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Abstract: Research on habitat quality change is of great significance for regional ecological security.
Analysis of spatiotemporal change of habitat quality based on different geomorphic types can restore
the background of ecological environment in historical periods and provide scientific support for
revealing the evolution law of regional ecological environment quality and ecological restoration.
This study aimed to identify the change in habitat quality under different geomorphic types from
1995 to 2018. Based on DEM data, geomorphic types of different scales were divided. The InVEST
habitat quality model was used to analyze the spatiotemporal change in habitat quality in individual
land use types in the Altay region. The spatiotemporal changes and main influencing factors of
habitat quality under the background of different geomorphic types were explored. Remote sensing
data was used to analyze the land use/cover changes. Sixteen threat sources, their maximum distance
of impact, mode of decay, and sensitivity to threats were also estimated for each land use type. The
results showed that habitat quality decreased significantly in 2015, which was related to the rapid
expansion of cultivated and construction land as threat sources, as well as the decrease of forestland
and grassland as sensitive factors. However, habitat quality improved significantly in 2018, because
of the implementation of ecological restoration policy in 2015. Affected by elevation and topographic
relief, the geomorphic type with the best habitat quality index was the large undulating middle
mountain (0.927) and the worst was the medium altitude platform (0.351). Woodland contributed
the most to habitat quality in large undulating middle mountain (35.07), and bare rock gravel land
contributed the most to medium altitude platform (127.68). Habitat quality of different geomorphic
types showed obvious spatial aggregation, and from high altitude to low altitude showed a banded
ladder-like distribution. Changes in habitat quality during the past three decades suggested that the
conservation and restoration strategies applied in regional ecosystem were effective. On the basis
of the analysis results, four types of zoning management schemes were divided, and the ecological
management and conservation measures were put forward. Therefore, this study can help decision
makers, especially regarding the lack of data on biodiversity.

Keywords: geomorphic types; habitat quality; InVEST model; land use type; Altay region

1. Introduction

The contribution of biodiversity to the global economy, human survival, and welfare
has increased recently [1,2]. With the strengthening of human activities, the interference to
the ecological environment is increasing, which seriously affects and changes the status
of ecologic environment and disturbs the quality of biological habitat (i.e., habitat qual-
ity) [1,3,4]. Therefore, the decline in biodiversity is higher than in the past and is expected to
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rise in the future [5,6]. This brings great challenges to the protection of biodiversity. Biodi-
versity includes the diversity of animals, plants, and microorganisms at the genetic, species,
and ecosystem levels, and it provides regulation and support for ecosystem services [7,8].
Habitat quality refers to the ability of the ecosystem to provide suitable conditions for
the sustainable development and survival of individuals and populations, and it reflects
the status of regional biodiversity and ecosystem health to a certain extent, and plays an
important role in maintaining biodiversity [9,10]. Land-use dynamics is one of the main
activities of human beings to transform the natural environment and interfere with habitat
quality. Its degree of change reflects the intensity of human activities. Land-use change
has become one of the important risk factors affecting the quality of natural environment
and biological habitat [11]. In particular, the expansion of urban construction land and
agricultural land will aggravate the destruction of natural environment and biological
habitat and hinder the connectivity of habitat [12], thereby aggravating the fragmentation
and degradation of habitat and even leading to the disappearance of habitats [13].

Habitat quality is the ability of an ecosystem to provide all necessary goods and
services in sufficient quantity for all its living environments [14]. It represents the overall
ecological quality based on the spatial distances between habitat quality and the threats
caused by human activities, which can be weighted to consider their impacts [3,15]. That is,
habitat quality is the quality of natural resources closely related to human beings, and it is
also the quality of the human living environment, including natural resources and various
elements of the entire environment [16]. With the rapid development of the world popula-
tion and social economy, people’s demand for land resources is increasing, and changes in
the intensity and ways of land use have severely damaged the ecosystem, leading to the
reduction and degradation of ecosystem service capabilities in many areas [17]. Therefore,
studying the relationship between land use changes and habitat quality changes can pro-
vide a basis for analyzing regional ecological environment changes, formulating regional
ecological protection policies and achieving the sustainable use of land resources [18].

Currently, habitat quality assessment methods can be divided into two categories. One
method involves obtaining habitat quality parameters through field surveys. This method
investigates field samples, and on this basis, a comprehensive evaluation index is built to
evaluate the habitat quality. For example, Liu investigated the biodiversity and evaluated
habitat quality of West Lake Nature Reserve [19]. Liu et al., conducted an investigation
and analysis of the habitat quality of rivers in Yixing section of Taihu Lake Basin [20],
and Yang et al., investigated the habitat quality of Laizhou Bay [21]. However, the field
survey sampling method tends to focus on small geographic areas or single species habitats,
and this method is limited by time and manpower requirements, making it difficult to
conduct long-term data analysis. The second method involves using models to evaluate
the habitat quality. Some common evaluation models include InVEST model (Integrated
Valuation of Ecosystem Services and Trade-offs), but it should set different parameters
according to different research areas [22,23]; SoLVES model (Social Values for Ecosystem
Services), but the questionnaire in SoLVES model involves the understanding of different
respondents [24]; SDMs(Species Distribution Models), but SDMs models need to clarify
interactions between species [25,26], and other models. Although there are some limitations
in using digital model evaluation, compared with the method of field data measurement,
using model evaluation has obvious advantages, as its operation is simple and fast and there
is no need for field measurement to obtain data, so it is widely used. Domestic and foreign
scholars mostly use the InVEST model with simple operation, convenient data access and
fewer parameters to conduct multi-scale quantitative habitat quality assessment and express
the analysis results in the form of a thematic map [12,27–29]. InVEST model is widely
used because of its low demand for data, strong spatial visualization, and high evaluation
accuracy of its calculation results, and can reflect the habitat distribution under different
landscape patterns. The habitat quality module of the InVEST model evaluates habitat
quality by analyzing land use/cover (LULC) maps and the threat degrees of different land
use types to biodiversity. This model evaluates the biodiversity status in the landscape
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and uses LULC changes and biodiversity threat data combined with expert knowledge to
obtain the consistent indicators of biodiversity responses to the threats [3,30]. According to
the relative ranges and degradation degrees of different habitat types, the habitat quality
determined by the InVEST model has been successfully used to maintain biodiversity. As a
few recent examples, Aneseyee et al. [31] used the InVEST habitat quality model associated
with LULC changes to conduct a qualitative case study of the Winike Watershed, and
found that the ranges of agro-ecology facilitate a diversity of plants, wild animals, and
birds in the area. Polasky et al., evaluated the impact of actual land-use change and a
suite of alternative land-use change scenarios, and demonstrated that while large-scale
agricultural expansion increased landowners’ income, it resulted in significant losses of
stored carbon and negative impacts on water quality, resulting in a decline in general
terrestrial biodiversity and habitat quality for forest songbirds [28]. Gong et al., evaluated
the changes in plant biodiversity in a mountainous area in the Bailong River Basin in
Gansu Province, and found that the higher habitat quality area mainly distributed in
the nature reserve and forest, which could provide a good living environment for more
endangered plant and animal species [32]. Mushet et al., analyzed the characteristics and
changing trends of amphibious habitats of various land use types, and showed that wetland
drainage and grassland conversion, an economic climate favoring commodity production
over conservation, have destroyed a large amount of amphibian habitats and will likely
continue into the future, which will reduce the number of amphibians [33]. The changes
in the Boye wetland of Jimma, Ethiopia, reduced the avifauna population and species
composition [34]. Sallustio et al. [30] and Terrado et al. [3] assessed habitat quality in Italian
nature reserves and watersheds under different nature conservation planning scenarios
using the InVEST model. Du and Rong used the two indicators of Habitat Quality Index
and Habitat Degradation Index to represent the function of biodiversity and analyzed the
impact of land use changes on biodiversity in Shanxi Province [35]. Chen et al., calculated
the impacts of background threat sources on habitat quality degradation using this model
and analyzed the impact of land use changes on habitat quality changes [36]. Liu and Xu
compared the spatial-temporal evolution of habitat quality between Xinjiang Corps region
and Non-corps region based on land use with the InVEST model, and predicted the trend
of habitat quality from 2018 to 2035 [37]. Using the InVEST model, many researchers have
investigated the impact of land use changes on habitat quality.

The earth’s surface morphology (physiognomy) is the carrier of biological survival,
human production, and life. Due to the action of internal and external forces, the difference
of development stages and geological movement, the earth’s surface formed different
altitudes and fluctuation patterns, which will affect the regional material migration and
the redistribution of hydrothermal conditions [38]. Physiognomy also directly affects the
surface vegetation and land use through altitude, surface relief state, and denudation
degree [39–41]. Therefore, physiognomy is the foundation of land use spatial patterns.
A geomorphic entity divided according to the same or similar characteristics is a geomor-
phic type, that is, the geomorphic unit whose geomorphic form, genesis, and development
process are basically consistent [42]. In different studies, different scholars will choose dom-
inant factors to divide geomorphic type according to their research purpose. Physiognomy
is a comprehensive entity including basic elements such as altitude, slope, slope direction,
genesis, and material composition. It is an important environmental condition affecting
biological habitat and human activities, and physiognomy has a great impact on the ecosys-
tem. Especially in mountainous areas with large topographic relief, the ecosystem will
be relatively fragile, which will not only affect the ecosystem services but also hinder the
regional sustainable development. However, the current research on land use and habitat
quality only considers one or several topographic factors, and research on land use and
habitat quality under different geomorphic types has not been carried out. On the premise
of dividing geomorphic types, doing the research has important theoretical reference and
practical significance for balancing and coordinating regional ecological protection and de-
velopment. Therefore, this paper took the Altay region with diverse geomorphic types and
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complex ecosystems as a study area. The area has diverse topographic features, including
flat land, hills, plains, gorges, and steep slopes. Especially in mountainous and hilly areas,
physiognomy redistributes temperature, water, light, and then changes the land use form
and intensity, and ultimately affects the quality of habitat. Therefore, it is incomplete to
simply select one or several topographic factors to study the impact of land use change on
habitat quality. Under the background of different geomorphic types, researching land use
types and habitat quality is more scientific and complete. Analyzing habitat quality based
on different scale geomorphic types is helpful to understand the heterogeneity of biological
habitat comprehensively and objectively. The Altay region, known as “Golden Mountain
and Silver Water”, is rich in mineral and energy resources. Grassland and forest areas are
relatively large, making it one of the six major forest areas in China and also an important
green protection and ecological safety zone. There are 30 national and autonomous nature
reserves in the Altay region. Nature reserves are important areas for biodiversity conserva-
tion. Furthermore, nature reserves also play a vital role in purifying air, water conservation,
regulating climate, and reducing soil erosion. However, in recent years, with the serious
overgrazing, over reclamation, and unreasonable use of natural resources, the quality of
ecological environment in the Altay region has been declining. Various problems appear,
such as bare ground, shrinking wetland areas, reduction of animal and plant populations,
degradation of dominant species, and serious imbalance of ecological carrying capacity.
These threats result in the degradation of the habitat and biodiversity and have a serious
impact on the production and life of residents. Therefore, the objective of this study is
to (1) map and identify habitat quality of different geomorphic types and analyze the
spatiotemporal changes of habitat quality from 1995 to 2018 and (2) explore the correlation
between land use types and habitat quality under the background of different geomorphic
types in the Altay region. On this basis, combined with decision support systems, it can
help users with rational planning and use land to protect the environment [43,44].

2. Materials and Methods
2.1. Study Area

The Altay region is located in the hinterland of Eurasia and north of Xinjiang, China,
with a geographic scope of 85◦31′~91◦01′E, 45◦00′~49◦10′N (Figure 1). The region has a high
latitude, great vertical climate differences, and a significant local microclimate. It belongs
to the temperate continental cold climate. The region borders Mongolia, Kazakhstan, and
Russia. It is 402 km from east to west and 464 km from north to south, with a total area
of 1.18 × 105 km2, accounting for 7.2% of the total area of Xinjiang. The region governs
six counties and one city, all of which are border counties (cities), and it is a multi-ethnic
area composed of 39 nationalities. By the end of 2020, the total population of the region
was 668,587.

There are various geomorphic types in this area, including three large geomorphic
units: plain area, mountainous area, and desert (Gobi) area. The Altay region includes
the Altai Mountains in the north, Shawuer Mountains in the west and Junggar Basin
in the south. The central region is the south of the Irtysh valley. The area south of the
Ulungur River is part of the hilly plain on the northern edge of the Junggar Basin and the
Gurbantunggut Desert. The terrain of the mountains area is high in the west and low in
the east, showing an obvious ladder shape, while the hilly-plain region is the opposite.
The mountain area accounts for about 32% of the total area, with the lowest altitude of
317 m and the highest altitude of 4374 m. It is one of the focus areas of cross-border water
security issues of international concern with three major surface runoff sources: the Irtysh
River, the Ulungur River, and small rivers in Jimunai County. The ecosystems in this area
are diverse. Glacier, forest, grassland, wetland, desert, farmland, and other ecosystem
types are distributed, which form a complete “mountain-river-forest-field-lake-grass life
community” [45]. There are various types of soil, including mountain soil and plain soil, as
well as saline soil, swamp soil, and cracked soil. However, under the influence of human
factors such as long-term development of mineral resources [46], grassland overgrazing,
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and oasis agricultural overdevelopment [47], coupled with the superposition of natural
factors such as fragile ecosystems, climate change, and the decline of groundwater level
in arid areas, the study area is faced with increased soil erosion, forest and grassland
degradation, decreased ecosystem connectivity, habitat fragmentation, reduced water
conservation function and biodiversity function, and other prominent problems. The
ecosystem health and ecological security in the study area are facing great challenges [48].
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Figure 1. Location and topography of the study area.

2.2. Data Preparation

This paper used remote sensing data to interpret land use/cover types. Finally,
we got land use classification data in 1995, 2000, 2005, 2010, 2015, and 2018. We used
remote sensing images with a 2 m resolution from the Gaofen-1 satellite (GF-1) (http:
//36.112.130.153:7777/DSSPlatform/productSearch.html, accessed on 21 March 2019). To
improve the accuracy of visual interpretation, the image selection was mainly based on
remote sensing data from June to September (during the vegetation growing period) of
the current year or adjacent years, and the cloud cover of images was less than 10%. To
eliminate the influence of atmosphere, temperature, Earth rotation, sensors and other factors
on image deformation in the imaging process, cloud shadow detection, and geometric and
radiometric correction were carried out for all images [49]. Then, the remote sensing image
of the study area was obtained by orthophoto correction fusion, image registration, stitching,
and mask cutting. Envi 5.3, Locspace viewer (LSV) and ArcMap 10.6 software were adopted.
Combined with supervised classification and manual visual interpretation, various land
use/cover data were extracted [50–52]. Among them, land use type classification was
based on the Chinese land use classification system issued by the Chinese Academy of
Sciences (https://www.resdc.cn/, accessed on 13 July 2021). According to the land cover
characteristics and land use optimization, the grid database of land use types in the
study area was obtained. The results of supervised classification contained some sporadic
points that were inconsistent with the actual situation. To improve the interpretation
accuracy, Google images was used for manual visual interpretation of land use classification.
Therefore, the land use in 2019 was revised again (Table 1) and used as a benchmark. The
remaining images were interpreted and corrected by superimposing remote sensing images
and Google images. The comprehensive accuracy of the first class of land use types in

http://36.112.130.153:7777/DSSPlatform/productSearch.html
http://36.112.130.153:7777/DSSPlatform/productSearch.html
https://www.resdc.cn/
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these six periods is more than 94.3%, and the second class is more than 91.2%. In order
to ensure the quality of data interpretation, we conducted field surveys in the study area
and obtained a large number of field survey records and photos. In 2018, the accuracy
rate of identifying cultivated land reached 99%, the grassland, forestland, and construction
land reached 98%, and the comprehensive accuracy was over 95%. From the perspective
of single land type, the accuracy of cultivated land was the highest, above 97% in all six
periods. The main reason for the misclassification was that individual cultivated land
distributed in the forestland was mistakenly classified as forestland and some unused land
with regular and sparse vegetation was misclassified as cultivated land. The accuracy of
grassland was above 96%, mainly because some sporadic grasslands were misclassified
as cultivated land or low forestland. The accuracy of construction land was more than
95%, because the spectral information of some large plant roofs was close to bare land,
which was wrongly divided into unused land. The accuracy of water was 99%, because
some small ponds were submerged in other land types. The unused land in the Altay
region includes sandy land, Gobi, saline alkali land, swamp, bare land, and bare rock gravel
land, with a classification accuracy of 94%, mainly because some sandbars with sporadic
vegetation were mistakenly divided into cultivated land, and the interlaced beach of water
was mistakenly divided into construction land.

