changes in response to the
reduction of urban emissions.

Recent studies have emphasized efficient measures of O3 reduction over the megac-
ities. Several studies have shown that HCHO increased in urban areas in the summer,
especially during 2005–2012, and NO2 decreased over northeast Asia (i.e., the Beijing,
Tianjin, and Hebei regions) in the winter during 2013–2018 [13,14]. Both these trends led to
an enhancement of the annual average O3 in urban areas of China and Korea, reflecting an
NOx-saturated O3 regime. A more pronounced increase in the wintertime O3 was observed
in recent years (2013–2018), resulting from the significantly reduced NOx titration effect in
winter [13,15] in the aftermath of the rapid decrease in NO2 over megacities in East Asia.
Many measurement-based O3 diagnoses at the megacity scale were found to be associated
with urban emission policies. However, these studies [12,14,16,17] have limitations because
in situ measurements do not fully cover an entire city’s area, covering only the partial
targeted areas of megacities [12,18–20].

Space-borne observations covering spatially broader areas in East Asia have been
developed by utilizing a high-resolution satellite observation. However, satellite measure-
ment is not limited to the surface or tropospheric atmosphere, but it is a column-integrated
measurement, which has hindered surface-focused photochemical VOC- or NOx-regime
identification. Recently it has become possible to extract near-surface (or tropospheric)
O3 from satellite signals due to the help of recent and sophisticated satellite retrieval al-
gorithms, thereby enabling large-scale spatiotemporal analysis of the lower tropospheric
atmosphere [21].

Lee et al., (2021) analyzed non-surface O3 from satellite measurements using the
ozone-monitoring instrument (OMI) [16], including variations in the HCHO–to–NO2 ratio
(FNR) from relevant chemical species, such as NO2 and HCHO, and analyzed 900–700 hPa
tropospheric O3 formation regimes targeting megacities in East Asia. The near-surface
O3, NO2, and HCHO were diagnosed by Lee et al. (2021) [16] for 2005–2018, and the
persistence of NOx-saturation in most megacities was verified against a variety of in situ
measurements. They pointed out that, at present, NOx emission reduction under these
NOx-saturated conditions in megacities might contribute to increased O3 owing to the
relatively weaker titration induced by NOx reduction throughout large urban areas in East
Asia. As a follow-up study, the current study aims to verify the NOx-saturated regimes
by utilizing a numerical air quality model and evaluating the effectiveness of O3 control
strategies in megacities in East Asia.

Analysis of model sensitivity is useful to evaluate the reliability of a hypothesis, such
as the efficiency of O3 management planning. In this study, therefore, we carried out
model sensitivity tests to verify the O3 formation regimes (NOx- and VOC-limited regimes)
over nine megacities in East Asia. We first characterized the 5 yr average spatial FNR
distributions for 2014–2018 in East Asia based on the near-surface O3, NO2, and HCHO
concentrations taken from OMI. Next, modeling experiments were carried out to ensure
that the satellite-based diagnosis of O3 formation was robust in terms of O3 abatements
in megacities in East Asia. As a regional air quality model, a 3-D chemistry online model,
Weather Research and Forecasting model with Chemistry (WRF-Chem), was employed
to simulate recent spatiotemporal variations in FNR. In addition, several VOC and NOx
emission reduction sensitivity tests were conducted to diagnose the megacity-centered
O3 formation regimes over the Korea–United States Air Quality (KORUS-AQ) campaign
period (1 May–12 June). KORUS-AQ aircraft measurements were used to verify the results
of the model. The nine megacities that were considered in this study were Beijing (BJ),
Tianjin (TJ), Hebei (HB), Shandong (SD), and Shanghai (SH) in China, Seoul (SU) and Busan
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(BS) in South Korea, and Osaka (OS) and Tokyo (TK) in Japan. The results of this study
are expected to lead to the identification of the O3 regime and provide essential data for
planning a strategy to reduce the concentrations of O3 in several megacities in East Asia.

