
����������
�������

Citation: AL-Alimi, D.; Al-qaness,

M.A.A.; Cai, Z.; Dahou, A.; Shao, Y.;

Issaka, S. Meta-Learner Hybrid

Models to Classify Hyperspectral

Images. Remote Sens. 2022, 14, 1038.

https://doi.org/10.3390/rs14041038

Academic Editor: Saeid Homayouni

Received: 28 December 2021

Accepted: 17 February 2022

Published: 21 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing

Article

Meta-Learner Hybrid Models to Classify Hyperspectral Images
Dalal AL-Alimi 1 , Mohammed A. A. Al-qaness 2,3,* , Zhihua Cai 1 , Abdelghani Dahou 4, Yuxiang Shao 1 and
Sakinatu Issaka 5

1 School of Computer Science, China University of Geosciences, Wuhan 430074, China;
dalal@cug.edu.cn (D.A.-A.); zhcai@cug.edu.cn (Z.C.); shaoyx@cug.edu.cn (Y.S.)

2 State Key Laboratory for Information Engineering in Surveying, Mapping and Remote Sensing,
Wuhan University, Wuhan 430079, China

3 Faculty of Engineering, Sana’a University, Sana’a 12544, Yemen
4 Department of Mathematics and Computer Science, Faculty of Science and Technology, University of

Ahmed DRAIA, Adrar 01000, Algeria; dahou.abdghani@univ-adrar.edu.dz
5 School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; sakina@cug.edu.cn
* Correspondence: alqaness@whu.edu.cn

Abstract: Hyperspectral (HS) images are adjacent band images that are generally used in remote-
sensing applications. They have numerous spatial and spectral information bands that are extremely
useful for material detection in various fields. However, their high dimensionality is a big challenge
that affects their overall performance. A new data normalization method was developed to enhance
the variations and data distribution using the output of principal component analysis (PCA) and
quantile transformation, called QPCA. This paper also proposes a novel HS images classification
framework using the meta-learner technique to train multi-class and multi-size datasets by concate-
nating and training the hybrid and multi-size kernel of convolutional neural networks (CNN). The
high-level model works to combine the output of the lower-level models and train them with the
new input data, called meta-learner hybrid models (MLHM). The proposed MLHM framework with
our external normalization (QPCA) improves the accuracy and outperforms other approaches using
three well-known benchmark datasets. Moreover, the evaluation outcomes showed that the QPCA
enhanced the framework accuracy by 13% for most models and datasets and others by more than
25%, and MLHM provided the best performance.

Keywords: meta-learner; hyperspectral image; classification; remote sensing images; hybrid model;
feature fusion

1. Introduction

Imaging spectroscopy, also called hyperspectral (HS) imaging, captures electromag-
netic energy produced or reflected from a single place using hundreds of small, continuous
spectral bands ranging from visible to infrared wavelengths y [1–3]. The classification
of HS images is very important. It plays critical roles in various applications, such as
national defense [4], Earth monitoring [5], forest monitoring [6], detection [7,8], geological
exploration [9], video summarization, and precision farming [10]. In general, the sample
vector of an HS image is high-dimensional, and it has much information on contiguous
spectral bands [11].

HS images are known to be images with a very large dimension because of the large
numbers of spectral bands. Due to the large size of HS images, reducing the dimension is
important. Dimensionality reduction methods, like principal component analysis (PCA),
linear discriminant analysis (LDA), independent component analysis (ICA), and uniform
manifold approximation and projection (UMAP) [12,13], work to transfer the original
data space to a new subspace of dimensionality. The new subspace includes the most
informative features and omits the redundancy features. Thus, dimensionality-reduction
methods help speed up the classification process, decrease the storage space for data, and

Remote Sens. 2022, 14, 1038. https://doi.org/10.3390/rs14041038 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14041038
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-0322-3694
https://orcid.org/0000-0002-6956-7641
https://orcid.org/0000-0003-0020-6503
https://doi.org/10.3390/rs14041038
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14041038?type=check_update&version=2

Remote Sens. 2022, 14, 1038 2 of 21

in easily visualization of the data [13–15]. PCA is the most common method, and many
studies use it as preprocessing method to decrease the dimension. [16–21]. On the other
hand, these methods do not work to normalize or enhance the data distribution.

The classification of HS images received wide attention in the literature. Different
approaches have been proposed using various classification methods [14,22]. Earlier, some
traditional methods were applied to classify HS images. In [23], four kernel-based methods,
namely, standard support vector machine (SVM), regularized radial basis function neural
networks, regularized AdaBoost, and kernel Fisher discriminant analysis, were employed
for HS classification. The dictionary-based sparse representation was adopted by [24] to
enhance HS classification. A traditional SVM classifier was also adopted for this issue in
several studies [25–27]. The K-nearest neighbor (KNN) was also employed for HS image
classification in several studies [28–30].

Most recently, deep learning (DL) approaches have shown significant performance in
HS images classification. One of the most efficient methods is the convolutional neural net-
work (CNN), which achieved considerable accuracy. For example, Cao et al. [31] proposed
an active deep learning model for HS images classification. The main idea of this model
is to train CNN with a small number of labeled pixels and then select informative pixels
actively. More so, Markov random field was applied to enhance the classification accuracy.
The experimental results confirmed the significant performance of this model compared to
several existing classifiers. Hang et al. [32] proposed an attention-aided CNN to classify
HS images. Spectral and spatial classifications were implemented using two subnetworks,
called spectral attention and spatial attention, respectively. The results of the spectral and
spatial classifications were integrated using an adaptively weighted summation technique.
Yu et al. [33] developed an HS classification model using a 2D-3D CNN scheme. The main
idea of this scheme is by using a 2D CNN to extract features, where the 3D CNN uses a re-
duced kernel to exploit band co-relation data. The evaluation outcomes of the 2D-3D CNN
model showed its efficiency in selecting features and improving classification accuracy.
Due to the dying neurons with the Rectified Linear Unit (ReLU) activation function in the
higher layers, the authors in [34] used a hybrid model of 3D-2D CNN to extract the features
with non-monotonic activation function and compared with the results of ReLu. Another
HS images classification model using an improved CNN model, called Dual-SCNN, was
presented in [35]. In [36], the authors proposed a tighter random projection with minimal
intra-class variance (TRP-MIV) to improve the class separability. TRP-MIV reduces the
dimension between similar values to classify the unsupervised HS images easily. This
study [37] started by spotting the edge then removing it to reduce the noise. It works to
decrease the dimensionality and increases the training speed by many steps of enhancing
the accuracy of CNN and maxpooling. To reduce the total parameter number of HS images
in the deep networks, Paul et al. added spatial pyramid pooling (SPP) to the extracted
feature maps of 3D-2D CNN [38]. Wei and Zhou introduced a deep learning model called a
spatial-aware network (SANet) [39], a particular network to reduce and choose the most
critical extracted feature maps. The SANet is a hierarchical network that includes three
layers (F, P, R). The F layer uses eight side windows to obtain eight feature maps. The
MIN pooling is used in the P layer to reduce the number of F layer feature maps. The final
layer uses LDA to reduce the dimensionality and increase the classes variations. Moreover,
Zhao et al. [40] used dense connection in the recursive densely connected neural network.
These methods try to keep the storage space and solve the lack of samples number in HS
images. On the other hand, focusing only on having enough samples does not always
increase the final accuracy.

The shallow network of DL can provide more localized information, and the deep
network of DL provides more abstract features than the shallow network. Therefore,
the authors of [41] combined the output of these sequent layers then fed the combined
produced maps into the FC layer to obtain the final output. Shallow CNN can locate
small objects, and has less computational cost than deep CNN. On the other hand, deep
CNN is a powerful network for extracting big objects and obtaining better features [14].

Remote Sens. 2022, 14, 1038 3 of 21

Therefore, a shallow-deep feature extraction network (SDFE) combined the output of
these layers to obtain strong features for larger and small objects and a low loss for the
small ones [42]. Due to very deep networks causing the overfitting problem and limited
training samples, a cascade dual-scale crossover neural network (CDSCN) can extract more
features by applying different spatial and spectral-size convolution kernels [43]. Also, to
avoid overfitting, batch normalization (BN) and dropout layers are added between DL
layers [44,45].

Additionally, using more layers helps extract more features and increase semantic
values, but that causes a reduction in the spatial values and accuracy. So, many studies
used ResNet [42], SeNet [46], and BN layers to relieve the vanishing gradient problem and
optimize the accuracy. Furthermore, combining different paths of network outputs was
used to enhance the spatial values and promote feature extraction like FPN [47], SDFE [42].
In HS images, using only the spectral features is not enough, especially if there is more than
one object with identical spectral signatures. Therefore, knowing the shape and texture
of an object as spatial information increases the distinction. Thus, merging the spectral
and spatial information is necessary to boost the HS image classification accuracy and
identify each class easily [14,48]. In many cases, using deep networks or combining many
subnetworks does not improve the classification since these end-to-end approaches modify
the whole produced weights in each epoch throughout the training time. Therefore, meta-
learner and transfer learning methodologies were introduced to avoid altering the whole
generated weighs.