Table 1. Land use classification system.

First Class Second Class

1 Cultivated
land

1-1 Paddy land 1-2 Dryland

Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 36 
 

 

eliminate the influence of atmosphere, temperature, Earth rotation, sensors and other fac-

tors on image deformation in the imaging process, cloud shadow detection, and geometric 

and radiometric correction were carried out for all images [49]. Then, the remote sensing 

image of the study area was obtained by orthophoto correction fusion, image registration, 

stitching, and mask cutting. Envi 5.3, Locspace viewer (LSV) and ArcMap 10.6 software 

were adopted. Combined with supervised classification and manual visual interpretation, 

various land use/cover data were extracted [50–52]. Among them, land use type classifi-

cation was based on the Chinese land use classification system issued by the Chinese 

Academy of Sciences (https://www.resdc.cn/, accessed on 13 July 2021). According to the 

land cover characteristics and land use optimization, the grid database of land use types 

in the study area was obtained. The results of supervised classification contained some 

sporadic points that were inconsistent with the actual situation. To improve the interpre-

tation accuracy, Google images was used for manual visual interpretation of land use clas-

sification. Therefore, the land use in 2019 was revised again (Table 1) and used as a bench-

mark. The remaining images were interpreted and corrected by superimposing remote 

sensing images and Google images. The comprehensive accuracy of the first class of land 

use types in these six periods is more than 94.3%, and the second class is more than 91.2%. 

In order to ensure the quality of data interpretation, we conducted field surveys in the 

study area and obtained a large number of field survey records and photos. In 2018, the 

accuracy rate of identifying cultivated land reached 99%, the grassland, forestland, and 

construction land reached 98%, and the comprehensive accuracy was over 95%. From the 

perspective of single land type, the accuracy of cultivated land was the highest, above 97% 

in all six periods. The main reason for the misclassification was that individual cultivated 

land distributed in the forestland was mistakenly classified as forestland and some un-

used land with regular and sparse vegetation was misclassified as cultivated land. The 

accuracy of grassland was above 96%, mainly because some sporadic grasslands were 

misclassified as cultivated land or low forestland. The accuracy of construction land was 

more than 95%, because the spectral information of some large plant roofs was close to 

bare land, which was wrongly divided into unused land. The accuracy of water was 99%, 

because some small ponds were submerged in other land types. The unused land in the 

Altay region includes sandy land, Gobi, saline alkali land, swamp, bare land, and bare 

rock gravel land, with a classification accuracy of 94%, mainly because some sandbars 

with sporadic vegetation were mistakenly divided into cultivated land, and the interlaced 

beach of water was mistakenly divided into construction land. 

In this paper, SRTM_DEM data with 30 m resolution was selected; neighborhood 

analysis method and mean change point analysis method were used to determine the best 

statistical unit of fluctuation in the study area [53–55]. Consulting the achievement data 

of 1:1 million geomorphic types in China (https://www.resdc.cn/Default.aspx, accessed on 

13 July 2021), the basic geomorphic types of the Altay region were divided. 

Table 1. Land use classification system. 

First Class Second Class 

1 Cultivated land 

1-1 Paddy land 1-2 Dryland 

  

2 Forestland 

2-1 Woodland 2-2 Shrub wood 2-3 Sparse wood 2-4 Other woodland 

    

Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 36 
 

 

eliminate the influence of atmosphere, temperature, Earth rotation, sensors and other fac-

tors on image deformation in the imaging process, cloud shadow detection, and geometric 

and radiometric correction were carried out for all images [49]. Then, the remote sensing 

image of the study area was obtained by orthophoto correction fusion, image registration, 

stitching, and mask cutting. Envi 5.3, Locspace viewer (LSV) and ArcMap 10.6 software 

were adopted. Combined with supervised classification and manual visual interpretation, 

various land use/cover data were extracted [50–52]. Among them, land use type classifi-

cation was based on the Chinese land use classification system issued by the Chinese 

Academy of Sciences (https://www.resdc.cn/, accessed on 13 July 2021). According to the 

land cover characteristics and land use optimization, the grid database of land use types 

in the study area was obtained. The results of supervised classification contained some 

sporadic points that were inconsistent with the actual situation. To improve the interpre-

tation accuracy, Google images was used for manual visual interpretation of land use clas-

sification. Therefore, the land use in 2019 was revised again (Table 1) and used as a bench-

mark. The remaining images were interpreted and corrected by superimposing remote 

sensing images and Google images. The comprehensive accuracy of the first class of land 

use types in these six periods is more than 94.3%, and the second class is more than 91.2%. 

In order to ensure the quality of data interpretation, we conducted field surveys in the 

study area and obtained a large number of field survey records and photos. In 2018, the 

accuracy rate of identifying cultivated land reached 99%, the grassland, forestland, and 

construction land reached 98%, and the comprehensive accuracy was over 95%. From the 

perspective of single land type, the accuracy of cultivated land was the highest, above 97% 

in all six periods. The main reason for the misclassification was that individual cultivated 

land distributed in the forestland was mistakenly classified as forestland and some un-

used land with regular and sparse vegetation was misclassified as cultivated land. The 

accuracy of grassland was above 96%, mainly because some sporadic grasslands were 

misclassified as cultivated land or low forestland. The accuracy of construction land was 

more than 95%, because the spectral information of some large plant roofs was close to 

bare land, which was wrongly divided into unused land. The accuracy of water was 99%, 

because some small ponds were submerged in other land types. The unused land in the 

Altay region includes sandy land, Gobi, saline alkali land, swamp, bare land, and bare 

rock gravel land, with a classification accuracy of 94%, mainly because some sandbars 

with sporadic vegetation were mistakenly divided into cultivated land, and the interlaced 

beach of water was mistakenly divided into construction land. 

In this paper, SRTM_DEM data with 30 m resolution was selected; neighborhood 

analysis method and mean change point analysis method were used to determine the best 

statistical unit of fluctuation in the study area [53–55]. Consulting the achievement data 

of 1:1 million geomorphic types in China (https://www.resdc.cn/Default.aspx, accessed on 

13 July 2021), the basic geomorphic types of the Altay region were divided. 

Table 1. Land use classification system. 

First Class Second Class 

1 Cultivated land 

1-1 Paddy land 1-2 Dryland 

  

2 Forestland 

2-1 Woodland 2-2 Shrub wood 2-3 Sparse wood 2-4 Other woodland 

    

2 Forestland

2-1 Woodland 2-2 Shrub wood 2-3 Sparse wood 2-4 Other woodland

Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 36 
 

 

eliminate the influence of atmosphere, temperature, Earth rotation, sensors and other fac-

tors on image deformation in the imaging process, cloud shadow detection, and geometric 

and radiometric correction were carried out for all images [49]. Then, the remote sensing 

image of the study area was obtained by orthophoto correction fusion, image registration, 

stitching, and mask cutting. Envi 5.3, Locspace viewer (LSV) and ArcMap 10.6 software 

were adopted. Combined with supervised classification and manual visual interpretation, 

various land use/cover data were extracted [50–52]. Among them, land use type classifi-

cation was based on the Chinese land use classification system issued by the Chinese 

Academy of Sciences (https://www.resdc.cn/, accessed on 13 July 2021). According to the 

land cover characteristics and land use optimization, the grid database of land use types 

in the study area was obtained. The results of supervised classification contained some 

sporadic points that were inconsistent with the actual situation. To improve the interpre-

tation accuracy, Google images was used for manual visual interpretation of land use clas-

sification. Therefore, the land use in 2019 was revised again (Table 1) and used as a bench-

mark. The remaining images were interpreted and corrected by superimposing remote 

sensing images and Google images. The comprehensive accuracy of the first class of land 

use types in these six periods is more than 94.3%, and the second class is more than 91.2%. 

In order to ensure the quality of data interpretation, we conducted field surveys in the 

study area and obtained a large number of field survey records and photos. In 2018, the 

accuracy rate of identifying cultivated land reached 99%, the grassland, forestland, and 

construction land reached 98%, and the comprehensive accuracy was over 95%. From the 

perspective of single land type, the accuracy of cultivated land was the highest, above 97% 

in all six periods. The main reason for the misclassification was that individual cultivated 

land distributed in the forestland was mistakenly classified as forestland and some un-

used land with regular and sparse vegetation was misclassified as cultivated land. The 

accuracy of grassland was above 96%, mainly because some sporadic grasslands were 

misclassified as cultivated land or low forestland. The accuracy of construction land was 

more than 95%, because the spectral information of some large plant roofs was close to 

bare land, which was wrongly divided into unused land. The accuracy of water was 99%, 

because some small ponds were submerged in other land types. The unused land in the 

Altay region includes sandy land, Gobi, saline alkali land, swamp, bare land, and bare 

rock gravel land, with a classification accuracy of 94%, mainly because some sandbars 

with sporadic vegetation were mistakenly divided into cultivated land, and the interlaced 

beach of water was mistakenly divided into construction land. 

In this paper, SRTM_DEM data with 30 m resolution was selected; neighborhood 

analysis method and mean change point analysis method were used to determine the best 

statistical unit of fluctuation in the study area [53–55]. Consulting the achievement data 

of 1:1 million geomorphic types in China (https://www.resdc.cn/Default.aspx, accessed on 

13 July 2021), the basic geomorphic types of the Altay region were divided. 

Table 1. Land use classification system. 

First Class Second Class 

1 Cultivated land 

1-1 Paddy land 1-2 Dryland 

  

2 Forestland 

2-1 Woodland 2-2 Shrub wood 2-3 Sparse wood 2-4 Other woodland 

    

Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 36 
 

 

eliminate the influence of atmosphere, temperature, Earth rotation, sensors and other fac-

tors on image deformation in the imaging process, cloud shadow detection, and geometric 

and radiometric correction were carried out for all images [49]. Then, the remote sensing 

image of the study area was obtained by orthophoto correction fusion, image registration, 

stitching, and mask cutting. Envi 5.3, Locspace viewer (LSV) and ArcMap 10.6 software 

were adopted. Combined with supervised classification and manual visual interpretation, 

various land use/cover data were extracted [50–52]. Among them, land use type classifi-

cation was based on the Chinese land use classification system issued by the Chinese 

Academy of Sciences (https://www.resdc.cn/, accessed on 13 July 2021). According to the 

land cover characteristics and land use optimization, the grid database of land use types 

in the study area was obtained. The results of supervised classification contained some 

sporadic points that were inconsistent with the actual situation. To improve the interpre-

tation accuracy, Google images was used for manual visual interpretation of land use clas-

sification. Therefore, the land use in 2019 was revised again (Table 1) and used as a bench-

mark. The remaining images were interpreted and corrected by superimposing remote 

sensing images and Google images. The comprehensive accuracy of the first class of land 

use types in these six periods is more than 94.3%, and the second class is more than 91.2%. 

In order to ensure the quality of data interpretation, we conducted field surveys in the 

study area and obtained a large number of field survey records and photos. In 2018, the 

accuracy rate of identifying cultivated land reached 99%, the grassland, forestland, and 

construction land reached 98%, and the comprehensive accuracy was over 95%. From the 

perspective of single land type, the accuracy of cultivated land was the highest, above 97% 

in all six periods. The main reason for the misclassification was that individual cultivated 

land distributed in the forestland was mistakenly classified as forestland and some un-

used land with regular and sparse vegetation was misclassified as cultivated land. The 

accuracy of grassland was above 96%, mainly because some sporadic grasslands were 

misclassified as cultivated land or low forestland. The accuracy of construction land was 

more than 95%, because the spectral information of some large plant roofs was close to 

bare land, which was wrongly divided into unused land. The accuracy of water was 99%, 

because some small ponds were submerged in other land types. The unused land in the 

Altay region includes sandy land, Gobi, saline alkali land, swamp, bare land, and bare 

rock gravel land, with a classification accuracy of 94%, mainly because some sandbars 

with sporadic vegetation were mistakenly divided into cultivated land, and the interlaced 

beach of water was mistakenly divided into construction land. 

In this paper, SRTM_DEM data with 30 m resolution was selected; neighborhood 

analysis method and mean change point analysis method were used to determine the best 

statistical unit of fluctuation in the study area [53–55]. Consulting the achievement data 

of 1:1 million geomorphic types in China (https://www.resdc.cn/Default.aspx, accessed on 

13 July 2021), the basic geomorphic types of the Altay region were divided. 

Table 1. Land use classification system. 

First Class Second Class 

1 Cultivated land 

1-1 Paddy land 1-2 Dryland 

  

2 Forestland 

2-1 Woodland 2-2 Shrub wood 2-3 Sparse wood 2-4 Other woodland 

    

Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 36 
 

 

eliminate the influence of atmosphere, temperature, Earth rotation, sensors and other fac-

tors on image deformation in the imaging process, cloud shadow detection, and geometric 

and radiometric correction were carried out for all images [49]. Then, the remote sensing 

image of the study area was obtained by orthophoto correction fusion, image registration, 

stitching, and mask cutting. Envi 5.3, Locspace viewer (LSV) and ArcMap 10.6 software 

were adopted. Combined with supervised classification and manual visual interpretation, 

various land use/cover data were extracted [50–52]. Among them, land use type classifi-

cation was based on the Chinese land use classification system issued by the Chinese 

Academy of Sciences (https://www.resdc.cn/, accessed on 13 July 2021). According to the 

land cover characteristics and land use optimization, the grid database of land use types 

in the study area was obtained. The results of supervised classification contained some 

sporadic points that were inconsistent with the actual situation. To improve the interpre-

tation accuracy, Google images was used for manual visual interpretation of land use clas-

sification. Therefore, the land use in 2019 was revised again (Table 1) and used as a bench-

mark. The remaining images were interpreted and corrected by superimposing remote 

sensing images and Google images. The comprehensive accuracy of the first class of land 

use types in these six periods is more than 94.3%, and the second class is more than 91.2%. 

In order to ensure the quality of data interpretation, we conducted field surveys in the 

study area and obtained a large number of field survey records and photos. In 2018, the 

accuracy rate of identifying cultivated land reached 99%, the grassland, forestland, and 

construction land reached 98%, and the comprehensive accuracy was over 95%. From the 

perspective of single land type, the accuracy of cultivated land was the highest, above 97% 

in all six periods. The main reason for the misclassification was that individual cultivated 

land distributed in the forestland was mistakenly classified as forestland and some un-

used land with regular and sparse vegetation was misclassified as cultivated land. The 

accuracy of grassland was above 96%, mainly because some sporadic grasslands were 

misclassified as cultivated land or low forestland. The accuracy of construction land was 

more than 95%, because the spectral information of some large plant roofs was close to 

bare land, which was wrongly divided into unused land. The accuracy of water was 99%, 

because some small ponds were submerged in other land types. The unused land in the 

Altay region includes sandy land, Gobi, saline alkali land, swamp, bare land, and bare 

rock gravel land, with a classification accuracy of 94%, mainly because some sandbars 

with sporadic vegetation were mistakenly divided into cultivated land, and the interlaced 

beach of water was mistakenly divided into construction land. 

In this paper, SRTM_DEM data with 30 m resolution was selected; neighborhood 

analysis method and mean change point analysis method were used to determine the best 

statistical unit of fluctuation in the study area [53–55]. Consulting the achievement data 

of 1:1 million geomorphic types in China (https://www.resdc.cn/Default.aspx, accessed on 

13 July 2021), the basic geomorphic types of the Altay region were divided. 

Table 1. Land use classification system. 

