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Abstract: Atmospheric water vapor plays a prominent role in climate change and atmospheric,
meteorological, and hydrological processes. Because of its high spatiotemporal variability, precise
quantification of water vapor is challenging. This study investigates Integrated Water Vapor (IWV)
variability for the period 1995–2010 at 118 globally distributed Global Positioning System (GPS) sites,
using additional UV/VIS satellite retrievals by GOME, SCIAMACHY, and GOME-2 (denoted as
GOMESCIA below), plus ERA-Interim reanalysis output. Apart from spatial representativeness
differences, particularly at coastal and island sites, all three IWV datasets correlate well with the
lowest mean correlation coefficient of 0.878 (averaged over all the sites) between GPS and GOMESCIA.
We confirm the dominance of standard lognormal distribution of the IWV time series, which can be
explained by the combination of a lower mode (dry season characterized by a standard lognormal
distribution with a low median value) and an upper mode (wet season characterized by a reverse
lognormal distribution with high median value) in European, Western American, and subtropical
sites. Despite the relatively short length of the time series, we found a good consistency in the sign of
the continental IWV trends, not only between the different datasets, but also compared to temperature
and precipitation trends.

Keywords: GNSS; integrated water vapor; climate change; spatiotemporal; lognormal distribution;
ERA-Interim; GOMESCIA

1. Introduction

Being the most important natural greenhouse gas, water vapor plays a crucial role in
climate change. It is governed by temperature through the Clausius-Clapeyron equation
which states that the capacity of the atmosphere to hold water vapor increases by 7% per
degree Celsius increment in temperature [1–4]. At all scales, water vapor also strongly
influences atmospheric dynamics and the hydrologic cycle through surface evaporation,
latent heat transportation, and diabatic heating, and is, of course, a source of clouds
and precipitation.

As atmospheric water vapor is highly variable in space and in time [5], its accurate
measurement is extremely challenging. Atmospheric Integrated Water Vapor (IWV) may be
measured using in situ instruments (e.g., radiosondes) or from space using instruments on
board satellites. Guerova et al. [6] divided remote sensing techniques into three categories:
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(1) differential time of arrival measurements, such as GPS, (2) active techniques such as
LIght Detection And Ranging (LIDAR) and RAdio Detection And Ranging (RADAR),
and (3) passive techniques based on emission/absorption measurements, e.g., microwave
radiometers [7,8]. Space-borne observations of IWV utilize different regions of the elec-
tromagnetic spectrum, from microwave to the thermal infrared. An inventory of many
of the satellite techniques has been carried out within the Global Energy and Water Ex-
changes (GEWEX) Water Vapor Assessment (G-VAP) and is available online [9]. All IWV
observation techniques have their advantages and disadvantages and have been compared
in numerous previous studies (e.g., http://www.meteo.be/IWVintercomp, accessed on
21 December 2021, provides a literature review of past IWV inter-technique studies in-
volving GNSS, and also see Vaquero-Martinez and Antón [10]). Van Malderen et al. [11]
compared five different techniques and concluded that GPS and GOMESCIA can be used
to study global inter-annual IWV variability.

Global mean IWV distribution correlates well with mean temperature and is highest
in the tropics, where strong evaporation occurs and trade winds transport the high levels
of moisture to the Intertropical Convergence Zone [12,13]. At mid and high latitudes,
evaporation is weaker and lower IWV amounts are thus observed. Furthermore, the
highest mean IWV values generally occur in summer, and conversely, the lowest IWV
values occur in the cold, winter months. Foster et al. [14] studied the IWV frequency
distribution at sites from various climatic regimes around the world. The lognormal
distribution is commonly found in subtropical and temperate climates, while tropical
oceanic environments have a reversed lognormal distribution. Bimodal distributions occur
where seasonality is both pronounced and distinct, e.g., for monsoonal zones. Global
decadal IWV trend studies (partly summarized until 2009 by Sherwood et al. [15] and
thereafter in [12,13,16–21]) reveal a positive overall global mean trend, e.g., of 0.26, 0.24,
and 0.34 mm dec−1, respectively, in the GPS (1995–2011), radiosonde (1973–2011), and
microwave satellite (1988–2011) records [20]. However, the significance and sign of the
trends change from region to region, between techniques, from dataset to dataset, and from
study to study [17,19,22].

Therefore, in this paper, we investigate how well the spatial and temporal IWV
variability are globally represented by three independent IWV datasets: two observational
datasets (one ground-based and one satellite-based) and a numerical weather prediction
model reanalysis output. By including three datasets using completely different IWV
retrieval techniques and with different spatial and temporal resolutions, we attempt to
create a consistent picture of global IWV spatiotemporal variability. A characterization of
the spatial IWV variability is given by considering the geographical distribution of the IWV
frequency distributions, a worldwide extension of the work by Foster et al. [14]. To assess
the temporal IWV variability of the three datasets, we consider different time scales: from
seasonal cycles to inter-annual variability and trends of periods up to 15 years.

This paper is organized as follows: Section 2 describes the observing techniques and
methods used to retrieve IWV; Section 3 compares the IWV datasets (Section 3.1), studies
seasonal behavior (Section 3.2), analyzes the geographical distribution of IWV frequency
distributions (Section 3.3), and presents linear trends (Section 3.4); Section 4 is reserved for
the discussion and outlook.

2. Datasets and Methodology

To study IWV variability, we use IWV retrievals from GPS continually observing reference
stations (CORS), a merged dataset of IWV measured from 3 different satellite instruments
(GOME, SCIAMACHY, GOME-2) and from the ERA-Interim [23] reanalysis model.

2.1. GPS

Radio signals transmitted by GPS satellites, received at the Earth’s surface, are delayed
by atmospheric water vapor along the signal path (mostly located in the troposphere). Using
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observations from GPS CORS networks, the Zenith Total Delay (ZTD) can be calculated
which provides an estimate of the signal delay due to the neutral atmosphere [24].

In this paper, we use homogenously reprocessed ZTD data provided by the Interna-
tional GNSS Service (IGS) [25] Repro1 campaign [26], available for about 400 GPS stations
from 1995 until April 2011. From this worldwide dataset of almost continuous and ho-
mogeneously reprocessed ZTDs, we selected the 118 IGS stations having the longest time
series (16 years—see Figure 1 and Table S1 of the supplementary material). Although
homogeneously reprocessed, the IGS ZTD time series can still contain discontinuities or
break points due to unreported or mis-modelled instrument changes or changes in the
observation statistics [27,28]. While those remaining inhomogeneities might impact trend
estimation [12], a statistical homogenization of this dataset is out of scope for this paper; a
benchmark study of different break detection methods on synthetic datasets created from
the same GPS and ERA-Interim IWV time series is presented in Van Malderen et al. [29].

