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Abstract: As an all-weather and all-day remote sensing image data source, SAR (Synthetic Aperture
Radar) images have been widely applied, and their registration accuracy has a direct impact on
the downstream task effectiveness. The existing registration algorithms mainly focus on small sub-
images, and there is a lack of available accurate matching methods for large-size images. This paper
proposes a high-precision, rapid, large-size SAR image dense-matching method. The method mainly
includes four steps: down-sampling image pre-registration, sub-image acquisition, dense matching,
and the transformation solution. First, the ORB (Oriented FAST and Rotated BRIEF) operator
and the GMS (Grid-based Motion Statistics) method are combined to perform rough matching in
the semantically rich down-sampled image. In addition, according to the feature point pairs, a
group of clustering centers and corresponding images are obtained. Subsequently, a deep learning
method based on Transformers is used to register images under weak texture conditions. Finally, the
global transformation relationship can be obtained through RANSAC (Random Sample Consensus).
Compared with the SOTA algorithm, our method’s correct matching point numbers are increased by
more than 2.47 times, and the root mean squared error (RMSE) is reduced by more than 4.16%. The
experimental results demonstrate that our proposed method is efficient and accurate, which provides
a new idea for SAR image registration.

Keywords: synthetic aperture radar; image registration; transformer

1. Introduction

Synthetic aperture radar (SAR) has the advantages of working in all weather, at all
times, and having strong penetrability. SAR image processing is developing rapidly in
civilian and military applications. There are many practical scenarios for the joint processing
and analysis of multiple remote sensing images, such as data fusion [1], change detection [2],
and pattern recognition [3]. The accuracy of the image matching affects the performance of
the above downstream tasks. However, SAR image acquisition conditions are diverse, such
as different polarizations, incident angles, imaging methods, time phases, and so on. At
the same time, defocusing problems caused by motion errors degrade the image quality.
Besides this, the time and spatial complexity of traditional methods are unacceptable for
large images. Thus, for the mass of scenes where multiple SAR images are processed
simultaneously, SAR image registration is a real necessity. The nonlinear distortion and
inherent speckle noise of SAR images leave wide-swath SAR image registration as a knot
to be solved.

The geographical alignment of two SAR images, under different imaging conditions,
is based on the mapping model, which is usually solved by the relative relationship of
the corresponding parts from images. The two images are reference images and sensed
images to be registered. Generally speaking, conventional geometric transformation models
include affine, projection, rigid body, and nonlinear transformation models. In this paper,
we focus on the most pervasive affine transformation model.

Remote Sens. 2022, 14, 1175. https://doi.org/10.3390/rs14051175 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14051175
https://doi.org/10.3390/rs14051175
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-2378-9126
https://orcid.org/0000-0003-1912-7143
https://doi.org/10.3390/rs14051175
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14051175?type=check_update&version=3


Remote Sens. 2022, 14, 1175 2 of 25

The registration techniques in the Computer Vision (CV) field have continued to
spring up for decades. The existing normal registration methods can be divided mainly
into traditional algorithms and learning-based algorithms. The traditional methods mainly
include feature-based and region-based methods. The region-based method finds the best
transformation parameters based on the maximum similarity coefficient, and includes
mutual information methods [4], Fourier methods [5], and cross-correlation methods [6,7].
Stone et al. [5] presented a Fourier-based algorithm to solve translations and uniform
changes of illumination in aerial photos. Recently, in the field of SAR image registration,
Luca et al. [7] used cross-correlation parabolic interpolation to refine the matching results.
This series of methods only use plain gray information and risk mismatch under speckle
noise and radiation variation.

Another major class of registration techniques in the CV field is the feature-based
method. It searches for geometric mappings such as points, lines, contours, and regional
features based on the stable feature correspondences across two images. The most prevalent
method is SIFT (Scale Invariant Feature Transform) [8]. SIFT has been widely used in the
field of image registration due to the following invariances: rotation, scale, grayscale,
and so on. PCA-SIFT (Principal Component Analysis-SIFT) [9] applies dimensionality
reduction to SIFT descriptors to improve the matching efficiency. Slightly different from the
classical CV field, a series of unique image registration methods appear in the SAR image
processing field. Given the characteristics of SAR speckle noise, SAR-SIFT [10] adopts
a new method of gradient calculation and feature descriptor generation to improve the
SAR image registration performance. KAZE-SAR [11] uses the nonlinear diffusion filtering
method KAZE [12] to build the scale space. Xiang [13] proposed a method to match large
SAR images with optical images. To be specific, the method combines dilated convolutional
features with epipolar-oriented phase correlation to reduce horizontal errors, and then
fine-tunes the matching part. Feature-based methods are more flexible and effective; as
such, they are more practical under complex spatial change. Coherent speckle noise
has consequences on the conventional method’s precision, and the traditional matching
approach fails to achieve the expected results under complex and varied scenarios.

Deep learning [14] (DL) has exploded in CV fields over the past decade. With strong
abilities of feature extraction and characterization, deep learning is in wide usage across
remote sensing scenarios, including classification [15], detection [16], image registration [17],
and change detection [18]. More and more methods [19,20] use learning-based methods
in the registration of the CV field. He et al. [19] proposed a Siamese CNN (Convolutional
Neural Networks) to evaluate the similarity of patch pairs. Zheng et al. [20] proposed
SymReg-GAN, which achieves good results in medical image registration by using a
generator that predicts the geometric transformation between images, and a discriminator
that distinguishes the transformed images from the real images. Specific to the SAR image
(remote sensing image) registration field, Li et al. [21] proposed a RotNET to predict
the rotation relationship between two images. Mao et al. [22] proposed a multi-scale
fused deep forest-based SAR image registration method. Luo et al. [23] used pre-trained
deep residual neural features extracted from CNN for registration. The CMM-Net (cross
modality matching net) [24] used CNN to extract high-dimensional feature maps and build
descriptors. DL often requires large training datasets. Unlike optical natural images, it is
difficult to accurately label SAR images due to the influence of noise. In addition, most DL-
based SAR image registration studies generally deal with small image blocks with a fixed
size, but in practical applications, wide-swath SAR images cannot be directly matched.

As was outlined earlier in this article, Figure 1 lists some of the registration methods
for SAR (remote sensing) image domains. Although many SAR image registration methods
exist, there are still some limitations:

• Feature points mainly exist in the strong corner and edge areas, and there are not
enough matching point pairs in weak texture areas.

• Due to the special gradient calculation and feature space construction method, the
traditional method runs slowly and consumes a lot of memory.



Remote Sens. 2022, 14, 1175 3 of 25

• The existing SAR image registration methods mainly rely on the CNN structure,
and lack a complete relative relationship between their features due to the receptive
field’s limitations.