2. Data and Methods
2.1. OMI Satellite Measurements

We analyzed the O3 partial column (900–700 hPa) data for the period of 2014–2018 that
were retrieved from satellite OMI measurements [21]. The retrieval algorithm and other
relevant descriptions of the OMI Ozone Profile (OMPROFOZ) research product, NASA
OMI standard NO2 product, and OMI standard HCHO product are described in detail in
previous studies [16,21–23]. It should be noted that satellite retrievals of ozone measure-
ments (900–700 hPa) have uncertainties ranging from 6 to 35% in the troposphere [24–27]
and are still in development. Despite the limited vertical resolution and precision, satellite
observations have been shown to detect ozone enhancements caused by biomass burning
over Africa [28], anthropogenic pollution over central and eastern China [29], the transport
of anthropogenic pollution in the free troposphere [30], stratospheric ozone intrusion [31],
and the Tibetan middle tropospheric ozone minimum in June due to the Asian summer
monsoon [32]. In addition, the retrieved ozone profiles have also been used to quantify the
global tropospheric budget of ozone and evaluate the effectiveness of the current chemistry–
climate models in reproducing the observations of Sauvage et al. (2007) [33], Zhang et al.
(2010) [34], and Hu et al. (2017) [35]. The detailed OMI tropospheric NO2 and HCHO
column data for the spatiotemporal variations of tropospheric ozone precursors in our
analysis were described previously by Lee et al. (2021) [16]. In assessing the changes in the
OMI measurements and model results, linear regression analysis was employed to identify
the mean and standard deviations of the increasing/decreasing rates.

2.2. Air Quality Model: WRF–Chem

WRF–Chem (ver. 4.0), a three-dimensional regional air quality model, was used for
conducting sensitivity tests of the emission reductions of NOx and VOC. Our modeling
domain covers the northeast Asian region, including central and eastern China, as illus-
trated in Figure 1. As a meteorological module, WRF–Chem has a horizontal domain
consisting of 174 × 128 grid cells with a grid spacing of 27 km, and its vertical layers
are composed of 30 full-sigma levels. The initial and boundary meteorological conditions
were obtained from reanalysis data from the National Center for Environmental Prediction
(NCEP)’s global forecast system that has a horizontal resolution of 0.25◦ × 0.25◦. In the
chemistry module, we employed the Regional Atmospheric Chemistry (RACM) Earth
System Research Laboratory (ESRL) scheme [36] for gas-phase chemistry. As a gas–to–
aerosol conversion module, we used the updated Modal Aerosol Dynamics model for the
Europe/Volatility Basis Set (MADE/VBS) mechanism, including secondary organic aerosol
formation processes [37,38]. The WRF–Chem model domains are depicted in Figure 1,
and the model configurations for the major physics and chemistry schemes are listed in
Table S1.
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Figure 1. Domain for satellite measurement analysis and WRF–Chem modeling. Locations of the
nine megacities are also denoted.

2.3. Design of Sensitivity Tests and Ascertaining Reduction in Emissions

Several numerical sensitivity simulations were designed to examine the O3 formation
regime and their reduction effects on O3 abatement through the WRF–Chem air quality
model. The sensitivity experiments included conditional experiments by changing the
emissions of precursor gases, NOx, and VOCs alternatively and simultaneously. Table 1
summarizes the specific descriptions of the sensitivity experiments conducted in this study.
A control case, together with a series of sensitivity experiments, where NOx and VOC were
halved separately, was performed (Table 1). Note that we applied anthropogenic VOC
emission reductions with no change in natural VOC emissions. In developing megacity-
centered emission control policies, it can be anticipated that prioritizing the control of target
species (NOx, VOC, or both) developed in the current study could be of great importance
to achieve efficient O3 control policies.

Table 1. Simulation scenarios for the WRF–Chem model used in this study.