Figure 1. Maps of the 118 IGS stations for which data are available from 1995/1996 to March 2011.
(a) Global map, (b) zoom in on Europe, (c) zoom in on North America.

If surface pressure Ps and the water vapor weighted mean temperature of the atmo-
sphere, Tm, are known at the GPS site [24], ZTD may be converted into IWV. In this study,
the surface pressure Ps at the GPS site is calculated from the surface pressure values of the
four surrounding grid points from the European Centre for Medium-Range Weather Fore-
casts (ECMWF) ERA-Interim reanalysis (Section 2.3) by horizontal interpolation, weighted
with the inverse distance to the GPS station. To account for the height difference between
the GPS station and the ERA-Interim surface grid points, we use the hydrostatic and
ideal gas equations to adjust surface pressure to the height of the GPS antenna. Other
studies use ERA-Interim pressure level data to derive the pressure at the GPS station,
e.g., [12,28], or synoptic stations in the vicinity of the GPS stations, e.g., [11,30]. Parra-
cho [31] (their Figure 2.82) showed that surface pressure interpolated or extrapolated from
pressure level data is relatively consistent with model surface pressure data, thus suggesting
no significant biases are introduced when comparing data derived from either method.

Tm can be either (i) calculated from vertical profile data of temperature and humidity,
e.g., provided by radiosondes or reanalyses, or (ii) estimated from surface temperature (Ts)
observations using a linear empirical relationship (e.g., Bevis et al. [24]). In this paper, we
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used the ERA-Interim pressure level data of temperature and specific humidity from the
four grid points surrounding the GPS station. These profiles are horizontally interpolated,
with the inverse distance to the GPS station as a weighting methodology. As the vertical
integration to retrieve Tm starts from the ERA-Interim surface grid points and continues
higher up with the ERA-Interim pressure level data, a correction for the height difference
between the GPS station and the ERA-Interim surface grid points is required for surface
temperature and specific humidity data. For the temperature, we assume a standard
temperature lapse rate of −6.5 K km−1 (typical for wet adiabatic conditions), and for the
specific humidity adjustment, a constant dew point temperature depression (T−Tdew) with
height [32].

The auxiliary meteorological data from ERA-Interim reanalysis are only available at 0,
6, 12, and 18 h UTC, as such, the converted GPS IWV dataset (using the ERA-Interim data
for ZTD to IWV conversion) is also only available at these times. There do exist however a
number of GPS ZTD data gaps with only 77% of data being available on average at this
time resolution (data availability ranges from 45% to 98.5%).

The choice of the auxiliary meteorological parameters used for the ZTD to IWV con-
version can clearly impact the resulting IWV values and trends. Therefore, in Appendix A,
we compare GPS IWV values and trends estimated by using different sources of auxiliary
meteorological parameters (ERA-Interim, NCEP/NCAR reanalysis, SYNOP stations) and
different calculation methods of Tm (from the linear empirical relationship with the surface
temperature as outlined above). We found that, averaged over all stations, the surface
pressure has a larger impact on IWV values and trends (mean absolute difference of about
0.3 mm and 0.35 mm dec−1, respectively) than surface temperature and weighted mean
temperature (<0.07 mm and 0.11 mm dec−1, respectively). The low values demonstrate
that the GPS IWV dataset can be considered as independent of the chosen dataset for the
auxiliary meteorological data, and hence, in particular, independent of ERA-Interim IWV
used in this paper for comparison.

Finally, using >40 IWV measurements per month (i.e., 30% of the expected measure-
ments), we calculated monthly mean IWV values.

2.2. GOME/SCIAMACHY/GOME-2

In this paper, we use the IWV “Climate” product from the European Space Agency
(ESA) GOME-Evolution project, described in Beirle et al. [33]. It is provided as a monthly
mean IWV 1◦ × 1◦ global grid from July 1995 to December 2015. For our study, we consid-
ered those monthly mean IWV time series at the pixels closest to the GPS stations. This
“Climate” product merges the IWV retrievals from three satellite spectrometers in the red
spectral range with the same differential optical absorption spectroscopy (DOAS) tech-
nique: Global Ozone Monitoring Experiment (GOME, July 1995–July 2011), the Scanning
Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY, August
2002–March 2012), and GOME-2 (since January 2007). For simplicity, we will subsequently
use the acronym “GOMESCIA” in this paper. The three satellites have a constant equa-
torial crossing time between 9 h 30 and 10 h 30 local time. Cloud effects impacting the
IWV retrievals [11] are also treated consistently for the different sensors by deriving the
information required for air-mass factor correction and cloud masking directly from the
spectral analysis. Spatial consistency is obtained by merging SCIAMACHY and GOME-2
observations to the larger GOME pixel size (320 × 40 km2) and reducing the GOME-2
swath width to that of GOME and SCIAMACHY.

The GOME-SCIAMACHY-GOME-2 time series are additionally homogenized by
correcting for the offsets determined during sensor overlap periods. When validated with
GNSS and ERA-Interim, mean biases of −1.0 and −0.65 mm (RMS of 4.3 and 3.4 mm,
respectively) were found [33]. This small dry bias in GOMESCIA is due to the fact that
cloudy images have to be masked out for satellite IWV retrievals in the visible wavelength
range. A temporal stability of about 1% per decade is achieved for the GOMESCIA climate
product [33].
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2.3. ERA-Interim Reanalysis Model

The third independent IWV dataset that we consider in this paper is the ERA-Interim
surface IWV output. ERA-Interim [23] is a global numerical weather prediction model
with 4-dimensional variational (4D-Var) data assimilation with a 12 h analysis window,
giving a temporal resolution of 6 h. It is important to note that the data assimilation system
of ERA-Interim does not include ground-based GNSS data. The spatial resolution of the
dataset is approximately 80 km (0.75◦ × 0.75◦) and contains 60 vertical pressure levels from
the surface to 0.1 hPa.

The IWV values at the GPS station locations were horizontally interpolated from the
IWV output at the nearest four surrounding ERA-Interim surface grid points and weighted
according to the inverse distance to the GPS station. Because the height of the GPS stations
does not usually correlate with the ERA-Interim model topography, a vertical interpolation
of the ERA-Interim IWV to the GPS station height is required. In this paper, we follow
the approach proposed by Hagemann et al. [34], in which the adjustment is obtained by
numerical integration of the specific humidity (q) over the height difference between the
GPS station and model surface with a constant dew point depression being assumed.