Remote Sens. 2022, 14, x 3 of 26 
 

 

• Feature points mainly exist in the strong corner and edge areas, and there are 98 
not enough matching point pairs in weak texture areas. 99 

• Due to the special gradient calculation and feature space construction method, 100 
the traditional method runs slowly and consumes a lot of memory. 101 

 102 
Figure 1. Remote sensing image registration milestones in the last two decades. 103 

• The existing SAR image registration methods mainly rely on the CNN structure, 104 
and lack a complete relative relationship between their features due to the re- 105 
ceptive field’s limitations. 106 

Based on the above analysis, this paper proposes a wide-swath SAR image fine-level 107 
registration framework that combines traditional methods and deep learning. The exper- 108 
imental results show that, compared with the state of the art, the proposed method can 109 
obtain better matching results. Under the comparison and analysis of the matching per- 110 
formance in different data sources, the method in this paper is more effective and robust 111 
for SAR image registration. 112 

The general innovations of this paper are as follows: 113 

1. A CNN and Transformer hybrid approach is proposed in order to accurately 114 
register SAR images through a coarse-to-fine form. 115 

2. A stable partition framework from the full image to sub-images is constructed; 116 
in this method, the regions of interest are selected in pairs. 117 

The remainder of this paper is organized as follows. In Section 2. Methods, the pro- 118 
posed framework of SAR image registration and the learning-based sub-image matching 119 
method are discussed in detail. In Section 3. Experimental Results and Analyses, specified 120 
experiments, as well as quantitative and qualitative results, are given. In Section 4. Dis- 121 
cussion, the conclusion is provided. 122 

2. Methods 123 
In this study, we propose a phased SAR image registration framework that combines 124 

traditional and deep learning methods. The framework is illustrated in Figure 2; the pro- 125 
posed method mainly consists of four steps. First, the ORB [25] and GMS [26] are used to 126 
obtain the coarse registration result via the downsampled original image. Second, K- 127 
means++ [27] select cluster centers of registration points from the previous step, and a 128 
series of corresponding original-resolution image slices are obtained. Third, we register 129 
the above image pairs through deep learning. The fourth step is to integrate the point pair 130 
subsets and obtain the final global transformation result after RANSAC [28]. 131 

As a starting point for our work, we first introduce the existing deep learning main- 132 
stream. 133 

  134 

Figure 1. Remote sensing image registration milestones in the last two decades.

Based on the above analysis, this paper proposes a wide-swath SAR image fine-
level registration framework that combines traditional methods and deep learning. The
experimental results show that, compared with the state of the art, the proposed method
can obtain better matching results. Under the comparison and analysis of the matching
performance in different data sources, the method in this paper is more effective and robust
for SAR image registration.

The general innovations of this paper are as follows:

1. A CNN and Transformer hybrid approach is proposed in order to accurately register
SAR images through a coarse-to-fine form.

2. A stable partition framework from the full image to sub-images is constructed; in this
method, the regions of interest are selected in pairs.

The remainder of this paper is organized as follows. In Section 2. Methods, the pro-
posed framework of SAR image registration and the learning-based sub-image matching
method are discussed in detail. In Section 3. Experimental Results and Analyses, speci-
fied experiments, as well as quantitative and qualitative results, are given. In Section 4.
Discussion, the conclusion is provided.

2. Methods

In this study, we propose a phased SAR image registration framework that combines
traditional and deep learning methods. The framework is illustrated in Figure 2; the
proposed method mainly consists of four steps. First, the ORB [25] and GMS [26] are
used to obtain the coarse registration result via the downsampled original image. Second,
K-means++ [27] select cluster centers of registration points from the previous step, and a
series of corresponding original-resolution image slices are obtained. Third, we register
the above image pairs through deep learning. The fourth step is to integrate the point pair
subsets and obtain the final global transformation result after RANSAC [28].

As a starting point for our work, we first introduce the existing deep learning mainstream.

2.1. Deep Learning-Related Background

As AlexNet [29] won first place in 2012 ImageNet, deep learning had begun to play a
leading role in CV, NLP (natural language processing), and other fields. The current main-
stream of deep learning includes two categories: CNN and Transformer. CNN does well in
the extraction of local information from two-dimensional data, such as images. Because the
deep neural network can extract key features from massive data, deep CNN is performed
outstandingly in image classification [30], detection [16,31], and segmentation [32].
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Figure 2. The pipeline of the proposed method.

Corresponding to text and other one-dimensional sequence data, currently, the most
widely used processing method is Transformer [33], which solves the long-distance re-
lying problem using a unique self-attention mechanism. It is sweeping NLP, CV, and
related fields.

Deep learning has been widely used in SAR image processing over the past few years.
For example, Hou et al. [16] proposed ship classification using CNN in an SAR ship dataset.
Guo et al. [31] applied an Attention Pyramid Network for aircraft detection. Transformer is
also used in recognition [34], detection [35] and segmentation [36]. LoFTR (Local Feature
TRansformer) [37] has been proposed as a coarse-to-fine image matching method based
on Transformers. However, to our knowledge, Transformer has not been applied to SAR
image registration. Inspired by [37], in this article we use Transformer and CNN to improve
the performance of SAR image registration.

The method proposed in this paper is mainly inspired by LoFTR. The initial consid-
eration is that in the SAR image registration scene, due to the weak texture information,
traditional CV registration methods based on gradient, statistical information, and other
classical methods cannot obtain enough matching point pairs. LoFTR adopts a two-stage
matching mechanism and features coding with Transformer, such that each position in
the feature map contains the global information of the whole image. It works well in
natural scenes, and also has a good matching effect even in flat areas with weak texture
information. However, considering that SAR images have weaker texture information than
optical images, it is difficult to obtain sufficient feature information.

In order to obtain more matching feature point pairs and give consideration to model
complexity and algorithm accuracy, this paper adopts several modification schemes for
SAR image scenes. (1) Feature Pyramid Network is used as a feature extraction network in
LoFTR; in this paper, an advanced convolutional neural network, is adopted as a feature
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extraction part in order to obtain more comprehensively high- and low-resolution features
with feature fusion. (2) This paper analyzes the factors that affect the number of matching
point pairs, and finds that the size of the low-resolution feature map has an obvious direct
impact on the number of feature point pairs. The higher the resolution, the higher the
number of correct matching points that are finally extracted. Therefore, (1/2,1/5) resolution
is adopted to replace the original (1/2,1/8) or (1/4,1/16); such a change leads to the number
of matching point pairs increasing significantly. (3) In order to further reduce the algorithm
complexity and improve the algorithm speed, this paper combines the advanced linear
time complexity method to encode features, such that the location features at the specific
index of the feature map can be weighted by the full image information, which can further
improve the efficiency while ensuring the algorithm accuracy. The detailed expansion and
analysis of the above parts are in the following sections.

