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Abstract: Human-induced changes in landscapes are one of the major drivers of wetland loss and
degradation. The Poyang Lake wetland in China has been experiencing severe degradation due to
human disturbance and landscape modification. Indicators to assess the condition of this wetland are
thus needed urgently. Here, a landscape-based multi-metric index (LMI) is developed to evaluate the
condition of the Poyang Lake wetland. Twenty-three candidate metrics that have been applied to
wetland health assessment in published studies were tested. Metrics that show strong discriminative
power to identify reference and impaired sites, having significant correlations with either benthic
macroinvertebrate- or vegetation-based indices of biotic integrity (B-IBI or V-IBI), were chosen to
form the LMI index. Five of these metrics (largest patch index, modified normalized differential
built-up index, Shannon’s diversity index, connectance index, and cultivated land stress index) were
selected as our LMI metrics. A 2 km buffer zone around sample sites had the strongest explanatory
power of any spatial scale on IBIs, suggesting that protecting landscapes at local scales is essential for
wetland conservation. The LMI scores ranged between 1.05 and 5.00, with a mean of 3.25, suggesting
that the condition of the Poyang Lake wetland is currently in the “fair” category. The areas along
lakeshores were mainly in poor or very poor conditions, while the less accessible inner areas were
in better conditions. This study demonstrates significant links between landscape characteristics
and wetland biotic integrity, which validates the utility of satellite imagery-derived data in assessing
wetland health. The LMI method developed in this study can be used by land managers to quickly
assess broad regions of the Poyang Lake wetland.

Keywords: ecosystem health; human disturbance; index of biotic integrity; land use/land cover;
landscape patterns; Poyang Lake; remote sensing; wetland

1. Introduction

Wetlands provide many indispensable ecological services and are among the most
important ecosystems [1]. Large-scale land use changes driven by population growth and
urbanization have greatly altered the landscape patterns of wetlands and the surrounding
areas. It is estimated that more than half of wetlands in the world have been severely
threatened, mainly owing to drainage and conversion into other land-use types (e.g.,
cultivated and built-up land), and remaining wetlands continue to be threatened [2]. The
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loss and degradation of wetlands weaken their ability to support ecosystem functions
such as water purification, pollutant degradation, and climate regulation, which inevitably
threatens the welfare of human beings as well as other organisms [3]. It is therefore
necessary to understand influences of changes in land uses on wetland ecosystems and
how best to balance human needs with the sustainability of natural ecosystems.

A healthy ecosystem has the capacity to supply sufficient ecological services and to
sustain high biodiversity and productivity while remaining resistant to stresses [1]. Land
use plays important roles in ecological and environmental changes, and landscape patterns
have previously been analyzed in relation to ecosystem health and integrity [4,5]. It is
hypothesized that an ecosystem with a higher proportion of human-modified and frag-
mented landscapes usually suffers stronger anthropogenic disturbances, and the ecosystem
is therefore likely in a worse condition [6]. Landscape metrics that indicate ecosystem re-
silience, structural stability, and primary productivity are usually used to assess ecosystem
conditions [7,8]. For example, Jafary et al. [9] used five metrics (normalized difference
vegetation index (NDVI), grassland pattern, land use change, landscape diversity, and
vegetation coverage) to assess the condition of the Taleghan watershed, Iran. Peng et al. [8]
assessed the ecosystem health of Lijiang City using land use and landscape derived indi-
cators, including the average normalized difference vegetation index (NDVI), landscape
heterogeneity index, patch cohesion of forest land, and ecosystem elasticity coefficient. The
limitation of previous approaches is that they typically use landscape metrics (e.g., NDVI,
the landscape contagion index (CONT), and forest coverage) that are widely applied in
other studies for health assessment without any metric selection procedure, although the
effects of landscape attributes vary among ecosystems.

Various indices have been proposed as a measurement of wetland health, among which
biological indices (e.g., the index of biotic integrity) are most commonly adopted [10,11].
Field-based data are collected at individual sample sites. Ecological health of the wetland
is assessed based on characteristics of biological assemblages [12,13]. For example, the US
Environmental Protection Agency compiled an extensive dataset of environmental vari-
ables (physic-chemical parameters of water and sediment) and biological assemblages that
were sampled from 3045 sites of wadeable streams in the USA [11]. A macroinvertebrate-
based index was developed based on this dataset for biological assessment on the streams.
Although an assessment based on field-sampled biological data can be highly accurate and
reliable, it also requires sufficient expertise and abundant manpower, materials, and finan-
cial resources. In addition, sample sites usually represent a small part of the survey region,
and it is difficult to sample the entire region. Thus, there is a need for methods that can
evaluate the condition of the entire region to obtain more spatially accurate information for
wetland management, land planning, and policy decision making. Significant relationships
between biological assemblage attributes and landscape patterns have been previously
established [14,15]. For example, Hrodey et al. [16] found that fish abundance and overall
biotic integrity can be well predicted by the percent of forests upstream of sample sites,
riparian land use types, and watershed area. Identifying broad-scale landscape attributes
that are significantly correlated with field-sampled biological indicators of ecosystem health
is therefore a possible solution for the assessment of a large region.