ERA-Interim surface fields are also used for the extraction of surface temperature and
pressure time series at the GPS site locations. We also apply the same horizontal interpo-
lation of the values from the four surrounding grid points and the altitude corrections as
described in Section 2.1.

3. Results
3.1. Dataset Comparison

Before analyzing the spatial and temporal IWV variability of the different datasets, a
comparison of the monthly means of those datasets was carried out. Only monthly means
are compared as the GOMESCIA climate product is only available with this temporal
resolution. The GPS-IWV dataset is treated as the reference dataset, not only because of its
high reliability, with root-mean-square values of 1–3 mm [6,35], but also due to the spatial
coverage being limited to the GPS site locations. Comparisons between GOMESCIA and
ERA-Interim IWV at the GPS site locations are provided in the supplementary material
(Figures S1–S3).

In Figure 2, the linear Pearson correlation coefficients between GOMESCIA or ERA-
Interim IWV vs. GPS IWV are presented. These are defined as the ratio of the covariance
between the two IWV datasets with their standard deviations. The correlation coefficients
obtained here are high, and statistically significant at significance level 0.01 (99% confidence
interval), for all stations. The average R2 between GOMESCIA and GPS IWV is 0.878, and
between ERA-Interim and GPS IWV it is 0.985. The high correlation between ERA-Interim
and GPS IWV data has already been noted by Chen and Liu [18], who observed even
higher ERA-Interim-radiosonde IWV correlation coefficients. Both GOMESCIA and ERA-
Interim agree less well with GPS IWV for island and coastal stations where the resolution
of the 1◦ × 1◦ GOMESCIA ground pixel and the four surrounding ERA-Interim model
(0.75◦ × 075◦) grid limits the accuracy of the IWV field at the exact GPS location [36]. The
overall better agreement between GPS and ERA-Interim IWV can probably be explained by
the fact that the GPS location and model points are more spatially collocated.

For 60% of the sites, GOMESCIA is dryer than GPS (Figures 3 and S5). This well-
known GOMESCIA dry bias can be explained by selecting only cloud-free measurements
for the IWV retrieval [11,33]. Conversely, ERA-Interim is slightly wetter than GPS at 70%
of sites. The ERA-Interim moist bias of ~0.5 mm occurs particularly in the extra-tropics,
with a slight dry bias with respect to GPS in the tropics which has been observed in a
number of previous studies [12,36]. Compared to the arithmetic IWV means of the three
datasets, GPS has about half of the sites with a positive bias, and half with a negative
bias. GOMESCIA has a majority of the sites (63%) negatively biased, whereas ERA-Interim
has a majority of the sites (68%) positively biased. The largest mean ERA-Interim or
GOMESCIA IWV differences with GPS are found at stations located in coastal regions
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and regions of complex topography, where representativeness errors limit the comparison
of a gridded reanalysis dataset and GPS point observations [12,36]. Representativeness
differences between GOMESCIA and GPS IWV measurements at the site locations can
explain the larger amplitudes and spatial variability of the IWV mean differences between
these two latter datasets.

Figure 2. Linear Pearson correlation coefficients R2 between the monthly IWV means of (a) GOMES-
CIA and GPS and (b) ERA-Interim and GPS. A zoom-in on North America and Europe is provided in
Figure S4 of the Supplementary Materials.

Figure 3. Mean differences (mm) between the monthly IWV means of (a) GOMESCIA and GPS
(GOMESCIA IWV minus GPS IWV) and (b) ERA-Interim and GPS (ERA-Interim IWV minus GPS IWV).
A zoom-in on North America and Europe is provided in Figure S5 of the supplementary material.

Figure 4 shows the standard deviations of the mean differences between GOMESCIA
or ERA-Interim and GPS IWV that were presented in Figure 3. Bock and Parracho [36]
demonstrated that this variable is a very useful metric for representativeness errors between
ERA-Interim and GPS IWV. The average value over all sites is smaller between GPS and
ERA-interim (0.8 mm) and larger between GPS and GOMESCIA (2.7 mm). This is caused
by the larger spatial area around the GPS site covered by GOMESCIA compared to ERA-
Interim, and the resulting larger spatial representativeness errors between GOMESCIA
and GPS IWV compared to ERA-Interim and GPS IWV. However, a difference in temporal
sampling may also play a minor role here, as the GOMESCIA IWV retrievals are not exactly
temporally coincident with the GPS observations at the site locations. As such, diurnal IWV
variations [20] and differences in cloud cover at both observation times might contribute to
a larger variability of the GPS-GOMESCIA IWV differences, compared to GPS-ERA-Interim.
The spatial distribution of the standard deviations of the differences in Figure 4 illustrates a
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slight latitudinal variation, with the largest values mainly obtained between GOMESCIA
vs. GPS IWV at tropical island and coastal locations.

Figure 4. Standard deviations of the differences (mm) between the IWV monthly means of
(a) GOMESCIA and GPS and (b) ERA-Interim and GPS. A zoom-in on North America and Europe is
provided in Figure S6 of the supplementary material.

It is important to note that the good agreement between ERA-Interim and GPS IWV
is not driven by the use of ERA-Interim as a data source for Ps and Tm to convert GPS
ZTD to IWV. We obtain very similar results for the statistical parameters in this section if
NCEP/NCAR (see also Appendix A) is used as a data source.

3.2. Seasonal Behavior

To determine the IWV seasonal cycle, we calculate the long-term monthly means of
the different datasets using identical time periods for each site. The amplitude is then
defined as the difference between the maximum and minimum monthly means and the
phase is the month with the maximum IWV monthly mean. The geographical distribution
of these parameters for the different datasets are shown in Figure 5. This figure illustrates
the seasonal cycle peaking in the summer months for both hemispheres. The amplitude
of the seasonal cycle is largest for the Asian Northern Hemisphere sites, where there is a
distinct difference between a dry and wet season. In Northern America, the central and
eastern sites have larger amplitudes than the western coastal sites. For most of these latter
sites, the rainy season is in the winter, when temperatures are low, while the summers are
dry but warmer. In Europe, Mediterranean sites have smaller amplitudes and the IWV
seasonal cycle peaks one month later compared to the rest of the continent. Overall, there
is good consistency among the three datasets, especially between GPS and ERA-Interim.
This is also illustrated by histograms of the amplitudes and phases at the sites (Figure 6).
These figures also indicate that for about 15 sites in the Northern Hemisphere (mostly US
and European), the seasonal cycle peaks one month later in the GOMESCIA dataset with
respect to the GPS and ERA-Interim datasets, although the differences between the two
monthly means of July and August are less than 1–2 mm. The differences in amplitude
are largest in the interval 8–14 mm, which is also the amplitude range for the bulk of the
northern hemisphere sites in our sample. However, the correlation between the amplitudes
is very good (0.99 between GPS and ERA-Interim, 0.85 between GPS and GOMESCIA).