2.2. Rough Matching of the Down-Sampled Image

The primary reasons that the traditional matching methods SIFT and SURF (Speeded-
Up Robust Features) [38] cannot be applied directly to SAR images are the serious coherent
speckle noise and the weak discontinuous texture. It is often impossible to obtain sufficient
matching points on original-resolution SAR images by the traditional method. At the same
time, the semantic information of the original-size image is relatively scarce. Therefore,
we do not simply use traditional methods to process the original image. Considering
that the down-sampled image is similar to a high-level feature map in deep CNN with
rich semantic information, we use the down-sampled image (the rate is 10 almost) to
perform rough pre-matching, as shown in Figure 3. The most representative method is
SIFT. However, it runs slowly, especially for large images. The ORB algorithm is two orders
of magnitude more rapid [25] than SIFT. ORB is a stable and widely used feature point
detection description method.
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ORB combines and improves the FAST (Features from Accelerated Segment Test) [39]
keypoint detector and the BRIEF (Binary Robust Independent Elementary Features) [40]
descriptor. FAST’s idea is that if the pixel’s gray is distinguished from the surrounding
neighborhood (i.e., it exceeds the threshold value), it may be a feature point. To be specific,
FAST uses a neighborhood of 16 pixels to select the initial candidate points. Non-maximum
suppression is used to eliminate the adjacent points. The gaussian blurring of different
scales is performed on the image in order to achieve scale invariance.

The intensity weighted sum of a patch is defined as the centroid, and the orientation is
obtained via the angle between the current point and the centroid. Orientation invariance
can be enhanced by calculating moments. BRIEF is a binary coded descriptor that uses
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binary and bit XOR operations to speed up the establishment of feature descriptors and
reduce the time for feature matching. Steered BRIEF and rBRIEF are applied for rotation
invariance and distinguishability, respectively. Overall, FAST accelerates the feature point
detection, and BRIEF reduces the spatial redundancy.

GMS is applied after ORB to obtain more matching point pairs; here is a brief de-
scription. If the images Ia and Ib, respectively, have N and M feature points, the set of
feature points is written as {M, N}, the feature matching pair in the corresponding two
images is Xa→b = {x1, x2, · · · xn}, xi= {m, n}, and a and b are the neighborhoods of the
feature points from two images Ia and Ib. For a correct matching point pair, there are more
matching points as support for its correctness. For the matching pair xi, Si = |χi|−1 is
used to represent the support of its neighboring feature points, where χi is the number of
matching pairs in the neighborhood of xi. Because the matching of each feature point is
independent, it can be considered that Si approximately obeys the binomial distribution,
and can be defined as

Si ∼
{

B(n, pt) xi matches correctly
B(n, pf) xi matches wrongly

(1)

n is the average number of feature points in each small neighborhood. Let fa be one of the
supporting features belonging to region a. pt is the probability that region b includes the
nearest neighbor of fa, and similarly, pf can be defined, and pt and pf can be obtained by
the following formulae:

pt= p
(
ft
a
)
+p
(

ff
a

)
p
(

fb
a | ff

a

)
= t + (1− t)βm/M

pf= p
(

ff
a

)
p
(

fb
a | ff

a

)
= (1− t)βm/M

(2)

ft
a, ff

a, and fb
a correspond to events: fa is correctly matched, fa is incorrectly matched,

and fa’s matching point appears in region b. m represents the number of all of the feature
points in region b in image Ib, and M represents the number of all of the feature points in
image Ib. In order to further improve the discriminative ability, the GMS algorithm uses
the multi-neighborhood model to replace the single-neighborhood model:

Si =
K

∑
k=1

∣∣χa kbk
∣∣−1 (3)

K is the number of small neighborhoods near the matching point, χakbk is the number
of matching pairs in the two matching neighborhoods, and Si can be extended to

Si ∼
{

B(Kn, pt) xi matches correctly
B(Kn, pf) xi matches wrongly

(4)

According to statistics, an evaluation score P is defined to measure the ability of the
function Si to discriminate between right and wrong matches, as follows:

P =
mt−mf
st−sf

=
√

Kn
pt−pf√

pt(1− pt) +
√

pf(1− pf)
(5)

Among them, st and sf are the standard deviations of Si in positive and false matches,
respectively, and mt and mf are the mean values, respectively. It can be seen from
Formula (5) that the greater the feature points’ number, the higher the matching accu-
racy. If we set Sij = ∑K=9

K=1

∣∣∣Xi kjk

∣∣∣ for grid pair {i,j} and τ≈6
√

n for the threshold, then {i,j} is
regarded as a correctly matched grid pair when Sij > τ.

In order to reduce the computational complexity, GMS replaces the circular neigh-
borhood with a non-overlapping square grid to speed up Sij’s calculation. Experiments
have shown that when the number of feature points is 10,000, the image is divided into a
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20 × 20 grid. The GMS algorithm scales the grid size for image size invariance, introduces
a motion kernel function to process the image, and converts the rotation changes into the
rearrangement of the corresponding neighborhood grid order to ensure rotation invariance.

2.3. Sub-Image Acquisition from the Cluster Centers

The existing image matching methods mostly apply to small-size images, which have
lower time and storage requirements. Although some excellent methods can reach sub-
pixels in local areas, they cannot be extended to a large scale due to their unique gradient
calculation method and scale-space storage. Take the representative algorithm SAR-SIFT,
for example; its time and memory consumption vary with the size, as shown in Figure 4,
and when the image size reaches 5000–10,000 pixels or more, the memory reaches a certain
peak. This computational consumption is unacceptable for ordinary desktop computers.
The test experiment here was performed on high-performance workstations. Even so, the
memory consumption caused by the further expansion of the image size is unbearable.
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Storage limitation is also one of the key considerations. In addition to this, the time
complexity of the algorithm also needs to be taken seriously. This is because, in specific
practical applications, most scenarios are expected to be processed in quasi-real time. It can
be seen that, for small images, SAR-SIFT can be processed within seconds, and for medium-
sized images, it takes roughly minutes. For larger images, although better registration
results may be obtained, the program running time of several hours or even longer cannot
be accepted. Parallel optimization processing was tried here, but it did not speed the
process up significantly.

According to the above analysis, due to the special gradient calculation method and
the storage requirements of the scale space, wide-swath SAR image processing will risk
the boom of the time and space complexity. As a comparison, we also tried the method of
combining ORB with GMS for large image processing, but the final solution turned out to
be wrong. The above has shown the time and spatial complexity from a qualitative point
of view. The following uses SIFT as an example to analyze the reasons for the high time
complexity from a formula perspective. The SIFT algorithm mainly covers several stages,
as shown in Figure 5.
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Figure 5. The pipeline of the SIFT algorithm.