As the largest freshwater lake of China, Poyang Lake is among the few lakes that
are freely hydrologically connected with the Yangtze River [17]. Water levels of the lake
vary dramatically within a year, ranging from about 7 m in winter to more than 20 m
in summer [18], mainly due to the remarkable seasonal variation of precipitation in the
lake catchment. The dramatic fluctuation of water levels leads to the intra-annual shift of
lake water and wetland. The Poyang Lake wetland maintains a high level of freshwater
biodiversity and is the home of many threatened species (e.g., oriental storks). However,
this wetland has been suffering severe disturbances for the past decades due to the high
human population density in its catchment [19]. It is therefore urgent to develop quantita-
tive indices for monitoring the impact of human activities and for assessing the condition
of the ecosystem. In this study, we aim to develop a landscape-based multi-metric index
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(LMI) for the Poyang Lake wetland by correlating landscape characteristics with field-based
biological indicators. We then predict the wetland health of the entire study area using the
developed LMI.

2. Materials and Methods
2.1. Study Area

Poyang Lake situates in the north part of Jiangxi Province and on the south bank of
the Yangtze River (Figure 1) [20]. It receives inflows from major rivers within its catchment
and discharges into the Yangtze River [21]. Water levels of the lake are determined by
precipitation in the catchment, as well as inflow and outflow between the lake and its
hydrologically connected rivers. Water area of the lake varies dramatically in different
seasons and is more than 3000 km2 in summer and less than 1000 km2 in winter [22]. The
wetland area emerging in winter serves as the habitat for migratory birds (e.g., white cranes,
oriental storks, and swan geese) [23]. Land use across the watershed mainly consists of
forests, cultivated land, built-up land, and open water [24].

Figure 1. Thirty sites were sampled for collecting environmental and biological data in the Poyang
Lake wetland.

The Poyang Lake region refers to the eleven counties surrounding or nearby the
Poyang Lake and has a total area of 26,950 km2 [25]. It has a human population of more
than 11 million and is one of the areas with the highest population density in China (ca.
410 inhabitants/km2) [26]. The Poyang Lake region is well known for the high production
of rice due to fertile soil and is among the areas with intensive agriculture in China [27]. In
addition, industries have been developing rapidly in the Poyang Lake region, especially
mining and manufacturing [28]. The fast economic development has greatly changed
regional land cover and landscapes [23]. Human-altered landscapes (e.g., built-up land),
which have caused aggravated environmental pollution and ecological degradation in the
region [29], have increased considerably.

2.2. Data Collection and Processing

Based on a randomized systematic design, 30 sample sites were selected in the Poyang
Lake wetland [30]. Specifically, Poyang Lake was stratified into five segments (south, north,
west, east, and central). The number of sample sites within a segment was proportional
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to the area of wetland in the segment. Sample sites were then picked at random in each
segment. Field data surveys and sampling were conducted on these sites during September
and October 2015. Human activities, land use, and biological information in and around
the sample sites were recorded. Water quality parameters, including pH and dissolved
oxygen (DO), were measured using portable multi-parameter monitoring equipment (the
YSI 6600 data sonde, YSI Inc., Yellow Springs, OH, USA). One liter of water was sampled at
each site. Additional water quality parameters were measured in laboratory by referring to
the standards given in “Water and Wastewater Monitoring Method” [31], including nitrate-
nitrogen (NO3−-N), bio-chemic oxygen demand in manganese (CODMn), total nitrogen
(TN), heavy metals, total phosphorus (TP), and ammonium nitrogen (NH4+-N).

Landsat-8 OLI images with zero cloud coverage acquired in 2015 were used for
land use classification. The spatial resolution of the images was 30 m. All Landsat
imageries were obtained from the website (https://earthexplorer.usgs.gov; assessed on
20 December 2019).) of the United States Geological Survey. First, multiple bands were
combined to create a composite image in ENVI 5.3 image processing software. Next, the
FLAASH module was used for radiometric and atmospheric corrections. In addition, the
Universal Transverse Mercator (UTM) was used to minimize geometric distortion. The
spatial resolution of satellite products was improved by the image enhancement technique
using wavelet resolution merging, which improved the spatial resolution from 30 m× 30 m
to 15 m × 15 m. Ground truth data were collected from 120 sites during field surveys con-
ducted in 2015. These sites were selected using a random stratified method and included
all land use types to be classified. The maximum likelihood (MLC) supervised classification
technique was used for image classification and land use identification of each selected
image [32]. Ground truth data of 60 sites were used as the training data in supervised
classification. Some classes of spectral disorder could not be separated by classification,
so visual interpretation was used to separate them. Landsat images were classified into
ten categories: built-up land, forest land, grassland, cultivated land (including paddy field
and dry land), rivers, lakes, wetlands, reservoirs and ponds, and bare land. The accuracy
of land use classification was assessed by using ground truth data at the other 60 sites as
references.