Experiments Emission Scenarios Emission Reduction

Base case KORUSv5 emission (for 2015) -
EXP1 50% reduction of NOx emissions Entire Domain
EXP2 50% reduction of VOC emissions Entire Domain
EXP3 50% reduction of NOx and VOC emissions Entire Domain
EXP4 50% reduction of NOx emission East China
EXP5 50% reduction of VOC emissions East China
EXP6 50% reduction of NOx and VOC emissions East China

We first carried out a control run (referred to as the base case) as a reference case for
comparison with other sensitivity simulations. As the sensitivity test cases, six experiments
(EXP1–EXP6) were designed and conducted by alternatively reducing the NOx or VOC
emissions, and these were compared with the base case. It should also be noted that, apart
from the difference in the emission reductions of the precursors of O3, other factors, such
as the meteorological inputs and model settings of the six scenarios, were all identical.

EXP1–3 were conducted to ascertain which of the two individual emission reductions
was efficient in East Asian megacities. On the other hand, in EXP4–6, we reduced emissions
only in upwind areas (East China), and they were designed to examine the response of O3
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in downwind regions to changes in upwind emissions. A previous study confirmed that
satellite-based measurements of O3 in the Asia-Pacific region have shown an increasing
trend, and therefore, the transport of O3 can have a large impact. As major Chinese cities
showed VOC-limited or transition (from NOx to a VOC-limited regime) statuses in a non-
linear manner, megacities in downwind areas are influenced by the long-range transport
(LRT) of O3. Therefore, EXP4–6 experiments can provide information on non-linear source-
receptor relations through the LRT process over East Asia.

As input for anthropogenic emissions in the simulations, the KORUSv5 emission
dataset developed by the joint research group of the Konkuk University and the National
Institute of Environmental Research [39] was used. These data shared by the KORUS-AQ
Campaign Research Group contain the latest information and reflect the emissions with
respect to 2015 as the base year [40]. The history of emission assessment from KORUSv2
to KORUSv5 was also found in previous studies [20,40] based on both DC-8 aircraft- and
in-situ measurements during the KORUS-AQ campaign. As the biogenic emission module,
Model of Emissions of Gases and Aerosols from Nature (MEGAN) version 2.04 [41] was
used and it was coupled into the WRF–Chem model. Fire emissions were taken from
the Fire INventory of the National Center for Atmospheric Research (FINN) [42] derived
from the Moderate Resolution Imaging Spectroradiometer (MODIS) fire count data with a
high-resolution (1 km) horizontal grid spacing.

Figure S1 shows the spatial distributions of NOx and VOC emissions. The NOx and
VOC emissions listed in the KORUSv5 emission dataset were respectively 22,514 Gg yr.−1

and 28,356 Gg yr.−1 in China, 1076 Gg yr.−1 and 996 Gg yr.−1 in South Korea, and
1771 Gg yr.−1 and 892 Gg yr.−1 in Japan. Thus, the national total VOC emissions were
higher than those of NOx emissions only in China among the three countries. In South
Korea and Japan, the VOC/NOx ratios were <1 in most regions, indicating high NOx
emissions. However, in China, the VOC/NOx ratios were >5, indicating relatively high
ratios of VOCs in most regions, except around Hebei province, including BJ, TJ, and HB,
where the NOx emissions were high (Figure S1). The total emissions of East China are larger
than those of the other regions/countries; therefore, the atmosphere of the downwind
regions as well as Eastern China is affected via the LRT process by the policy on regulation
of emissions in China. We carried out WRF–Chem model simulations of the changes in
O3 concentrations when the NOx and VOC emissions are reduced in upstream areas (i.e.,
East China) by 50% each (EXP4–6, as listed in Table 1), and investigated the responses in
downwind areas, and contrasted with the first three scenarios where we halved precursor
emissions over the entire East Asian domain (EXP1–3, as listed in Table 1).

2.4. KORUS-AQ Campaign

The KORUS-AQ campaign has been conducted to observe air quality across the Korean
Peninsula and its surroundings. It was carried out as an international, multi-organizational
mission created by the National Institute of Environmental Research of South Korea and the
National Aeronautics and Space Administration of the United States. The main goal of the
KORUS-AQ campaign was to examine the factors contributing to air quality problems over
the Korean Peninsula. The KORUS-AQ campaign collected comprehensive and detailed
air pollutants including both trace gases and aerosol particle properties from aircraft,
ground sites, and ships, with extensive spatial and vertical coverage from 1 May 2016 to 12
June 2016. Further details on the KORUS-AQ campaign can be found in Crawford et al.
(2021) [43].