The overall time complexity is composed of the sum of the complexity for each stage.
Assume that the size of the currently processed image is NxN.
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1. Regarding Gaussian blur, there are a total of ŝ groups of images, and each group
consists of s scales; for the original-resolution image NxN, Gaussian filter group
G(x, y,σ) is

G(x, y,σ) =
1

2πσ2 e−
x2+y2

2σ2 (6)

The corresponding time complexity is O
(

N2w2s
)

. For each pixel, a weighted sum of
the surrounding Gaussian filtering (wxw) is required, with complexity:

L(x, y,σ) =

w−1
2

∑
u=−w−1

2

w−1
2

∑
v=−w−1

2

G(u, v)I(x + u, y + v) (7)

The complexity of all of the groups is

O

(
ŝ−1

∑
j=0

N2

2j w2s

)
= O

(
N2w2s

)
(8)

2. To calculate the Gaussian difference, subtract each pixel of adjacent scales once in
one direction.

Dj
i= Lj

i+1 − Lj
i (9)

O

(
ŝ−1

∑
j=0

sN2

2j

)
= O

(
sN2

)
(10)

3. To calculate the extremum detection in scale space, each point is compared with
26 adjacent points in the scale space. If the whole points are larger or smaller than the
point, it is regarded as an extreme point; the complexity is

O

(
ŝ−1

∑
j=0

(s + 2)N2

2j

)
= O

(
sN2

)
(11)

4. For keypoint detection, the principal curvature needs to be calculated. The compu-
tational complexity of each point is O(1), so the total time complexity of all of the
groups is O

(
αN2s

)
considering αN2 extrema and αβN2 keypoints.

5. For the keypoint orientation distribution, keypoint amplitude, and direction

mj
i(x, y) =

√(
Lj

i(x + 1, y)−Lj
i(x− 1, y)

)2
+
(

Lj
i(x, y + 1)−Lj

i(x, y− 1)
)2

(12)

θ
j
i(x, y) = tan−1

(
Lj

i(x, y + 1)− Lj
i(x, y− 1)

)
(

Lj
i(x + 1, y)− Lj

i(x− 1, y)
) (13)

Non-keypoint points with magnitudes close to the peak are added as newly added
keypoints. The total number of output points is

αβN2+γ
(

N2−αβN2
)
= αβN2(1− γ)+γN2 ∼= N2(αβ+ γ) (14)

The computational complexity of each point is O(1), and the total complexity is O
(

N2s
)

.

6. For the feature point descriptor generation, the complexity of each point is O
(
x2), and

the total complexity is O
(

x2N2(αβ+ γ)
)

.
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Based on the analysis of the above results, we believe that the reasons for the failure
of the above algorithm in actual wide-swath SAR image registration are as follows: (1) It
is inefficient to calculate the scale space of the entire image. For most areas, it is not easy
to find feature points that can establish a mapping relationship, which leads to potential
ineffective calculations. Not only are these time-consuming, the corresponding scale space
and feature points descriptor also consume a lot of storage resources. (2) For the feature
point sets obtained from the two images, one-to-one matching needs to be carried out
by the brute force calculation of the Euclidean distance, etc. Most points are not possible
candidate points, and the calculated Euclidean distance needs to be stored, such that again
there is an invalid calculation during the match.

From the perspective of the algorithm’s operation process, we will discuss the reason
why algorithms such as SAR-SIFT are good at sub-image registration but fail in wide-swath
images. The most obvious factors are time and space consumption. The reason can be found
from a unified aspect: calculation and storage are not directional. There is redundancy
in the calculation of the scale space. Some areas can be found beforehand in order to
reduce the calculation range of the scale space, and the calculation amount of subsequent
mismatch can also be reduced. At the same time, feature point matching does not have
certain directivity because, for feature points in a small area, points from most of the area
in another image are not potential matching ones. Therefore, redundant calculation and
storage can be omitted.

In this paper, the idea of improving the practicality of wide-swath SAR image regis-
tration is to reduce the calculation range of the original image and the range of candidate
points according to certain criteria. Based on the coarse registration results of the candidate
regions, we determine the approximate spatial correspondences, and then perform more
refined feature calculations and matching in the corresponding image slice regions.

In this work, the corresponding slice areas with a higher probability of feature points
are selected. K-means++ is used to obtain the clustering centers of coarse matching points
in the first step. The clustering center is marked as the geometric center in order to obtain
the image slices. By using the geometric transformation relationship, a set of image pairs
corresponding approximately to the same geographic locations are obtained. Adopting
this approach has the following advantages:

• There are often more candidate regions of feature points near the cluster center.
• There is usually enough spatial distance between the clustering centers.
• The clustering center usually does not fall on the edge of the image.

K-means++ is an unsupervised learning method which is usually used in scenarios
such as data mining. K-means++ needs to cluster N observation samples into K categories.
Here, K = 4. the cluster centers are used as the slice geometric centers, and the slice size is
set to 640 × 640. According to the above process, a series of rough matching image groups
are obtained within an error of about ten pixels.

2.4. Dense Matching of the Sub-Image Slices

After the above processing is performed on the original-resolution SAR image, a set of
SAR image slices are obtained. As is known, compared with optical image registration, an
SAR image meets many difficulties: it has a low resolution and signal-to-noise ratio, overlay
effects, perspective shrinkage, and a weak texture. Therefore, the original-resolution SAR
image’s alignment is more difficult than the optical alignment.

This article uses Transformer. Based on the features extracted by CNN, Transformers
are used to obtain the feature descriptors of the two images. The global receptive field
provided by Transformer enables the method in this article to fuse the local features and
contextual location information, which can produce dense matching in low-texture areas
(usually, in low-texture areas, it is difficult for feature detectors to generate repeatable
feature points).

The overall process consists of several steps, as shown in the lower half of Figure 2:
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1. The feature extraction network HRNet (High-Resolution Net) [41]: Before this step,
we combine ORB and GMS to obtain the image rough matching results, use the K-
means++ method to obtain the cluster centers of the rough matching feature points,
and obtain several pairs of rough matching image pairs. The input of the HRNet
is every rough matching image pair, and the output of the network is the high and
low-resolution feature map after HRNet’s feature extraction and fusion.

2. The low-resolution module: The input is a low-resolution feature map obtained from
HRNet, which is expanded into a one-dimensional form and added with positional
encoding. The one-dimensional feature vector after position encoding is processed by
the Performer [42] to obtain the feature vector weighted by the global information of
the image.

3. The matching module: The one-dimensional feature vector obtained from the two
images in the previous step is operated to obtain a similarity matrix. The confidence
matrix is obtained after softmax processing on the similarity matrix. The pairs that
are greater than a threshold in the confidence matrix and satisfy the mutual proximity
criterion are selected as the rough matching prediction.