Images from Sentinel-2A MSI were acquired in October 2015 from the official Coper-
nicus Open Access Data Hub (https://scihub.copernicus.eu/dhus/#/home; assessed on
20 December 2019). Sentinel-2A MSI has thirteen reflective bands (four 10 m visible and
NIR bands; six 20 m red edge, NIR and SWIR bands; and three 60 m bands for characterizing
aerosol, water vapor correction, and cirrus clouds) [33]. All images were atmospherically
corrected by the Sen2Cor processor which is designed for vegetation and land. The SNAP
software was used for image processing. The images were resampled at 20 m using SNAP
interpolation tools to calculate remote sensing indicators.

2.3. Candidate Metrics

Nineteen landscape and four remote sensing indicators were compiled as the candidate
metrics to evaluate the condition of the Poyang Lake wetland (Table 1). These metrics
are considered useful for wetland health assessment in published studies, e.g., [34–36].
Landscape and remote sensing metrics were computed in Fragstats 4.2 [37] and SNAP,
respectively. Land use data and remote sensing images within the watershed and within
circular buffers of 200 m, 500 m, 1 km, 2 km, 5 km, 10 km, and 15 km were extracted
for each sample site to calculate the candidate metrics for quantifying the influences of
landscape patterns at different spatial scales on the wetland health. Watershed boundaries
were delineated for each sample site based on the elevational data derived from the digital
elevation model with a spatial resolution of thirty arc-second in ArcGIS 10.2.

https://earthexplorer.usgs.gov
https://scihub.copernicus.eu/dhus/#/home
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Table 1. Candidate landscape and remote sensing metrics for assessing the condition of the Poyang Lake wetland.

Number Landscape and Remote Sensing Metrics (Abbreviation) Description Calculation

1 Patch richness density (PRD) Number of patch types per 100 hectares PRD = m
A × 100× 10000

2 Patch density (PD) Number of patches per 100 hectares PD = N
A × 100× 10000

3 Patch richness (PR) Number of patch types PR = m
4 Mean patch size (AREA_MN) Mean size of the landscape patch AREAMN = A

N

(
1

1000

)
5 Number of patches (NP) Number of patches of total landscape area NP = N
6 Patch cohesion index (COHESION) Connectedness of the corresponding patch type COHESION =

[
1− ∑m

i=1 ∑n
j=1 pij

∑m
i=1 ∑n

j=1 pij
√aij

][
1− 1√

Z

]−1
× 100

7 Mean patch fractal dimension (FRAC_MN) Mean perimeter of the landscape patch FRACMN =
2 ln(0.25pij)

ln A
N

8 Largest patch index (LPI) Percent of total area in the largest patch (%) LPI =
max(aij)

A × 100
9 Landscape shape index (LSI) Measures shape regularity of the landscape LSI = 0.25E√

A

10 Connectance index (CONNECT) Measures the functional connectedness of the corresponding patch type
CONNECT =

 ∑m
i=1 ∑n

j 6=k cijk

∑m
i=1

(
ni(ni−1)

2

)
× 100

11 Contagion index (CONTAG) Tendency of land use types to be aggregated (%) CONTAG=

[
1 + ∑m

i=1 ∑m
k=1[(Pi)(gik/ ∑m

k=1 gik)][ln(Pi)(gik/ ∑m
k=1 gik)]

2 ln(m)

]
× 100

12 Landscape division index (DIVISION) Degree of separation of patch types DIVISION =

[
1−

m
∑

i=1

n
∑

j=1

( aij
A

)2
]

13 Shannon’s diversity index (SHDI) Patch diversity SHDI = −
m
∑

i=1
(Pi ln Pi)

14 Aggregation index (AI) Tendency of a particular land use type to be aggregated AI =
[

m
∑

i=1

(
gii

max−gii

)
Pi

]
× 100

15 Landscape development intensity index (LDI) Measures the anthropological pressures of the corresponding area LDI =
n
∑

i=1
%LUi × LDIi

16 Shannon’s evenness index (SHEI) Measures the relative abundance of different patch types SHEI = −
m
∑

i=1
(Pi lnPi)/ln(m)