To conclude, a very similar IWV seasonal cycle for GPS and ERA-Interim was ob-
served with the GOMESCIA seasonal behavior deviating more from the other two datasets,
especially at some Northern Hemisphere sites. However, in general, a good agreement in
all seasonal cycles was observed.
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Figure 5. Geographical distribution of the amplitude (length of the arrows) and phase (direction of the
arrows like a clock: 1 h = January, 2 h = February, 3 h = March, etc.) of the seasonal cycle in the monthly
mean IWV time series of GPS (blue), ERA-interim (red) and GOMESCIA (green). A seasonal cycle of
10 mm amplitude in IWV is illustrated, as reference, by the length of the arrow in the upper left corner.
A zoom-in on North America and Europe is provided in Figure S7 of the supplementary material.

Figure 6. Frequency distribution of (a) the amplitudes and (b) phases of the seasonal cycle in the
monthly mean IWV time series of GPS (blue), ERA-Interim (red), and GOMESCIA (green) at the
location of the 118 IGS sites. As the sites of our sample are not homogeneously distributed around
the globe, the shapes of those histograms do not reflect global climatological characteristics.

3.3. Frequency Distribution

In addition to analyzing seasonal behavior, we may characterize the IWV field prop-
erties by the frequency distribution of the IWV data series. This analysis will allow for
a classification of geographical regions with similar IWV properties. Unfortunately, we
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cannot use the GOMESCIA IWV dataset here as this dataset provides only monthly means,
undermining the statistical robustness of the observational frequency distribution and its
fit by a (log)normal distribution.

From the GPS and ERA-interim IWV time series (available with a 6 h temporal res-
olution), an IWV frequency distribution was calculated. For each site, a non-linear least
squares fit to compute Gaussian, lognormal, and bimodal (two lognormal) distribution
functions through those IWV frequency distributions were calculated. For the lognormal
distribution function, the same formula as in Foster et al. [14] was adopted and described
by three parameters: the median M, the geometric standard deviation (GSD) s, and a
threshold parameter t, allowing for a non-zero lower bound (standard lognormal) or even a
distribution bounded by an upper value t with the long tail tending towards zero (reverse
lognormal). In this latter case (Figure 7b), the upper value t corresponds to the maximum
atmospheric moisture capacity in case of complete saturation.

Figure 7. Examples of the different categories of frequency distribution functions for the GPS IWV
distribution at 4 GPS sites: (a) the standard lognormal distribution (fit in red) at PERT (Perth,
Australia), (b) the reverse lognormal distribution (fit in orange) at BOGT (Bogota, Colombia), (c) the
shouldered lognormal distribution (in blue, with the two contributing lognormal distributions in
dashed blue) at GRAS (Caussols, France), and, for illustration, the best fit of a single lognormal
distribution in red, and (d) the bimodal lognormal distribution (fit in green) at CCJM (Ogasawara,
Japan) with its contributing lognormal distributions in dashed lines.

Depending on the values of the chi-square goodness-of-fit statistics (75–80% of the
sites) and/or on visual checking of the fitted distribution, the frequency distributions at
the sites were categorized into Gaussian, lognormal (standard or reverse), and bimodal
distributions. For instance, the distribution function is lognormal if its associated chi-square
goodness-of-fit statistic is below a certain threshold value, but bimodal when exceeding
this value. Examples of those categories, except the Gaussian, are given in Figure 7a,b,d.
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These three categories have been identified by Foster et al. [14] in their sample of 10 GPS
sites from various climatic regimes around the world.

In addition, an extra category was added between a lognormal and bimodal distribu-
tion, defined both visually and by a range of the chi-square goodness-of-fit statistic for the
single lognormal distribution fit. For this category, there is one clear lognormal distribution
which characterizes the majority of the distribution, and an additional, secondary upper
mode lognormal distribution. This second component is required to explain the overall
frequency distribution “satisfactorily”, i.e., in terms of the chi-square goodness-of-fit statis-
tic and/or by eye. We call it a “shouldered” lognormal distribution, see Figure 7c. The
bulk of the shouldered or bimodal distributions are a combination of a standard lognor-
mal distribution for the lower component, and a reverse lognormal distribution for the
upper component, as observed in Figure 7c,d. The upper mode is more ambiguous, due to
the overlap between the modes obscuring the telltale asymmetry that would distinguish
between them. The origin is related to a large seasonal variation in the median values of
IWV, with the dry season characterized by the standard lognormal distribution with a low
median, and the wet season characterized by a reverse lognormal distribution with a high
median value. This issue will be discussed later in this Section.

Figure 8 displays the geographical distribution of the different categories of the GPS
IWV time series. Figure S8a in the supplementary material provides the equivalent results
for ERA-Interim. The large majority of the sites have a lognormal IWV distribution, with a
few exceptions which have relatively typical Gaussian distributions (e.g., two GPS sites
in Antarctica which have very small IWV ranges). It should also be noted that sites with
a single reverse lognormal distribution are very uncommon and confined to the tropics:
i.e., only for the GPS IWV time series data from BOGT (Bogota, Colombia), SAMO (Samoa
Island), and for the ERA-Interim time series at Hawaiian sites and those at DGAR (Diego
Garcia Island) and at KOUR (French Guyana), see Figure S8a. Another notable feature is
the fact that the occurrence of bimodal distributed IWV time series is almost exclusively
restricted to the (sub)tropics or latitudes lower than about 30◦. Australia, conversely,
is characterized almost uniformly by a standard lognormal distribution. Additionally,
northern Europe (Scandinavia) has a standard lognormal IWV distribution, while the
rest of Europe (with the exception of some Mediterranean sites which are Gaussian) has
shouldered lognormal distributions.

North America is a mix of standard lognormal and shouldered lognormal IWV dis-
tributions. The geographical distinction in this continent is further illustrated when con-
sidering the GSD values obtained when fitting one single lognormal distribution through
the IWV frequency distributions (Figure 8b). The western part of North America is char-
acterized by lower GSD values, while the central and east North American stations have
higher GSD values (higher overall histogram width) due to a long tail for higher IWV
values in their respective distribution function. This tail is due to the large difference in
median values between the (dominant) lower and (weak, if present at all) upper mode of
their distributions.