4. Refine module: For each coarse match obtained by the matching module, a window
of size wxw is cut from the corresponding position of the high-resolution feature map.
The features contained in the window are weighted by the Performer, and the accurate
matching coordinates are finally obtained through cross-correlation and softmax. For
each pair of rough matching images, the outputs of the above step are matched point
pairs with precise coordinates, and after the addition of the initial offset of rough
matching, all of the point pairs are fused into a whole matched point set. After the
implementation of the RANSAC filtering algorithm, the final overall matching point
pair is generated, and then the spatial transformation solution is completed.

2.4.1. HRNet

Traditional methods such as VGGNet [43] and ResNets (Residual Networks) [44]
include a series of convolution and pooling, which loses a lot of spatial detail information.
The HRNet structure maintains high-resolution feature maps, and combines high- and
low-resolution subnet structures in parallel to obtain multi-scale information.

HRNet is used as a network model for multi-resolution feature extraction in this
method. At the beginning of this paper, we tried a variety of convolutional neural network
models, including ResNets, EfficientNet [45] and FPN [46]; we found that HRNet has
the best effect. The HRNet’s structure is shown in Figure 6; the network is composed of
multiple branches, including the fusion layer with different resolution branches’ informa-
tion interactions, and the transition layer, which is used to generate the 1/2 resolution
downsampling branch. By observing the network input and output of HRNet at different
stages, it can be seen that multi-resolution feature maps with multi-level information will
be output after the full integration of the branches with different resolutions.
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The Transformer part of this paper requires high and low resolution to complete the
coarse matching of the feature points and the more accurate positioning of specific areas.
HRNet, as a good backbone, outputs feature maps with a variety of resolutions to choose
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from and full interaction between the feature maps, such that it contains high-level semantic
information with a low resolution, and low-level detail information with a high resolution.

In addition, the subsequent part of this paper makes further attempts to combine
different resolutions. It can be seen in subsequent chapters that improving the resolution
of the feature maps in the rough matching stage can significantly increase the number
of matching point pairs. Default HRNet outputs 1/2, 1/4, 1/8 resolution feature maps.
Under the constraints of the experimental environment, we chose 1/5 and 1/2 as the low
and high resolutions. The reason will be discussed in Section 3. Experimental Results and
Analyses. The 1/5 resolution can be obtained from other resolutions by interpolation. The
1/2 resolution feature map cascades the 1 × 1 convolutional layer and the output works as
the fine-level feature map. The 1/4 and 1/8 resolution feature maps are all interpolated
to 1/5 resolution. After stitching, the coarse-level feature map is obtained through the
1 × 1 convolutional layer.

2.4.2. Performer

The Transformer has outstanding performance in many fields of CV, such as classifica-
tion and detection. With the help of a multi-head self-attention mechanism, the Transformer
can capture richer characteristic information. Generally speaking, Transformer complexity
is squared with sequence length. In order to improve the speed of training and inference, a
linear time complexity Transformer was also proposed recently, i.e., Performer [42]. It can
achieve faster self-attention through the positive Orthogonal Random features approach.

Attention (Q, K, V)= softmax

(
QKT
√

dk

)
V (15)

Self-attention (as shown in Figure 7) performs an attention-weighted summation
of the current data and global data, and realizes a special information aggregation by
calculating the importance of the current location feature relative to other location features.
The feedforward part contains the linear layer and the GELU (Gaussian Error Linear
Unit) activation function. Each layer adopts Layer Normalization in order to ensure the
consistency of the feature distribution, and to accelerate the convergence speed of the
model training.

1 
 

 

 
1 × 2 
 
 

 

 

 Figure 7. Performer (Transformer) encoder architecture and self-attention schematic diagram.

As is shown in reference [42], Performer can achieve space complexity O(Lr + Ld + rd)
and time complexity O(Lrd), but the original Transformer’s regular attention is O(L2 + Ld)
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and O(L2d), respectively. The sinusoidal position encoding formula used in this work is
as follows:  pk,2i= sin

(
k/100002i/d

)
pk,2i+1= cos

(
k/100002i/d

) (16)

Based on the features extracted by CNN, Performers are used to obtain the feature
descriptors of the two images. The global receptive field provided by Performer enables
our method to fuse local features and contextual location information, which can produce
dense matching in low-texture areas (usually, in low-texture areas, it is difficult for feature
detectors to generate repeatable feature points).

2.4.3. Training Dataset

Due to the influence of noise, it is difficult to accurately annotate the control points of
an SAR image, and the corresponding matching dataset of an SAR image is not common.
MegaDepth [47] contains 196 groups of different outdoor scenes; it applies SOTA (State-of-
the-Art) methods to obtain depth maps, camera parameters, and other information. The
dataset contains different perspectives and periodic scenes. Considering the dataset size
and GPU memory, 1500 images were selected as a validation set, and the long side of the
image was scaled to 640 during the training and 1200 during the verification.

2.4.4. Loss Function

L = Lc+Lf= −
1∣∣∣Mgt
c

∣∣∣ ∑
(̃i,̃j)∈Mgt

C

logPc

(̃
i, j̃
)
+

1
|Mf| ∑

(̂i,̂j
′
)∈Mf

1

σ2
(̂

i
) ‖̂j′ − ĵ

′
gt‖2

(17)

As in [37], this article uses a similar loss function configuration. Here is a brief
explanation. Pc is the confidence matrix returned by dual softmax. The true label of the
confidence matrix is calculated by the camera parameters and depth maps. The nearest
neighbors of the two sets of low-resolution grids are used as the true value of the coarse
matching Mc, and the low resolution uses negative log-likelihood as the loss function.

The high resolution adopts the L2 norm. For a point, the uncertainty is measured by
calculating the overall variance in the corresponding heatmap. The real position of the
current point is calculated from the reference point, camera position, and depth map. The
total loss is composed of low- and high-resolution items.

2.5. Merge and Solve

After obtaining the corresponding matching point sets of each image slice pair, the final
solution requires mapping point sets of the entire image. Considering that the registration
mapping geometric relationship solved by each set of slices is not necessarily the same,
this work merges all of the point sets. The RANSAC method is used here to obtain the
final result, i.e., a set of corresponding subsets describing the two large images. The
corresponding point numbers must be less than the sum of the independent one. Without
bells and whistles, the affine matrix of the entire image is solved.

3. Experimental Results and Analyses

In this section, we design several experiments to validate the performance of our meth-
ods from three perspectives: (1) the comparative performance tests with SOTA methods for
different data sources, (2) the checkerboard visualization of the matching, (3) scale, rotation
and noise robustness tests, and (4) the impact of the network’s high- and low-resolution
settings on the results. First, a brief introduction to the experimental datasets is given.