First Class Second Class 

1 Cultivated land 

1-1 Paddy land 1-2 Dryland 

  

2 Forestland 

2-1 Woodland 2-2 Shrub wood 2-3 Sparse wood 2-4 Other woodland 

    

Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 36 
 

 

eliminate the influence of atmosphere, temperature, Earth rotation, sensors and other fac-

tors on image deformation in the imaging process, cloud shadow detection, and geometric 

and radiometric correction were carried out for all images [49]. Then, the remote sensing 

image of the study area was obtained by orthophoto correction fusion, image registration, 

stitching, and mask cutting. Envi 5.3, Locspace viewer (LSV) and ArcMap 10.6 software 

were adopted. Combined with supervised classification and manual visual interpretation, 

various land use/cover data were extracted [50–52]. Among them, land use type classifi-

cation was based on the Chinese land use classification system issued by the Chinese 

Academy of Sciences (https://www.resdc.cn/, accessed on 13 July 2021). According to the 

land cover characteristics and land use optimization, the grid database of land use types 

in the study area was obtained. The results of supervised classification contained some 

sporadic points that were inconsistent with the actual situation. To improve the interpre-

tation accuracy, Google images was used for manual visual interpretation of land use clas-

sification. Therefore, the land use in 2019 was revised again (Table 1) and used as a bench-

mark. The remaining images were interpreted and corrected by superimposing remote 

sensing images and Google images. The comprehensive accuracy of the first class of land 

use types in these six periods is more than 94.3%, and the second class is more than 91.2%. 

In order to ensure the quality of data interpretation, we conducted field surveys in the 

study area and obtained a large number of field survey records and photos. In 2018, the 

accuracy rate of identifying cultivated land reached 99%, the grassland, forestland, and 

construction land reached 98%, and the comprehensive accuracy was over 95%. From the 

perspective of single land type, the accuracy of cultivated land was the highest, above 97% 

in all six periods. The main reason for the misclassification was that individual cultivated 

land distributed in the forestland was mistakenly classified as forestland and some un-

used land with regular and sparse vegetation was misclassified as cultivated land. The 

accuracy of grassland was above 96%, mainly because some sporadic grasslands were 

misclassified as cultivated land or low forestland. The accuracy of construction land was 

more than 95%, because the spectral information of some large plant roofs was close to 

bare land, which was wrongly divided into unused land. The accuracy of water was 99%, 

because some small ponds were submerged in other land types. The unused land in the 

Altay region includes sandy land, Gobi, saline alkali land, swamp, bare land, and bare 

rock gravel land, with a classification accuracy of 94%, mainly because some sandbars 

with sporadic vegetation were mistakenly divided into cultivated land, and the interlaced 

beach of water was mistakenly divided into construction land. 

In this paper, SRTM_DEM data with 30 m resolution was selected; neighborhood 

analysis method and mean change point analysis method were used to determine the best 

statistical unit of fluctuation in the study area [53–55]. Consulting the achievement data 

of 1:1 million geomorphic types in China (https://www.resdc.cn/Default.aspx, accessed on 

13 July 2021), the basic geomorphic types of the Altay region were divided. 

Table 1. Land use classification system. 

First Class Second Class 

1 Cultivated land 

1-1 Paddy land 1-2 Dryland 

  

2 Forestland 

2-1 Woodland 2-2 Shrub wood 2-3 Sparse wood 2-4 Other woodland 

    

3 Grassland

3-1 High coverage grassland 3-2 Medium coverage
grassland 3-3 Low coverage grassland

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 36 
 

 

3 Grassland 

3-1 High coverage grassland 
3-2 Medium 

coverage grassland 
3-3 Low coverage grassland 

   

4 Water area 

4-1 Canal 4-2 Lake 4-3 Pit-pond 4-4 Shoaly land 
4-5 Permanent glacier 

and snowfield 

     

5 Construction 

land 

5-1 Urban land 
5-2 Rural residential 

area 
5-3 Industrial and mining land 

   

6 Unused land 

6-1 Sand land 6-2 Gobi 6-3 Saline-alkali land 6-4 Marsh land 6-5 Bare land 
6-6 Bare rock 

gravel land 

      

2.3. Methods 

2.3.1. Classification of Geomorphic Types 

Physiognomy directly affects the distribution of surface vegetation and land use 

through altitude, fluctuation, and denudation degree. Consulting the previously pub-

lished classification schemes of geomorphic type at all levels and all scales throughout the 

country and the latest 1:1 million digital geomorphic classification method, a geomorphic 

classification method that used continuous polygon patches and discrete point, line, and 

surface patches to jointly reflect the causes and structural types of geomorphic morphol-

ogy is formed [56–57]. In addition, the classification of geomorphic types based on the 

description of geomorphic morphological characteristics by topographic factors is gradu-

ally developing [39–41]. In this paper, DEM data were used to divide geomorphic types 

with the help of a multiscale segmentation algorithm and topographic factors [58–59]. 

To make the land type classification system more scalable, this study followed the 

“China land 1:1 million digital geomorphic classification system” [55,60] and took altitude 

and surface relief as the most important factors for geomorphic type classification. On this 

basis, the classification standards of geomorphic types were adjusted in combination with 

the actual geomorphic characteristics of the study area. Finally, the classification system 

of Table 2 was obtained. 

Table 2. The classification system of geomorphological type. 

         Altitude 

Relief Amplitude 

Low Altitude 

(<1000 m) 

Medium Altitude (1000 

m–2400 m) 

High Altitude 

(>2400 m) 

Plain (Generally < 30 

m) 
Low altitude plain Medium altitude plain High altitude plain 

Platform (Generally > 

30 m) 

Low altitude plat-

form 

Medium altitude plat-

form 

High altitude plat-

form 

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 36 
 

 

3 Grassland 

3-1 High coverage grassland 
3-2 Medium 

coverage grassland 
3-3 Low coverage grassland 

   

4 Water area 

4-1 Canal 4-2 Lake 4-3 Pit-pond 4-4 Shoaly land 
4-5 Permanent glacier 

and snowfield 

     

5 Construction 

land 

5-1 Urban land 
5-2 Rural residential 

area 
5-3 Industrial and mining land 

   

6 Unused land 

6-1 Sand land 6-2 Gobi 6-3 Saline-alkali land 6-4 Marsh land 6-5 Bare land 
6-6 Bare rock 

gravel land 

      

2.3. Methods 

2.3.1. Classification of Geomorphic Types 

Physiognomy directly affects the distribution of surface vegetation and land use 

through altitude, fluctuation, and denudation degree. Consulting the previously pub-

lished classification schemes of geomorphic type at all levels and all scales throughout the 

country and the latest 1:1 million digital geomorphic classification method, a geomorphic 

classification method that used continuous polygon patches and discrete point, line, and 

surface patches to jointly reflect the causes and structural types of geomorphic morphol-

ogy is formed [56–57]. In addition, the classification of geomorphic types based on the 

description of geomorphic morphological characteristics by topographic factors is gradu-

ally developing [39–41]. In this paper, DEM data were used to divide geomorphic types 

with the help of a multiscale segmentation algorithm and topographic factors [58–59]. 

To make the land type classification system more scalable, this study followed the 

“China land 1:1 million digital geomorphic classification system” [55,60] and took altitude 

and surface relief as the most important factors for geomorphic type classification. On this 

basis, the classification standards of geomorphic types were adjusted in combination with 

the actual geomorphic characteristics of the study area. Finally, the classification system 

of Table 2 was obtained. 

Table 2. The classification system of geomorphological type. 

         Altitude 

Relief Amplitude 

Low Altitude 

(<1000 m) 

Medium Altitude (1000 

m–2400 m) 

High Altitude 

(>2400 m) 

Plain (Generally < 30 

m) 
Low altitude plain Medium altitude plain High altitude plain 

Platform (Generally > 

30 m) 

Low altitude plat-

form 

Medium altitude plat-

form 

High altitude plat-

form 

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 36 
 

 

3 Grassland 

3-1 High coverage grassland 
3-2 Medium 

coverage grassland 
3-3 Low coverage grassland 

   

4 Water area 

4-1 Canal 4-2 Lake 4-3 Pit-pond 4-4 Shoaly land 
4-5 Permanent glacier 

and snowfield 

     

5 Construction 

land 

5-1 Urban land 
5-2 Rural residential 

area 
5-3 Industrial and mining land 

   

6 Unused land 

6-1 Sand land 6-2 Gobi 6-3 Saline-alkali land 6-4 Marsh land 6-5 Bare land 
6-6 Bare rock 

gravel land 

      

2.3. Methods 

2.3.1. Classification of Geomorphic Types 

Physiognomy directly affects the distribution of surface vegetation and land use 

through altitude, fluctuation, and denudation degree. Consulting the previously pub-

lished classification schemes of geomorphic type at all levels and all scales throughout the 

country and the latest 1:1 million digital geomorphic classification method, a geomorphic 

classification method that used continuous polygon patches and discrete point, line, and 

surface patches to jointly reflect the causes and structural types of geomorphic morphol-

ogy is formed [56–57]. In addition, the classification of geomorphic types based on the 

description of geomorphic morphological characteristics by topographic factors is gradu-

ally developing [39–41]. In this paper, DEM data were used to divide geomorphic types 

with the help of a multiscale segmentation algorithm and topographic factors [58–59]. 

To make the land type classification system more scalable, this study followed the 

“China land 1:1 million digital geomorphic classification system” [55,60] and took altitude 

and surface relief as the most important factors for geomorphic type classification. On this 

basis, the classification standards of geomorphic types were adjusted in combination with 

the actual geomorphic characteristics of the study area. Finally, the classification system 

of Table 2 was obtained. 

Table 2. The classification system of geomorphological type. 

         Altitude 

Relief Amplitude 

Low Altitude 

(<1000 m) 

Medium Altitude (1000 

m–2400 m) 

High Altitude 

(>2400 m) 

Plain (Generally < 30 

m) 
Low altitude plain Medium altitude plain High altitude plain 

Platform (Generally > 

30 m) 

Low altitude plat-

form 

Medium altitude plat-

form 

High altitude plat-

form 

4 Water area

4-1 Canal 4-2 Lake 4-3 Pit-pond 4-4 Shoaly
land

4-5 Permanent glacier
and snowfield

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 36 
 

 

3 Grassland 

3-1 High coverage grassland 
3-2 Medium 

coverage grassland 
3-3 Low coverage grassland 

   

4 Water area 

4-1 Canal 4-2 Lake 4-3 Pit-pond 4-4 Shoaly land 
4-5 Permanent glacier 

and snowfield 

     

5 Construction 

land 

5-1 Urban land 
5-2 Rural residential 

area 
5-3 Industrial and mining land 

   

6 Unused land 

6-1 Sand land 6-2 Gobi 6-3 Saline-alkali land 6-4 Marsh land 6-5 Bare land 
6-6 Bare rock 

gravel land 

      

2.3. Methods 

2.3.1. Classification of Geomorphic Types 

Physiognomy directly affects the distribution of surface vegetation and land use 

through altitude, fluctuation, and denudation degree. Consulting the previously pub-

lished classification schemes of geomorphic type at all levels and all scales throughout the 

country and the latest 1:1 million digital geomorphic classification method, a geomorphic 

classification method that used continuous polygon patches and discrete point, line, and 

surface patches to jointly reflect the causes and structural types of geomorphic morphol-

ogy is formed [56–57]. In addition, the classification of geomorphic types based on the 

description of geomorphic morphological characteristics by topographic factors is gradu-

ally developing [39–41]. In this paper, DEM data were used to divide geomorphic types 

with the help of a multiscale segmentation algorithm and topographic factors [58–59]. 

To make the land type classification system more scalable, this study followed the 

“China land 1:1 million digital geomorphic classification system” [55,60] and took altitude 

and surface relief as the most important factors for geomorphic type classification. On this 

basis, the classification standards of geomorphic types were adjusted in combination with 

the actual geomorphic characteristics of the study area. Finally, the classification system 

of Table 2 was obtained. 

Table 2. The classification system of geomorphological type. 

         Altitude 

Relief Amplitude 

Low Altitude 

(<1000 m) 

Medium Altitude (1000 

m–2400 m) 

High Altitude 

(>2400 m) 

Plain (Generally < 30 

m) 
Low altitude plain Medium altitude plain High altitude plain 

Platform (Generally > 

30 m) 

Low altitude plat-

form 

Medium altitude plat-

form 

High altitude plat-

form 

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 36 
 

 

3 Grassland 

3-1 High coverage grassland 
3-2 Medium 

coverage grassland 
3-3 Low coverage grassland 

   

4 Water area 

4-1 Canal 4-2 Lake 4-3 Pit-pond 4-4 Shoaly land 
4-5 Permanent glacier 

and snowfield 

     

5 Construction 

land 

5-1 Urban land 
5-2 Rural residential 

area 
5-3 Industrial and mining land 

   

6 Unused land 

6-1 Sand land 6-2 Gobi 6-3 Saline-alkali land 6-4 Marsh land 6-5 Bare land 
6-6 Bare rock 

gravel land 

      

2.3. Methods 

2.3.1. Classification of Geomorphic Types 

Physiognomy directly affects the distribution of surface vegetation and land use 

through altitude, fluctuation, and denudation degree. Consulting the previously pub-

lished classification schemes of geomorphic type at all levels and all scales throughout the 

country and the latest 1:1 million digital geomorphic classification method, a geomorphic 

classification method that used continuous polygon patches and discrete point, line, and 

surface patches to jointly reflect the causes and structural types of geomorphic morphol-

ogy is formed [56–57]. In addition, the classification of geomorphic types based on the 

description of geomorphic morphological characteristics by topographic factors is gradu-

ally developing [39–41]. In this paper, DEM data were used to divide geomorphic types 

with the help of a multiscale segmentation algorithm and topographic factors [58–59]. 

To make the land type classification system more scalable, this study followed the 

“China land 1:1 million digital geomorphic classification system” [55,60] and took altitude 

and surface relief as the most important factors for geomorphic type classification. On this 

basis, the classification standards of geomorphic types were adjusted in combination with 

the actual geomorphic characteristics of the study area. Finally, the classification system 

of Table 2 was obtained. 

Table 2. The classification system of geomorphological type. 

         Altitude 

Relief Amplitude 

Low Altitude 

(<1000 m) 

Medium Altitude (1000 

m–2400 m) 

High Altitude 

(>2400 m) 

Plain (Generally < 30 

m) 
Low altitude plain Medium altitude plain High altitude plain 

Platform (Generally > 

30 m) 

Low altitude plat-

form 

Medium altitude plat-

form 

High altitude plat-

form 

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 36 
 

 

3 Grassland 

3-1 High coverage grassland 
3-2 Medium 

coverage grassland 
3-3 Low coverage grassland 

   

4 Water area 

4-1 Canal 4-2 Lake 4-3 Pit-pond 4-4 Shoaly land 
4-5 Permanent glacier 

and snowfield 

     

5 Construction 

land 

5-1 Urban land 
5-2 Rural residential 

area 
5-3 Industrial and mining land 

   

6 Unused land 

6-1 Sand land 6-2 Gobi 6-3 Saline-alkali land 6-4 Marsh land 6-5 Bare land 
6-6 Bare rock 

gravel land 

      

2.3. Methods 

2.3.1. Classification of Geomorphic Types 

Physiognomy directly affects the distribution of surface vegetation and land use 

through altitude, fluctuation, and denudation degree. Consulting the previously pub-

lished classification schemes of geomorphic type at all levels and all scales throughout the 

country and the latest 1:1 million digital geomorphic classification method, a geomorphic 

classification method that used continuous polygon patches and discrete point, line, and 

surface patches to jointly reflect the causes and structural types of geomorphic morphol-

ogy is formed [56–57]. In addition, the classification of geomorphic types based on the 

description of geomorphic morphological characteristics by topographic factors is gradu-

ally developing [39–41]. In this paper, DEM data were used to divide geomorphic types 

with the help of a multiscale segmentation algorithm and topographic factors [58–59]. 