17 Hydrological regulation index (HRI) Percentage of lake, river, ponds, and wetland of the corresponding land
use area -

18 Cultivated land stress index (CSI) Percentage of paddy field and dry land of the corresponding land use
area -

19 Building pressure index (BPI) Percentage of built land of the corresponding land use area -

20 Normalized differential vegetation index (NDVI) Scaled measurement of density and intensity of green vegetation growth
in satellite image NDVI = (NIR− Red)/(NIR + Red)

21 Modified normalized difference water index (MNDWI) Measures water body and wetland presence in the corresponding area MNDWI = (Green− SWIR)/(Green + SWIR)
22 Modified normalized differential built-up index (MNDBI) Measures the impervious land cover of the corresponding area MNDBI = NDBI − NDVI −MNDWI
23 Normalized differential built-up index (NDBI) Measures urban area of the corresponding area NDBI = (SWIR− NIR)/(SWIR + NIR)

A: total landscape area; E: total length of edges in landscape; N: total number of patches; n: number of land use types; m: number of patch types; Pi: ratio of the area occupied by land use
type i and the total landscape area; pij: perimeter of patch j of land use type i; gik: number of adjacencies between pixels of land use types i and k using double-count method; aij: area
of patch j of land use type i; ni: number of patches of land use type i; cijk: joining between patches j and k of patch type i based on a specified threshold distance; LDIi: coefficient of
landscape development intensity for land use i; %LUi: percent of land use type i in landscape. gi and max-gii are the number and maximum number of like adjacencies (joins) between
pixels of land use type i using single-count method, respectively; NIR and Red correspond to near-infrared and red spectral bands of Sentinel-2A, respectively; Green and SWIR are the
green and shortwave infrared bands, respectively; NIR and SWIR refer to shortwave near-infrared and infrared bands, respectively.
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2.4. Reference Site Selection

A reference site refers to a sample site that is not or rarely disturbed by human activities,
and it represents the most pristine state of a wetland. Setting a reference can provide a
benchmark for evaluating to what extent current conditions have deviated from reference
conditions. Since there are almost no areas undisturbed by humans in Poyang Lake, sample
sites that suffered the least human disturbances were chosen as the reference sites. Three
aspects of the environment, including water quality, land use patterns, and field-observed
human disturbances, were evaluated for reference site selection [19]. Specifically, water
quality of a reference site should at least fall within the “fair” category, i.e., TN ≤ 1.00
mg/L, TP ≤ 0.20 mg/L, CODMn ≤ 6.00 mg/L, NH4+ − N ≤ 1.00 mg/L, NO3− − N ≤
1.00 mg/L, DO > 5.00 mg/L, Cd ≤ 0.005 mg/L, and Cu ≤ 1.00 mg/L [38]. According
to China’s inland surface water quality standards, water quality can be classified as five
categories: level I (excellent, water in source areas and not contaminated), level II (good,
slightly contaminated and suitable for drinking after simple treatments), level III (fair, not
suitable for drinking but harmless in direct contact with the water), level IV (poor, suitable
for agricultural irrigation), and level V (very poor, seriously contaminated) [38]. Water
quality of Poyang Lake varies between level III and level V, and it is difficult to find the
areas with “good” water quality [39,40]. In addition, the percent of human-altered land
use (including cultivated and built-up land) within 500 m of the sample site was less than
5% at these reference sites. There were no human disturbances (e.g., mining, mowing,
and municipal wastewaters) observed within a 500 m buffer zone [41]. A total of 7 and
23 sample sites were identified as the reference and impaired sites, respectively, according
to the site classification criteria (Figure 1). Six reference sites (sites 5, 6, 11, 12, 17, and 18)
were situated within national nature reserves in which anthropogenic disturbances had
been strictly controlled. One other reference site (site 13) was near the reserves.

2.5. Spatial Scales and Metric Selection

Ordinary least-squares models were employed to detect the predictive ability of land-
scape and remote sensing variables at each spatial scale on scores of benthic macroinvertebrate-
and vegetation-based indices of biotic integrity (B-IBI and V-IBI), respectively. These two
indices were developed to assess the condition of the Poyang Lake wetland based on
attributes of benthic macroinvertebrate and macrophyte assemblages [19,42]. The B-IBI
includes five biological metrics (the number of taxa, the number of predator taxa, average
score per taxon (ASPT) index, percentage of Diptera individuals, and Shannon–Wiener
diversity index) [42], while the V-IBI includes seven different metrics (numbers of invasive
species, submerged species and tolerant species in a sample site, cover of Phalaris arun-
dinacea L., percentages of obligate wetland species, perennial species, and species with
both sexual and vegetative propagation) [19]. Larger B-IBI and V-IBI values indicate better
wetland health. A stepwise backward selection procedure was performed to select the most
parsimonious multi-variable model based on the Akaike information criterion (AIC) [43].
The adjusted R2 value of the most parsimonious model was used to indicate the explanatory
power of landscape and remote sensing variables at a specific spatial scale on wetland
conditions in the Poyang Lake. The spatial scale at which the model had the highest R2