3.1. Experimental Data and Settings

In this work, datasets from five sources were used to verify the algorithm’s effec-
tiveness, which contains GF-3, TerraSAR-X, Sentinel-1, ALOS, and SeaSat. These data
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include a variety of resolutions, polarization modes, orbital directions, and different ter-
rains. Table 1 and Figure 8 contain detailed information. DEC and ASC mean “descending”
and “ascending”, respectively.

Table 1. Experimental datasets.

Pair Sensor Size Resolution Polar Orbit Direction Data Location

1 GF-3
15,470 × 11,093 1 m VV DEC 20180420 USA

New Jersey15,276 × 11,498 1 m VV DEC 20180425

2 GF-3
17,110 × 11,635 1 m VV DEC 20180804 China
15,986 × 11,718 1 m HH DEC 20180814 Shaanxi

3 GF-3
28,334 × 11,868 1 m HH DEC 20190201 USA
30,752 × 12,384 1 m HH DEC 20190208 Alaska

4 GF-3
14,736 × 11,391 1 m HH ASC 20180825 USA
13,840 × 11,349 1 m HH ASC 20180820 Hawaii

5 GF-3
13,102 × 10,888 1 m HH ASC 20181119 Philippines
14,554 × 12,287 1 m HH DEC 20180715 Bagan

6 GF-3
20,792 × 11,602 1 m VV ASC 20180609 Russia
20,660 × 11,382 1 m VV ASC 20180705 Saratov

7 TerraSAR-X
8208 × 5572 1 m HH DEC 20130314 China
8208 × 5562 1 m HV DEC 20130303 Shanghai

8 TerraSAR-X
23,741 × 28,022 1 m HH ASC 20160912 China
23,998 × 29,505 1 m HH ASC 20161004 Liaoning

9 Sentinel-1
25,540 × 16,703 20 × 22 m VH DEC 20211211 USA
25,540 × 16,704 20 × 22 m VH DEC 20211129 St. Francis

10 Sentinel-1
25,649 × 16,722 20 × 22 m VH ASC 20211129 China
25,649 × 16,722 20 × 22 m VH ASC 20211211 Guangdong

11 Sentinel-1
25,336 × 16,707 20 × 22 m VH ASC 20211210 China
25,335 × 16,707 20 × 22 m VH ASC 20211128 Liaoning

12 ALOS
5600 × 4700 20 × 10 m HH ASC 20100717 USA
5600 × 4700 20 × 10 m HH ASC 20100601 Montana

13 ALOS
6454 × 5729 20 × 10 m HH ASC 20080416 China
6502 × 5715 20 × 10 m HH ASC 20080115 Jiangsu

14 ALOS
6291 × 5508 20 × 10 m HH ASC 20081121 China
6464 × 5712 20 × 10 m HH ASC 20110221 Shandong

15 SeaSat
11,611 × 11,094 12.5 m HH DEC 19780922 Norway
11,399 × 10,952 12.5 m HH DEC 19781010

16 SeaSat
11,493 × 11,371 12.5 m HH DEC 19780811

Russia11,717 × 11,135 12.5 m HH DEC 19780722

17 SeaSat
11,191 × 10,653 12.5 m HH ASC 19780902

UK11,155 × 10,753 12.5 m HH ASC 19780926

In order to verify the effectiveness of the proposed matching method, several evaluation
criteria were used to evaluate the accuracy of the SAR image registration, as shown below:

1. The root mean square error, RMSE, is calculated by the following formula:

RMSE =

√
1
N∑N

i=1

(
x2′

i −x1
i
)2

+
(
y2′

i −y1
i
)2 (18)

2. NCM stands for the number of matching feature point pairs filtered by the RANSAC
algorithm, mainly representing the number of feature point pairs participating in the
calculation of the spatial transformation model. It is a filtered point subset of the
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matching point pairs output by algorithms such as SAR-SIFT. For the solution of the
affine matrix, the larger the value, the better the image registration effect.

3.2. Performance Comparison

In this section, we compare the proposed method with several methods: SAR-SIFT,
HardNet [48], TFeat [49], SOSNet [50], LoFTR, KAZE-SAR, and CMM-Net. HardNet, TFeat,
and SOSNet use GFTT [51] as the feature point detector, and the patch size of the above
methods is 32 × 32. GFTT will pick the top N strongest corners as feature points. The
comparison methods are introduced briefly as follows:

1. SAR-SIFT uses SAR-Harris space instead of DOG to find the key points. Unlike the
square descriptor of SIFT, SAR-SIFT uses the circular descriptor to describe neighbor-
hood information.

2. HardNet proposes the loss that maximizes the nearest negative and positive examples’
interval in a single batch. It uses the loss in metric learning, and outputs feature
descriptors with 128 dimensionalities, like SIFT.

3. SOSNet adds second-order similarity regularization for local descriptor learning. In-
tuitively, first-order similarity aims to give descriptors of matching pairs a smaller
Euclidean distance than descriptors of non-matching pairs. The second-order similar-
ity can describe more structural information; as a regular term, it helps to improve the
matching effect.

4. TFeat uses triplets to learn local CNN feature representations. Compared with paired
sample training, triplets containing both positive and negative samples can generate
better descriptors and improve the training speed.

5. LoFTR proposes coarse matching and refining dense matches by a self-attention
mechanism. It combines high- and low-resolution feature maps extracted by CNN to
determine rough matching and precise matching positions, respectively.

6. KAZE-SAR uses a nonlinear diffusion filter to build the scale space.
7. CMM-Net uses VGGNet to extract high-dimensional feature maps and build descrip-

tors. It uses triplet margin ranking loss to balance the universality and uniqueness of
the feature points.
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As for our method, we set K = 4 and window size = 640 for the sub-image. SAR-SIFT
and KAZE-SAR are traditional methods, and Hardnet, Tfeat, SOSNet, LoFTR, and CMM-
Net are deep learning methods. The algorithm in this paper was trained and tested on
a server with a GPU of NVIDIA TITAN_X (12GB), a CPU of Intel(R) Core(TM) I7-5930K
@3.50GHZ, and a memory size of 128 GB. The comparison experiment was carried out
using the same hardware. As will be discussed later (Section 3.4), under existing hardware
conditions, (1/2,1/5) resolution was adopted in this paper in order to achieve the best
effect, and was used as the final network model to calculate the speed and accuracy of
the algorithm. Like diverse methods, in addition to feature point detection and feature
point description, other processing steps are consistent with our method, including the
rough matching of sub-sampling images and the acquisition of subimages. The other
settings were based on the original settings of the algorithm in order to ensure the fairness
of the comparison.