3. Results
3.1. Validation of Models

Park et al. (2021) [40] have evaluated the participating multiple models in KORUS-AQ
campaign simulation, including WRF–Chem, Geos–Chem, CAMx, CMAQ, and others for
the base case simulations against DC-8 aircraft measurements for the entire period of the
KORUS-AQ campaign in 2016. As a participating model in this model intercomparison
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study, our base case of WRF–Chem simulation in the current study was also evaluated
against other models, and aircraft and surface observations [40]. The WRF–Chem model
evaluations against surface observations were performed by employing statistical metrics:
Pearson correlation coefficient (R), Index of Agreement (IOA), normalized mean bias (NMB),
and root–mean–square–error (RMSE). The definitions of R, IOA, NMB, and RMSE can
be found in earlier studies [44,45], and the detailed validation results of our WRF–Chem
simulations are listed in Table S2.

The WRF–Chem model simulations for the entire campaign period capture the spa-
tiotemporal patterns of O3 against surface observations, with average NMB of −29, 30, and
−7% for O3, NO2, and toluene, respectively [40] (Table S2). In addition, this comparison
against DC-8 aircraft also demonstrated that the modeled overall O3 vertical variations
were satisfactorily captured by the model, with R of 0.67, NMB of −36%, and RMSE of
21.2 ppb, respectively, as indicated in Table S2. The calculated IOA of 0.53~0.73 for O3 is ap-
parently more than 0.5, the level of good grades discussed in earlier studies [46]. Therefore,
we do not expect model biases to change the major findings of the present study. Detailed
model evaluations for several models (including our simulations) during KORUS-AQ are
found in Park et al. (2021) [40]. The results of the comparisons of the WRF–Chem with
DC-8 aircraft measurements during the KORUS-AQ campaign period for some case studies
can be also found elsewhere [47,48].

3.2. Satellite Measurements of Near-Surface O3, NO2, and HCHO in East Asia

The relationships between O3, NOx, and VOCs were explored for a recent 5 yr period
(2014–2018) from an OMI-based retrieved column. Figure 2 shows the satellite-retrieved
900–700 hPa O3 and its precursor gases, such as NO2 and HCHO, over East Asia. As shown
in Figure 2, the domain-averaged near-surface O3 partial columns in three sub-divided
areas (East China, Korea, and Japan) show increasing trends, with rates of +0.2 DU (2–3%)
per 10 yr for China, South Korea, and Japan. O3 in the nine individual megacities showed
similar increasing trends with different concentrations, clearly indicating the increasing
trends in all countries, even after 2013, when the severe NOx emission reduction plan was
implemented in East China.

The NO2 column increased approximately 1.5 times during 2005–2013 in East China,
and showed a decreasing trend since then. It can be clearly seen that the NO2 columns
of China decreased owing to the reduction of NOx emissions in 2017, which decreased
by ~17% compared to that in 2010 because of strong regulations, particularly in BJ and its
surrounding regions from 2013 onward [49,50]. Owing to this regulation policy, not only
NO2, but also the emissions of SO2 (~−62%), CO (~−27%), and PM2.5 (~−35%) decreased
significantly from 2012 onward. The NO2 concentrations in the nine megacities in East
China showed the direct influences of emission regulations, with a significant decrease in
NO2 since 2013 (Figure 2). In South Korea and Japan, the range of variations in the NO2
column was relatively low, but it gradually decreased over the last 20 years.