value was considered the most appropriate scale for the wetland health assessment.
Three different processes were conducted for metric selection (Figure 2) [44]. First, the

relevance of landscape and remote sensing metrics with B-IBI and V-IBI was measured
by Pearson’s correlation coefficients. Only metrics that significantly correlated with either
B-IBI or V-IBI (p < 0.05) were retained. Second, values of each retained metric were
compared between reference and impaired sites within a boxplot. Overlap degree between
interquartile (IQ) ranges (i.e., box, the first quartile to the third quartile) in the boxplot was
used to evaluate the discriminatory power of the metric. If interquartile ranges did not
overlap, an IQ score of 3 would be assigned. If interquartile ranges overlapped but did not
exceed the median values, an IQ score of 2 would be assigned. If one median fell in the
range of the other box, an IQ score of 1 would be assigned. If both medians fell in the range
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of the other box, a score of 0 would be assigned [45]. Metrics with high discriminatory
power (IQ ≥ 2) were further screened. Third, the redundancy of the remained metrics was
evaluated by Pearson correlations. If Pearson’s correlation coefficients were ≥0.75, the
metrics were considered redundant. The highest mutually correlated metrics that had the
lowest correlation with other metrics were retained.

Figure 2. The procedure for selecting metrics of the landscape-based health index. B-IBI, benthic
macroinvertebrate-based index of biotic integrity; V-IBI, vegetation-based index of biotic integrity;
IQ, interquartile range score.

2.6. Metric Scoring and Wetland Health Assessment

For metrics that had positive relationships with either B-IBI or V-IBI, the 95th percentile
of metric values at the reference sites was used as expectation value (“Upper anchor”), while
the 5th percentile at the impaired sites was used as threshold value (“Lower anchor”) [46].
The metric was rescaled using the following equation:

Metric value =
Site value− Lower anchor

Upper anchor− Lower anchor
(1)

For metrics that had negative relationships with either B-IBI or V-IBI, the 5th percentile
of values at the reference sites represented the “Upper anchor”, while the 95th percentile at
the impaired sites represented the “Lower anchor”. The metrics were then rescaled using
the following equation:

Metric value =
Lower anchor− Site value

Lower anchor−Upper anchor
(2)

If the scaled value was <0 or >1, a value of 0 or 1 would be assigned. This ensured
the scaled metric values were varying between 0 and 1. The scaled values of each indi-
vidual metric were then summed up as the LMI score for a sample site. The LMI score
range of all sample sites was divided into equal-sized subranges to present five wetland
health categories [47]: “excellent” (equivalent to reference condition), “good” (near the
reference level), “fair” (experiencing anthropogenic disturbances), “poor” (under intense
anthropogenic disturbances), and “very poor” (ecosystem highly degraded).

Wetland area of Poyang Lake (i.e., the emergent area or area with water depth < 6 m
in winter) was divided into 200 m × 200 m grid cells. The selected landscape and remote
sensing metrics were calculated at the appropriate spatial scale, scored, and summed as
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the wetland health score for each grid cell. Grid cells were assigned one of the five health
status categories based on its LMI score.

2.7. Assessment Result Validation

We used the local disturbance index (LOD) to validate the LMI assessment results.
LOD is an index to measure anthropogenic disturbance intensity through field observations
and has been adopted by many published studies for habitat quality assessment [48,49].
This index counted the number of anthropogenic disturbances observed in field, including
roads, buildings, channel revetment, cultivated land, mining, pipes, parks and lawns, trash
and landfill, pasture, and dikes. It was calculated as:

LOD =
n

∑
k=1

1
Di + 1

(3)

where n represents the number of disturbance types observed at a sample site, and Di is the
distance of disturbance i (km) to the sample site. If the health scores of sample sites derived
from landscape and the remote sensing metrics had significant correlations with LOD,
we considered the landscape and remote sensing metrics useful for evaluating wetland
condition. All analyses were conducted in statistical software R [50].

3. Results
3.1. Land Uses

The overall accuracy of land use classification was 91.67%. Cultivated land (dry land
and paddy fields) was the dominant class, occupying 42.41% of the area of the Poyang
Lake region. Forest was another dominant type of land use, accounting for 25.49% of the
area (Figure 3). Built-up land was mainly found in the southwestern corner of this region,
where a large city (Nanchang City) with nearly 6 million people is located and occupies
5.94% of the total area. Other land cover classes, including grassland, reservoirs, ponds,
and bare land, were minor, with coverage ranging from 0.62% to 2.65%. Wetland, lakes,
and paddy fields were the main land use classes around the sample sites.