To make the land type classification system more scalable, this study followed the 

“China land 1:1 million digital geomorphic classification system” [55,60] and took altitude 

and surface relief as the most important factors for geomorphic type classification. On this 

basis, the classification standards of geomorphic types were adjusted in combination with 

the actual geomorphic characteristics of the study area. Finally, the classification system 

of Table 2 was obtained. 

Table 2. The classification system of geomorphological type. 

         Altitude 

Relief Amplitude 

Low Altitude 

(<1000 m) 

Medium Altitude (1000 

m–2400 m) 

High Altitude 

(>2400 m) 

Plain (Generally < 30 

m) 
Low altitude plain Medium altitude plain High altitude plain 

Platform (Generally > 

30 m) 

Low altitude plat-

form 

Medium altitude plat-

form 

High altitude plat-

form 

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 36 
 

 

3 Grassland 

3-1 High coverage grassland 
3-2 Medium 

coverage grassland 
3-3 Low coverage grassland 

   

4 Water area 

4-1 Canal 4-2 Lake 4-3 Pit-pond 4-4 Shoaly land 
4-5 Permanent glacier 

and snowfield 

     

5 Construction 

land 

5-1 Urban land 
5-2 Rural residential 

area 
5-3 Industrial and mining land 

   

6 Unused land 

6-1 Sand land 6-2 Gobi 6-3 Saline-alkali land 6-4 Marsh land 6-5 Bare land 
6-6 Bare rock 

gravel land 

      

2.3. Methods 

2.3.1. Classification of Geomorphic Types 

Physiognomy directly affects the distribution of surface vegetation and land use 

through altitude, fluctuation, and denudation degree. Consulting the previously pub-

lished classification schemes of geomorphic type at all levels and all scales throughout the 

country and the latest 1:1 million digital geomorphic classification method, a geomorphic 

classification method that used continuous polygon patches and discrete point, line, and 

surface patches to jointly reflect the causes and structural types of geomorphic morphol-

ogy is formed [56–57]. In addition, the classification of geomorphic types based on the 

description of geomorphic morphological characteristics by topographic factors is gradu-

ally developing [39–41]. In this paper, DEM data were used to divide geomorphic types 

with the help of a multiscale segmentation algorithm and topographic factors [58–59]. 

To make the land type classification system more scalable, this study followed the 

“China land 1:1 million digital geomorphic classification system” [55,60] and took altitude 

and surface relief as the most important factors for geomorphic type classification. On this 

basis, the classification standards of geomorphic types were adjusted in combination with 

the actual geomorphic characteristics of the study area. Finally, the classification system 

of Table 2 was obtained. 

Table 2. The classification system of geomorphological type. 

         Altitude 

Relief Amplitude 

Low Altitude 

(<1000 m) 

Medium Altitude (1000 

m–2400 m) 

High Altitude 

(>2400 m) 

Plain (Generally < 30 

m) 
Low altitude plain Medium altitude plain High altitude plain 

Platform (Generally > 

30 m) 

Low altitude plat-

form 

Medium altitude plat-

form 

High altitude plat-

form 

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 36 
 

 

3 Grassland 

3-1 High coverage grassland 
3-2 Medium 

coverage grassland 
3-3 Low coverage grassland 

   

4 Water area 

4-1 Canal 4-2 Lake 4-3 Pit-pond 4-4 Shoaly land 
4-5 Permanent glacier 

and snowfield 

     

5 Construction 

land 

5-1 Urban land 
5-2 Rural residential 

area 
5-3 Industrial and mining land 

   

6 Unused land 

6-1 Sand land 6-2 Gobi 6-3 Saline-alkali land 6-4 Marsh land 6-5 Bare land 
6-6 Bare rock 

gravel land 

      

2.3. Methods 

2.3.1. Classification of Geomorphic Types 

Physiognomy directly affects the distribution of surface vegetation and land use 

through altitude, fluctuation, and denudation degree. Consulting the previously pub-

lished classification schemes of geomorphic type at all levels and all scales throughout the 

country and the latest 1:1 million digital geomorphic classification method, a geomorphic 

classification method that used continuous polygon patches and discrete point, line, and 

surface patches to jointly reflect the causes and structural types of geomorphic morphol-

ogy is formed [56–57]. In addition, the classification of geomorphic types based on the 

description of geomorphic morphological characteristics by topographic factors is gradu-

ally developing [39–41]. In this paper, DEM data were used to divide geomorphic types 

with the help of a multiscale segmentation algorithm and topographic factors [58–59]. 

To make the land type classification system more scalable, this study followed the 

“China land 1:1 million digital geomorphic classification system” [55,60] and took altitude 

and surface relief as the most important factors for geomorphic type classification. On this 

basis, the classification standards of geomorphic types were adjusted in combination with 

the actual geomorphic characteristics of the study area. Finally, the classification system 

of Table 2 was obtained. 

Table 2. The classification system of geomorphological type. 

         Altitude 

Relief Amplitude 

Low Altitude 

(<1000 m) 

Medium Altitude (1000 

m–2400 m) 

High Altitude 

(>2400 m) 

Plain (Generally < 30 

m) 
Low altitude plain Medium altitude plain High altitude plain 

Platform (Generally > 

30 m) 

Low altitude plat-

form 

Medium altitude plat-

form 

High altitude plat-

form 

5 Construction
land

5-1 Urban land 5-2 Rural residential area 5-3 Industrial and mining land

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 36 
 

 

3 Grassland 

3-1 High coverage grassland 
3-2 Medium 

coverage grassland 
3-3 Low coverage grassland 

   

4 Water area 

4-1 Canal 4-2 Lake 4-3 Pit-pond 4-4 Shoaly land 
4-5 Permanent glacier 

and snowfield 

     

5 Construction 

land 

5-1 Urban land 
5-2 Rural residential 

area 
5-3 Industrial and mining land 

   

6 Unused land 

6-1 Sand land 6-2 Gobi 6-3 Saline-alkali land 6-4 Marsh land 6-5 Bare land 
6-6 Bare rock 

gravel land 

      

2.3. Methods 

2.3.1. Classification of Geomorphic Types 

Physiognomy directly affects the distribution of surface vegetation and land use 

through altitude, fluctuation, and denudation degree. Consulting the previously pub-

lished classification schemes of geomorphic type at all levels and all scales throughout the 

country and the latest 1:1 million digital geomorphic classification method, a geomorphic 

classification method that used continuous polygon patches and discrete point, line, and 

surface patches to jointly reflect the causes and structural types of geomorphic morphol-

ogy is formed [56–57]. In addition, the classification of geomorphic types based on the 

description of geomorphic morphological characteristics by topographic factors is gradu-

ally developing [39–41]. In this paper, DEM data were used to divide geomorphic types 

with the help of a multiscale segmentation algorithm and topographic factors [58–59]. 

To make the land type classification system more scalable, this study followed the 

“China land 1:1 million digital geomorphic classification system” [55,60] and took altitude 

and surface relief as the most important factors for geomorphic type classification. On this 

basis, the classification standards of geomorphic types were adjusted in combination with 

the actual geomorphic characteristics of the study area. Finally, the classification system 

of Table 2 was obtained. 

Table 2. The classification system of geomorphological type. 

         Altitude 

Relief Amplitude 

Low Altitude 

(<1000 m) 

Medium Altitude (1000 

m–2400 m) 

High Altitude 

(>2400 m) 

Plain (Generally < 30 

m) 
Low altitude plain Medium altitude plain High altitude plain 

Platform (Generally > 

30 m) 

Low altitude plat-

form 

Medium altitude plat-

form 

High altitude plat-

form 

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 36 
 

 

3 Grassland 

3-1 High coverage grassland 
3-2 Medium 

coverage grassland 
3-3 Low coverage grassland 

   

4 Water area 

4-1 Canal 4-2 Lake 4-3 Pit-pond 4-4 Shoaly land 
4-5 Permanent glacier 

and snowfield 

     

5 Construction 

land 

5-1 Urban land 
5-2 Rural residential 

area 
5-3 Industrial and mining land 

   

6 Unused land 

6-1 Sand land 6-2 Gobi 6-3 Saline-alkali land 6-4 Marsh land 6-5 Bare land 
6-6 Bare rock 

gravel land 

      

2.3. Methods 

2.3.1. Classification of Geomorphic Types 

Physiognomy directly affects the distribution of surface vegetation and land use 

through altitude, fluctuation, and denudation degree. Consulting the previously pub-

lished classification schemes of geomorphic type at all levels and all scales throughout the 

country and the latest 1:1 million digital geomorphic classification method, a geomorphic 

classification method that used continuous polygon patches and discrete point, line, and 

surface patches to jointly reflect the causes and structural types of geomorphic morphol-

ogy is formed [56–57]. In addition, the classification of geomorphic types based on the 

description of geomorphic morphological characteristics by topographic factors is gradu-

ally developing [39–41]. In this paper, DEM data were used to divide geomorphic types 

with the help of a multiscale segmentation algorithm and topographic factors [58–59]. 

To make the land type classification system more scalable, this study followed the 

“China land 1:1 million digital geomorphic classification system” [55,60] and took altitude 

and surface relief as the most important factors for geomorphic type classification. On this 

basis, the classification standards of geomorphic types were adjusted in combination with 

the actual geomorphic characteristics of the study area. Finally, the classification system 

of Table 2 was obtained. 

Table 2. The classification system of geomorphological type. 

         Altitude 

Relief Amplitude 

Low Altitude 

(<1000 m) 

Medium Altitude (1000 

m–2400 m) 

High Altitude 

(>2400 m) 

Plain (Generally < 30 

m) 
Low altitude plain Medium altitude plain High altitude plain 

Platform (Generally > 

30 m) 

Low altitude plat-

form 

Medium altitude plat-

form 

High altitude plat-

form 

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 36 
 

 

3 Grassland 

3-1 High coverage grassland 
3-2 Medium 

coverage grassland 
3-3 Low coverage grassland 

   

4 Water area 

4-1 Canal 4-2 Lake 4-3 Pit-pond 4-4 Shoaly land 
4-5 Permanent glacier 

and snowfield 

     

5 Construction 

land 

5-1 Urban land 
5-2 Rural residential 

area 
5-3 Industrial and mining land 

   

6 Unused land 

6-1 Sand land 6-2 Gobi 6-3 Saline-alkali land 6-4 Marsh land 6-5 Bare land 
6-6 Bare rock 

gravel land 

      

2.3. Methods 

2.3.1. Classification of Geomorphic Types 

Physiognomy directly affects the distribution of surface vegetation and land use 

through altitude, fluctuation, and denudation degree. Consulting the previously pub-

lished classification schemes of geomorphic type at all levels and all scales throughout the 

country and the latest 1:1 million digital geomorphic classification method, a geomorphic 

classification method that used continuous polygon patches and discrete point, line, and 

surface patches to jointly reflect the causes and structural types of geomorphic morphol-

ogy is formed [56–57]. In addition, the classification of geomorphic types based on the 

description of geomorphic morphological characteristics by topographic factors is gradu-

ally developing [39–41]. In this paper, DEM data were used to divide geomorphic types 

with the help of a multiscale segmentation algorithm and topographic factors [58–59]. 

To make the land type classification system more scalable, this study followed the 

“China land 1:1 million digital geomorphic classification system” [55,60] and took altitude 

and surface relief as the most important factors for geomorphic type classification. On this 

basis, the classification standards of geomorphic types were adjusted in combination with 

the actual geomorphic characteristics of the study area. Finally, the classification system 

of Table 2 was obtained. 

Table 2. The classification system of geomorphological type. 

         Altitude 

Relief Amplitude 

Low Altitude 

(<1000 m) 

Medium Altitude (1000 

m–2400 m) 

High Altitude 

(>2400 m) 

Plain (Generally < 30 

m) 
Low altitude plain Medium altitude plain High altitude plain 

Platform (Generally > 

30 m) 

Low altitude plat-

form 

Medium altitude plat-

form 

High altitude plat-

form 



Remote Sens. 2022, 14, 1279 7 of 34

Table 1. Cont.

First Class Second Class

6 Unused land

6-1 Sand land 6-2 Gobi 6-3 Saline-alkali
land

6-4 Marsh
land 6-5 Bare land 6-6 Bare rock gravel land
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In this paper, SRTM_DEM data with 30 m resolution was selected; neighborhood
analysis method and mean change point analysis method were used to determine the best
statistical unit of fluctuation in the study area [53–55]. Consulting the achievement data of
1:1 million geomorphic types in China (https://www.resdc.cn/Default.aspx, accessed on
13 July 2021), the basic geomorphic types of the Altay region were divided.

2.3. Methods
2.3.1. Classification of Geomorphic Types

Physiognomy directly affects the distribution of surface vegetation and land use
through altitude, fluctuation, and denudation degree. Consulting the previously published
classification schemes of geomorphic type at all levels and all scales throughout the country
and the latest 1:1 million digital geomorphic classification method, a geomorphic classifica-
tion method that used continuous polygon patches and discrete point, line, and surface
patches to jointly reflect the causes and structural types of geomorphic morphology is
formed [56,57]. In addition, the classification of geomorphic types based on the description
of geomorphic morphological characteristics by topographic factors is gradually develop-
ing [39–41]. In this paper, DEM data were used to divide geomorphic types with the help
of a multiscale segmentation algorithm and topographic factors [58,59].

To make the land type classification system more scalable, this study followed the
“China land 1:1 million digital geomorphic classification system” [55,60] and took altitude
and surface relief as the most important factors for geomorphic type classification. On this
basis, the classification standards of geomorphic types were adjusted in combination with
the actual geomorphic characteristics of the study area. Finally, the classification system of
Table 2 was obtained.

Table 2. The classification system of geomorphological type.

Relief Amplitude
Altitude Low Altitude

(<1000 m)
Medium Altitude
(1000 m–2400 m)

High Altitude
(>2400 m)

Plain (Generally < 30 m) Low altitude plain Medium altitude plain High altitude plain

Platform (Generally > 30 m) Low altitude platform Medium altitude
platform High altitude platform

Hill (<200 m) Low altitude hills Medium altitude hills High altitude hills

Small undulating mountain (200 m–500 m) Small undulating low
mountains

Small undulating
middle mountain

Small undulating high
mountain

Medium undulating mountain (500 m–1000 m) Medium undulating
low mountain

Medium undulating
middle mountain

Medium undulating
high mountain

Large undulating mountain (1000 m–1400 m) — Large undulating
middle mountain

Large undulating high
mountain

In the existing research, reliable results have been achieved in the application of DEM
segmentation based on a multiscale segmentation algorithm [41,61]. It was found that
the boundaries of different geomorphic types were mostly areas with great changes in
slope [62], so in this study, altitude, surface fluctuation, and slope change rate reflecting the
geomorphic boundaries were selected as the division indexes of geomorphic types (Table 3).

https://www.resdc.cn/Default.aspx
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The multiscale segmentation algorithm and the classification criteria in Table 2 were used
to divide the geomorphic type.

Table 3. The meaning of several topographic factors and their mathematical expression.

Topographic Factors Equations Meaning

Slope R = ∆H/L× 100 The degree of inclination within the surface unit and its
neighbourhood.

Surface relief TF = Hmax − Hmin

It is an important index used to quantitatively describe
geomorphic form and divide geomorphic form types. It can

reflect the development stage of landform. Most of the
“new” geomorphic units have large fluctuation, while the

“old” geomorphic units have small surface fluctuation.

Coefficient of variation of elevation
V = S/Z

S =

[
1

n−1

n
∑

k−1
(Zk − Z)2

] 1
2

Analyse the elevation change within a neighbourhood of the
ground point. Most studies use the ratio of the standard

deviation of altitude to the mean value in this range.

For surface relief, the research showed that the value of relief presented an inverted “U”
shape with the change in neighborhood area, also known as logarithmic curve [41,53,54,63],
where the curve changes from steepness to slowness represent the size of the optimal
statistical unit. The most commonly used method to find the turning point is based on the
mean change point method. Therefore, this paper used the 30 m resolution SRTM_DEM
data, neighborhood analysis method, and mean change point analysis method to determine
the best statistical unit of fluctuation in the study area.