Meta-learner is a way to obtain the final results from two levels of methodologies. The
first level has many models that send their prediction to the second level, which stacks,
combines, and trains previous level models’ predictions to get optimal and accurate final
results, also called stacking [49–53]. For example, Taormina et al. [54] used four pre-trained
models, namely, AlexNet, SqueezeNet, ResNet18, and GoogLeNet, and retrained them
with three different freezing levels and retrained from scratch to optimize the accuracy of
extracting the features of the two classes of the AIDA dataset. Zhong et al. [55] transferred
the pre-trained data to a multiscale spectral-spatial network (MSSN) with multi-scale
CNNs to the target domain to solve samples limitation then classified the output of the
four different HS classes. Liu et al. [56] used six models to analyze city traffic data, and
the stacked generalization framework obtained the best results. This study [57] used
random forests in the first and second levels (meta-learner) to recognize accelerometer and
audio signals activities and k-fold cross-validation to prevent overfitting. This work [51]
combined the predictions of parsimonious models to increase the variety and decrease the
generalization error rate to find three essential points of the complete force–displacement
curve of bolted components in steel structures.

Although deep learning has provided strong methodologies to improve the classifi-
cation operation, more research is needed to figure out how to enhance classification and
recognize the differences between the classes in the complex and heterogeneous dataset.
Shallow layers provide detailed features, and the deep layers provide more semantic infor-
mation [14,42,58]. On the other hand, shallow layers are unsuitable for complex data, and
complex computations of deep layers encounter overfitting problems and need sufficient
data. However, we can sum up the difficulties of HS image datasets as follows:

1. The HS image dataset is a high-dimensionality dataset with a massive number of
bands, and each band has a different data distribution. Each dataset has a multi-class
with different sample numbers.

2. Classification solely based on spectral classification seldom achieves high accuracy
because of the objects’ complicated spatial distribution and spectral heterogeneity [59].
Each pixel value needs to localize and classify correctly.

3. Because of the backpropagation operation, combining shallow and deep layers in one
model does not provide higher accuracy, as compared to training them individually.

Therefore, this study works to solve all the above issues, in order to boost the final
results of the deep and shallow networks by utilizing the meta-learner, which stops the

Remote Sens. 2022, 14, 1038 4 of 21

backpropagation to modify the generated weights of the Leve-0 models. The framework
of this study works in three stages of processing. First is preprocessing, which works to
enhance the data distribution and split it before feeding it into the training model. Then
the Level-0 models, which are hybrid models of deep and shallow models, and multi-size
kernels of 3D and 2D-CNN, which work to train the input data individually. Finally, the
Level-1 model, which chooses the best-extracted weights of the previous stage, reduces the
loss and overfitting and optimizes the spatial-spectral extraction simultaneously to obtain
the final classification. To sum up, the main contributions of this study are:

1. To propose a novel framework that uses the meta-learner technique to train multi-
class and multi-size datasets by concatenating and training the hybrid and multi-size
kernel networks of CNN.

2. To provide a new normalization method, called QPCA, based on the output of PCA
and quantile transformation, which redistributes the data to be more normal and have
less dimensionality.

3. To present an efficient method that can extract more features from simple and complex
spatial-spectral data simultaneously by combining the output of the shallow and deep
networks without needing to increase the number of samples to increase the accuracy.

2. Methodology and Framework

The framework structure of this study is illustrated in Figure 1. It has three stages of
processing. The first stage showcases external normalization to reduce the dimensionality
and normalize the input data. The second stage is Level-0 methodologies, and it has two
different types of model structure. In these two stages, the input data passes through two
different types of scaling, external and internal normalization. The final stage is the Level-1
model to train the output of Level-0 and the input data and obtain the whole framework’s
final results.

Remote Sens. 2022, 14, x FOR PEER REVIEW 4 of 22

3. Because of the backpropagation operation, combining shallow and deep layers in one
model does not provide higher accuracy, as compared to training them individually.
Therefore, this study works to solve all the above issues, in order to boost the final

results of the deep and shallow networks by utilizing the meta-learner, which stops the
backpropagation to modify the generated weights of the Leve-0 models. The framework
of this study works in three stages of processing. First is preprocessing, which works to
enhance the data distribution and split it before feeding it into the training model. Then
the Level-0 models, which are hybrid models of deep and shallow models, and multi-size
kernels of 3D and 2D-CNN, which work to train the input data individually. Finally, the
Level-1 model, which chooses the best-extracted weights of the previous stage, reduces
the loss and overfitting and optimizes the spatial-spectral extraction simultaneously to
obtain the final classification. To sum up, the main contributions of this study are:
1. To propose a novel framework that uses the meta-learner technique to train multi-

class and multi-size datasets by concatenating and training the hybrid and multi-size
kernel networks of CNN.

2. To provide a new normalization method, called QPCA, based on the output of PCA
and quantile transformation, which redistributes the data to be more normal and
have less dimensionality.

3. To present an efficient method that can extract more features from simple and com-
plex spatial-spectral data simultaneously by combining the output of the shallow and
deep networks without needing to increase the number of samples to increase the
accuracy.

2. Methodology and Framework
The framework structure of this study is illustrated in Figure 1. It has three stages of

processing. The first stage showcases external normalization to reduce the dimensionality
and normalize the input data. The second stage is Level-0 methodologies, and it has two
different types of model structure. In these two stages, the input data passes through two
different types of scaling, external and internal normalization. The final stage is the Level-
1 model to train the output of Level-0 and the input data and obtain the whole frame-
work’s final results.

Figure 1. The framework of meta-learner hybrid models (MLHM). Figure 1. The framework of meta-learner hybrid models (MLHM).

2.1. Optimize the Data Distribution (QPCA, Quantile Transformation Principal Components Analysis)

One of the external normalizations in HS images is principal components analysis
(PCA), which reduces the banal numbers of the input dataset and the data dimensionality
itself. It is a strategy that employs linear approximation to figure out the most critical

Remote Sens. 2022, 14, 1038 5 of 21

components that help to raise the variance in the input data which helps to reduce the
memory space, noise and speed up the performance.

Assume x is the original data which = [x1, x2, . . . , xd], x ∈ Rd, d is the dimension of
x. The standardization of the input data is calculated as:

X = (x− µ)/σ(x) (1)

where µ is the mean of x and σ(x) is the standard deviation.
Then, to promote differences between classes, calculate the covariance matrix for X:

CX = (
d

∑
i=1

(Xi − X)
(
Xi − X

)T
)/d− 1 (2)

After obtaining the covariance matrix, compute the eigenvectors (ω) of the Cd×d matrix
using the biggest eigenvectors k, where k is the dimensionality of the new feature subspace
(k ≤ d). ω is the weight vector in PCA, which will be multiplied by X to obtain the final
new subspace of transferred features:

Pd×k = Xd×k × (ωk×1)
T (3)

This procedure aids in the categorization of classes and the selection of the most
valuable features for classification.

PCA reduces d dimension to a new dimension k, and P = [p1, p2, . . . , pk], p ∈ Rk is
the output of PCA for x, where k ≤ d. The next step is to change the distribution of P by
quantile transformation (Q), which we call the output of this transformation QPCA.

y = G−1
y (FP (P)) (4)

where FP represents cumulative distribution function (CDF) for the output of PCA (P),
and G−1

y is the Gaussian cumulative distribution function (GCDF) in y. The GCDF is
represented as follows:

F(p) = 1/σ
√

2π
∫ +∞

−∞
exp [−(p− µ/σ)2/2]dp (5)

where µ is the mean of p, σ is the standard deviation of p. Algorithm 1 shows the main
steps of the QPCA processing.

Algorithm 1. The QPCA Processing.

Input: x ∈ Rn×d

Output: y ∈ Rn×k

1: Standardize the d-dimensional of x→ X.
2: Getting the covariance matrix of X
3: Select the top k eigenvectors (k ≤ d) to build the weight matrix ω.
4: Transform X by multiplying it with the weight vector of k to get P : P = X×ω

5: Normalize the distribution of P by quantile transformation: y = G−1
y (FP (P))

2.2. Framework

After keeping the influential spectral bands that contain more information, the input
HS image cubs become ∈ RT×H×k, where is the transformation data of QPCA, where T is
the width, H is the height, and k is the number of bands. The initial layers of the Level-0
models are 3D-CNN, so we divided the data cubs into small overlapping 3D patches
P ∈ RS×S×k, where S× S is the window size which equals 25 for all input datasets. 3D
patches of P are given by (T − S + 1)× (H − S + 1) then reshaped into (S, S, k, 1).