Figure 3. Land use patterns in the Poyang Lake region, as interpreted from Landsat-8 OLI images
acquired in 2015.
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3.2. Explanatory Power of Landscape and Remote Sensing Variables on IBIs

Multivariate regressions were applied to determine the explanatory power of land-
scape and remote sensing variables of watersheds and different buffer zones on B-IBI and
V-IBI. Watershed landscapes explained 57% and 51% of the variation in B-IBI and V-IBI,
respectively. Hump-shaped relationships were found between R2 values of multivariate
regression models and buffer radii (Figure 4). R2 values of multivariate models for both
B-IBI and V-IBI peaked in the 2 km buffer zone (R2 = 0.64 and 0.71, respectively, p < 0.001).
Thus, we selected the 2 km buffer zone as the most appropriate spatial scale at which
wetland health of Poyang Lake were assessed via landscape and remote sensing indicators.

Figure 4. R2 values of the most parsimonious multivariate linear models for benthic
macroinvertebrate- (B-IBI) and vegetation-based (V-IBI) indices of biotic integrity using landscape
and remote sensing metrics in different buffer zones of sample sites as the explanatory variables.

3.3. Metric Selection

Seven of all of the candidate metrics, Shannon’s evenness index (SHEI), hydrolog-
ical regulation index (HRI), contagion index (CONTAG), mean patch fractal dimension
(FRAC_MN), modified normalized difference water index (MNDWI), normalized differen-
tial built-up index (NDBI), and normalized differential vegetation index (NDVI), were not
significantly correlated with either B-IBI or V-IBI (p ≥ 0.05; Table 2), and were thus rejected.
Nine of the retained metrics had IQ scores ≥2, demonstrating the power to discriminate
the reference from impaired sites, and were retained (Figure 5). Among the nine metrics,
connectance index (CONNECT), largest patch index (LPI), and modified normalized differ-
ential built-up index (MNDBI) were not strongly correlated with other candidate metrics
(Pearson’s |r| ≤ 0.75; Table 3) and were identified as the core LMI metrics. Mean patch
size (AREA_MN), patch density (PD), Shannon’s diversity index (SHDI), aggregation index
(AI), and patch richness density (PRD) had strong correlations with each other (r > 0.75,
p < 0.001; Table 3), while AREA_MN, cultivated land stress index (CSI), PD, and PRD
were also highly mutually correlated (r > 0.75; Table 3). Only CSI, AI, and SHDI were
retained for subsequent analyses, because the other three metrics (AREA_MN, PD, and
PRD) were highly correlated with all six candidate metrics. AI and SHDI were also highly
correlated (r > 0.75). SHDI was retained because SHDI was more strongly correlated with
B-IBI and V-IBI (r = −0.48 and −0.56, respectively, p < 0.01; Table 2) than AI (r = 0.36 and
0.40, respectively, p < 0.05). Finally, five metrics (CONNECT, CSI, LPI, SHDI, and MNDBI)
that were not strongly correlated to each other were selected as the LMI metrics on which
wetland health of Poyang Lake was assessed.
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Table 2. Pairwise Pearson’s correlation coefficients of nine candidate metrics.

PD NP FRAC_MN LPI PRD PR

B-IBI −0.42 −0.42 0.32 0.44 −0.22 −0.22
V-IBI −0.52 −0.52 0.07 0.51 −0.47 −0.46

AREA_MN LSI CONTAG CONNECT COHESION DIVISION

B-IBI 0.39 −0.37 0.17 0.37 0.43 −0.33
V-IBI 0.52 −0.49 0.18 0.58 0.53 −0.51

SHEI SHDI AI HRI CSI BPI

B-IBI −0.16 −0.48 0.36 0.32 −0.46 −0.34
V-IBI −0.21 −0.56 0.40 0.27 −0.48 −0.54

LDI NDBI NDVI MNDBI MNDWI -

B-IBI −0.41 −0.32 0.04 −0.39 0.23 -
V-IBI −0.43 −0.23 0.11 −0.41 0.18 -

AI, aggregation index; AREA_MN, mean patch size; CONNECT, connectance index; CSI, cultivated land stress
index; LPI, largest patch index; MNDBI, modified normalized differential built-up index; PD, patch density; SHDI,
Shannon’s diversity index; PRD, patch richness density.