The mean change point method is a mathematical statistical method for processing
nonlinear data. This method is the most effective for a test with exactly one change
point [64]. Using this method must meet the logarithmic curve. The only point at which
the curve changes from steepness to slowness is the size of the optimal statistical unit. The
change point is calculated as follows:

Assume (Xt, t = 1, 2, . . . , N). Let i = 2, . . . , N, divide the sample into two segments for
each i: x1, x2, . . . , xi−1 and xi,xi+1, . . . , xN . Calculate the arithmetic mean of each sample
Xi1, Xi2 and the statistics of S and Si. The existence of a change point will increase the
difference between S and Si to find the best statistical unit:

Si = ∑i−1
t=1

(
xt − Xi1

)2
+ ∑N

t=i

(
xt − Xi2

)2 (1)

X = ∑N
t=1

xt

N
and S = ∑N

t=i(xt − x)2 (2)

According to the theory of topographic relief and the theory of geomorphic develop-
ment stability, there must be a unique point where the change rate of the height difference
changes sharply. To find this point accurately, we used the mean change point analysis
method to scientifically analyze the resulting data.

First, the data were processed to calculate the surface relief T per unit area, which was
obtained by the following formula:

Ti =
ti
si

(i = 2, 3, 4, . . . , 30) (3)

where ti represents the surface relief under the analysis window, si represents the grid cell
area under the analysis window, and Ti is the unit surface relief under the analysis window.

Second, take the logarithm ln(T) of T to obtain sequence X (xi, i = 1, 2, 3, . . . ,30).
Finally, the data were processed according to Equations (1) and (2) to obtain the calcu-

lation statistics S and Si. Because the existence of change point increases the gap between S
and Si, the best statistical window is derived by the change point analysis method.
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2.3.2. The Invest Habitat Quality Model

An open-source InVEST model of habitat quality version 3.8.0 (https://www.natura
lcapitalproject.org/invest/, accessed on 07 December 2021) has been developed recently
at Stanford University by Sharp et al. [22] to map and assess the habitat quality for indi-
vidual LULC types. The InVEST habitat quality model is a novel tool used for assessing
habitat quality under anthropogenic threats [30,65]. The key reason for using this model
is: (1) Compared with other models, this model is relatively less data-intensive and more
flexible; (2) it can be easily adapted to a specific context and readily available global or
local data [12]; (3) the model shows the hydrological and ecological connectivity developed
by vigiak et al. [66] and its applicability to regional scale. More importantly, the InVEST
habitat quality model is unique in its ability to analyze spatial habitat quality trends and
connectivity for each land use type and quantify sensitivity to threats.

This paper used the habitat quality module in the InVEST model to evaluate the
habitat quality. The InVEST habitat quality model can reflect biodiversity by evaluating the
range of various habitat quality types or vegetation types and the degradation degree of
each type. The main principle is to combine the sensitivity of various landscape types in
the assessment area and the intensity of landscape threat factors to obtain the distribution
of habitat quality. Habitat quality is closely related to land use changes. Human use of
land changes the type of land use and affects the level of habitat quality. The greater the
intensity of human activities, the greater the threat to the regional habitat quality, and the
lower the level of habitat quality and biodiversity [67,68].

For modeling the habitat quality, different geospatial data parameters were prepared
using ArcMAP 10.6 (Table 4). Based on Sharp et al. [22] and other researches [6,30,69–71],
used data on LULC, the relative weight of each threat (ωr), the habitat sensitivity of each
threat (Sjr), the longest distance between habitats and sources of threats (drmax), and habitat
suitability (Hj) to model habitat quality. These parameters were determined by expert
knowledge supported by field investigations [3] and previous research results.

Table 4. Data input for the habitat quality model.

Input Data Description

Land use/land cover

A standard GIS raster dataset, each cell has a digital LULC code. The LULC raster should
include the area of interest and the width buffer for the maximum threat distance. The
raster should not contain any other data. The LULC codes must match the sensitivity

coding of the land use type to each threat.

Threat data

A CSV table of all threats needed to be considered in the model. The table contains
information on each threat’s relative importance or weight and its impact across space. Each
row is a threat source. Each column contains a different attribute of each threat source, and

must be named as THREAT, MAX-DIST, WEIGHT, and DECAY.

Threat raster

GIS raster files with the distribution and intensity of each individual threat showing each of
them affecting the habitat were prepared. By comprehensively considering the current

situation of the study area, related research results and local experts’ opinions
[35–37,67,72,73], six threat taster datasets were prepared (paddy land, dry land, urban land,
rural residential area, industrial and mining land, and unused land). Each cell in the raster

contains a value that indicates the density or presence of a threat within it. All threats
should be measured in the same scale and units.

Habitat types and sensitivity of each
habitat to threats

The CSV table of LULC type contains information on whether habitats are identified and
their specific sensitivity to each threat (Tables 5 and 6). The sensitivity values range from 0

to 1, where 0 means no sensitivity to a threat; 1 means the highest sensitivity [28].
Sensitivity scores were determined from expert knowledge using APH. At the same time,

we refer to the assignment of previous research.
Half saturation constant (k) The scaling parameter (or constant) of 0.5 was the default for the InVEST model.

https://www.naturalcapitalproject.org/invest/
https://www.naturalcapitalproject.org/invest/
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Table 5. Threat factors and their stress responses.

Threat Sources (r) The Longest Threat Distance (drmax/km) Weight (ωr) Spatial Attenuation Types

Paddy land 3 0.5 Linear decay
Dry land 3 0.5 Linear decay

Urban land 8 0.8 Exponential decay
Rural residential land 6 0.6 Exponential decay

Industrial and mining land 7 0.7 Exponential decay
Unused land 4 0.4 Linear decay

Table 6. Sensitivity of land use types to habitat threat factors (Sjr).

Land Use Types
Habitat

Suitability
(Hj)

Threat Sources

Paddy
Land Dryland Urban

Land

Rural
Residential

Land

Industrial
and Mining

Land

Unused
Land

Paddy land 0.4 0 1.0 0.7 0.5 0.5 0.5
Dry land 0.4 1.0 0 0.8 0.6 0.7 0.4

Woodland 1.0 0.5 0.7 0.9 0.8 0.8 0.5
Shrub wood 0.8 0.4 0.6 0.8 0.7 0.7 0.4
Sparse wood 0.9 0.5 0.7 0.9 0.8 0.8 0.5

Other woodland 0.8 0.5 0.7 0.9 0.8 0.8 0.5
High coverage grassland 0.9 0.4 0.6 0.7 0.7 0.7 0.7

Medium coverage grassland 0.8 0.5 0.7 0.8 0.8 0.8 0.7
Low coverage grassland 0.7 0.6 0.7 0.8 0.8 0.8 0.7

Canal 0.9 0.45 0.5 0.8 0.6 0.5 0.4
Lake 1.0 0.55 0.6 0.9 0.7 0.3 0.5

Pit-pound 0.8 0.65 0.7 0.85 0.65 0.3 0.4
Urban land 0.2 0 0 0 0 0.1 0.2

Rural residential land 0.2 0 0 0 0 0.1 0.3
Industrial and mining land 0.1 0 0 0.3 0.2 0 0

Unused land 0.3 0 0.4 0.6 0.5 0.6 0

The degree of habitat quality is represented by the Habitat Quality Index. Habitat
quality is based on the availability of living resources, the amount of reproduction and
presence of organisms, and the ability of an ecosystem to provide suitable living conditions
for individuals and populations. Its value is between 0 and 1, and the higher the value,
the better the habitat quality. In other words, the assessment by this module reflects the
influences of human activities on the eco-environment. The stronger the intensity of human
activities, the greater the threat to the habitat and the lower the habitat quality and the
biodiversity level in this region; on the contrary, the higher the habitat quality, the lower the
interferences from human activities and the higher the biodiversity level in this region [72].
This paper combines the sensitivity of different land use types to threat factors and the
intensity of the external threats to calculate the habitat quality of the study area, thereby
reflecting the suitability of the combination of human survival and sustainable development
of the social economy [31]. The specific calculation formula is as follows:

Qxj = Hj

[
1−

(
Dz

xj

Dz
xj + kz

)]
(4)

where Qxj is the habitat quality of grid x in land use type j; Hj is the habitat suitability of
land use type j; Dxj is the habitat degradation degree of grid x in land use type j; k is the
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half-saturation constant; z is the normalization constant, and usually takes the value 2.5,
and the calculation formula of Dxj is as follows:

Dxj =
R

∑
r=1

Yr

∑
y=1

 ωr
R
∑

r=1
ωr

ryirxyβxSjr (5)

where r is the threat source; R is the number of threat sources; y is the grid number of threat
source r; x is the number of grids in the habitat; Yr is the number of grids occupied by threat
sources; ωr is the weight of the threat source r, which represents the relative destructive
power of a certain threat factor to all habitats, with a value range of 0–1; irxy is the threat
level of the threat source value ry of the grid y to the habitat grid x; βx is the accessibility
level of grid x, with a value range of 0–1, the larger the value, the easier it is to reach; and Sjr
is the sensitivity of land use type j to threat source r, with a value ranging from 0 to 1, and
the larger the value, the more sensitive. The model provides both linear and exponential
recession calculation methods for the calculation of irxy:

irxy = 1−
(

dxy

drmax

)
(if it is linear decay) (6)

irxy = exp
[
−
(

2.99
drmax

)
dxy

]
(if it is exponential decay) (7)

where dxy is the distance between grid x and grid y; and drmax is the influencing scope of
the threat factor r.

The systematic random sampling method [74] was used to conduct a sampling survey
on six counties and one city under the jurisdiction of the Altay region. To this end, 24 experts
from the office of environmental protection and natural resources (2 experts from each
county/city, who have a good understanding of the ecology) were interviewed. The survey
was designed according to the method of Diehl et al. [75] to better understand people’s
views on the importance of specific threats. The respondents were asked to identify the
habitat types, as well as the major threats found in the area: expansion of cultivated
land, urban and rural construction, industrial and mining land, unused land, etc. The
24 experts also responded to the causes of habitat degradation, the maximum distance of the
threat affects the habitat quality, the propagation speed of the threat (distance attenuation
measurement), sensitivity measurement (which threat has a greater impact on the habitat),
the overall situation of the habitat quality in the area, and the measures adopted so far to
control the threat to the ecosystem in the study area. Next, opinions regarding the major
threats’ impact on specific land use types (paddy land, dry land, woodland, shrub wood,
sparse wood, other woodland, high coverage grassland, medium coverage grassland, low
coverage grassland, Canal, Lake, pit-pound, urban land, rural residential land, industrial
and mining land, unused land) were explored using the analytical hierarchy process (APH)
model. APH model is widely used to assign a weight to each threat by examining the
potential impact of each threat on habitat using a pairwise comparison matrix [76]. By
using expert-based judgment, a matrix was established for each county/City, including
threats for pairwise comparison. Divide the weight of each element provided by experts
in the matrix by its total number of columns to generate a standardized pairwise matrix.
Finally, use the eigenvectors (priority vectors) to generate a weighted matrix (average the
rows of the matrix) that shows the impact of each factor on the habitat [77]. Verify that the
consistency ratio (CR) of acceptable accuracy for pairwise comparisons in the judgment
matrix is less than 10% [76]. Finally, the average threat weight/sensitivity values for the
county/city were used for each land use type.

To sum up, starting from the impact of land use change on habitat quality, compre-
hensively considering the current situation of the study area, relevant research results, and
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local expert opinions, three kinds of anthropogenic threats were identified in the region by
following the approach of Terrado et al. [3]. They were agricultural expansion, construction
land increase, and unused land. The reason is that cultivated land and construction land are
the main places for human production and life, which have a great impact on the ecological
environment. The unused land in the study area is mainly desert, Gobi, bare land, bare rock
gravel, etc. The natural background conditions are poor, the vegetation coverage is low,
and the environmental conditions are harsh. If reclamation is arbitrary, land desertification,
salinization, and desertification will be caused, and the habitat quality will be reduced
to varying degrees. Affected by the distribution of surface water, the cultivated land is
subdivided into paddy land and dryland. In addition, considering that there are many
mountains, hills, and deserts in the study area, rural settlements are scattered, and due to
the rich mineral resources in the Altay region, the industrial and mining land is widely
distributed, so the construction land is refined into urban land, rural residential land, and
industrial and mining land (Table 5).

The relative habitat suitability score (intensity of the threat) can be assigned to each
LULC type, ranging from 0 to 1, where 1 indicates the highest habitat suitability and
0 indicates the lowest suitability [22,23,28], and in combination with previous research
results [29,35–37,67,73,78,79] and expert opinions, we finally obtained the corresponding
parameter settings (Table 6).

2.3.3. Hotspot Analysis and Spatial Data Exploration of Habitat Quality

Spatial autocorrelation refers to the correlation of a variable in different spatial posi-
tions, which indicates the aggregation degree of attribute values of spatial units. Commonly
used autocorrelation indicators include global Moran’s I index and Getis-Ord G* coefficient.
A large number of simulation calculations show that Moran’s I can find out whether the
data is clustered in general, while the Getis-Ord G* coefficient more specifically indicates
whether there are clusters of high/low values [80–83]. To accurately reflect the spatial
aggregation of habitat quality, this paper combines the two indicators [83]. The global
Moran’s I index is used to describe whether the habitat quality in the study area has a
regional agglomeration effect. Its value range is [–1, 1]. If the index is greater than 0, it is a
positive correlation, indicating that similar attributes are clustered together, and the closer
the value is to 1, the higher the degree of clustering. Otherwise, it is a negative correlation,
indicating that different attributes are clustered together, and the closer the value is to
−1, the higher the agglomeration degree. If the index is equal to 0, it indicates random
distribution or no spatial autocorrelation. The calculation formula is as follows [84]:

I =
∑n

i=1 ∑n
j=1 Wij(xi − x)

(
xj − x

)
S2·∑n

i=1 ∑n
j=1 Wij

(8)

s2 =
1
n
·∑n

i=1(xi − x)2 (9)

where n represents the total number of regional spatial units, that is, the number of geo-
morphic type units divided in this study. xi and xj represents the attribute value of random
variable x on geographical units i and j, that is, the habitat quality value on different
geomorphic types of units i and j. x is the average attribute values of n spatial geographical
units. Wij is the weight matrix of the adjacency relationship between spatial geographical
units. Therefore, if zone j is adjacent to zone i, the product receives a weight of 1, otherwise,
the product receives a weight of 0. A study generalized these definitions to include any
type of weight, and in a wider term, Wij is a distance-based weight which is the inverse
distance between locations i and j(1/dij). In this paper, the length between centroids is used
to calculate.

Based on Moran’s I index, Getis-Ord G* is used to describe the cold and hot spots of
habitat quality in the study area to analyze the agglomeration of habitat quality in local
space. When the G* value is significantly positive, the habitat quality shows high value
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agglomeration, which is a hot spot area, on the contrary, it is a cold spot area. Among them,
the regions corresponding to the G* value at the 99% confidence level are hot and cold
spots, and at the 95% confidence level are sub hot spots and sub cold spots. The calculation
formula is as follows [85]:

G∗i =
∑n

j wijxj − x ∑n
j=1 wij

S

√ [
∑n

j=1 wn
ij−∑n

j=1 wij

]2

n−1

(10)

where xj is the habitat quality of geomorphic type unit j. wij is the spatial weight matrix of
geomorphic type units i and j (calculated by Queen contiguity). The two most commonly
used spatial matrices are adjacent matrix and inverse distance matrix. In this paper, a
weight matrix based on adjacency relationship was used. Among them, the queen weight
matrix with better detection results, in its definition, as long as there is a common edge
or the same point between two spatial objects, it is considered that they are adjacent, and
the weight is 1, otherwise the weight is 0 [80,86]. x is the average value of habitat quality.
S is the standard deviation of habitat quality. n is the total number of geomorphic type
units divided.