The standard lognormal distributions for the Australian IWV time series, see, e.g.,
PERT in Figure 7a, are also described by low GSD values, see again Figures 8b and S8b, with
the overall histogram width being even lower than those of the North American west coast.
In Europe, there appears to be a small increase in the histogram GSDs from west (maritime)
to east (continental), although this may be confused with or intermingled with a latitudinal
gradient in the GSD. Regardless, western European sites have frequency distributions with
a broad peak (i.e., on some occasions the two modes are so close together the overall distri-
bution appears to have a Gaussian distribution, see, e.g., GRAS in Figure 7c), with more
distinct modes in the east of Europe (e.g., with a more pronounced tail). The Scandinavian
sites have narrower IWV distributions around their peak, but are also strongly (positively)
skewed, which explains the large GSDs.
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Figure 8. (a) Classification of the GPS IWV time series according to their frequency distributions:
Gaussian (yellow), standard lognormal (red), reverse lognormal (orange), shouldered lognormal
(blue), and bimodal (green). Those colors correspond to the colors used in Figure 7 for the different
categories. (b) Distribution of the dimensionless geometric standard deviation (GSD) of a single
lognormal distribution fitted through the ERA-Interim IWV histograms. The sites with unfilled circles
have bimodal distributions. The reverse plot (classification of ERA-Interim, GSD distribution for GPS)
is included as Figure S8 in the supplementary material, and Figure S9 zooms in on North America
and Europe for the GSD.

To understand the spatial distribution of the frequency distribution and the impact
of the seasonal variability on the shape of the frequency distributions of the GPS and
ERA-Interim time series, the seasonal cycle must be removed, as described in Section 3.2.
Thereafter, the frequency distribution may be fit again by the same methodology as outlined
above. Figure 9 presents the classification of the frequency distributions of those de-
seasonalized time series, both for GPS and ERA-Interim locations. In this data it is important
to note that no more bimodal distributions remain, and they have become (mostly) single
lognormal or even Gaussian distributions. It is now clear that the dominance of the original
bimodal distribution for the Asian sites (Figure 8a), is linked to the seasonal monsoonal
behavior, which is responsible for the reverse lognormal distribution with high median
value (the upper mode), with the lower mode being caused by the corresponding dry
season. The bimodality of the (sub)tropical sites is also caused by seasonal IWV variation,
and the reverse lognormal distribution is very prominent for the de-seasonalized IWV time
series of (sub)tropical coastal or island sites (Figure 9).

Another striking difference between the classification of the frequency distributions
from the original and de-seasonalized time series is observed in Europe: after removing the
seasonal cycle, the dominating shouldered lognormal distributions in Figures 8a and S8a for
GPS and ERA-Interim IWV, respectively, are turned into standard lognormal distributions in
Figure 9a,b, respectively. As such, in Europe, it may be assumed the shouldered lognormal
distribution originates from seasonal IWV variation.

A remarkable feature of the North American distribution is the very similar geograph-
ical distinction in the continent in terms of the GSD values in Figure 8b and the classes
of frequency distributions of the de-seasonalized IWV times series, see Figure 9. Sites
in western North America (low GSD values) have standard lognormal distributions, the
central and east North American stations (higher GSD values) are best fitted by shouldered
lognormal distributions. For those latter stations, the IWV variability caused by weather
patterns or inter-annual variability appears to be more complex (multimodal) than if the
seasonal variability is added.
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Figure 9. Classification of the GPS (a) and ERA-Interim (b) IWV time series after removal of the seasonal
cycle, according to their frequency distributions. The same color coding as in Figure 8a is used.

To conclude, we confirm (for a much larger sample size) the conclusions by Foster et al. [14]
that IWV follows a lognormal distribution. This is particularly evident when considering
de-seasonalized time series, although Gaussian distributions are then also more common.
The seasonal variability in the subtropics and at European sites complicates the frequency
distributions, favoring a multimodal (bimodal or shouldered lognormal) description. The
opposite is typically true for central and eastern North American sites. Australian sites
closely approximate a standard lognormal distribution, with or without considering sea-
sonality. The analysis of the IWV frequency distributions also aids in clustering sites with
similar distributions in specific geographical regions or climate regimes. As an example, in
North America significant differences in the distributions and their characteristics between
the central and eastern sites and the western coastal sites may be observed. This was also
the case for this region in terms of the IWV seasonal cycle.

3.4. Linear Trends

In this Section, linear trends were calculated from the different IWV time series data.
Two important considerations should be stated, however. Firstly, if we assume the GPS
IWV trend magnitude of 0.26 mm decade−1 determined by Wang et al. [20] for the period
1995–2011, and we take into account the effect of auto-correlation and variability [37] from
our IWV monthly anomaly time series, we find that, on average, 38 years of monthly
data are needed to detect this trend at a 95% confidence level with a probability of 0.90.
As we only have 15 years available for most of the stations, we therefore cannot draw
firm conclusions on the presence or magnitude of any trend in this study. Secondly, it
should be noted that large non-linear inter-annual variations such as ENSO and other
teleconnection patterns [38] have an impact on the IWV long-term variability, which should
therefore not be well represented by a linear trend. However, the focus of this Section
is on the comparison of the IWV linear trends between the different datasets. This first
order approximation of the long-term variability, even over shorter time periods, will
nevertheless enable an evaluation of temporal stability and consistency of the three distinct
IWV datasets.

The linear trends were estimated by minimizing the least squares in the monthly
anomaly IWV time series. Monthly anomalies were obtained by subtracting the long-term
monthly means from the monthly averages. The standard error of the linear regression
slope was used as an estimate of the uncertainty of the trend [39]. Additionally, to test the
statistical significance of the trend, the Spearman’s test of trend [40] was applied. These
trend uncertainty estimations and indication for the statistical significance, do not take
into account the effect of auto-correlation and variability as in Weatherhead et al. [37] and
therefore represent underestimations.
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The linear trends for the different datasets are shown in Figure 10 for the period of
January 1996 to December 2010. It can be seen that the overall agreement of the trends
is relatively good. Around two-thirds of the GPS sites have positive trends (23 sites with
statistically significant positive trends), whereas this is only true for 55% for GOMESCIA
IWV time series (9 sites with statistically significant positive trends). For ERA-Interim,
this percentage amounts to 60% (12 sites with statistically significant positive trends). In
none of the data sets is the number of sites with statistically significant negative trends
larger than 5. As such. there is an overall tendency for positive IWV trends, rather than
negative trends, resulting in trend magnitudes, averaged over all stations, of 0.18 mm,
0.08 mm, and 0.11 mm decade−1, for GPS, GOMESCIA, and ERA-Interim, respectively.
The mean GPS IWV trend magnitude is very close to the 0.26 mm decade−1 GPS IWV
trend as observed by Wang et al. [20], based on a similar IGS dataset. The correlation
coefficients between the IWV trend values of the different datasets at the different sites
are comparable, with values R2 = 0.66, 0.63, and 0.57 between GPS vs. ERA-Interim, ERA-
Interim vs. GOMESCIA, and GPS vs. GOMESCIA, respectively. Trend differences are
expected between all-sky IWV datasets (GPS and ERA-Interim) and clear-sky datasets
(GOMESCIA), see [9] (their Figure 4).