Table 2 shows the performance results of several methods on the above dataset, in
which the best performance corresponding to each indicator is shown in bold. ‘-’ in the
table means that the matching result of the corresponding algorithm is incorrect. It can be
seen that the performance of our method on RMSE is better than the comparison methods
in more than half of the datasets. For all of the SAR image registration datasets, the perfor-
mance of our method reaches the sub-pixel level. Considering NCM, our method obtains
the best performance for all of the total datasets, as well as a better spatial distribution of
points, i.e., dense matching. Figure 9 shows that our method’s NCMs are higher than those
of other methods, while the RMSEs are lower in most cases.

3.3. Visualization Results

In order to display the matching accuracy more intuitively, we added the checkerboard
mosaic images. In Figure 10, the continuity of the lines can reflect the matching accuracy.
As the pictures show, the areas and lines overlap well, indicating the high accuracy of the
proposed method.
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Table 2. RMSE and NCM of diverse methods on the datasets.

Pair
HardNet [48] SOSNet [50] TFeat [49] SAR-SIFT [10] LoFTR [37] KAZE-SAR [11] CMM-Net [24] Ours

RMSE NCM RMSE NCM RMSE NCM RMSE NCM RMSE NCM RMSE NCM RMSE NCM RMSE NCM

1 0.629 111 0.603 107 0.561 78 0.628 30 0.658 1063 0.685 169 0.645 22 0.572 8506

2 0.589 38 0.670 51 0.658 65 0.624 50 0.702 298 0.653 74 0.622 19 0.569 1763

3 0.588 25 0.660 27 0.455 38 0.472 14 0.663 178 0.664 52 0.415 13 0.609 2410

4 0.655 83 0.648 109 0.652 60 0.607 22 0.678 156 0.665 109 0.384 10 0.528 6923

5 0.674 10 0.632 8 - - 0.547 7 0.620 133 0.592 7 0.501 9 0.661 223

6 - - - - - - 0.453 7 0.664 204 0.552 6 0.492 11 0.571 758

7 0.594 1343 0.610 1441 0.604 1738 0.708 1045 0.588 11,816 0.613 4253 0.570 47 0.546 12,190

8 0.620 85 0.668 74 0.603 91 0.682 50 0.659 891 0.659 209 0.605 21 0.484 3121

9 0.681 255 0.636 256 0.660 216 0.601 50 0.655 3152 0.653 778 0.596 30 0.503 20,319

10 0.637 446 0.640 472 0.631 398 0.715 141 0.650 4073 0.642 1142 0.691 30 0.485 18,270

11 0.643 297 0.630 405 0.623 315 0.691 82 0.664 3626 0.641 850 0.656 31 0.518 23,865

12 0.654 1083 0.663 932 0.657 1076 0.670 105 0.607 12,226 0.615 2836 0.666 66 0.537 24,515

13 0.632 920 0.653 946 0.634 854 0.618 483 0.634 4577 0.624 2173 0.583 35 0.560 21,782

14 0.641 22 - - 0.658 8 0.561 15 0.654 220 0.551 15 0.686 10 0.538 949

15 0.643 635 0.682 520 0.664 661 0.669 128 0.642 446 0.629 1069 0.628 27 0.696 4099

16 0.458 152 0.596 118 0.510 182 0.645 47 0.663 883 0.638 180 0.599 23 0.555 4401

17 0.628 415 0.669 395 0.629 625 0.632 82 0.663 4588 0.670 755 0.583 63 0.577 14,446
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Considering that our method adopts the strategy of fusing local and global features,
it can fully extract matching point pairs in the selected local area, which leads to better
solutions that are closer to the affine transformation relationship of real images. In the data
pairs 14 and 17, the two images have relatively strong changes in their radiation intensities,
and the method in this paper can still achieve good matching results, which proves that
the method has certain robustness to changes in radiation intensity. Dataset 5 contains
two images of different orbit directions. It can be seen from the road and other areas in
the figure that the matching is precise. Datasets 2 and 7 contain multi-temporal images
of different polarizations. Due to the scattering mechanism, the same objects in different
polarizations may be different in the images. Our method demonstrates the stability in
multi-polarization.

3.4. Analysis of the Performance under Different Resolution Settings

Considering that our proposed method has a coarse-to-fine step, we analyzed the
registration performance of different resolution settings to find the best ratio. In this
experiment, we tested several different high and low resolutions. Table 3 shows the
corresponding performances, respectively, and the method of the best performance for each
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data is indicated in bold. All of the resolution parameter combinations include (1/4, 1/16),
(1/2,1/8), (1,1/8), and (1/2,1/5).

Table 3. RMSE and NCM of the different resolution settings on the datasets.

Pair
Ours_16_4 Ours_8_2 Ours_8_1 Ours_5_2

RMSE NCM RMSE NCM RMSE NCM RMSE NCM

1 0.683 323 0.638 3789 0.665 3885 0.572 8506

2 0.680 68 0.669 533 0.680 763 0.569 1763

3 0.703 95 0.627 1012 0.673 895 0.609 2410

4 0.676 261 0.637 1288 0.671 1706 0.528 6923

5 0.638 29 0.624 149 0.636 157 0.661 223

6 0.504 26 0.618 328 0.653 487 0.571 758

7 0.685 1389 0.624 8925 0.593 12,152 0.546 12,190

8 0.646 222 0.634 2165 0.643 1955 0.484 3121

9 0.680 658 0.641 6253 0.633 7568 0.503 20,319

10 0.658 819 0.644 2104 0.624 3348 0.485 18,270

11 0.659 986 0.646 3025 0.642 4731 0.518 23,865

12 0.642 1336 0.635 9616 0.612 11,253 0.537 24,515

13 0.636 1187 0.631 4382 0.639 4906 0.560 21,782

14 0.638 61 0.620 558 0.668 603 0.538 949

15 0.690 558 0.709 1203 0.667 2478 0.696 4099

16 0.711 195 0.643 1679 0.648 2063 0.555 4401

17 0.654 850 0.621 3339 0.668 3719 0.577 14,446

It can be seen from Table 3 that, for the datasets, the resolution of (1/2,1/5) has the
best performance. It is shown in Table 3 that the size of the low resolution directly affects
the overall matched point’s number. It can be found intuitively that the total potential
points of resolution 1/16 are a quarter of 1/8′s point number (1/2 × 1/2 = 1/4). As such,
configuration (1/2,1/5) can obtain more matched point pairs. Take configurations (1/2,1/8)
and (1,1/8) for an example; for high-resolution feature maps, the number of matched points
increases to a certain extent with the increase of the resolution. However, here, the GPU
memory requested by configuration (1,1/5) exceeds the upper limit of the machine used in
this work, so we chose a compromise configuration, (1/2,1/5).