Within different geomorphic type units, take the second-class land use types in Table 1
as the impact factors to explore the impact of land use types on habitat quality. Index
contribution indicates the contribution of an index to habitat quality, and its value can
reflect the factors leading to the difference in habitat quality. Therefore, different land use
types are used as impact indicators to calculate the factors’ contribution to habitat quality.
The calculation formula is as follows:

Cix =
wiCHix

Qx
× 100% (11)

where i and x represent land use type and geomorphic type, respectively. Cix represents
the contribution of i to the habitat quality of x. CHix represents the ratio of i’s pixels to x’s
pixels. Qx is the habitat quality of geomorphic type x. wi represents the weight of land
use type i, which is represented by the habitat suitability index in Table 5. Habitat suit-
ability scores were determined based on literature data and experts’ knowledge [22,23,28],
which had certain subjectivity and objectivity, so that it cannot only take into account
the subjective preference of decision makers, but also reduce the subjective randomness
of empowerment [87]. In addition, different geomorphic types included different land
use types, the proportion of each land use type was different, and the habitat suitability
of different land use types was also very different. The InVEST model believes that the
more natural habitat types are, the more the sensitivity to threat factors, that is, the greater
the impact of threat factors on habitat degradation, while human management factors
can enhance the environment’s ability to restore and reduce sensitivity. Therefore, when
calculating the index contribution of different land use types to habitat quality within
different geomorphic types, we need to take into account the proportion of land types
(CHix) and habitat suitability (wi).

3. Results
3.1. Geomorphic Type Distribution Pattern

(1) Extraction results of surface relief
In this paper, the spatial analysis module and neighborhood statistics module in

ArcMap 10.6 were used to extract the surface relief. The relationship between grid elements
and surface relief was obtained (Table 7).
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Table 7. Relation between grid units and relief amplitude.

Grid Size Area/104 m2 Mean Fluc-
tuation/m Grid Size Area/104 m2 Mean Fluc-

tuation/m Grid Size Area/104 m2 Mean Fluc-
tuation/m

2 × 2 0.36 103.879227 12 × 12 12.96 324.303544 22 × 22 43.56 446.405375
3 × 3 0.81 140.057143 13 × 13 15.21 335.636905 23 × 23 47.61 456.806346
4 × 4 1.44 175.65043 14 × 14 17.64 345.83526 24 × 24 51.84 461.193933
5 × 5 2.25 205.04902 15 × 15 20.25 359.9 25 × 25 56.25 470.162593
6 × 6 3.24 232.140389 16 × 16 23.04 371.926075 26 × 26 60.84 475.115668
7 × 7 4.41 256.826511 17 × 17 26.01 382.853786 27 × 27 65.61 481.551867
8 × 8 5.76 275.238182 18 × 18 29.16 396.100883 28 × 28 70.56 485.004119
9 × 9 7.29 290.672978 19 × 19 32.49 409.046398 29 × 29 75.69 489.506122

10 × 10 9.00 305.78268 20 × 20 36.00 423.662736 30 × 30 81.00 500.625749
11 × 11 10.89 316.259084 21 × 21 39.69 436.284078

The statistical function of Excel software was used to fit the data in Table 7 with a
logarithmic equation, and the fitting curve (Figure 2) was obtained. The fitting effect is
good, passing the statistical test.
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Figure 2. Fitting curve of the relationship between grid units and relief amplitude.

(2) Calculation results of optimal statistical unit
Using the mean change point method and Equations (1) and (2), we obtained the

calculation statistics S = 30.903, Si as shown in Table 8.

Table 8. Change analytic results statistics.

i 2 3 4 5 6 7 8 9 10 11

Si 17.469 8.819 2.828 1.314 4.188 6.153 7.413 8.163 8.573 8.748
S− Si 13.434 22.084 28.075 29.589 26.715 24.750 23.490 22.740 22.330 22.155

i 12 13 14 15 16 17 18 19 20 21

Si 8.791 8.792 8.811 8.887 9.057 9.352 9.783 10.367 11.105 12.019
S− Si 22.112 22.111 22.092 22.016 21.846 21.551 21.120 20.536 19.798 18.884

i 22 23 24 25 26 27 28 29

Si 13.132 14.451 16.026 17.830 19.902 22.235 24.859 27.769
S− Si 17.771 16.452 14.877 13.073 11.001 8.668 6.044 3.134

According to the data in Table 8, it was concluded that the change curve showed
the characteristics of an inverted “U” (Figure 3). According to the change point analysis
method, due to the existence of a change point, the gap between S and Si increased. Figure 3
shows that point 5 was the change point, which could inversely deduce that a 6 × 6 grid
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size (0.0324 km2) was the best statistical window. Therefore, the best statistical unit for
calculating the surface relief of the DEM in the Altay region was a 6 × 6 (0.0324 km2) grid.
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According to the above classification system and calculation results, the geomorphic
types of the Altay region were finally divided into 6 medium-scale geomorphic types
(Figure 4a) and 14 small-scale geomorphic types (Figure 4b). More classes produced more
details, meaning that habitat quality changes at different geomorphic type scales can
be analyzed.
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As can be seen from Figure 4, the study area can be roughly divided into three
geomorphic units: northern mountainous area, central hilly-valley plain area, and southern
desert (Gobi) area. In combination with Table 2, the evolution of the northern mountainous
area is between 900–4374 m. Above 2400 m is the alpine zone, covered with snow all year
round, which is the water supply source of rivers in the Altay region. Between 1000 and
2400 m is the middle mountain belt. The surface is undulating, and the “V” valley is widely
distributed. It is the largest catchment area, important forest area, and excellent summer
pasture. Between 900 and 1000 m is a low mountain belt, with large fluctuations on both
sides of the river valley and abundant water energy.

The central hilly-valley plain area is located from the front of Altai Mountain to the
north edge of Junggar basin. The evolution is between 400 and 1000 m. It is a plain
(river terrace) and hilly physiognomy formed by long-term alluviation of Irtysh River and
Ulungur River. The surface in the east is undulating and changeable, the west is relatively
flat. The terrain is high in the northeast and low in the southwest. In the valley area, the
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land is fertile, water resources are abundant, and pasture is fat. There are dense natural
valley forests on both river valley sides. The valley area is the main grain and oil producing
area in the Altay region, and it is also a good winter pasture.

The southern desert (Gobi) area is a part of the Gurbantunggut Desert. The ground
is low fixed and semi-fixed dunes. There is no surface runoff and water source is scarce.
Drought tolerant forage grass and Haloxylon ammodendron are scattered in low-lying
areas between the dunes.

3.2. Land Use Change Analysis

Table 9 and Figure 5 showed that the main land use types were unused land, grassland,
and forestland. The areas of these three types account for more than 90% of the study
area. From 1995 to 2018, land use change mainly manifested as the increases of cultivated
land, water area, and construction land. From Table 9 we can see that cultivated land and
water area showed a slow increase. Construction land increased slowly from 1995 to 2015,
but it increased significantly in 2018, growing from 225.95 km2 in 2015 to 1310.59 km2 in
2018. Meanwhile, grassland and unused land showed decreasing trends from 1995 to 2018.
Forestland remained stable in the first five phases and increased significantly in 2018, from
8529.66 km2 in 2015 to 9335.70 km2 in 2018.

Table 9. Area of different land use types (Unit: km2).

Year Cultivated
Land Forestland Grassland Water

Area
Construction

Land
Unused

Land

1995 2590.57 8511.12 41,894.52 1774.83 86.68 63,242.53
2000 2614.89 8560.53 41,665.06 1922.13 113.24 63,224.37
2005 3267.75 8549.12 41,578.17 1905.04 115.49 62,684.74
2010 3421.21 8547.82 41,562.95 1906.74 117.97 62,543.60
2015 4196.09 8529.66 41,379.64 2031.88 225.95 61,738.80
2018 5194.39 9335.70 38,863.70 2480.38 1310.59 60,577.24
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A transfer matrix was constructed for the six periods of the land use data (Table 10).
Land use transfer from 1995 to 2000 mainly occurred between cultivated land, forestland,
grassland, and unused land. The transfer-in and transfer-out areas were basically the
same. The area of forestland converted to grassland was 1075.13 km2 more than grassland
converted to forestland. The area of unused land converted to grassland was 1093.23 km2

more than grassland converted to unused land. From 2000 to 2005, cultivated land and
forestland were mainly converted to grassland, while grassland was mainly converted to
cultivated land and unused land. The area of cultivated land converted to grassland was
significantly smaller than the area of grassland converted to cultivated land. Unused land
was mainly converted to cultivated land and grassland. From 2005 to 2010, the transition
between grassland, forestland, cultivated land, and unused land was still the main focus.
However, unlike 2000–2005, the areas of unused land converted to grassland and grassland
converted to unused land increased 1787.08 km2 and 1452.07 km2, respectively. Generally
speaking, the area of unused land converted to other types was more than the area of
others converted to it, which showed that more unused land was developed and utilized
by people.

Table 10. Land use conversion matrix from 1995 to 2018 (Unit: km2).

Periods Land Use Types Cultivated
Land Forestland Grassland Water Area Construction

Land
Unused

Land

1995–2000

Cultivated land 1952.71 88.42 325.92 6.49 22.97 214.12
Forestland 109.28 7780.80 1683.23 38.62 2.18 171.50
Grassland 288.49 608.10 36,264.52 56.55 7.65 1824.83
Water area 0.77 9.10 14.00 1655.02 0 17.81

Construction land 2.55 1.57 6.71 0.56 75.10 1.93
Unused land 254.71 51.64 2918.06 144.57 6.30 60,285.93

2000–2005

Cultivated land 2507.47 5.01 80.96 0.73 2.14 12.20
Forestland 22.09 8082.02 391.71 31.41 1.56 10.84
Grassland 338.27 95.06 40,404.34 28.82 5.03 340.92
Water area 1.98 36.40 19.30 1803.78 0.02 40.33

Construction land 1.85 0.85 0.60 0 108.83 2.07
Unused land 549.07 1.05 214.80 23.67 8.08 61,719.45

2005–2010

Cultivated land 2581.18 98.37 439.02 19.17 40.86 242.21
Forestland 76.56 6466.08 1497.95 67.40 4.93 107.61
Grassland 427.98 1917.89 36,864.26 114.66 24.98 1792.99
Water area 14.46 42.24 93.86 1559.81 0.49 179.11

Construction land 23.91 4.33 10.13 0.39 79.93 6.97
Unused land 257.59 129.85 2001.88 256.16 7.21 59,483.74

2010–2015

Cultivated land 2743.00 39.86 282.95 24.02 135.96 155.22
Forestland 328.31 5320.98 2607.48 126.52 36.17 237.78
Grassland 1200.46 2874.30 27,032.12 334.37 220.01 9246.42
Water area 43.19 37.33 108.95 1631.90 4.40 191.10

Construction land 31.93 1.87 12.02 3.10 104.64 4.99
Unused land 1335.08 183.95 5242.75 465.03 309.35 54,300.69

2015–2018

Cultivated land 3977.88 196.10 1046.99 53.74 270.17 146.96
Forestland 155.41 5007.30 3078.19 56.73 35.06 137.38
Grassland 587.27 3794.70 25,898.31 240.72 254.79 4844.29
Water area 15.89 83.52 287.63 1842.31 27.33 334.64

Construction land 94.94 20.08 154.58 13.61 342.40 188.69
Unused land 364.20 231.92 8360.97 271.88 381.38 54,961.99

The main land conversions from 2010 to 2015 was cultivated land to grassland; forest-
land to grassland; grassland to cultivated land, forestland, and unused land; and unused
land converted to cultivated land and grassland. Among them, the transfer-in and transfer-
out between grassland and forestland were basically the same. There were obvious tran-
sitions between the six types of land use from 2015 to 2018. For example, the transfer-in
between cultivated land and grassland was much greater than the transfer-out; the conver-
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sion between forestland and grassland was not significant; and the transfer of grassland to
unused land was 3156.68 km2 smaller than the reverse, indicating that more grassland was
degraded into unused land. It is worth noting that the area of construction land converted
into grassland and unused land in this period was also much larger than in the previous
period, and the area of water area converted to unused land also increased year by year.

From 1995 to 2018, all land use types had been transferred. The areas of water area
and construction land were relatively small, so the transferred areas were small. Among
them, grassland was mainly transferred to forestland and unused land, while unused land
was mainly transferred to grassland which led to the serious overloading and overgrazing
of grassland, and also to over-exploitation and unreasonable utilization. The unreasonable
behaviors of the people led to bare ground and a serious imbalance in ecological carrying
capacity, and finally to the decline of ecological environmental quality.

3.3. Spatiotemporal Evolution Analysis of Habitat Quality

The habitat quality is represented by the habitat quality index, which is in the range of
0–1. The higher the value, the better the habitat quality and the more complete the habitat,
and the more conducive to the higher biodiversity of the system. Habitat quality is often
affected by the intensity of land use. As land use intensity increases, the habitat threat
sources will increase, which will cause the degradation of the habitat quality surrounding
the threat sources. Using InVEST habitat quality module and formula (4), we obtained the
habitat quality index values from 1995 to 2018, with the average values for each period
being 0.31971, 0.31996, 0.31953, 0.32057, 0.31047, and 0.31565, respectively. The calculation
results do not have a standard classification threshold, while the commonly used “Natural
break method” can identify the classification intervals, group the similar values most
appropriately, and maximize the differences between various categories. Therefore, in
ArcMap 10.6, the habitat quality index was classified by the natural break method. Then
the value was assigned to four levels from low to high, poor habitat (0, 0.5), general habitat
(0.5, 0.8), good habitat (0.8, 0.9), and excellent habitat (0.9, 1.0) (Figure 6).
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Figure 6 showed that poor habitat was the main habitat level in the study area, which
was closely related to the largest proportion of unused land. Excellent habitat was mainly
distributed in forestland of high-altitude, in the Altai Mountains. The habitat quality of
grassland, water area, and the transition zone between forest and grass belonged to the
good habitat level. However, the general habitat areas were mainly distributed in grassland
edge areas, the oasis area at the edge of the desert, and the small pieces of forestland and
grassland in the middle of the unused land. The habitat quality of cultivated land and
unused land was at a poor level.

On the whole, habitat quality was dominated by “poor quality” from 1995 to 2018,
which was closely related to the largest proportion of unused land. From 1995 to 2010,
the habitat quality remained basically unchanged, but it decreased significantly in 2015,
which might relate to the rapid expansion of cultivated land, construction land, and the
coverage reduction of forestland and grassland. Affected by human activities, the extension
of construction land and cultivated land occupied a large amount of grassland, while the
grassland at the edge of unused land was degraded into unused land, resulting in the
decline of habitat quality. Compared with 2015, the habitat quality in 2018 was significantly
improved. This was due to the implementation of ecological protection policy in the study
area, that a large amount of cultivated land and unused land converted into forestland
and grassland in 2015. This measure increased the coverage of forestland and grassland,
improved habitat suitability, and ultimately improved habitat quality.

To further explore the changes of habitat quality under different geomorphic types,
this paper used the zoning method to extract 6 medium-scale geomorphic type units and
14 small-scale geomorphic type units. In ArcMap10.6, different geomorphic types were
overlaid with six periods of habitat quality grid maps, and then the average habitat quality
index of each geomorphic type was obtained (Table 11 and Figure 7).

Table 11. Area changes of habitat quality under six medium-scale geomorphic types.