Remote Sens. 2022, 14, 1038 6 of 21

The model-1 of Level-0 has 10 layers. It has three sequential 3D-CNN layers, one
2D-CNN layer, consecutive fully connected (FC) layers, and batch normalization (BN). The
formulas for 2D-CNN and 3D-CNN layers are as follows:

Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 22

patches 𝒫 ∈ ℛ𝑆 × 𝑆 × 𝑘, where 𝑆 × 𝑆 is the window size which equals 25 for all input da-

tasets. 3D patches of 𝒫 are given by (𝑇 − 𝑆 + 1) × (𝐻 − 𝑆 + 1) then reshaped into

(𝑆, 𝑆, 𝑘, 1).

The model-1 of Level-0 has 10 layers. It has three sequential 3D-CNN layers, one 2D-

CNN layer, consecutive fully connected (FC) layers, and batch normalization (BN). The

formulas for 2D-CNN and 3D-CNN layers are as follows:

𝒴𝑖𝑗
𝑝𝑦

= 𝜑 (∑ ∑ ∑ 𝓌𝑖𝑗𝑚
𝑎𝑞

𝒴(𝑖−1)𝑚
(𝑝+𝑎)(𝑦+𝑞)

+ 𝔟𝑖𝑗

𝑡

𝑞=1

ℎ

𝑎=1𝑚

) (6)

𝒴𝑖𝑗
𝑝𝑦𝑧

= 𝜑 (∑ ∑ ∑ ∑ 𝓌𝑖𝑗𝑚
𝑎𝑞𝑟

𝒴(𝑖−1)𝑚
(𝑝+𝑎)(𝑦+𝑞)(𝑧+𝑟)

+ 𝔟𝑖𝑗

𝑡

𝑞=1

ℎ

𝑎=1

𝑑

𝑟=1𝑚

) (7)

𝜑(𝑝) = max (0, 𝑝) (8)

where (𝑝, 𝑦, 𝑧) are the variable position in the 𝑗th feature map in the 𝑖th layer, 𝜑 is the

ReLu activation function (RAF), (𝑡, ℎ, 𝑑) are the kernel sizes, (𝑎, 𝑞, 𝑟) are the kernel in-

dexes, 𝑚 is feature maps index, and (𝓌 , 𝑏) are the weight and bias.

The output dimensional and kernel size of the first 3D-CNN is 8, and (3, 3, 7). The

second 3D-CNN is 16, and (3, 3, 5). Finally, the third 3D-CNN has 32 output dimensional

and (3, 3, 3) kernel sizes. The output dimensional and kernel size of the 2D-CNN are 64,

and (3, 3). Before feeding the output of the 2D-CNN into the first FC layer, the created

feature maps pass through the flattening layer, and the number of units of FC layers are

256 and 128, respectively, as indicated in Table 1.

HS image datasets are distinguished by having multi-classes, and each class has a

different number of samples; some have a minimal number of samples. On the other hand,

deep learning methodologies often have many weight values for tuning, making it a big

challenge to enhance the accuracy of this disparity of the dataset classes. Therefore, many

methods were introduced to avoid overfitting or to enhance the final accuracy during the

training stage, like BN, dropout, lateral connections [14,19,42,58,60]. In this model, BN

layers were used before each FC layer to normalize the results of the internal operation

during the training. However, because CNN reduces the dimension of the produced fea-

ture map, zero paddings were used for the input data to keep the edge data from losing,

as shown in Figure 1 and Table 1.

Model-2 of Level-0 stage is almost like the model-1 of Level-0. It has two 3D-CNN

layers. The output dimensional and kernel size of the first 3D-CNN is 8, and (3, 3, 7). The

second 3D-CNN is 16, and (3, 3, 5). The third layer of this model is the 2D-CNN layer, and

the output dimensional and kernel sizes of this layer are 64 and (3, 3). Also, two layers of

FC with the same number units of model-1, with two dropout layers accounting for 40%

dropping rate, were used after each FC layer to avoid overfitting, and finally, the SoftMax

layer. This model has fewer layers and less complex computation than model-1, Figure 1,

and Table 1.

Table 1. The structure of the framework. level-1 layers for model-1 and model-2, and level-2 layers.

Level-0
Level-1

Model-1 Model-2

3D-Convolutional Neural Networks (CNN)

8—(3, 3, 7)—ReLu *

3D-CNN

8—(3, 3, 7)—ReLu
--

3D-CNN

16—(3, 3, 5)—ReLu

3D-CNN

16—(3, 3, 5)—ReLu
--

3D-CNN

32—(3, 3, 3)—ReLu
-- --

py

ij = ϕ

(
∑
m

h

∑
a=1

t

∑
q=1

Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 22

patches 𝒫 ∈ ℛ𝑆 × 𝑆 × 𝑘, where 𝑆 × 𝑆 is the window size which equals 25 for all input da-

tasets. 3D patches of 𝒫 are given by (𝑇 − 𝑆 + 1) × (𝐻 − 𝑆 + 1) then reshaped into

(𝑆, 𝑆, 𝑘, 1).

The model-1 of Level-0 has 10 layers. It has three sequential 3D-CNN layers, one 2D-

CNN layer, consecutive fully connected (FC) layers, and batch normalization (BN). The

formulas for 2D-CNN and 3D-CNN layers are as follows:

𝒴𝑖𝑗
𝑝𝑦

= 𝜑 (∑ ∑ ∑ 𝓌𝑖𝑗𝑚
𝑎𝑞

𝒴(𝑖−1)𝑚
(𝑝+𝑎)(𝑦+𝑞)

+ 𝔟𝑖𝑗

𝑡

𝑞=1

ℎ

𝑎=1𝑚

) (6)

𝒴𝑖𝑗
𝑝𝑦𝑧

= 𝜑 (∑ ∑ ∑ ∑ 𝓌𝑖𝑗𝑚
𝑎𝑞𝑟

𝒴(𝑖−1)𝑚
(𝑝+𝑎)(𝑦+𝑞)(𝑧+𝑟)

+ 𝔟𝑖𝑗

𝑡

𝑞=1

ℎ

𝑎=1

𝑑

𝑟=1𝑚

) (7)

𝜑(𝑝) = max (0, 𝑝) (8)

where (𝑝, 𝑦, 𝑧) are the variable position in the 𝑗th feature map in the 𝑖th layer, 𝜑 is the

ReLu activation function (RAF), (𝑡, ℎ, 𝑑) are the kernel sizes, (𝑎, 𝑞, 𝑟) are the kernel in-

dexes, 𝑚 is feature maps index, and (𝓌 , 𝑏) are the weight and bias.

The output dimensional and kernel size of the first 3D-CNN is 8, and (3, 3, 7). The

second 3D-CNN is 16, and (3, 3, 5). Finally, the third 3D-CNN has 32 output dimensional

and (3, 3, 3) kernel sizes. The output dimensional and kernel size of the 2D-CNN are 64,

and (3, 3). Before feeding the output of the 2D-CNN into the first FC layer, the created

feature maps pass through the flattening layer, and the number of units of FC layers are

256 and 128, respectively, as indicated in Table 1.

HS image datasets are distinguished by having multi-classes, and each class has a

different number of samples; some have a minimal number of samples. On the other hand,

deep learning methodologies often have many weight values for tuning, making it a big

challenge to enhance the accuracy of this disparity of the dataset classes. Therefore, many

methods were introduced to avoid overfitting or to enhance the final accuracy during the

training stage, like BN, dropout, lateral connections [14,19,42,58,60]. In this model, BN

layers were used before each FC layer to normalize the results of the internal operation

during the training. However, because CNN reduces the dimension of the produced fea-

ture map, zero paddings were used for the input data to keep the edge data from losing,

as shown in Figure 1 and Table 1.

Model-2 of Level-0 stage is almost like the model-1 of Level-0. It has two 3D-CNN

layers. The output dimensional and kernel size of the first 3D-CNN is 8, and (3, 3, 7). The

second 3D-CNN is 16, and (3, 3, 5). The third layer of this model is the 2D-CNN layer, and

the output dimensional and kernel sizes of this layer are 64 and (3, 3). Also, two layers of

FC with the same number units of model-1, with two dropout layers accounting for 40%

dropping rate, were used after each FC layer to avoid overfitting, and finally, the SoftMax

layer. This model has fewer layers and less complex computation than model-1, Figure 1,

and Table 1.

Table 1. The structure of the framework. level-1 layers for model-1 and model-2, and level-2 layers.

Level-0
Level-1

Model-1 Model-2

3D-Convolutional Neural Networks (CNN)

8—(3, 3, 7)—ReLu *

3D-CNN

8—(3, 3, 7)—ReLu
--

3D-CNN

16—(3, 3, 5)—ReLu

3D-CNN

16—(3, 3, 5)—ReLu
--

3D-CNN

32—(3, 3, 3)—ReLu
-- --

aq
ijm

Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 22

patches 𝒫 ∈ ℛ𝑆 × 𝑆 × 𝑘, where 𝑆 × 𝑆 is the window size which equals 25 for all input da-

tasets. 3D patches of 𝒫 are given by (𝑇 − 𝑆 + 1) × (𝐻 − 𝑆 + 1) then reshaped into

(𝑆, 𝑆, 𝑘, 1).