Figure 10. IWV trends (% decade−1) for GPS (a), GOMESCIA (b), and ERA-Interim (c) for the
period January 1996—December 2010. A zoom-in on the IWV trends in North America and Europe
is provided in Figure S10 of the supplementary material. For illustration, panel (d) shows the
ERA-Interim surface temperature trends for the same period in ◦C decade−1.

Next, the geographical consistency in the sign and magnitude of the trends between the
different datasets (see Figure 10) for different regions in the world was analyzed. For Europe,
the different datasets reveal an overall moistening trend, which is a consistent finding from
other studies using different IWV datasets and different time periods, e.g., [41–43]. Drying
trends over Western Australia and moistening trends over the Indian Ocean appear to
be consistent features among the three IWV datasets. Additionally, all three datasets do
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not show a clear geographical pattern of IWV trends for North America, particularly for
GOMESCIA (see also Figure S10). Qualitatively, the trend patterns observed in this paper
are in good agreement with Wang et al. [20] and Parracho et al. [12], who, for the period
1995–2011, found (i) positive trends along the coast of the Northeast USA and Eurasia
as well as the interior of Australia and Europe, (ii) negative trends covering most of the
eastern Pacific around the western coasts of the Americas, and (iii) the Atlantic and Indian
Oceans dominated by moistening trends.

For the interpretation of those geographical trend patterns, the trends in the ERA-
Interim surface temperature at the GPS site locations were also considered (the lower right
panel of Figure 10). As per previous studies [2,4,20,22], the IWV inter-annual variability
and trends can globally be explained by temperature change under the assumption that the
atmospheric relative humidity (RH) is constant, while saturation vapor pressure increases
with air temperature. The scaling ratio amounts in this case around 7% K−1 according to the
Clausius-Clapeyron relationship. Over Europe and Western Australia, the respective moist-
ening and drying are associated with surface warming and cooling, respectively. However,
over North America, the spatial and temporal correlation between IWV and temperature is
worse and opposite trends are even found [22]. In this case, the IWV concentration may be
governed more by long-range transportation and the specific precipitation history of air
masses [44]. In particular, the cooling and drying (or little change in IWV) for some North
American sites close to the Pacific coast (Figures 10 and S10) are associated with a phase
change of the Inter-decadal Pacific Oscillation (IPO) from the 1977 to 1998 warm period
(peaking at ~1993) to a cold phase around 2012. Surface type and water availability have a
strong influence on the evaporation rate and pattern too, in that surface warming may lead
to lower RH (as observed over the Southwest USA by Wang et al. [20]), as surface evapo-
ration cannot match the atmospheric demand for moisture, and the Clausius-Clapeyron
relation is not valid. Finally, it is important to note that amplitude and correlation between
IWV and temperature is also dependent on observation time [20] and season [45].

Finally, trends in precipitation at the site locations were also calculated, as shown in
Figure 11. The precipitation data were sampled to the sites from a monthly gridded precipi-
tation dataset [46]. This dataset originates from National Meteorological and Hydrological
Services and other external agents and is produced using angular-distance weighting in-
terpolation from the monthly observational data. The spatial pattern of the sign of the
precipitation trends overall follows the IWV and surface temperature trend signs, i.e., nega-
tive trends in Western Australia and the Pacific coasts of the Americas, and positive trends
over continental Europe. The considered time series of surface temperature, IWV, and
precipitation therefore seem spatially and temporally correlated with each other, as already
highlighted in different studies, e.g., [2,47]. Although water vapor increases globally at
a rate close to 7% K−1 with surface warming (as per Clausius-Clapeyron), precipitation
increases only with 1 to 3% K−1 [1,48–50] according to energetic constraints [50]. Regional
moisture divergence/convergence and dynamics also affect the precipitation–temperature–
water vapor linkage.

To summarize, the analysis of trends in this paper were over too limited of a time
period to evaluate climate change due to the auto-correlation of the time series; nevertheless,
the comparisons in this paper demonstrate that considering three independent IWV datasets
may provide a spatially and temporally consistent picture when comparing against trends
in surface temperature and precipitation.
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Figure 11. Precipitation trends (% dec−1) from a monthly gridded precipitation dataset [46] at the
118 GPS site locations.

4. Discussion

Using a sample of 118 globally distributed sites, we analyzed IWV obtained from GPS,
GOMESCIA, and ERA-Interim reanalysis for the period 1996–2010. An assessment of the
spatiotemporal variability of IWV using these three global, completely distinct, datasets
has not been undertaken previously.

For comparison of the different IWV datasets, GPS IWV was chosen as the reference
dataset. We found that the ERA-Interim monthly mean IWVs agree better with GPS IWV
(the average R2 is equal to 0.985) than GOMESCIA (R2 of 0.878), with correlations at all sites
being statistically significant. The lowest correlations are obtained for island and coastal
sites where the spatial (horizontal) representation of the IWV field at the site location by the
GOMESCIA ground pixel (320 km east–west) and surrounding ERA-interim model grids
(80 km) is highly problematic for direct comparison. For 60% of stations the GOMESCIA
IWV was found to have a negative (dry) bias compared to GPS IWV, most likely due to
the selection of cloud-free observations for the GOMESCIA IWV retrieval. ERA-Interim
IWV has a small positive (moist) bias of 0.5 mm compared to GPS IWV for about 70% of
the stations, mostly in the extra-tropics, and a slight dry bias in the tropics when compared
to GPS. The standard deviation is, on average, smaller between GPS and ERA-interim
(0.8 mm) than between GPS and GOMESCIA (2.7 mm). The three datasets also agree very
well in terms of the seasonal behavior, with GOMESCIA deviating more from the other
two, especially for some Northern Hemisphere sites.

Similar to Foster et al. [14], frequency distributions of the IWV time series are best
fitted with lognormal distributions. For subtropical sites and sites in East Asia, two distinct
lognormal distributions are however required, where strong seasonality related to the
monsoon prescribes a bimodal lognormal density distribution. Sites in Europe and around
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half of all North American sites have histograms that are best represented by a leading
lognormal distribution for the lower component (dry season), added with another, reverse
lognormal distribution for the upper component (wet season). These two components can
consequently be explained by seasonal IWV behavior. Australia, however, is characterized
almost uniformly by a standard lognormal IWV distribution. The distribution of the
geometric standard deviations of the lognormal distributions is also geographically very
consistent. The analysis of the IWV frequency distributions hence aids in clustering sites
with similar distributions in specific geographical regions or climate regimes. For example,
in North America, the distributions and their characteristics between the central and
eastern sites and the western coastal sites are clearly different. We also found that the
central and eastern sites have a IWV seasonal cycle with larger amplitudes than the western
coastal sites.