The HCHO column exhibited a minor (but detectable) steadily increasing trend (~5%)
in all three countries, with similar change trends, including the decreasing (2011–2012) and
increasing (2012–2013) trends in HCHO. However, the emissions of NMVOCs increased
by 11% for the same period [50,51], and the HCHO columns showed a small increasing
trend. As a result, the ozone column concentrations showed an overall increasing trend,
despite the decreasing NO2 emissions caused by emission mitigation since 2013, indicating
VOC-limited regimes, especially in the considered megacities in East Asia.
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Figure 2. Three sub-divided analysis areas: East China, S. Korea, and Japan, including nine megacities
(as defined in Figure 1) and time series of the O3 (900–700 hPa) (unit: Dobson Unit), tropospheric
NO2 (unit: 1015 molecules cm−2), and HCHO (unit: 1015 molecules cm−2) columns for 2005–2018.
Rectangular boxes represent the sizes of the nine megacities for the OMI column averages.

3.3. Formaldehyde–to–NOx Ratio (FNR) of the Nine Megacities in East Asia

Figure 3 shows the spatial distributions of satellite-derived FNR, together with the
near-surface O3, NO2 (used as a mark of NOx), and HCHO (used as a mark of VOC), over
the recent 5 yr period (2014–2018), and Figure 4 indicates the 5 yr average FNR for the
nine megacities. Here, FNR is one of the good indicators for differentiating between NOx-
limited and VOC-limited regimes; however, it should be noted that the FNR classification
may differ depending on the region and time of day [52,53]. We classified FNR < 1.0
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as VOC-limited, FNR > 2.0 as NOx-limited, and 1.0–2.0 as transition phases [16,52] in
Figure 3. The domain-averaged FNR over China, South Korea, and Japan derived in the
current study was 2.46–5.19 during 2014–2018 (Figure 3), and the resultant FNR in the nine
megacities were recognized to be >1.20 (slightly greater than VOC-limited), which were
much lower than those averaged in the domain (Figure 4). Therefore, we conventionally
used a regime of FNR < 1.5 (or slightly greater) as ‘NOx-saturated’ in this study, where
NOx reduction led to O3 increases to explore more extensively the smaller FNRs focusing
on the nine megacities. Of the nine megacities, Shanghai (1.24), Seoul (1.40), and Tokyo
(1.20) were clearly identified as NOx-saturated regimes, where significantly lower FNR
values were shown. In summary, the near-surface O3 columns over main cities in East Asia
had an increasing trend, despite the rapid reductions in the NO2 columns with lower FNRs,
especially in the main megacities in recent years (Figures 2–4).
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Lee et al. (2021) [16] described the spatiotemporal FNRs during 2005–2018 over
the same area, including the main megacities, and pointed out the rapid shift from
an NOx-saturated to an NOx-limited regime, and the main cause was the lower FNR
(FNR = 1.79 ± 0.50) than that of domain average (FNR = 3.66 ± 1.40) due to the rapid de-
crease in NO2 since 2013 with steadily increasing HCHO (see Figures 2–4). These tendencies
were also consistent with the emission trends of NOx and VOCs [3,4,50]. For example,
it was reported that non-methane anthropogenic VOC emissions in China increased by
11% from 2010 to 2017 [50], which is in accordance with the trends in the HCHO columns,
as described in this study, showing a low rate of increase caused by insufficient regula-
tions for VOC emissions. These trends and studies suggest NOx-saturated O3 formation
regimes with VOC-limited characteristics in the megacities in East Asia, and, as a next
step, prioritizing the target precursor is of the utmost importance in determining effective
O3 control strategies. One of the most useful approaches in control strategy evaluation is
employing sensitivity simulation tests in photochemical air quality models to investigate
how O3 concentrations change in response to prescribed decreases in emissions of NOx
and/or VOCs (i.e., Table 1).