The model-1 of Level-0 has 10 layers. It has three sequential 3D-CNN layers, one 2D-

CNN layer, consecutive fully connected (FC) layers, and batch normalization (BN). The

formulas for 2D-CNN and 3D-CNN layers are as follows:

𝒴𝑖𝑗
𝑝𝑦

= 𝜑 (∑ ∑ ∑ 𝓌𝑖𝑗𝑚
𝑎𝑞

𝒴(𝑖−1)𝑚
(𝑝+𝑎)(𝑦+𝑞)

+ 𝔟𝑖𝑗

𝑡

𝑞=1

ℎ

𝑎=1𝑚

) (6)

𝒴𝑖𝑗
𝑝𝑦𝑧

= 𝜑 (∑ ∑ ∑ ∑ 𝓌𝑖𝑗𝑚
𝑎𝑞𝑟

𝒴(𝑖−1)𝑚
(𝑝+𝑎)(𝑦+𝑞)(𝑧+𝑟)

+ 𝔟𝑖𝑗

𝑡

𝑞=1

ℎ

𝑎=1

𝑑

𝑟=1𝑚

) (7)

𝜑(𝑝) = max (0, 𝑝) (8)

where (𝑝, 𝑦, 𝑧) are the variable position in the 𝑗th feature map in the 𝑖th layer, 𝜑 is the

ReLu activation function (RAF), (𝑡, ℎ, 𝑑) are the kernel sizes, (𝑎, 𝑞, 𝑟) are the kernel in-

dexes, 𝑚 is feature maps index, and (𝓌 , 𝑏) are the weight and bias.

The output dimensional and kernel size of the first 3D-CNN is 8, and (3, 3, 7). The

second 3D-CNN is 16, and (3, 3, 5). Finally, the third 3D-CNN has 32 output dimensional

and (3, 3, 3) kernel sizes. The output dimensional and kernel size of the 2D-CNN are 64,

and (3, 3). Before feeding the output of the 2D-CNN into the first FC layer, the created

feature maps pass through the flattening layer, and the number of units of FC layers are

256 and 128, respectively, as indicated in Table 1.

HS image datasets are distinguished by having multi-classes, and each class has a

different number of samples; some have a minimal number of samples. On the other hand,

deep learning methodologies often have many weight values for tuning, making it a big

challenge to enhance the accuracy of this disparity of the dataset classes. Therefore, many

methods were introduced to avoid overfitting or to enhance the final accuracy during the

training stage, like BN, dropout, lateral connections [14,19,42,58,60]. In this model, BN

layers were used before each FC layer to normalize the results of the internal operation

during the training. However, because CNN reduces the dimension of the produced fea-

ture map, zero paddings were used for the input data to keep the edge data from losing,

as shown in Figure 1 and Table 1.

Model-2 of Level-0 stage is almost like the model-1 of Level-0. It has two 3D-CNN

layers. The output dimensional and kernel size of the first 3D-CNN is 8, and (3, 3, 7). The

second 3D-CNN is 16, and (3, 3, 5). The third layer of this model is the 2D-CNN layer, and

the output dimensional and kernel sizes of this layer are 64 and (3, 3). Also, two layers of

FC with the same number units of model-1, with two dropout layers accounting for 40%

dropping rate, were used after each FC layer to avoid overfitting, and finally, the SoftMax

layer. This model has fewer layers and less complex computation than model-1, Figure 1,

and Table 1.

Table 1. The structure of the framework. level-1 layers for model-1 and model-2, and level-2 layers.

Level-0
Level-1

Model-1 Model-2

3D-Convolutional Neural Networks (CNN)

8—(3, 3, 7)—ReLu *

3D-CNN

8—(3, 3, 7)—ReLu
--

3D-CNN

16—(3, 3, 5)—ReLu

3D-CNN

16—(3, 3, 5)—ReLu
--

3D-CNN

32—(3, 3, 3)—ReLu
-- --

(p+a)(y+q)

(i−1)m + bij

)
(6)

Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 22

patches 𝒫 ∈ ℛ𝑆 × 𝑆 × 𝑘, where 𝑆 × 𝑆 is the window size which equals 25 for all input da-

tasets. 3D patches of 𝒫 are given by (𝑇 − 𝑆 + 1) × (𝐻 − 𝑆 + 1) then reshaped into

(𝑆, 𝑆, 𝑘, 1).

The model-1 of Level-0 has 10 layers. It has three sequential 3D-CNN layers, one 2D-

CNN layer, consecutive fully connected (FC) layers, and batch normalization (BN). The

formulas for 2D-CNN and 3D-CNN layers are as follows:

𝒴𝑖𝑗
𝑝𝑦

= 𝜑 (∑ ∑ ∑ 𝓌𝑖𝑗𝑚
𝑎𝑞

𝒴(𝑖−1)𝑚
(𝑝+𝑎)(𝑦+𝑞)

+ 𝔟𝑖𝑗

𝑡

𝑞=1

ℎ

𝑎=1𝑚

) (6)

𝒴𝑖𝑗
𝑝𝑦𝑧

= 𝜑 (∑ ∑ ∑ ∑ 𝓌𝑖𝑗𝑚
𝑎𝑞𝑟

𝒴(𝑖−1)𝑚
(𝑝+𝑎)(𝑦+𝑞)(𝑧+𝑟)

+ 𝔟𝑖𝑗

𝑡

𝑞=1

ℎ

𝑎=1

𝑑

𝑟=1𝑚

) (7)

𝜑(𝑝) = max (0, 𝑝) (8)

where (𝑝, 𝑦, 𝑧) are the variable position in the 𝑗th feature map in the 𝑖th layer, 𝜑 is the

ReLu activation function (RAF), (𝑡, ℎ, 𝑑) are the kernel sizes, (𝑎, 𝑞, 𝑟) are the kernel in-

dexes, 𝑚 is feature maps index, and (𝓌 , 𝑏) are the weight and bias.

The output dimensional and kernel size of the first 3D-CNN is 8, and (3, 3, 7). The

second 3D-CNN is 16, and (3, 3, 5). Finally, the third 3D-CNN has 32 output dimensional

and (3, 3, 3) kernel sizes. The output dimensional and kernel size of the 2D-CNN are 64,

and (3, 3). Before feeding the output of the 2D-CNN into the first FC layer, the created

feature maps pass through the flattening layer, and the number of units of FC layers are

256 and 128, respectively, as indicated in Table 1.

HS image datasets are distinguished by having multi-classes, and each class has a

different number of samples; some have a minimal number of samples. On the other hand,

deep learning methodologies often have many weight values for tuning, making it a big

challenge to enhance the accuracy of this disparity of the dataset classes. Therefore, many

methods were introduced to avoid overfitting or to enhance the final accuracy during the

training stage, like BN, dropout, lateral connections [14,19,42,58,60]. In this model, BN

layers were used before each FC layer to normalize the results of the internal operation

during the training. However, because CNN reduces the dimension of the produced fea-

ture map, zero paddings were used for the input data to keep the edge data from losing,

as shown in Figure 1 and Table 1.

Model-2 of Level-0 stage is almost like the model-1 of Level-0. It has two 3D-CNN

layers. The output dimensional and kernel size of the first 3D-CNN is 8, and (3, 3, 7). The

second 3D-CNN is 16, and (3, 3, 5). The third layer of this model is the 2D-CNN layer, and

the output dimensional and kernel sizes of this layer are 64 and (3, 3). Also, two layers of

FC with the same number units of model-1, with two dropout layers accounting for 40%

dropping rate, were used after each FC layer to avoid overfitting, and finally, the SoftMax

layer. This model has fewer layers and less complex computation than model-1, Figure 1,

and Table 1.

Table 1. The structure of the framework. level-1 layers for model-1 and model-2, and level-2 layers.

Level-0
Level-1

Model-1 Model-2

3D-Convolutional Neural Networks (CNN)

8—(3, 3, 7)—ReLu *

3D-CNN

8—(3, 3, 7)—ReLu
--

3D-CNN

16—(3, 3, 5)—ReLu

3D-CNN

16—(3, 3, 5)—ReLu
--

3D-CNN

32—(3, 3, 3)—ReLu
-- --

pyz

ij = ϕ

(
∑
m

d

∑
r=1

h

∑
a=1

t

∑
q=1

Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 22

patches 𝒫 ∈ ℛ𝑆 × 𝑆 × 𝑘, where 𝑆 × 𝑆 is the window size which equals 25 for all input da-

tasets. 3D patches of 𝒫 are given by (𝑇 − 𝑆 + 1) × (𝐻 − 𝑆 + 1) then reshaped into

(𝑆, 𝑆, 𝑘, 1).