According to the Weatherhead et al. [37] the length of the time series is, in combination
with the auto-correlation and variability of the IWV monthly anomalies, too short (38 years
are required) to detect the quoted trend of 0.26 mm decade−1 by Wang et al. [20]. If we how-
ever concentrate on the geographical consistency of the sign of the linear trends among the
different datasets, then we can conclude that IWV is increasing over Europe and the Indian
Ocean, while there is a drying trend over Western Australia. The IWV trend sign pattern
above North America is less consistent, especially for the GOMESCIA retrieval. Remaining
inhomogeneities in the datasets (e.g., due to instrument changes at some GPS sites, changes
in the data assimilation sources in ERA-Interim, and when combining the measurements
of the individual instruments to build up the GOMESCIA time series) might impact the
results. However, this study highlights that combining information from three distinct IWV
datasets enables the consistent characterization of IWV variability and its relationship with
surface temperature and precipitation. For instance, over Europe and Western Australia,
the respective moistening and drying are associated with surface warming and cooling,
respectively. Moreover, the spatial pattern of the sign of the precipitation trends in those
regions follows these IWV and surface temperature trend signs with positive trends over
continental Europe and negative trends in Western Australia.

For future studies, the homogenization of the IGS GPS dataset will further improve
its reliability for long-term variability assessments. Van Malderen et al. [29] compared
different statistical break-point detection methods on synthetic IWV differences between
IGS GPS and ERA-Interim at our sample sites, and identified a number of promising
methods which could be applied to real-world GPS datasets, preferentially in combination
with metadata on site instrument changes. In addition, the next homogeneous reprocessing
of the IGS tropospheric product will extend this dataset further. Finally, the most recent
state-of-the-art reanalysis dataset of ECMWF, ERA5 [51], has improved temporal (1 h) and
spatial resolution (horizontal resolution of 31 km, 137 vertical levels to 1 hPa) compared to
ERA-Interim, and has an upgraded assimilation method.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs14041050/s1, Figure S1: Correlation coefficients between GOMESCIA and ERA-Interim;
Figure S2: Mean differences between GOMESCIA and ERA-Interim; Figure S3: Standard deviations
between GOMESCIA and ERA-Interim; Figure S4: Correlation coefficients over Northern America
and Europa; Figure S5: Mean differences over Northern America and Europa; Figure S6: Standard
deviations over Northern America and Europa; Figure S7: Seasonal cycle over Northern America and
Europa; Figure S8: Similar to Figure 8, but mirrored between GPS and ERA-Interim; Figure S9: GSD
distribution over Northern America and Europe; Figure S10: IWV and surface temperature trends
over Northern America and Europe; Table S1: List of IGS stations.
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Appendix A

The formulas used for the GPS ZTD to IWV conversion [11] contain two meteorological
variables: the surface pressure and the weighted mean temperature. Of these two, the
impact of the surface pressure on the IWV is largest: a 1 hPa change in Ps gives an IWV
change of 0.36 mm, whereas a 1 K change in Tm leads to an IWV change in the range
0.05 to 0.20 mm, depending on the ZTD and Ps values. If the Bevis et al. [24] linear Tm−Ts
regression is used (Tm = 70.2 + 0.72 Ts), a 1 ◦C change in Ts brings an IWV change of
0.03 to 0.15 mm, as the Tm changes with 0.72 K for a 1 ◦C Ts change. It should, however,
be noted that the surface temperature also appears in the formula to convert the surface
pressure from the height of its data source to the GPS station’s height. Parracho [31]
showed that the Ps error associated for Ts varying from 278 to 298 K can amount up to
±2 hPa, when extrapolating pressure measurements within the first 500m with their used
equation. Further reading on the quantification of the sensitivity of IWV error to errors in
the independent parameters is available in Parracho [31] as well.

Different data sources, either observational or reanalysis datasets, exist for the surface
pressure and temperature and weighted mean temperature. To assess the impact those
different data sources might have on the retrieved IWV values and trends, we analyzed the
comparison between two IWV datasets with different sources for these parameters. Hence,
the results shown here are specific to those datasets. The different surface data sources
used here are the World Meteorological Organization network of meteorological SYNOP
(synoptic) weather stations—only available for about 40 IGS stations of our sample—and
the ERA-Interim and National Centers for Environmental Prediction/National Center for
Atmospheric Research NCEP/NCAR Reanalysis 1 datasets [53]. Compared to ERA-Interim,
NCEP/NCAR has a coarser spatial resolution (2.5◦ × 2.5◦, or about 210 km) and only
17 vertical levels but is also available four times daily. The data assimilation (3D-Var) and
the global spectral model are identical to the global system implemented operationally at
NCEP in January 1995, but with a higher horizontal resolution. The assimilation database
has been enhanced with many observations not available in real time for operational use
at that time. We applied exactly the same methodology as for ERA-Interim to retrieve the
IWV and auxiliary meteorological values from NCEP/NCAR at the GPS station locations
and heights.

The weighted mean temperature is either obtained from the surface temperature
by the Bevis et al., regression, or calculated from the vertical profile data supplied by
the reanalysis datasets. In Table A1, we present the means—weighted by the number of
observations for each station—of (from left to right) the IWV differences, the absolute value

https://igs.org/acc/reprocessing
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html
http://www.cost.eu/COST_Actions/essem/ES1206
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of the IWV differences, the standard deviation of the IWV differences, the linear correlation
coefficients between the IWVs, the IWV trend differences, and finally the absolute IWV
trend differences between two GPS IWV datasets that disagree only by one or more of
these auxiliary meteorological parameters. The differences and correlations are calculated
between all available, coincident measurements (at 0, 6, 12, 18 h) at the different sites, while
the trends are calculated from the monthly anomalies. Table A1 confirms the larger impact
of the surface pressure than the surface temperature and weighted mean temperature on
the IWV differences, but also on the derived IWV trends (largest values are obtained for
case (b)). Moreover, the slope of the linear regression (with a correlation coefficient of
0.84) between the Ps and IWV differences (i.e., the individual values of the first column of
case (b), not the mean) between the different corresponding datasets for the 40 IGS stations
is equal to the −0.34, which is very close to the mentioned (theoretical) IWV change of
0.36 mm per 1 hPa surface pressure change, confirming the acceptable data quality of the
pressure observations at the selected meteorological weather stations close to an IGS station.
Although large differences exist between the surface and mean temperatures taken from the
synoptic observations or ERA-Interim, see cases (c) and (d) in Table A2, the resulting IWV
mean differences remain very small, as well as the IWV trend differences (the corresponding
cases (c) and (d) in Table A1). The values for (d) can be compared to the study undertaken
by Wang et al. [20]. For our sample of data, the slopes of the linear regression between the
Ts and Tm mean differences with the IWV differences (i.e., the individual values of the first
columns in respectively cases (c) and (d), respectively) of these datasets are 0.03 and 0.05,
respectively (with correlation coefficients equal to 0.90 and 0.66, respectively), which are
the lower end values of the derived ranges in the previous paragraph.