3.4. Numerical Results on Reduction of Emissions
3.4.1. Experiments EXP1–3

Figure 5 and Table S3 show the results of the WRF–Chem sensitivity modeling by
halving the emissions of NOx and VOCs alternatively over the entire modeling domain.
As indicated in Figure 5, the NOx reduction case (EXP1) increased O3 by up to 29.6% in
all nine megacities, with the exception of SD in China, where O3 decreased slightly by
−3.6%. This strongly implies a NOx-saturated regime for all megacities (except for SD),
and significant cuts in NOx emissions should be needed to allow the O3 formation regime
to shift in megacities, especially in BJ, SH, SU, and TK, which had the lowest FNRs in East
Asia, as indicated in Figure 4. This is also consistent with the fact that, when NOx emissions
were reduced in the NOx-saturated regime, O3 increased, as demonstrated by the United
States Environmental Protection Agency’s empirical kinetic modeling approach [54].
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from the impacts of three 50% emission reduction scenarios, including the reduction of NOx (EXP1),
VOCs (EXP2), and both (NOx + VOCs; EXP3) in the entire East Asia domain. Rectangular boxes
represent the sizes of the nine megacities for OMI column averages, and the black numbers in
parentheses indicate the average surface O3 concentrations (unit: ppbv) of the control experiment
for the 2016 baseline year. Red, green, and yellow indicate the percentages of O3 increase and
decrease compared with the average value of the control experiment in the results of EXP1, EXP2,
and EXP3, respectively.

In contrast, the VOC emission reduction case (EXP2) showed the opposite response to
that of the NOx emission reduction case (EXP1), showing an O3 decrease of up to ~20.4% in
all megacities (Figure 5). In EXP2, O3 reduced by a maximum of −6.6 ppbv (−12.7% at SD)
and −6.5 ppbv (−20.4% at SH), and a minimum of −0.6 ppbv (−1.7% at TK), reflecting the
NOx-saturated regimes in all nine megacities. This result indicated that immediate VOC
emission reduction is a robust abatement strategy to decrease megacity O3 in East Asia.

When both NOx and VOCs were reduced (EXP3), BJ, TJ, and BS showed no specific
responses, presumably due to the offset caused by almost equal opposite impacts from
either NOx or VOC emission reductions. However, HB and SD showed a considerable O3
decrease of −11.5%, whereas SH, SU, and TK unexpectedly showed an increase in O3 of up
to +14.1%. It should be noted in Figure 4 that three FNRs were found to be the lowest at
1.24, 1.40, and 1.20 in the three cities of BJ, SU, and TK among the nine megacities.

Therefore, these significantly lower FNRs (and thus NOx-saturated regime) are ex-
pected to increase O3 in some megacities owing to the excessively weakened NOx titration.
It could be possible that a decrease in NOx leads to an increase in ozone production ef-
ficiency (OPE) through the significantly weakened NOx titration effect, especially in the
highly NOx-saturated regime [12], thereby overwhelming the O3 suppression induced by a
decrease in VOCs. This suggests that VOC emission reduction is a key control strategy for
O3 decrease in megacities in East Asia, while both VOC and NOx reductions may not be
useful to abate O3 in some cities with highly NOx-saturated conditions.

However, there are still many uncertainties in modeling studies, and more reliable
adequacy of control strategies would be guaranteed under the premise of more reliable
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emission input data and model validation. However, other megacities, except for the
above-mentioned four cities, i.e., TJ, HB, SD, and OS, showed that O3 decreased by −1.4%,
−4.6%, −11.5%, and −1.3%, respectively, clearly indicating that the VOC-reduction case
(EXP2) showed an O3 decrease efficiency by more than twice compared to both reduction
cases (EXP3). Therefore, an immediate or short-term O3 abatement policy can be developed
until the time when long-term significant changes in FNR are evidenced in East Asia.

3.4.2. Experiments EXP4–6

In East Asia, westerly wind prevails, and the regional O3 in downwind areas varies
by LRT process. Numerous studies have addressed the impacts of the LRT process over
the East Asia and Asia-Pacific area [55–62], including the trans-Pacific transport between
East Asia and the U.S. [63–71]. For this purpose, EXP4–6 were designed to assess the LRT
process in East Asia and to estimate how the changes in O3 in South Korea and Japan are
simulated to be accompanied by emission reductions in East China, based on emission
reductions (Table 1) by halving the emissions only in East China without changing the
emissions in South Korea and Japan.