Figure 5. Discriminatory power of nine landscape and remote sensing metrics for reference and
impaired sites. IQ is the abbreviation for interquartile range score. Boxes are interquartile ranges
(25–75%). Range bars indicate maximal and minimal values of non-outliers. The bars in boxes are
medians.
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Table 3. Pearson’s correlation coefficients of B-IBI and V-IBI with the 23 candidate metrics used in
this study.

PD LPI AREA_MN CONNECT PRD SHDI AI CSI MNDBI

PD 1.00 - - - - - - - -
LPI −0.47 1.00 - - - - - - -

AREA_MN −1.00 0.47 1.00 - - - - - -
CONNECT −0.59 0.18 0.59 1.00 - - - - -

PRD 0.81 −0.40 −0.81 −0.41 1.00 - - - -
SHDI 0.82 −0.65 −0.82 −0.43 0.71 1.00 - - -

AI −0.95 0.53 0.95 0.51 −0.77 −0.82 1.00 - -
CSI 0.76 −0.26 −0.76 −0.63 0.76 0.60 −0.67 1.00 -

MNDBI 0.52 −0.18 −0.52 −0.57 0.34 0.37 −0.46 0.43 1.00

PD, patch density; NP, number of patches; FRAC_MN, mean patch fractal dimension; LPI, largest patch index;
PRD, patch richness density; PR, patch richness; AREA_MN, mean patch size; LSI, landscape shape index;
CONTAG, contagion index; CONNECT, connectance index; COHESION, patch cohesion index; DIVISION,
landscape division index; SHEI, Shannon’s evenness index; SHDI, Shannon’s diversity index; AI, aggregation
index; HRI, hydrological regulation index; CSI, cultivated land stress index; BPI, building pressure index;
LDI, landscape development intensity index; NDBI, normalized differential built-up index; NDVI, normalized
differential vegetation index; MNDBI, modified normalized differential built-up index; MNDWI, modified
normalized difference water index. B-IBI and V-IBI represent benthic macroinvertebrate- and vegetation-based
indices of biotic integrity, respectively.

3.4. Wetland Health Assessment

The LMI scores of Poyang Lake varied between 1.05 and 5.00, with a mean of 3.25. A
total of 10% of the total area was rated as excellent, 38% was good, 27% was fair, 18% was
poor, and 7% was very poor (Figure 6a). Areas rated as excellent or good were generally
in the inner parts of the lake, whereas areas rated as poor or very poor were mostly along
the lakeshore. The overall status of the wetland was assessed as fair according to the
mean LMI score. There was a striking difference (IQ = 2) in LMI scores between reference
and impaired sites (Figure 6b). LMI scores were significantly correlated with B-IBI, V-IBI,
and LOD at the 30 sample sites (Pearson’s r = 0.56, 0.50, and 0.59, respectively, p < 0.001;
Figure 7), indicating that the LMI can be used as the surrogate for field-based wetland
health assessment.

Figure 6. Conditions of the Poyang Lake wetland assessed using landscape-based multi-metric index
(LMI) (a) and discriminatory power of the LMI scores between reference and impaired sites (b). IQ is
the abbreviation for interquartile range score, boxes are interquartile ranges (25–75%), bars in boxes
are medians, range bars indicate maximal and minimal values of non-outliers.
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Figure 7. Relationship of the landscape-based multi-metric index (LMI) scores with benthic
macroinvertebrate-based index of biotic integrity (B-IBI), vegetation-based index of biotic integrity
(V-IBI), and local disturbance index (LOD). Black lines show linear fits. ** p < 0.01; *** p < 0.001.

4. Discussion
4.1. Landscape and Remote Sensing Metrics

Four landscape (LPI, CONNECT, SHDI, and CSI) and one remote sensing (MNDBI)
metric were selected as the LMI metrics to evaluate the condition of the Poyang Lake
wetland. LPI quantifies the percent of the area that is occupied by the largest patch and
indicates dominance [51]. CONNECT measures landscape connectivity that can facilitate
the movement of environment elements (e.g., water) and biological organisms from one
patch to another [52,53]. LPI and CONNECT showed positive relationships with IBIs
(Table 2), indicating that higher LPI and CONNECT values are linked to better health. The
landscapes around the sample sites in Poyang Lake were dominated by natural wetlands
and lake area (Figures 1 and 3). Our results suggest that a higher dominance of natural
wetlands and lake area and better connectivity of habitat patches indicate a healthier
status. This is because a higher percent of natural wetlands and lake area suggests a lower
proportion of human-altered land use in the landscape. Connectivity is a mechanism that
supports ecological processes in wetlands [54]. It is important to improve the connectivity
of habitat patches because it helps increase the resistance of spatially structured organism
populations to external disturbances.