Geomorphic
Type Year

Average
Habitat

Quality Index

The Area Proportion of Each Level Habitat Quality (%)

Poor Habitat
(0, 0.5)

General
Habitat
(0.5, 0.8)

Good Habitat
(0.8, 0.9)

Excellent
Habitat
(0.9, 1.0)

Plain

1995 0.42458 75.5 15.2 6.4 2.8
2000 0.42817 74.7 16.2 6.6 2.5
2005 0.42874 75.2 15.9 6.5 2.5
2010 0.43275 74.6 15.8 7.2 2.4
2015 0.42458 78.0 12.5 8.4 1.2
2018 0.43020 75.1 16.5 7.6 0.8

Platform

1995 0.36651 85.2 12.4 1.3 1.1
2000 0.37199 83.4 14.4 1.5 0.7
2005 0.37301 83.4 14.5 1.5 0.6
2010 0.37886 82.4 14.6 2.4 0.6
2015 0.36710 85.6 11.4 2.7 0.3
2018 0.37366 83.5 14.2 2.1 0.2

Hill

1995 0.52156 53.5 27.6 13.6 5.2
2000 0.52499 50.9 32.4 14.2 2.5
2005 0.52414 51.0 32.3 14.6 2.1
2010 0.52589 50.7 32.8 14.2 2.4
2015 0.50835 55.1 31.6 11.8 1.6
2018 0.50619 55.7 31.2 9.8 3.2

Small
undulating
mountain

1995 0.81678 8.1 18.5 53.3 20.1
2000 0.80672 8.4 22.0 52.1 17.4
2005 0.80293 9.1 21.7 52.5 16.6
2010 0.80156 9.5 22.8 50.3 17.4
2015 0.76779 16.2 24.0 40.5 19.3
2018 0.78841 9.2 38.2 33.1 19.5
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Table 11. Cont.

Geomorphic
Type Year

Average
Habitat

Quality Index

The Area Proportion of Each Level Habitat Quality (%)

Poor Habitat
(0, 0.5)

General
Habitat
(0.5, 0.8)

Good Habitat
(0.8, 0.9)

Excellent
Habitat
(0.9, 1.0)

Medium
undulating
mountain

1995 0.83551 10.2 10.0 56.8 23.0
2000 0.82717 11.5 11.2 53.9 23.3
2005 0.82312 12.3 10.7 54.0 22.9
2010 0.81012 14.3 12.6 49.0 24.1
2015 0.78222 20.2 9.6 44.9 25.3
2018 0.80406 9.9 32.5 32.7 24.9

Large
undulating
mountain

1995 0.90404 4.2 8.6 55.8 32.3
2000 0.86355 14.5 12.2 48.9 25.2
2005 0.86374 10.5 9.9 47.0 32.9
2010 0.81046 11.5 13.2 47.9 28.6
2015 0.81651 10.2 19.6 43.5 27.2
2018 0.83922 10.0 12.5 45.6 32.7
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Figure 7. Habitat quality change chart of different geomorphic types from 1995 to 2018.

It can be seen from Table 11 that habitat quality of the six medium-scale geomorphic
types from good to bad showed as large undulating mountain > medium undulating
mountain > small undulating mountain > hill > plain > platform. Plain and platform areas
were mainly poor habitat (0, 0.5). This was because these areas were mainly cultivated
land and unused land, while the unused land in the Altay region is mainly the Gobi,
Saline-alkali land, bare soil, bare rock gravel, etc., which are not conducive to vegetation
growth. Coupled with the lack of water resources in areas close to the desert, these areas
had poor habitat suitability and low biodiversity, resulting in poor habitat quality. Hill
areas were mainly general habitat (0.5, 0.8). The general habitat was the transition zone
between grassland and unused land. Mountain areas were mainly good habitat (0.8, 0.9)
and excellent habitat (0.9, 1.0). Because these areas were higher in altitude, with less
human distribution, the area ratios of forestland and grassland with better habitat quality
were significant.
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In plain area, the proportions of areas with poor habitat, general habitat, and good
habitat changed little from 1995 to 2018, but the proportion of excellent habitat declined
significantly in 2015 and 2018. In platform area, there was no distribution of excellent
habitat. Poor habitat and general habitat were basically unchanged, and the good habitat
showed an overall increasing trend. In hill area, all habitat quality levels showed no
significant change from 1995 to 2010, however, the poor habitat increased in 2015 and 2018.
Except for the increase of excellent habitat in 2018, the other three levels decreased, which
had a strong relationship with the grassland conversed into cultivated land and unused
land. In small undulating mountain area, the general habitat increased year by year, from
18.5% in 1995 to 38.2% in 2018, while the trend for good habitat was the opposite, decreasing
from the initial 53.3% to only 33.1% in 2018. The proportions of the areas occupied by
poor habitat and excellent habitat had not changed significantly, but the poor habitat
area increased by 6.7% in 2015, which might relate to the conversion of grassland into
construction land and unused land. In medium undulating mountain area, habitat quality
showed a downward trend, and decreased from 0.83551 in 1995 to 0.80406 in 2018, which
was related to the continuous increase of the area proportion of poor habitat quality. It was
worth noting that the proportion of areas with poor habitat quality decreased significantly
in 2018, which was related to the decrease of unused land and the increase of forestland in
2018. The habitat quality of the large undulating mountain area decreased first and then
increased. The area proportion of poor habitat and good habitat showed an increasing trend
as a whole, while the general habitat showed a wavy fluctuation. In particular, from 1995 to
2000, the area proportion of poor habitat increased from 4.2% to 14.5%, which was closely
related to the large-scale mountain logging of human beings during this period. In general,
habitat quality in mountainous area was much better than that of other geomorphic types.

For 14 small-scale geomorphic type units (Figure 7), the order of habitat quality
from good to bad was large undulating middle mountain > medium undulating middle
mountain > small undulating high mountain > high altitude plain > medium undulating
high mountain > large undulating high mountain > small undulating middle mountain >
small undulating low mountain > low altitude plain > medium altitude plain > low altitude
hills > medium altitude hills > low altitude platform > medium altitude platform.

From Figure 7, we can see from 1995 to 2018, the average habitat quality index of
large undulating middle mountain was greater than 0.9, belonging to excellent habitat
(0.9–1.0). The average habitat quality index of medium undulating middle mountain,
small undulating high mountain, and high altitude plain were all above 0.8, so these three
geomorphic types belonged to good habitat (0.8, 0.9). The average habitat quality index of
medium undulating high mountain, large undulating high mountain, small undulating
middle mountain, and small undulating low mountain were between 0.5–0.8, belonging to
general habitat (0.5, 0.8). The average habitat quality index of low altitude plain, medium
altitude plain, low altitude hill, medium altitude hill, low altitude platform, and medium
altitude platform were all less than 0.5, so these six geomorphic types belonged to poor
habitat (0, 0.5).

In Figure 7, from 1995 to 2010, the habitat quality index of large undulating high
mountain and high altitude plain fluctuated greatly, while the habitat quality index of other
geomorphic types was relatively stable and remained basically unchanged. After 2010, the
habitat quality of various geomorphic types began to fluctuate significantly. Among them,
high altitude plain, large undulating high mountain, medium undulating high mountain,
and small undulating low mountain changed greatly. Although the habitat quality of high
altitude plain had remained good (>0.8) in the past 30 years, it increased significantly from
0.835 in 2005 to 0.915 in 2010 and reached excellent habitat (0.9–1.0). Then the habitat
quality index began to decline slowly, and finally decreased to 0.84 in 2018. The habitat
quality index of large undulating high mountain decreased significantly from 2005 to 2010,
from 0.794 to 0.685, and then the habitat quality improved, rising to 0.782 slowly in 2018.
The habitat quality index of medium undulating high mountain declined from 0.821 (1995)
to 0.724 (2015), and then improved to 0.782 in 2018. The habitat quality of small undulating
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low mountain remained stable in the first two decades, then reached the maximum in
2015 (0.566), and then decreased to the lowest value of 0.509 (2018). The habitat quality
was different in different geomorphic types. The habitat quality in the areas with large
fluctuation and high altitude was generally better than that in the areas with medium and
low altitude. The geomorphic type with the best habitat quality was the large undulating
middle mountain, and the worst was the medium altitude platform.

3.4. Spatial Exploration and Correlation Analysis of Habitat Quality
3.4.1. Spatial Hot Spot Analysis of Habitat Quality

Taking 14 small-scale geomorphic type units as the research object, we used global
Morans’I and hotspot analysis to further explore the spatial distribution characteristics and
laws of habitat quality under the control of different geomorphic types. The study showed
(Figure 8) that from 1995 to 2018, the global Morans’I of habitat quality was all greater than
0, indicating that the habitat quality in the study area showed a certain spatial aggregation.
The global Morans’I decreased from 0.407584 in 1995 to 0.363143 in 2015 and increased to
0.384504 in 2018, indicating that there was a trend of spatial aggregation from 1995 to 2018,
however, the spatial agglomeration tended to disperse from 1995 to 2015.
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Figure 8. Moran’s I index distribution map of habitat quality from 1995–2018 (1. small undulating
high mountain; 2. high altitude plain; 3. medium undulating high mountain; 4. large undulating high
mountain; 5. large undulating middle mountain; 6. medium undulating middle mountain; 7. small
undulating middle mountain; 8. low altitude platform; 9. low altitude plain; 10. small undulating
low mountain; 11. medium altitude plain; 12. medium altitude hill; 13. medium altitude platform;
14. low altitude hill).

This paper used spatial hotspot analysis to study habitat quality in 2018. The study
showed that the habitat quality in the study area had significant cold and hot spots distri-
bution characteristics (Figure 9). The habitat quality of different geomorphic types showed
obvious spatial aggregation and showed a banded-step distribution. Altitude from high
to low followed by hot spots area, sub hot spots area, insignificant area, and cold spots
area. Habitat quality was realized as high–high aggregation, that is, hot spots area, mainly
occurring in high mountain and high altitude plain, including four geomorphic types:
large undulating high mountain, medium undulating high mountain, small undulating
high mountain, and high altitude plain. High–low aggregation, that is, sub hot spots area,
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mainly occurred in the medium undulating middle mountain. Low–low aggregation, that
is, cold spots area, occurred in low altitude areas, including two geomorphic types: low
altitude platform and low altitude plain. The spatial aggregation phenomenon was not
obvious in the medium altitude area, including 7 geomorphic types: small undulating
middle mountain, large undulating middle mountain, small undulating low mountain,
medium altitude plain, medium altitude platform, medium altitude hill, and low altitude
hill. The difference of cold and hot spots distribution characteristics in the study area
was mainly determined by the influence of geographical environmental factors on the
scope and intensity of human activities. Human activities in high altitude mountain areas
were limited by topography, so human interference to the ecological environment was
less. In addition, the vegetation cover density in these areas was large, so the habitat
quality remains good, which was hot spots area of habitat quality. The main reason for
the difference of cold and hot spots distribution characteristics in the study area was the
geomorphic types and human activities. In high mountain areas and high altitude plain
areas, forestland was densely distributed and human activities were weak. These places
maintain the original state of natural ecology, so they were hot spots areas of habitat quality.
In low altitude platform and low altitude plain areas, the main land use types were high
coverage grassland, medium coverage grassland, cultivated land and construction land.
These two geomorphic types were cold spots areas of habitat quality. In the cold spots area,
human activities intensity was high, mainly including over reclamation, overgrazing, min-
eral development, and construction of industrial and mining, which resulted in grassland
degradation, land desertification, salinization, and ecological environment degradation,
and finally leading to the reduction of habitat quality.
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In medium undulating middle mountain area, shrub wood, sparse wood, and low
coverage grassland were mainly distributed, which were mainly secondary hot spots. These
areas were mainly affected by grazing. Due to the gradual increase of grazing range and
quantity, there was great consumption of river valley forest and shrub forest, resulting in
the gradual desertification of desert areas on both sides of the river valley.

3.4.2. Effects of Land Use Change on Habitat Quality

To explore the impact of land use on habitat quality, we made statistics on the habitat
quality of different land use types (Figure 10). From 1995 to 2018, the habitat quality index
of forestland was the best, followed by water area and grassland, and the lowest habitat
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quality index was construction land. From 1995 to 2018, the habitat quality index values of
forestland and unused land did not change significantly, and the water area showed a trend
of first decreasing, then increasing, and then decreasing. From 1995 to 2010, habitat quality
index of cultivated land and grassland remained basically unchanged, and the cultivated
land showed a downward trend in 2015 and 2018, while the grassland increased first and
then decreased. From 1995 to 2005, construction land remained basically unchanged, and
there was a sustained increase from 2010 to 2018. The habitat quality index of cultivated
land, grassland, water area, and construction land might be disturbed by human activities.
With the increase of population, people’s demand for cultivated land and construction land
increased, and more grassland was reclaimed as cultivated land. In addition, overgrazing
converts grassland into unused land, and natural lakes and canals had been artificially
transformed into pit-ponds, which all increased the impact of threat factors. However, it
should be noted that although the cultivated land continues to grow, due to the impact of
natural disasters, such as drought, sandstorm, and saline-alkali, leading to the simultaneous
existence of farmland reclamation and abandonment, this directly had a great impact on
suitable wasteland resources and desert grassland. Due to human transformation, the
original ecological environment had been destroyed. Land use habitat affected by negative
interference had degraded, resulting in the decline of biodiversity and habitat quality.
However, after human positive interference, such as returning farmland to forest and
grassland and the implementation of relevant ecological protection policies, the habitat
degradation degree of land use types disturbed by human factors had decreased and the
habitat quality had been improved. From 1995 to 2018, the habitat quality index of forest
land had been maintained at a high level above 0.95. This was because the forestland in
the Altay region was mostly distributed in high altitude and large fluctuation areas, and
the mountainous area was not conducive to reclamation, housing construction, and other
activities. Although habitat quality of forestland had maintained a high level, it showed
a slow downward trend, which was due to the habitat degradation of forestland caused
by logging, deforestation, and reclamation. However, due to the limitation of geomorphic
conditions, human activities were restricted. Moreover, the vegetation coverage was high,
so its anti-interference ability was strong. Coupled with the implementation of various
ecological protection policies and restoration behavior, the habitat quality had always
remained at a high level.
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Figure 10. Average habitat quality index of different land use types.

To further explore the changes of habitat quality and its main influencing factors under
different geomorphic types, the contribution index of land use to habitat quality under
various geomorphic types was calculated by using the concept of index contribution, and
the correlation between habitat quality and land use types was also discussed (Table 12).
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Table 12. The contribution of land use types to habitat quality under different geomorphic types (%).