Figure 6 shows the results of EXP4–6 with the tendencies of O3 in nine megacitiesAs
expected, there were no differences between experiment sets EXP1–3 and EXP4–6 in the
megacities in East China, whereas other megacities in downwind areas exhibited con-
siderable differences. For example, NOx reduction in East China (EXP4) reduced O3 by
−2.2 ppbv (−7.6%), −2.4 ppbv (−5.9%), −1.5 ppbv (−3.8%), and −1.7 ppbv (−4.8%) in SU,
BU, TK, and OS, respectively, indicating a maximum reduction of almost −10%. Of particu-
lar interest is the opposite result to the EXP1 case, where NOx reduction was imposed over
the entire East Asian domain. The reduction in the emissions of VOCs in E. China (EXP5)
indicated reductions in O3 in downwind areas by −2.1 ppb (−7.2%), −2.2 ppb (−5.4%),
−0.9 ppbv (−2.3%), and −0.9 ppbv (−2.5%) in SU, BU, TK, and OS, respectively, indicating
small changes in O3 of ~10%, but covering all nine megacities.

When both NOx and VOCs were reduced (EXP6) in East China, O3 was reduced by
–3.6 ppbv (−12.3%), −3.9 ppbv (−9.6%), −2.1 ppbv (−5.5%), and −2.3 ppbv (−6.7%) in SU,
BU, TK, and OS, respectively, indicating that the reduction efficiencies increased by more
than twice those of EXP4 and EXP5, with a maximum reduction rate of up to −12.3% in SU.
Therefore, it can be concluded that, in these experiments (EXP4–6), South Korea and Japan
showed modest benefits (approximately ~10% O3 decrease) in terms of either NOx or VOC
emission reduction, while the case of the reduction of both (EXP6) had a more pronounced
impact, with decreases of O3 larger than 10% in downstream areas. EXP6 suggested how
the Chinese reduction of precursors emissions can reduce O3 in South Korea and Japan in
East Asia.

As pointed out in Section 3.4.1, it was concluded that reducing local VOC emissions
is an immediate and effective approach for local areas. EXP4-6 also showed that the O3
changes in downwind areas were accompanied considerably by changes in the precursors
of O3 change in the upstream area. Of three tests (EXP4–6), EXP6 with the highest emission
reduction efficiency was the most influential; downwind regions had relatively lower
emissions of VOC than those in upwind areas, which was different from the NOx-saturated
conditions of China, and, as a result, more alleviated O3 production might appear through
the LRT process of precursors emitted from China. Therefore, as the regulation policies of
East Asia are changing, studies that continuously track the changes in O3 trends from both
emission reduction and transboundary processes should be continued to provide feedback
to the policy establishment.
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Figure 6. Monthly (May 2016) averaged O3 concentrations in nine cities in East Asia simulated from
the impacts of three 50% emission reduction scenarios in East China, as described in Table 1. The black
numbers in parentheses indicate the average surface O3 concentrations (unit: ppbv) of the control
experiment for the baseline year of 2016. Red indicates the percentages of increase and decrease of O3

in the results showing the reduction of NOx in the experiment (EXP4), green represents the reduction
of VOCs (EXP5), and yellow represents the reduction of both NOx and VOCs (EXP6) when compared
with the average values of the control experiment.

4. Discussion and Conclusions

Photochemical O3 formation is influenced by VOC/NOx ratios, and its formation
regimes are generally classified as either NOx-limited (or close to VOC-limited) regimes
based on non-linear O3–NOx–VOC reactions. The identification of the O3 formation regime
is an important tool for making O3-reduction policies, such as NOx vs. VOC control priority.
In the current study, we extracted space-borne lower free tropospheric column-integrated
O3 using a sophisticated retrieval algorithm and FNR from satellite measurements was
used as a proxy variable of the VOC/NOx ratio to characterize O3 formation regimes.
Our results estimated from space-borne measurements of the FNR distributions showed
NOx-saturation and VOC-sensitive conditions with lower FNR in the nine megacities. We
also verified these O3 formation regimes by employing sensitivity tests of photochemical
air quality simulations.