SHDI measures the diversity of patches in the landscape. Our results showed that
SHDI had a negative relationship with the IBIs (Table 2). This result indicates that more
diversified landscapes are associated with poorer health conditions, likely because in-
creased patch diversity means that human-altered land use types have also increased (e.g.,
cultivated and built-up land). CSI and MNDBI represent the percentages of cultivated
land and impervious surface (including highway, and roads, and built-up land) in the
landscape, respectively. The Poyang Lake region is a main rice-producing area in China and
has been densely populated for decades. Agricultural and municipal wastewater causes
severe environmental pollution in Poyang Lake and increases nitrogen and phosphorus
in water [39,55]. The negative relationships that CSI and MNDBI had with IBIs (Table 2)
indicate that reducing agricultural and impervious land cover in the surrounding landscape
is important for improving the condition of the Poyang Lake wetland.

This study demonstrates significant links between landscape characteristics and wet-
land biotic integrity, which may validate the utility of satellite imagery-derived metrics
for assessing wetland health. Compared with field-based biological methods (e.g., IBI
methods) that are usually labor intensive and time consuming, landscape and remote
sensing indicators derived from satellite imagery provide a cost- and time-efficient method
for wetland assessment and monitoring. As a contrast to biological methods that can only
assess the condition of individual sample sites, the LMI is robust enough to predict the
wetland health of the entire study area at a relatively fine spatial resolution. This advantage
should be particularly useful for identifying specific areas that appear stressed and warrant
further management. The LMI method can provide a quick and simple method for land
managers and environmental planners to assess broad areas of land, and to implement
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long-term and high-frequency monitoring on the Poyang Lake wetland, especially due to
its low cost of money and time.

4.2. Spatial Scales for Wetland Health Assessment

We found that landscapes within the 2 km buffer zone of sample sites had the strongest
explanatory power on the IBIs (Figure 4). The result is in line with previous findings
that marsh bird and amphibian assemblages are more sensitive to smaller-scale (≤1 km)
disturbances in the Great Lakes [56]. This is likely because land use and human disturbance
at local scales directly influence habitat quality [57], while the effects at larger spatial scales
are mainly mediated through processes (e.g., surface runoff) that are likely to be affected
by other factors including topography, soil properties, and vegetation cover. This result
differs from the studies that indicate that watershed landscape has a stronger impact on
river water quality than does riparian buffer zone [58,59]. The landscape around Poyang
Lake is relatively flat and well-covered with vegetation, which may slow the surface
runoff and mitigate the effects of the watershed landscape on the wetland [60,61]. Our
results suggest that protecting landscapes around Poyang Lake at small scales (≤2 km; for
example, reducing cultivated and impervious land-cover) is important for conserving the
entire wetland [62].

4.3. Wetland Health Assessment in the Poyang Lake

Wetland health of Poyang Lake was, in general, assessed as “fair” (Figure 6), which is
consistent with the assessment results using the B-IBI [42]. The areas near the lakeshore
were mostly assessed as poor or very poor because of stronger human disturbances in
these areas, while the less accessible inner areas were in better condition. The problem
with using the LMI to assess wetland health is that environmental degradation caused by
point sources of pollution cannot be detected. For example, the IBIs suggested that the
sample sites in the estuarine wetlands generally had poor health because wetland health
was strongly negatively affected by the pollutants from rivers [19,42]. Nevertheless, IBIs
were still significantly correlated with the LMI scores (Figure 7), suggesting that the LMI
can be used as the surrogate for field-based wetland health assessment [63].

5. Conclusions

Five landscape and remote sensing metrics (LPI, CONNECT, SHDI, CSI, and MNDBI)
were selected as the LMI metrics, based on their correlation with the IBIs and their discrimi-
native ability between reference and impaired sites. Landscapes have stronger explanatory
power on the IBIs at smaller (≤2 km) than at larger spatial scales, which indicates that
protecting landscapes at local scales around Poyang Lake (e.g., reducing the percentage
of agricultural and impervious land cover) is crucial to conserve the wetland. The overall
health of the wetland was assessed as “fair” according to the LMI scores. The areas near
the lakeshore are mainly in fair or poor condition, while the less accessible inner areas are
in better condition.

This study demonstrates significant links between landscape characteristics and wet-
land biotic integrity, which validates the utility of satellite imagery-derived data in assessing
wetland health. Wetland assessments using landscape-based metrics are more cost and
time efficient and have better spatial coverage than biological methods. The LMI index
developed here could be used as a powerful tool for land managers by providing quick
and effective methods to assess broad areas of Poyang Lake, and to identify the areas that
appear stressed, which will enable funds to be reserved for more in-depth analyses in
areas identified as poor or very poor. By correlating field-based biological indices with
satellite imagery-derived metrics, this study represents an example of a landscape-based
multi-metric index developed to assess the health status of aquatic ecosystems.
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