The model-1 of Level-0 has 10 layers. It has three sequential 3D-CNN layers, one 2D-

CNN layer, consecutive fully connected (FC) layers, and batch normalization (BN). The

formulas for 2D-CNN and 3D-CNN layers are as follows:

𝒴𝑖𝑗
𝑝𝑦

= 𝜑 (∑ ∑ ∑ 𝓌𝑖𝑗𝑚
𝑎𝑞

𝒴(𝑖−1)𝑚
(𝑝+𝑎)(𝑦+𝑞)

+ 𝔟𝑖𝑗

𝑡

𝑞=1

ℎ

𝑎=1𝑚

) (6)

𝒴𝑖𝑗
𝑝𝑦𝑧

= 𝜑 (∑ ∑ ∑ ∑ 𝓌𝑖𝑗𝑚
𝑎𝑞𝑟

𝒴(𝑖−1)𝑚
(𝑝+𝑎)(𝑦+𝑞)(𝑧+𝑟)

+ 𝔟𝑖𝑗

𝑡

𝑞=1

ℎ

𝑎=1

𝑑

𝑟=1𝑚

) (7)

𝜑(𝑝) = max (0, 𝑝) (8)

where (𝑝, 𝑦, 𝑧) are the variable position in the 𝑗th feature map in the 𝑖th layer, 𝜑 is the

ReLu activation function (RAF), (𝑡, ℎ, 𝑑) are the kernel sizes, (𝑎, 𝑞, 𝑟) are the kernel in-

dexes, 𝑚 is feature maps index, and (𝓌 , 𝑏) are the weight and bias.

The output dimensional and kernel size of the first 3D-CNN is 8, and (3, 3, 7). The

second 3D-CNN is 16, and (3, 3, 5). Finally, the third 3D-CNN has 32 output dimensional

and (3, 3, 3) kernel sizes. The output dimensional and kernel size of the 2D-CNN are 64,

and (3, 3). Before feeding the output of the 2D-CNN into the first FC layer, the created

feature maps pass through the flattening layer, and the number of units of FC layers are

256 and 128, respectively, as indicated in Table 1.

HS image datasets are distinguished by having multi-classes, and each class has a

different number of samples; some have a minimal number of samples. On the other hand,

deep learning methodologies often have many weight values for tuning, making it a big

challenge to enhance the accuracy of this disparity of the dataset classes. Therefore, many

methods were introduced to avoid overfitting or to enhance the final accuracy during the

training stage, like BN, dropout, lateral connections [14,19,42,58,60]. In this model, BN

layers were used before each FC layer to normalize the results of the internal operation

during the training. However, because CNN reduces the dimension of the produced fea-

ture map, zero paddings were used for the input data to keep the edge data from losing,

as shown in Figure 1 and Table 1.

Model-2 of Level-0 stage is almost like the model-1 of Level-0. It has two 3D-CNN

layers. The output dimensional and kernel size of the first 3D-CNN is 8, and (3, 3, 7). The

second 3D-CNN is 16, and (3, 3, 5). The third layer of this model is the 2D-CNN layer, and

the output dimensional and kernel sizes of this layer are 64 and (3, 3). Also, two layers of

FC with the same number units of model-1, with two dropout layers accounting for 40%

dropping rate, were used after each FC layer to avoid overfitting, and finally, the SoftMax

layer. This model has fewer layers and less complex computation than model-1, Figure 1,

and Table 1.

Table 1. The structure of the framework. level-1 layers for model-1 and model-2, and level-2 layers.

Level-0
Level-1

Model-1 Model-2

3D-Convolutional Neural Networks (CNN)

8—(3, 3, 7)—ReLu *

3D-CNN

8—(3, 3, 7)—ReLu
--

3D-CNN

16—(3, 3, 5)—ReLu

3D-CNN

16—(3, 3, 5)—ReLu
--

3D-CNN

32—(3, 3, 3)—ReLu
-- --

aqr
ijm

Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 22

patches 𝒫 ∈ ℛ𝑆 × 𝑆 × 𝑘, where 𝑆 × 𝑆 is the window size which equals 25 for all input da-

tasets. 3D patches of 𝒫 are given by (𝑇 − 𝑆 + 1) × (𝐻 − 𝑆 + 1) then reshaped into

(𝑆, 𝑆, 𝑘, 1).

The model-1 of Level-0 has 10 layers. It has three sequential 3D-CNN layers, one 2D-

CNN layer, consecutive fully connected (FC) layers, and batch normalization (BN). The

formulas for 2D-CNN and 3D-CNN layers are as follows:

𝒴𝑖𝑗
𝑝𝑦

= 𝜑 (∑ ∑ ∑ 𝓌𝑖𝑗𝑚
𝑎𝑞

𝒴(𝑖−1)𝑚
(𝑝+𝑎)(𝑦+𝑞)

+ 𝔟𝑖𝑗

𝑡

𝑞=1

ℎ

𝑎=1𝑚

) (6)

𝒴𝑖𝑗
𝑝𝑦𝑧

= 𝜑 (∑ ∑ ∑ ∑ 𝓌𝑖𝑗𝑚
𝑎𝑞𝑟

𝒴(𝑖−1)𝑚
(𝑝+𝑎)(𝑦+𝑞)(𝑧+𝑟)

+ 𝔟𝑖𝑗

𝑡

𝑞=1

ℎ

𝑎=1

𝑑

𝑟=1𝑚

) (7)

𝜑(𝑝) = max (0, 𝑝) (8)

where (𝑝, 𝑦, 𝑧) are the variable position in the 𝑗th feature map in the 𝑖th layer, 𝜑 is the

ReLu activation function (RAF), (𝑡, ℎ, 𝑑) are the kernel sizes, (𝑎, 𝑞, 𝑟) are the kernel in-

dexes, 𝑚 is feature maps index, and (𝓌 , 𝑏) are the weight and bias.

The output dimensional and kernel size of the first 3D-CNN is 8, and (3, 3, 7). The

second 3D-CNN is 16, and (3, 3, 5). Finally, the third 3D-CNN has 32 output dimensional

and (3, 3, 3) kernel sizes. The output dimensional and kernel size of the 2D-CNN are 64,

and (3, 3). Before feeding the output of the 2D-CNN into the first FC layer, the created

feature maps pass through the flattening layer, and the number of units of FC layers are

256 and 128, respectively, as indicated in Table 1.

HS image datasets are distinguished by having multi-classes, and each class has a

different number of samples; some have a minimal number of samples. On the other hand,

deep learning methodologies often have many weight values for tuning, making it a big

challenge to enhance the accuracy of this disparity of the dataset classes. Therefore, many

methods were introduced to avoid overfitting or to enhance the final accuracy during the

training stage, like BN, dropout, lateral connections [14,19,42,58,60]. In this model, BN

layers were used before each FC layer to normalize the results of the internal operation

during the training. However, because CNN reduces the dimension of the produced fea-

ture map, zero paddings were used for the input data to keep the edge data from losing,

as shown in Figure 1 and Table 1.

Model-2 of Level-0 stage is almost like the model-1 of Level-0. It has two 3D-CNN

layers. The output dimensional and kernel size of the first 3D-CNN is 8, and (3, 3, 7). The

second 3D-CNN is 16, and (3, 3, 5). The third layer of this model is the 2D-CNN layer, and

the output dimensional and kernel sizes of this layer are 64 and (3, 3). Also, two layers of

FC with the same number units of model-1, with two dropout layers accounting for 40%

dropping rate, were used after each FC layer to avoid overfitting, and finally, the SoftMax

layer. This model has fewer layers and less complex computation than model-1, Figure 1,

and Table 1.

Table 1. The structure of the framework. level-1 layers for model-1 and model-2, and level-2 layers.

Level-0
Level-1

Model-1 Model-2

3D-Convolutional Neural Networks (CNN)

8—(3, 3, 7)—ReLu *

3D-CNN

8—(3, 3, 7)—ReLu
--

3D-CNN

16—(3, 3, 5)—ReLu

3D-CNN

16—(3, 3, 5)—ReLu
--

3D-CNN

32—(3, 3, 3)—ReLu
-- --

(p+a)(y+q)(z+r)

(i−1)m + bij

)
(7)

ϕ(p) = max(0, p) (8)

where (p, y, z) are the variable position in the jth feature map in the ith layer, ϕ is the ReLu
activation function (RAF), (t, h, d) are the kernel sizes, (a, q, r) are the kernel indexes, m is
feature maps index, and (

Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 22

patches 𝒫 ∈ ℛ𝑆 × 𝑆 × 𝑘, where 𝑆 × 𝑆 is the window size which equals 25 for all input da-

tasets. 3D patches of 𝒫 are given by (𝑇 − 𝑆 + 1) × (𝐻 − 𝑆 + 1) then reshaped into

(𝑆, 𝑆, 𝑘, 1).