For the numerical sensitivity tests, a base run together with six emission reduction
simulations (EXP1-6) were employed. EXP1–3 confirmed the satellite-measured FNR
characteristics in megacities, which showed that the reduction of VOC emissions (EXP2) in
all nine megacities or both NOx and VOC (EXP3) in the cities (except for three cities, i.e.,
Shanghai, Seoul, and Tokyo) was the best solution for decreasing O3. However, when both
NOx and VOC emissions were reduced, three highly low-FNR megacities, i.e., Shanghai,
Seoul, and Tokyo, showed increases in O3 via the weakened NOx titration process, which
had a larger O3 enhancement influence that was enough to offset, or more than enough to
make up for, the O3 suppression caused by the decrease in VOCs. Therefore, it suggests that
both reductions may not be of broad utility in O3 abatement over cities with NOx-saturated
regimes, such as Beijing and Shanghai, Seoul, and Tokyo, which are diagnosed to be highly
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NOx-saturated. This also suggests that VOC reduction should be prioritized, and thus
regulations on VOC reduction will be a good starting point for enforcement in megacities.
The reduction of both NOx and VOCs should be considered judiciously in a few highly
NOx-saturated cities. Recently, as China established a new emission reduction strategy
with a reduction in VOC emissions in 2018, East Asia is expected to undergo a new phase
in the O3-sensitivity regime. There have been reports of various process pattern changes in
numerous urban areas in accordance with China’s Air Pollution Action Plan for 2013–2017.
However, for the entire East Asia area, continuous monitoring of the space-borne behavior
of O3 based on the reduction of VOC or NOx is required to effectively reduce O3.

In addition, we also confirmed the importance of LRT process in controlling O3
concentrations in downwind areas by emission reductions in upstream areas, through
which O3 or its precursors were transported from East China or Central Asia to downwind
areas. EXP4-6 showed that the O3 generated through LRT in China not only influences the
change in the O3 concentration in the downwind region, but also the precursors themselves,
even in trace amounts, must be involved in the O3 production reaction in downwind air in
downstream megacities when emissions in China are reduced, as prescribed in EXP4 and
EXP5. EXP6 showed a more pronounced effect on O3 changes in downwind areas. This
indicates that reduction in the emissions of both NOx and VOCs may be more efficient for
controlling O3 when the LRT process prevails, suggesting the importance of international
cooperation for the development of O3 abatement policies in the East.

In the current study, our analysis period does not cover the pandemic of coronavirus
disease 2019 (COVID-19) that is affecting the trend of O3 and other pollutants [72–74]. In
our next satellite–model coupled study, therefore, the impact of the country-level scale
of emissions reduction arising from lockdowns during COVID-19 will be evaluated over
the megacities in East Asia. In addition, we did not consider the influence of inter-annual
meteorological and climatological variabilities on O3 changes, which are of importance for
the interpretation of annual and decadal air pollutant variabilities; therefore, it would also
be necessary to investigate the possible meteorological and climatological reasons for the
long-term O3 variabilities over the megacities in East Asia.

Finally, a regional 3-D air quality model, such as WRF–Chem, is essential and useful
for control strategy evaluation, and also constitutes one of the major tools for tackling
the O3 problem. Nevertheless, there still exist many uncertainties in air quality modeling.
Prime among these is VOC emission [75,76] together with NOx emission inventories [77] in
East Asia, and the chances of incorrect or uncertain use of input data must be minimized.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs14051285/s1, Table S1: WRF–Chem configuration, Table S2: Summary statistics for com-
parison between the WRF–Chem simulations and observed O3 and NO2 concentrations by surface
and aircraft measurement for the KORUS-AQ campaign period (May 2016), Table S3: Simulated O3
concentrations at 9 megacities averaged over the KORUS-AQ campaign period (May 2016) for the
base case plus 3 emission reduction scenarios (unit: ppbv), Table S4: Simulated O3 concentrations
at 9 megacities averaged over the KORUS-AQ campaign period (May 2016) for the base case plus 3
Chinese emission reduction scenarios (unit: ppbv), Figure S1: Horizontal distributions of emissions
for NOx, SO2, toluene, and HCHO (KORUS-AQ v.5) used in this study.
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