The effect of the used reanalysis dataset (see case (f) in Table A1) on the resulting
IWV mean differences and trends are comparable with the numbers for the effects of
the temperatures (cases (c) to (e) in Table A1), except for the absolute mean difference.
Apparently, the larger mean differences between the surface pressures of the two reanalyses
(case (a) Table A2), compared to the pressure differences between ERA-Interim and SYNOP
(case (b) in Table A2), are partially compensated by the differences in mean temperatures
between the two reanalyses (case (e) in Table A2). The same argument can be used to
explain the smaller differences in IWV mean differences and trends between datasets
generated completely with SYNOP observations and ERA-Interim on one hand (case (g)
in Table A1), compared to changing only the source data of the surface pressure (case (b)
in Table A1). Finally, we note that the largest IWV mean differences are obtained when
comparing the ERA-Interim IWVs with the IWVs retrieved from the IGS ZTDs (see case (a)
in Table A1, which is comparable to the analysis in Section 3.1 for ERA-Interim and IGS).
This follows from the fact that these two are the most independent IWV datasets shown in
the table. It also illustrates the added value (negative or positive, this has been investigated
in the paper) of the IGS data to the reanalysis data. The largest IWV trend differences
are obtained for the cases (a), (b), and (g) in Table A1, implying that the IWV trends are
driven by the trends in the surface pressures and the trends present in the ZTD time series
themselves. The impact of the trends in the temperatures seems from the point of view of
this analysis (relying on the weighted means of the entire set of stations) less determinative
for the IWV trends. In any case, a correlation between the IWV trend differences and trend
differences in Ps, Ts, and Tm cannot be found, as was the case for the IWV mean differences.
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Table A1. Weighted mean values (and their corresponding standard deviations) of the statistical
parameters describing differences computed between two different IWV datasets (from left to right:
mean differences, mean absolute difference, standard deviation (SD) of difference, mean trend
difference, mean absolute trend difference), demonstrating the impact of different variables or dataset
choices. ERA stands for ERA-Interim, NCEP for NCEP/NCAR, Bevis denotes if the Bevis et al. [24]
Tm−Ts regression is used. An asterisk * denotes that the comparison was done for only 40 stations,
i.e., those stations with a synoptic (SYNOP) station within 30 km distance.

Mean
Difference

(mm)

Mean Abs.
Difference

(mm)

SD
(mm) R2 Trend

(mm dec−1)
Abs Trend

(mm dec−1)

(a) Tm = ERA, Ps = ERA: influence IGS data

IWV = ERA −0.313 ± 1.011 0.669 ± 0.818 3.807 0.962 −0.102 ± 0.457 0.322 ± 0.338

(b) Tm = ERA, Ps = ERA: influence Ps

Tm = ERA, and Ps =SYNOP * −0.200 ± 0.614 0.301 ± 0.570 7.575 0.961 −0.290 ± 0.752 0.353 ± 0.724

(c) Tm = Bevis and Ts = ERA, Ps = SYNOP: influence Ts

Tm = Bevis and Ts = SYNOP,
Ps = SYNOP * 0.009 ± 0.025 0.020 ± 0.017 0.029 1.000 0.013 ± 0.244 - 0.107 ± 0.219

(d) Tm = ERA, Ps = ERA: influence Bevis et al., regression (Tm)

Tm = Bevis and Ts = ERA,
Ps = ERA 0.044 ± 0.092 0.069 ± 0.075 0.025 1.000 −0.004 ± 0.031 - 0.018 ± 0.025

(e) Tm = ERA, Ps = SYNOP: influence Ts and Bevis et al., regression

Tm = Bevis and Ts = SYNOP,
Ps = SYNOP * 0.026 ± 0.071 0.051 ± 0.055 0.052 1.000 0.001 ± 0.248 0.110 ± 0.221

(f) Tm = ERA, Ps = ERA: influence reanalysis dataset

Tm = NCEP, and Ps = NCEP −0.034 ± 0.286 0.168 ± 0.233 0.154 0.995 −0.015 ± 0.144 0.083 ± 0.118

(g) Tm = ERA, Ps = ERA: observational vs. reanalysis dataset

Tm = Bevis and Ts = SYNOP,
Ps = SYNOP * −0.073 ± 0.403 0.223 ± 0.342 4.705 0.971 −0.210 ± 0.667 0.259 ± 0.649

Table A2. Weighted mean values (and their corresponding standard deviations) of the same statistical
parameters as in Table A1 describing differences between Ps (cases (a) and (b), in hPa) and Tm (cases
(c), (d), and (e), in K) taken from different data sources ((a), (b), (c), and (e)) or computed by a different
method (d). The cases (b), (c), and (d) correspond to the cases in Table A1.

Mean
Difference
(hPa or K)

Mean Abs.
Difference
(hPa or K)

SD (hPa
or K) R2 Trend (hPa dec−1

or K dec−1)

Abs Trend
(hPa dec−1 or

K dec−1)

(a) Ps = ERA

Ps =NCEP −0.179 ± 0.788 0.447 ± 0.673 1.241 0.974 0.083 ± 0.389 0.214 ± 0.335

(b) Ps = ERA

Ps =SYNOP * 0.031 ± 0.611 0.357 ± 0.494 0.786 0.989 0.052 ± 0.401 0.277 ± 0.292

(c) Tm = Bevis and Ts = ERA

Tm = Bevis and Ts = SYNOP * 0.267 ± 0.622 0.503 ± 0.447 2.878 0.979 0.197 ± 0.879 0.502 ± 0.744

(d) Tm = ERA

Tm = Bevis and Ts = ERA 0.508 ± 1.583 1.235 ± 1.108 8.099 0.804 0.101 ± 0.213 0.188 ± 0.140

(e) Tm = ERA

Tm = NCEP −1.236 ± 0.645 1.280 ± 0.552 8.678 0.926 0.080 ± 0.257 0.169 ± 0.209
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