The model-1 of Level-0 has 10 layers. It has three sequential 3D-CNN layers, one 2D-

CNN layer, consecutive fully connected (FC) layers, and batch normalization (BN). The

formulas for 2D-CNN and 3D-CNN layers are as follows:

𝒴𝑖𝑗
𝑝𝑦

= 𝜑 (∑ ∑ ∑ 𝓌𝑖𝑗𝑚
𝑎𝑞

𝒴(𝑖−1)𝑚
(𝑝+𝑎)(𝑦+𝑞)

+ 𝔟𝑖𝑗

𝑡

𝑞=1

ℎ

𝑎=1𝑚

) (6)

𝒴𝑖𝑗
𝑝𝑦𝑧

= 𝜑 (∑ ∑ ∑ ∑ 𝓌𝑖𝑗𝑚
𝑎𝑞𝑟

𝒴(𝑖−1)𝑚
(𝑝+𝑎)(𝑦+𝑞)(𝑧+𝑟)

+ 𝔟𝑖𝑗

𝑡

𝑞=1

ℎ

𝑎=1

𝑑

𝑟=1𝑚

) (7)

𝜑(𝑝) = max (0, 𝑝) (8)

where (𝑝, 𝑦, 𝑧) are the variable position in the 𝑗th feature map in the 𝑖th layer, 𝜑 is the

ReLu activation function (RAF), (𝑡, ℎ, 𝑑) are the kernel sizes, (𝑎, 𝑞, 𝑟) are the kernel in-

dexes, 𝑚 is feature maps index, and (𝓌 , 𝑏) are the weight and bias.

The output dimensional and kernel size of the first 3D-CNN is 8, and (3, 3, 7). The

second 3D-CNN is 16, and (3, 3, 5). Finally, the third 3D-CNN has 32 output dimensional

and (3, 3, 3) kernel sizes. The output dimensional and kernel size of the 2D-CNN are 64,

and (3, 3). Before feeding the output of the 2D-CNN into the first FC layer, the created

feature maps pass through the flattening layer, and the number of units of FC layers are

256 and 128, respectively, as indicated in Table 1.

HS image datasets are distinguished by having multi-classes, and each class has a

different number of samples; some have a minimal number of samples. On the other hand,

deep learning methodologies often have many weight values for tuning, making it a big

challenge to enhance the accuracy of this disparity of the dataset classes. Therefore, many

methods were introduced to avoid overfitting or to enhance the final accuracy during the

training stage, like BN, dropout, lateral connections [14,19,42,58,60]. In this model, BN

layers were used before each FC layer to normalize the results of the internal operation

during the training. However, because CNN reduces the dimension of the produced fea-

ture map, zero paddings were used for the input data to keep the edge data from losing,

as shown in Figure 1 and Table 1.

Model-2 of Level-0 stage is almost like the model-1 of Level-0. It has two 3D-CNN

layers. The output dimensional and kernel size of the first 3D-CNN is 8, and (3, 3, 7). The

second 3D-CNN is 16, and (3, 3, 5). The third layer of this model is the 2D-CNN layer, and

the output dimensional and kernel sizes of this layer are 64 and (3, 3). Also, two layers of

FC with the same number units of model-1, with two dropout layers accounting for 40%

dropping rate, were used after each FC layer to avoid overfitting, and finally, the SoftMax

layer. This model has fewer layers and less complex computation than model-1, Figure 1,

and Table 1.

Table 1. The structure of the framework. level-1 layers for model-1 and model-2, and level-2 layers.

Level-0
Level-1

Model-1 Model-2

3D-Convolutional Neural Networks (CNN)

8—(3, 3, 7)—ReLu *

3D-CNN

8—(3, 3, 7)—ReLu
--

3D-CNN

16—(3, 3, 5)—ReLu

3D-CNN

16—(3, 3, 5)—ReLu
--

3D-CNN

32—(3, 3, 3)—ReLu
-- --

, b) are the weight and bias.
The output dimensional and kernel size of the first 3D-CNN is 8, and (3, 3, 7). The

second 3D-CNN is 16, and (3, 3, 5). Finally, the third 3D-CNN has 32 output dimensional
and (3, 3, 3) kernel sizes. The output dimensional and kernel size of the 2D-CNN are 64,
and (3, 3). Before feeding the output of the 2D-CNN into the first FC layer, the created
feature maps pass through the flattening layer, and the number of units of FC layers are
256 and 128, respectively, as indicated in Table 1.

Table 1. The structure of the framework. level-1 layers for model-1 and model-2, and level-2 layers.

Level-0
Level-1

Model-1 Model-2

3D-Convolutional Neural
Networks (CNN)

8—(3, 3, 7)—ReLu *

3D-CNN
8—(3, 3, 7)—ReLu –

3D-CNN
16—(3, 3, 5)—ReLu

3D-CNN
16—(3, 3, 5)—ReLu –

3D-CNN
32—(3, 3, 3)—ReLu – –

2D-CNN
64—(3, 3)—ReLu

2D-CNN
64—(3, 3)—ReLu

Flatten Flatten –
FC

256—ReLu **
FC

256—ReLu Conct

BN Dropout –
FC

128—ReLu
FC

128—ReLu
FC

128—ReLu
BN BN –

SoftMax SoftMax SoftMax
* Dimensional—(Kernel size)—Activation Function; ** Dimensional—Activation Function.

HS image datasets are distinguished by having multi-classes, and each class has a
different number of samples; some have a minimal number of samples. On the other hand,
deep learning methodologies often have many weight values for tuning, making it a big
challenge to enhance the accuracy of this disparity of the dataset classes. Therefore, many
methods were introduced to avoid overfitting or to enhance the final accuracy during the
training stage, like BN, dropout, lateral connections [14,19,42,58,60]. In this model, BN
layers were used before each FC layer to normalize the results of the internal operation
during the training. However, because CNN reduces the dimension of the produced feature
map, zero paddings were used for the input data to keep the edge data from losing, as
shown in Figure 1 and Table 1.

Model-2 of Level-0 stage is almost like the model-1 of Level-0. It has two 3D-CNN
layers. The output dimensional and kernel size of the first 3D-CNN is 8, and (3, 3, 7). The

Remote Sens. 2022, 14, 1038 7 of 21

second 3D-CNN is 16, and (3, 3, 5). The third layer of this model is the 2D-CNN layer, and
the output dimensional and kernel sizes of this layer are 64 and (3, 3). Also, two layers of
FC with the same number units of model-1, with two dropout layers accounting for 40%
dropping rate, were used after each FC layer to avoid overfitting, and finally, the SoftMax
layer. This model has fewer layers and less complex computation than model-1, Figure 1,
and Table 1.

The level-1 network has three layers: one is the concatenation layer to combine the
output of Level-0 models, the second one is the FC layer which has 128 units, and the last
layer is the SoftMax layer to get the final results. Whiles RAF was used in all layers of the
two levels. In meta-leaner and during the training, the weights are given as:

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 22

2D-CNN

64—(3, 3)—ReLu

2D-CNN

64—(3, 3)—ReLu

Flatten Flatten --

FC

256—ReLu **

FC

256—ReLu
Conct

BN Dropout --

FC

128—ReLu

FC

128—ReLu

FC

128—ReLu

BN BN --

SoftMax SoftMax SoftMax
* Dimensional—(Kernel size)—Activation Function; ** Dimensional—Activation Function.

The level-1 network has three layers: one is the concatenation layer to combine the

output of Level-0 models, the second one is the FC layer which has 128 units, and the last

layer is the SoftMax layer to get the final results. Whiles RAF was used in all layers of the

two levels. In meta-leaner and during the training, the weights are given as:

�̂�𝑚𝑙 =
𝑎𝑟𝑔𝑚𝑖𝑛

𝓌
∑ [𝓎𝒾 ∑ 𝓌𝑚�̂�𝑚(𝓍𝒾)

𝑀

𝑚=1

]

2𝒩

𝒾=1

 (9)

where �̂�𝑚(𝓍𝒾) is the prediction of 𝓍, using model 𝑚 and M in this study = 2, and 𝒩 is

the sample number. Rather than choosing one model (M = 1), the meta-learner combines

the Level-0 models with estimated optimal weights. This method leads to better predic-

tions often. This stage usually works to minimize the loss of the output of the two levels.

The loss function works as follows:

𝐿𝑜𝑠𝑠 = − ∑ 𝒴𝑖 . 𝑙𝑜ℊ�̂̂�𝑖

𝒩

𝑖=1

 (10)

where 𝒴𝑖 is the real value (ground truth), �̂̂�𝑖 is the score of the level-1 network for the

input data and the output of level-0 models. Algorithm 2 explains the operation of the

meta-leaner and the work of the MLHM framework.

Algorithm 2. The Steps of the Proposed MLHM.