Land Use Types

Geomorphic Types Large
Undulating

High
Mountain

Medium
Undulating

High
Mountain

Small Un-
dulating

High
Mountain

Large Un-
dulating
Middle

Mountain

Medium
Undulat-

ing Middle
Mountain

Small Un-
dulating
Middle

Mountain

Small Un-
dulating

Low
Mountain

Medium
Altitude
Platform

Low
Altitude
Platform

Medium
Altitude

Hill

Low
Altitude

Hill

High
Altitude

Plain

Medium
Altitude

Plain

Low
Altitude

Plain

1-1 NULL NULL NULL NULL NULL NULL NULL NULL 0.00 NULL NULL NULL NULL 0.00
1-2 NULL NULL NULL 0.00 −0.04 −0.15 −0.29 0.10 6.31 * 0.30 0.89 * NULL −4.57 * 8.13 *
2-1 14.94 * 9.35 * 5.74 * 35.07 * 31.68 * 6.36 * 1.69 0.18 0.05 0.35 0.16 15.67 * 6.60 1.67
2-2 3.76 5.33 7.21 9.40 * 4.05 * 7.75 * 2.82 0.09 1.18 2.71 0.98 8.31 * 1.69 0.46
2-3 2.71 2.33 3.38 2.79 6.66 1.94 1.35 * 0.06 0.07 0.38 * 0.07 1.86 0.55 * 1.34 *
2-4 NULL 0.002 NULL NULL 0.001 0.001 NULL NULL 0.22 0.00 0.09 NULL 0.01 0.40
3-1 28.72 * 35.37 * 46.42 * 34.56 * 20.85 * 18.92 * 3.86 * 1.07 1.28 3.37 1.61 44.09 12.56 6.54
3-2 14.48 18.16 22.61 7.51 21.94 * 28.69 * 16.05 * 13.97 9.62 7.24 * 10.54 7.26 * 6.68 * 14.32
3-3 18.23 18.58 7.37 4.59 5.90 20.63 30.43 * 7.65 16.94 * 18.22 * 14.27 * 5.32 12.03 * 17.10 *
4-1 0.22 0.06 0.04 0.28 0.17 0.14 1.07 * 0.00 0.14 * 0.03 0.09 * 2.02 1.42 0.69 *
4-2 0.36 0.30 0.02 NULL 0.01 0.01 0.42 NULL 0.39 * 0.04 0.38 * 3.29 0.48 7.44
4-3 NULL −0.01 −0.02 NULL NULL −0.01 NULL −0.01 −0.06 −0.01 −0.02 −0.02 −0.08 −0.13
4-4 0.02 0.03 0.12 NULL 0.01 0.03 0.11 0.53 * 0.08 0.33 0.04 0.26 0.56 * 0.19
4-5 1.40 0.39 * NULL NULL NULL NULL NULL NULL NULL NULL NULL 0.02 * NULL NULL
5-1 NULL NULL NULL NULL −0.01 −0.03 −0.01 NULL −0.29 NULL −0.07 NULL −0.14 −0.27 *
5-2 NULL 0.00 NULL −0.00 −0.02 −0.08 −0.03 * −0.08 −0.40 −0.07 −0.17 * NULL −0.71 −0.79
5-3 NULL NULL −0.24 −0.05 −0.16 −0.76 −0.98 −1.62 −2.91 −1.58 * −1.17 −0.05 −2.69 −2.68 *
6-1 NULL NULL NULL NULL NULL NULL 3.20 −0.61 −5.55 −1.22 88.22 * NULL −0.71 −6.04
6-2 NULL 0.01 NULL NULL −0.43 −3.82 −27.39 −39.34 −126.89 * −21.84 −26.75 * NULL −68.30 54.09
6-3 NULL −0.02 NULL NULL 0.00 0.01 NULL 0.92 −1.66 * 0.19 −0.58 NULL 1.67 −1.67
6-4 NULL 0.17 0.38 NULL 0.00 0.00 NULL 0.08 −0.11 0.00 −0.11 5.75 0.14 −0.68
6-5 NULL −0.00 NULL NULL −0.02 −0.39 −0.01 10.30 −2.71 −1.67 −1.57 NULL −11.36 * 4.36 *
6-6 −17.51 −10.52 NULL −0.00 −1.67 −18.66 48.68 127.68 −26.38 137.31 * 35.44 * −1.50 14.19 9.61

Note: * indicates that there is a significant correlation between habitat quality and land use type. + indicates a positive correlation. − indicates a negative correlation. NULL indicates
that there is no such land use type. The figure on the left corresponds to the land use type in Table 1.
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Different geomorphic types contained different land use types (Table 12), so it is
necessary to study the relationship between land use types and habitat quality under
different geomorphic types. The main contribution indicators and significant correlation
factors of different geomorphic types were different. For example, the large undulating high
mountain only contains grassland, forestland, and some water bodies, without cultivated
land and construction land, while the low altitude areas include almost all land use types.
In different geomorphic types, the contribution of land types to habitat quality was also
different. In mountainous areas, the indicators with a large contribution to habitat quality
were mostly concentrated in grassland and forest land, while in platform, hill, and plain
area grassland, Gobi and bare rock gravel land contribute greatly. The significant correlation
factors were concentrated in dryland, forestland, grassland, and canals.

For high mountain area, the contribution of forestland and grassland was large, and
the significant correlation factors were concentrated in forestland and high coverage grass-
land. For middle mountain area, the contribution of forestland and grassland was still large,
and the significant correlation factors were concentrated in woodland, shrub wood, high
coverage grassland, and medium coverage grassland. For low mountainous area, the land
use types that contributed greatly to habitat quality were bare rock gravel land (48.68%),
low coverage grassland (30.43%), and Gobi (27.39%), and the significant correlation factors
included sparse wood, high/medium/low coverage grassland, channel, and rural residen-
tial area. For platform area, medium/low coverage grassland, Gobi and bare rock gravel
land contributed greatly, but the significant correlation factors between medium altitude
platform and low altitude platform were quite different. The former had only beach, while
the latter included dryland, low coverage grassland, channel, lake, Gobi, and saline-alkali
land. For hill area, the indicators with greater contribution include Gobi and bare rock
gravel land, and the bare rock gravel land was a significant correlation factor. However,
hills with different undulations had different main contribution indicators. Low coverage
grassland (18.22%) had a greater contribution to medium altitude hill, while sand land
(88.22%) had a greater contribution to low altitude hill. For plain area, in high altitude, the
main contribution indicators were woodland (15.67%), shrub wood (8.31%), high coverage
grassland (44.09%), and the significant correlation factors were woodland, shrub wood,
medium coverage grassland, permanent glacier, and snowfield. The main contribution
indicators of medium/low altitude plain areas were concentrated in grassland and Gobi,
and the significant correlation factors were dryland, sparse wood, low coverage grassland,
and bare land.

On the whole, indicators that contributed more to the habitat quality of mountain areas
in the study area were mostly grassland and forestland, and indicators that contributed
more to the platform, hill, and plain areas were mostly grassland, Gobi, and bare rock
gravel land. The significant correlation factors were concentrated in dryland, forestland,
grassland, and canals. The negative correlation indicators were mainly reflected in the
types of unused land, urban land, rural residential area, industrial and mining land, and
dryland in cultivated land.

4. Discussion
4.1. Effects of Land Use Change on Habitat Quality from 1995 to 2018

The earth’s surface is the home for human survival. Physiognomy is one of the basic
elements in the earth’s surface system, which directly or indirectly affects human life,
production, and socio-economic activities. The Altay region has complex and diverse
geomorphic types. It is necessary to study habitat quality change based on different
geomorphic types, but the relevant research has not been carried out until now. Therefore,
based on the extraction of different geomorphic types and land use interpretation maps
of six periods from 1995 to 2018, we used the InVEST habitat quality model to estimate
habitat quality, to reveal the changing trend of habitat quality under different geomorphic
types and the impact of land type on habitat quality.
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The results showed that land use had been changing over the past few decades. Un-
used land, grassland, and forestland were the main land use types in the Altay region. In
this period, due to the revitalization of rural areas and the development of rural tourism,
the Altay region had tapped the potential of Regional Advantageous tourism resources. It
had accelerated the construction of rural public infrastructure and promoted the sustainable
development of rural tourism in the Altay area. These measures had provided support for
solving poverty in rural areas, but they also had a serious negative impact on the ecological
environment and the quality of habitat had decreased [88–90]. Economic construction and
urban expansion, the areas of cultivated land, urban land, rural residential area, industrial
and mining land had proliferated, and the areas of grassland and unused land continued
to decrease, which were also important reasons for the decline of ecological environment
quality in the study area [48]. People illegally reclaimed land and abandoned land in agri-
cultural expansion promote land desertification [91]. At the same time, blind development
from the perspective of land use without effective consideration of the integrity of the
ecological environment is likely to cause certain damage to the surrounding ecological
environment, and even various irrational development phenomena of the ecological envi-
ronment. For example, when developing unused land in mountainous and hilly areas, soil
erosion may occur due to changes in topography. Grassland overgrazing and degradation,
continuous expansion, and occupation of cultivated land and construction land might be
the reasons for the reduction of grassland and unused land area.

Land use types and geomorphic types had an important impact on habitat quality.
The habitat quality of forest land distributed in large undulating, middle/high altitude area
was the best, while that of construction land distributed in small undulating, middle/low
altitude area was the worst. The northern part of the Altay region has better habitat quality
than the southern, which promoted biodiversity [92] and environmental regulation. The
sources of the threats are more severe in the southern part of the Altay region than in its
northern part. Due to the natural background, the southern part is mostly desert, bare rock,
and gravel land, etc., and the extreme lack of water resources, coupled with unreasonable
agricultural expansion, resulted in abandonment and salinization. In addition, overgrazing
has contributed to desertification of grasslands, all of which have increased the threat to
habitat quality.

The existence of protected areas contributed significantly to alleviating habitat quality
in the area [93]. In recent years, with the rapid development of the local economy, over-
grazing and mining, inappropriate tourism development, water resources development,
and agricultural development, the degradation of the ecosystem of Altai Mountain in the
northern part of the study area and the source basins of Irtysh River and Ulungur River
in the middle part to a certain extent. Therefore, the “national strategic action plan for
biodiversity protection” of the Ministry of environmental protection plans ‘Altai mountain
forest grassland ecological function area’ as one of the main protection areas, aiming at
regulating habitat quality and protecting biodiversity in the Altai mountain area. Over the
past two decades, cultivated land, grassland, water area, and construction land had been
positively and negatively disturbed by human activities, resulting in habitat fluctuations.
Negative disturbances include continuous expansion of cultivated land and construction
land, reclamation of grassland into cultivated land, excessive use of grassland into unused
land, and artificial transformation of river channels into pit-ponds. However, due to the
positive interference of ecological protection policies such as returning farmland to forest
and grassland and the implementation of ecological restoration in the mining area, the
degree of habitat degradation had decreased, and the habitat quality has been improved.
The habitat quality threats of identification and sensitivity analysis for the Altay region
were consistent with the study by Liu et al. [37].

Human activities were an important driving force for changing land use patterns,
while physiognomy is an important factor affecting human activities. In low altitude areas,
human activities had a wide range and high intensity. The land use types were mainly
grassland, cultivated land, urban land, rural residential area, industrial and mining land.
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To meet material and resource needs, there was a large amount of land reclamation and
overgrazing. Reclamation was the main source of cultivated land increase, but affected
by some natural disasters, such as drought, sandstorm, and saline-alkali, leading to the
simultaneous existence of farmland reclamation and abandonment, which directly had
a great impact on the resources suitable for reclamation and desert grassland. The Altay
region of Xinjiang is one of the important pastoral areas in China and the residential area of
Kazak nationality. Animal husbandry is an important guarantee for economic prosperity
and political stability in the region. However, the pasture area in the Altay region is still
dominated by extensive livestock farming at the present stage, and there is no regular
rotational grazing. For a long time, extensive management and year-round grazing have
resulted in overgrazing and overgrazing, resulting in degradation and desertification of
natural grassland. In addition, part of the grassland had been reclaimed as cultivated land,
resulting in the reduction of grassland and the decline of ecological function. The above
contents are the main reasons for the decline of habitat quality. In the middle mountain
area, sparse wood, shrub wood, and low coverage grassland are mainly distributed. Due
to the gradual increase of grazing range and quantity, there was great consumption of
river valley forest and shrub wood, resulting in the gradual desertification of desert areas
on both sides of the river valley. In addition, natural factors are also the reasons for the
severe ecological environment situation in the study area. The Altay region is located in the
middle of the Eurasian continent with high latitude. Its climate is a continental temperate
cold climate, and the annual evaporation is greater than the annual precipitation. Due to the
small precipitation, there was not enough precipitation during the grass pumping period.
In addition, the high temperature was not conducive to the growth and development of
grass, which was also one of the factors for the decline of vegetation in grassland animal
husbandry area.

4.2. Effects of Geomorphic Types on Habitat Quality and Suggestions for Ecological Management

According to the spatial polarization theory, the development and change of things
will make the internal units of the same polarization layer converge and the units of differ-
ent polarization layers diverge, and each unit in the same polarization layer has two effects
on the surrounding units: one is that the blocking effect of dominant units on surrounding
units; the second is the promoting effect and the driving effect of surrounding advanta-
geous units on the central unit [94–96]. Relevant studies are often based on this theory.
According to the effects of spatial diffusion (high–high, low–low) and spatial polarization
(high–low, low–high), the results of spatial autocorrelation are zoned, and the zoning
protection scheme is put forward [97]. Based on the spatial polarization theory, combined
with the habitat quality grade evaluation results and autocorrelation analysis results of
the Altay area, this study divides the study area into four types of ecological management
schemes: restricted construction area, moderate development area, key restoration area,
and comprehensive restoration area. According to the current situation of land develop-
ment and utilization and its geomorphic types, from the perspective of harmonious and
sustainable development between man and nature, this paper puts forward ecological
management and protection measures in line with the actual situation.

The four geomorphic types, such as undulating high mountain, are high–high aggre-
gation areas with good habitat quality, and the habitat quality index is greater than 0.5.
The land types are mainly forestland and grassland, which are relatively concentrated.
However, industrial and mining construction land has appeared in some areas. In order to
protect the ecology, these areas can be set as a restricted construction area, strengthening
natural ecological protection and prohibiting industrial and mining construction.

The geomorphic type of medium undulating middle mountain is high–low aggrega-
tion area, and the habitat quality index is greater than 0.8. The main land types are forest
land and grassland but cultivated land and construction land tend to increase. It can be set
as moderate development area, focusing on protecting forestland, grassland, and cultivated
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land with good quality, improving areas with poor quality, and moderately carrying out
non-agricultural construction.

The geomorphic types of low altitude platform and low altitude plain are low–low
aggregation areas. The habitat quality is poor, and the index is less than 0.5. Six land types
are widely distributed, with strong interference from human activities. These areas can
be set as key restoration areas, and the current land use situation should be considered
comprehensively to appropriately reduce cultivated land and construction land, improve
the coverage of forest land and grassland, and finally improve the habitat quality.

The spatial aggregation phenomenon was not obvious in the remaining seven ge-
omorphic types, such as small undulating middle mountain, are set as comprehensive
restoration areas for comprehensive restoration. According to the grade of habitat quality
and main threat factors of various geomorphic types, targeted restoration work shall be
carried out to prevent it from developing in a worse direction.

4.3. Limitations of Uncertainty and Future Recommended Works

In general, compared with previous related studies, the major innovation of this study
was to introduce geomorphic types to explore habitat quality under different geomorphic
types. The InVEST model used in this paper provides a feasible method for habitat
quantification in different geomorphic types and showed the calculation results intuitively.
However, due to data limitations, this study only considered the impact of internal threat
sources on habitat quality in the study area and did not consider the impact of external
threat sources, which may lead to certain errors in the assessment results. At the same
time, some parameter indicators were obtained from previous research results and expert
experience, the internal mechanisms of the habitat were complex, and different regions
had large differences, which will also introduce uncertainty and affect the assessment
results. In future research, the threat factors in the marginal portions of the study area will
be combined at the same time. We will also further consider the internal mechanisms of
habitat quality, and strengthen the local parameterization based on field survey data to
more accurately evaluate the spatiotemporal variation characteristics of habitat quality. In
addition, this paper only studied the temporal and spatial characteristics of habitat quality
under different geomorphic types from the perspective of land use types. In the future, we
will combine this with other ecosystem modules to comprehensively consider the ecological
effects of land use changes to provide a scientific reference for the sustainable and healthy
development of ecosystems in the Altay region.

5. Conclusions

With the economic construction and development in Northwest China, as an impor-
tant ecological barrier in the core area of economic construction in border areas, the Altay
region is affected by various policies and human activities, such as urban and tourism
development [98], thus seriously affecting the structure and function of ecosystems and
the sustainable use of ecotourism resources. The results also showed that there had been a
significant land use change in the study area over the past three decades. In this period,
due to the economic construction and urban expansion, the areas of cultivated land and
construction land had proliferated, and the areas of grassland and unused land continued
to decrease, causing a serious negative impact on the ecological environment and declining
the habitat quality in the Altay region. Therefore, we recommend ecological restoration
measures to realize the coordinated development of regional economy, society, and ecology.
It is worth noting that vegetation cover has decreased rapidly, agricultural activities have
increased, and urban land, rural residential land, and industrial and mining land have
increased. Unreasonable use of water resources led to land salinization in desert areas.
Desertification was caused by blind reclamation of oases. The increase of human distur-
bance had seriously degraded the local ecosystem, promoted the destruction of the natural
environment, and increased the disturbance to habitat, which seriously threatens human
well-being.
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The findings indicated that in different geomorphic types of land use types, habitat
quality and the contribution of land use types to habitat quality were all different and
showed great differences. Therefore, to improve the regional habitat quality, the land
management strategy of “adjusting measures to local conditions” should be adopted
according to different geographical environment backgrounds and the degree of habitat
quality decline. This requires necessary ecological restoration and biodiversity protection
and control actions in this location.
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