4. Discussion

The experimental results corroborate the accuracy and robustness of our method.
There are three main reasons for this: First, the features extracted based on Transorfmer are
richer, including the local gray information of the image itself, and global information such
as the context. Second, the down-sampled image has stronger semantic information, and is
suitable for traditional registration methods. The subsequent registration is provided with
a better initial result of coarse matching. Third, according to the K-means++ clustering
method, the relationship between the original image and the sub-images to be registered
is constructed, and representative sub-images are obtained in order to reduce time and
space consumption.

From the performance analysis and model hyperparameter comparison experiments, it
can be seen that our proposed method achieved stable and accurate matching results under
different ground object scenes and various sensors’ data conditions. Now, we will further
examine the rotation, scaling and noise robustness of the proposed method. Furthermore,
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another vital criterion—the execution time—needs to be compared. Finally, we will show
the matching accuracy’s impact on downstream tasks.

4.1. Rotation and Scale Test

In practical applications, there are often resolution inconsistencies and rotations be-
tween the sensed image and the reference image. In order to test the rotation and scale
robustness of the proposed subimage registration method, we experimented on the data
with a simulated variation. The RADARSAT SAR sensor collected the data of Ottawa, in
May and August 1997, respectively. The size of the two original images is 350 × 290, as
shown in Figure 11.
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Figure 11. The Ottawa data: (a) May 1997 and (b) August 1997.

A matching test between the two images at 5◦ intervals from –15◦ to 15◦ was carried
out to verify the rotation robustness. In addition, two scaling ratios of 0.8 and 1.2 were
tested to simulate the stability of the image registration algorithm at different resolutions.
In all of the above cases, more than 100 matching points could be extracted between the
two SAR images with an RMSE of around 0.7 (the subpixel level). As Figures 12 and 13
show, the proposed method has rotation and scale robustness.
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In addition, we can see that, under different rotation and scaling conditions, a large
number of matching points can be obtained not only in the strong edge area but also in
the weak texture area. This is significantly helpful for SAR image registration including
low-texture areas. The simulation experiments reflect the validity of image registration
with various changes in real scenes.

4.2. Robustness Test of the Algorithm to Noise

Previously, we discussed the robustness of the algorithm to scale and rotation. Con-
sidering that there is often a high degree of noise in SAR images, taking motion error as
an example, SAR images in practical applications will possess some unfocused positions.
Whether or not it has stable performance in noisy scenes, this paper refers to the method
and results of [52]; here, two sets of images—before and after autofocus—are tested in
order to verify the stability of the algorithm.

Here, we used our sub-image method to register the defocusing data; the results can
be seen in Figure 14, and although the image data has a high degree of noise due to error
motion defocusing, our method can still obtain a good matching result between two images,
and matching points can also be maintained at a high level with error at the subpixel level.
It is thus proven that the proposed method is robust to noise.
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4.3. Program Execution Time Comparison

In actual tasks, the registration process needs to achieve real-time or quasi-real-time
analysis; as such, in addition to the accuracy of the algorithm, timeliness is also a focus
of measurement. We also compared several representative methods on a selection of
characteristic dataset pairs, i.e., 2, 8, 12, 17. The algorithm in this paper selected the
resolution configuration of (1/2, 1/5) as a comparison. As Table 4 shows, our method is
significantly faster than the traditional method, SAR-SIFT, and slightly slower than other
deep learning methods.
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Table 4. Execution time (s) comparison of the different methods.

Pair HardNet [48] SOSNet [50] TFeat [49] SAR-SIFT [10] LoFTR [37] Ours

2 42.868 24.543 21.962 513.152 19.496 21.321

8 43.142 43.129 40.710 1999.966 38.633 40.553

12 26.514 26.980 24.730 948.620 28.974 45.687

17 22.611 23.085 20.772 829.606 16.344 25.033

Methods like TFeat use a shallow convolutional neural network so that the feature
extraction phase is faster. Given that our approach is multi-stage, the model is relatively
complex. Except for the model itself, our method obtains the most matching points and
consumes exponentially more time in both the feature point matching and filtering stages.
Although the running time is slightly longer, the SAR image registration performance
is significantly improved. In further work, we will consider improving the efficiency by
adjusting the distillation learning of the feature extraction module in order to obtain a
lightweight network with similar performance.

4.4. Change Detection Application

In some applications—such as SAR image change detection—the simultaneous anal-
ysis of SAR images with different acquisition conditions is inevitable. We carried out a
simple analysis, and the registration result was applied to the task of SAR image change
detection. In this project, we use the previously mentioned Ottawa dataset.

In this experiment, we rotate one of the images to achieve a relative image offset. The
Ottawa data of two SAR images were matched first, and the change detection results were
obtained after they were processed by two registration methods: SAR-SIFT and ours. The
PCA-Kmeans [53] method was used as the basic change detection method. Kappa was
used as the change detection performance metric; the formula is as follows:

κ =
2× (TP× TN− FN× FP)

(TP + FP)× (FP + TN) + (TP + FN)× (FN + TN)
(19)

The Kappa coefficient can be used to measure classification accuracy. The higher
the value is, the more accurate the classification result is. Compared with SAR-SIFT, our
proposed method improved the kappa indicator from 0.307 to 0.677, which shows that
accurate registration can lead to better change detection results. Intuitively, from Figure 15,
we can see that our method results (b) are more similar to the ground truth (c) than SAR-
SIFT (a). The deviation of the image registration will cause different objects to be mistaken
for the same area during change detection, which will be mistaken for obvious changes.
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5. Conclusions

This paper proposes a novel wide-swath SAR image registration method which uses
a combination of traditional methods and deep learning to achieve accurate registration.
Specifically, we combined the clustering methods and traditional registration methods to
complete the stable extraction of representative sub-image slices containing high-probability
regions of feature points. Inspired by Performer’s self-attention mechanism, a coarse-to-
fine sub-image dense-matching method was adopted for the SAR image matching under
different terrain conditions, including weak texture areas.

The experimental results demonstrate that our method achieved good performance for
different datasets which include multi-temporal, multi-polarization, multi-orbit direction,
rotation, scaling, noise changes. At the same time, the combination of CNN and Performer
verified the effectiveness of the strong representation in SAR image registration. Under the
framework of sub-images matching to original images matching, stable dense matching can
be obtained in high-probability regions. This framework overcomes the time-consuming
problem of the traditional method of matching. Compared with existing methods, more
matching point pairs can be obtained by adjusting the model parameter settings in our
method. Rotation, scaling and noise experiments were also carried out to verify the
robustness of the algorithm. The results showed that a large number of matching point
pairs can be obtained even in regions with weak textures, which shows that our method
can combine local and global features to characterize feature points more effectively.

In addition, the experimental results suggest that the running time is significantly less
than those of traditional methods but slightly longer than those of similar deep learning
methods; as such, the way in which to further simplify the network model will be the focus
of the next step. Meanwhile, the matching between heterogeneous images is also a topic
that can be discussed further.
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