Input: Training data 𝒟1 = {𝑋𝑖 , 𝑦𝑖}𝑖=1
𝑚 (𝑋𝑖 ∈ ℝ𝑛, 𝑦𝑖 ∈ ϒ) and

𝒟2 = {𝑋𝑗 , 𝑦𝑗}
𝑗=𝑚

𝑒
 (𝑋𝑗 ∈ ℝ𝑛, 𝑦𝑗 ∈ ϒ)

Output: An ensemble classifier �̂̂�

1: Step 1: Learn Level-0 classifiers

2: for 𝑡 ← 1 to 𝑚 do

3: Learn a base classifier 𝒴𝑡 based on 𝒟1

4: end for

5: Step 2: Train the dataset of 𝒟2

6: Keep the weights of training stage {𝑋𝑖
′, 𝑦𝑖}, 𝑤ℎ𝑒𝑟𝑒 𝑥𝑖

′ = {𝒴1(𝑋𝑖), 𝒴1(𝑋𝑖), … , 𝒴𝑚 (𝑋𝑖)}

7: Step 3: Learn the Level-1 classifier

8: for 𝑗 ← 𝑚 𝑡𝑜 𝑒 do

9: Redistribute weights based on the new training data and the previous weights. Learn

a new classifier �̂� based on the newly constructed data set

10: end for

11: Return �̂̂�(𝑋) = �̂�(𝒴1(𝑋𝑗), 𝒴1(𝑋𝑗), … , 𝒴𝑒 (𝑋𝑗))

(9)

where

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 22

2D-CNN

64—(3, 3)—ReLu

2D-CNN

64—(3, 3)—ReLu

Flatten Flatten --

FC

256—ReLu **

FC

256—ReLu
Conct

BN Dropout --

FC

128—ReLu

FC

128—ReLu

FC

128—ReLu

BN BN --

SoftMax SoftMax SoftMax
* Dimensional—(Kernel size)—Activation Function; ** Dimensional—Activation Function.

The level-1 network has three layers: one is the concatenation layer to combine the

output of Level-0 models, the second one is the FC layer which has 128 units, and the last

layer is the SoftMax layer to get the final results. Whiles RAF was used in all layers of the

two levels. In meta-leaner and during the training, the weights are given as:

�̂�𝑚𝑙 =
𝑎𝑟𝑔𝑚𝑖𝑛

𝓌
∑ [𝓎𝒾 ∑ 𝓌𝑚�̂�𝑚(𝓍𝒾)

𝑀

𝑚=1

]

2𝒩

𝒾=1

 (9)

where �̂�𝑚(𝓍𝒾) is the prediction of 𝓍, using model 𝑚 and M in this study = 2, and 𝒩 is

the sample number. Rather than choosing one model (M = 1), the meta-learner combines

the Level-0 models with estimated optimal weights. This method leads to better predic-

tions often. This stage usually works to minimize the loss of the output of the two levels.

The loss function works as follows:

𝐿𝑜𝑠𝑠 = − ∑ 𝒴𝑖 . 𝑙𝑜ℊ�̂̂�𝑖

𝒩

𝑖=1

 (10)

where 𝒴𝑖 is the real value (ground truth), �̂̂�𝑖 is the score of the level-1 network for the

input data and the output of level-0 models. Algorithm 2 explains the operation of the

meta-leaner and the work of the MLHM framework.

Algorithm 2. The Steps of the Proposed MLHM.

Input: Training data 𝒟1 = {𝑋𝑖 , 𝑦𝑖}𝑖=1
𝑚 (𝑋𝑖 ∈ ℝ𝑛, 𝑦𝑖 ∈ ϒ) and

𝒟2 = {𝑋𝑗 , 𝑦𝑗}
𝑗=𝑚

𝑒
 (𝑋𝑗 ∈ ℝ𝑛, 𝑦𝑗 ∈ ϒ)

Output: An ensemble classifier �̂̂�

1: Step 1: Learn Level-0 classifiers

2: for 𝑡 ← 1 to 𝑚 do

3: Learn a base classifier 𝒴𝑡 based on 𝒟1

4: end for

5: Step 2: Train the dataset of 𝒟2

6: Keep the weights of training stage {𝑋𝑖
′, 𝑦𝑖}, 𝑤ℎ𝑒𝑟𝑒 𝑥𝑖

′ = {𝒴1(𝑋𝑖), 𝒴1(𝑋𝑖), … , 𝒴𝑚 (𝑋𝑖)}

7: Step 3: Learn the Level-1 classifier

8: for 𝑗 ← 𝑚 𝑡𝑜 𝑒 do

9: Redistribute weights based on the new training data and the previous weights. Learn

a new classifier �̂� based on the newly constructed data set

10: end for

11: Return �̂̂�(𝑋) = �̂�(𝒴1(𝑋𝑗), 𝒴1(𝑋𝑗), … , 𝒴𝑒 (𝑋𝑗))

is the prediction of

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 22

2D-CNN

64—(3, 3)—ReLu

2D-CNN

64—(3, 3)—ReLu

Flatten Flatten --

FC

256—ReLu **

FC

256—ReLu
Conct

BN Dropout --

FC

128—ReLu

FC

128—ReLu

FC

128—ReLu

BN BN --

SoftMax SoftMax SoftMax
* Dimensional—(Kernel size)—Activation Function; ** Dimensional—Activation Function.

The level-1 network has three layers: one is the concatenation layer to combine the

output of Level-0 models, the second one is the FC layer which has 128 units, and the last

layer is the SoftMax layer to get the final results. Whiles RAF was used in all layers of the

two levels. In meta-leaner and during the training, the weights are given as:

�̂�𝑚𝑙 =
𝑎𝑟𝑔𝑚𝑖𝑛

𝓌
∑ [𝓎𝒾 ∑ 𝓌𝑚�̂�𝑚(𝓍𝒾)

𝑀

𝑚=1

]

2𝒩

𝒾=1

 (9)

where �̂�𝑚 (𝓍𝒾) is the prediction of 𝓍 , using model 𝑚 and M in this study = 2, and

𝒩 is the sample number. Rather than choosing one model (M = 1), the meta-learner com-

bines the Level-0 models with estimated optimal weights. This method leads to better

predictions often. This stage usually works to minimize the loss of the output of the two

levels. The loss function works as follows:

𝐿𝑜𝑠𝑠 = − ∑ 𝒴𝑖 . 𝑙𝑜ℊ�̂̂�𝑖

𝒩

𝑖=1

 (10)

where 𝒴𝑖 is the real value (ground truth), �̂̂�𝑖 is the score of the level-1 network for the

input data and the output of level-0 models. Algorithm 2 explains the operation of the

meta-leaner and the work of the MLHM framework.

Algorithm 2. The Steps of the Proposed MLHM.

Input: Training data 𝒟1 = {𝑋𝑖 , 𝑦𝑖}𝑖=1
𝑚 (𝑋𝑖 ∈ ℝ𝑛, 𝑦𝑖 ∈ ϒ) and

𝒟2 = {𝑋𝑗 , 𝑦𝑗}
𝑗=𝑚

𝑒
 (𝑋𝑗 ∈ ℝ𝑛, 𝑦𝑗 ∈ ϒ)

Output: An ensemble classifier �̂̂�

1: Step 1: Learn Level-0 classifiers

2: for 𝑡 ← 1 to 𝑚 do

3: Learn a base classifier 𝒴𝑡 based on 𝒟1

4: end for

5: Step 2: Train the dataset of 𝒟2

6: Keep the weights of training stage {𝑋𝑖
′, 𝑦𝑖}, 𝑤ℎ𝑒𝑟𝑒 𝑥𝑖

′ = {𝒴1(𝑋𝑖), 𝒴1(𝑋𝑖), … , 𝒴𝑚 (𝑋𝑖)}

7: Step 3: Learn the Level-1 classifier

8: for 𝑗 ← 𝑚 𝑡𝑜 𝑒 do

9: Redistribute weights based on the new training data and the previous weights. Learn

a new classifier �̂� based on the newly constructed data set

10: end for

11: Return �̂̂�(𝑋) = �̂�(𝒴1(𝑋𝑗), 𝒴1(𝑋𝑗), … , 𝒴𝑒 (𝑋𝑗))

, using model m and M in this study = 2, and N is the
sample number. Rather than choosing one model (M = 1), the meta-learner combines the
Level-0 models with estimated optimal weights. This method leads to better predictions
often. This stage usually works to minimize the loss of the output of the two levels. The
loss function works as follows:

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 22

2D-CNN

64—(3, 3)—ReLu

2D-CNN

64—(3, 3)—ReLu

Flatten Flatten --

FC

256—ReLu **

FC

256—ReLu
Conct

BN Dropout --

FC

128—ReLu

FC

128—ReLu

FC

128—ReLu

BN BN --

SoftMax SoftMax SoftMax
* Dimensional—(Kernel size)—Activation Function; ** Dimensional—Activation Function.

The level-1 network has three layers: one is the concatenation layer to combine the

output of Level-0 models, the second one is the FC layer which has 128 units, and the last

layer is the SoftMax layer to get the final results. Whiles RAF was used in all layers of the

two levels. In meta-leaner and during the training, the weights are given as:

�̂�𝑚𝑙 =
𝑎𝑟𝑔𝑚𝑖𝑛

𝓌
∑ [𝓎𝒾 ∑ 𝓌𝑚�̂�𝑚(𝓍𝒾)

𝑀

𝑚=1

]

2𝒩

𝒾=1

 (9)

where �̂�𝑚 (𝓍𝒾) is the prediction of 𝓍 , using model 𝑚 and M in this study = 2, and

𝒩 is the sample number. Rather than choosing one model (M = 1), the meta-learner com-

bines the Level-0 models with estimated optimal weights. This method leads to better

predictions often. This stage usually works to minimize the loss of the output of the two

levels. The loss function works as follows:

𝐿𝑜𝑠𝑠 = − ∑ 𝒴𝑖 . 𝑙𝑜ℊ�̂̂�𝑖

𝒩

𝑖=1

 (10)

where 𝒴𝑖 is the real value (ground truth), �̂̂�𝑖 is the score of the level-1 network for the

input data and the output of level-0 models. Algorithm 2 explains the operation of the

meta-leaner and the work of the MLHM framework.

Algorithm 2. The Steps of the Proposed MLHM.

Input: Training data 𝒟1 = {𝑋𝑖 , 𝑦𝑖}𝑖=1
𝑚 (𝑋𝑖 ∈ ℝ𝑛, 𝑦𝑖 ∈ ϒ) and

𝒟2 = {𝑋𝑗 , 𝑦𝑗}
𝑗=𝑚

𝑒
 (𝑋𝑗 ∈ ℝ𝑛, 𝑦𝑗 ∈ ϒ)

Output: An ensemble classifier �̂̂�

1: Step 1: Learn Level-0 classifiers

2: for 𝑡 ← 1 to 𝑚 do

3: Learn a base classifier 𝒴𝑡 based on 𝒟1

4: end for

5: Step 2: Train the dataset of 𝒟2

6: Keep the weights of training stage {𝑋𝑖
′, 𝑦𝑖}, 𝑤ℎ𝑒𝑟𝑒 𝑥𝑖

′ = {𝒴1(𝑋𝑖), 𝒴1(𝑋𝑖), … , 𝒴𝑚 (𝑋𝑖)}

7: Step 3: Learn the Level-1 classifier

8: for 𝑗 ← 𝑚 𝑡𝑜 𝑒 do

9: Redistribute weights based on the new training data and the previous weights. Learn

a new classifier �̂� based on the newly constructed data set

10: end for

11: Return �̂̂�(𝑋) = �̂�(𝒴1(𝑋𝑗), 𝒴1(𝑋𝑗), … , 𝒴𝑒 (𝑋𝑗))

(10)

where

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 22

2D-CNN

64—(3, 3)—ReLu

2D-CNN

64—(3, 3)—ReLu

Flatten Flatten --

FC

256—ReLu **

FC

256—ReLu
Conct

BN Dropout --

FC

128—ReLu

FC

128—ReLu

FC

128—ReLu

BN BN --

SoftMax SoftMax SoftMax
* Dimensional—(Kernel size)—Activation Function; ** Dimensional—Activation Function.

The level-1 network has three layers: one is the concatenation layer to combine the

output of Level-0 models, the second one is the FC layer which has 128 units, and the last

layer is the SoftMax layer to get the final results. Whiles RAF was used in all layers of the

two levels. In meta-leaner and during the training, the weights are given as:

�̂�𝑚𝑙 =
𝑎𝑟𝑔𝑚𝑖𝑛

𝓌
∑ [𝓎𝒾 ∑ 𝓌𝑚�̂�𝑚(𝓍𝒾)

𝑀

𝑚=1

]

2𝒩

𝒾=1

 (9)

where �̂�𝑚(𝓍𝒾) is the prediction of 𝓍, using model 𝑚 and M in this study = 2, and 𝒩 is

the sample number. Rather than choosing one model (M = 1), the meta-learner combines

the Level-0 models with estimated optimal weights. This method leads to better predic-

tions often. This stage usually works to minimize the loss of the output of the two levels.

The loss function works as follows:

𝐿𝑜𝑠𝑠 = − ∑ 𝒴𝑖 . 𝑙𝑜ℊ�̂̂�𝑖

𝒩

𝑖=1

 (10)

where 𝒴𝑖 is the real value (ground truth), �̂̂�𝑖 is the score of the level-1 network for the

input data and the output of level-0 models. Algorithm 2 explains the operation of the

meta-leaner and the work of the MLHM framework.

Algorithm 2. The Steps of the Proposed MLHM.

Input: Training data 𝒟1 = {𝑋𝑖 , 𝑦𝑖}𝑖=1
𝑚 (𝑋𝑖 ∈ ℝ𝑛, 𝑦𝑖 ∈ ϒ) and

𝒟2 = {𝑋𝑗 , 𝑦𝑗}
𝑗=𝑚

𝑒
 (𝑋𝑗 ∈ ℝ𝑛, 𝑦𝑗 ∈ ϒ)

Output: An ensemble classifier �̂̂�

1: Step 1: Learn Level-0 classifiers

2: for 𝑡 ← 1 to 𝑚 do

3: Learn a base classifier 𝒴𝑡 based on 𝒟1

4: end for

5: Step 2: Train the dataset of 𝒟2

6: Keep the weights of training stage {𝑋𝑖
′, 𝑦𝑖}, 𝑤ℎ𝑒𝑟𝑒 𝑥𝑖

′ = {𝒴1(𝑋𝑖), 𝒴1(𝑋𝑖), … , 𝒴𝑚 (𝑋𝑖)}

7: Step 3: Learn the Level-1 classifier

8: for 𝑗 ← 𝑚 𝑡𝑜 𝑒 do

9: Redistribute weights based on the new training data and the previous weights. Learn

a new classifier �̂� based on the newly constructed data set

10: end for

11: Return �̂̂�(𝑋) = �̂�(𝒴1(𝑋𝑗), 𝒴1(𝑋𝑗), … , 𝒴𝑒 (𝑋𝑗))

is the real value (ground truth),

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 22

2D-CNN

64—(3, 3)—ReLu

2D-CNN

64—(3, 3)—ReLu

Flatten Flatten --

FC

256—ReLu **

FC

256—ReLu
Conct

BN Dropout --

FC

128—ReLu

FC

128—ReLu

FC

128—ReLu

BN BN --

SoftMax SoftMax SoftMax
* Dimensional—(Kernel size)—Activation Function; ** Dimensional—Activation Function.

The level-1 network has three layers: one is the concatenation layer to combine the

output of Level-0 models, the second one is the FC layer which has 128 units, and the last

layer is the SoftMax layer to get the final results. Whiles RAF was used in all layers of the

two levels. In meta-leaner and during the training, the weights are given as:

�̂�𝑚𝑙 =
𝑎𝑟𝑔𝑚𝑖𝑛

𝓌
∑ [𝓎𝒾 ∑ 𝓌𝑚�̂�𝑚(𝓍𝒾)

𝑀

𝑚=1

]

2𝒩

𝒾=1

 (9)

where �̂�𝑚(𝓍𝒾) is the prediction of 𝓍, using model 𝑚 and M in this study = 2, and 𝒩 is

the sample number. Rather than choosing one model (M = 1), the meta-learner combines

the Level-0 models with estimated optimal weights. This method leads to better predic-

tions often. This stage usually works to minimize the loss of the output of the two levels.

The loss function works as follows:

𝐿𝑜𝑠𝑠 = − ∑ 𝒴𝑖 . 𝑙𝑜ℊ�̂̂�𝑖

𝒩

𝑖=1

 (10)

where 𝒴𝑖 is the real value (ground truth), �̂̂�𝑖 is the score of the level-1 network for the

input data and the output of level-0 models. Algorithm 2 explains the operation of the

meta-leaner and the work of the MLHM framework.

Algorithm 2. The Steps of the Proposed MLHM.

Input: Training data 𝒟1 = {𝑋𝑖 , 𝑦𝑖}𝑖=1
𝑚 (𝑋𝑖 ∈ ℝ𝑛, 𝑦𝑖 ∈ ϒ) and

𝒟2 = {𝑋𝑗 , 𝑦𝑗}
𝑗=𝑚

𝑒
 (𝑋𝑗 ∈ ℝ𝑛, 𝑦𝑗 ∈ ϒ)

Output: An ensemble classifier �̂̂�

1: Step 1: Learn Level-0 classifiers

2: for 𝑡 ← 1 to 𝑚 do

3: Learn a base classifier 𝒴𝑡 based on 𝒟1

4: end for

5: Step 2: Train the dataset of 𝒟2

6: Keep the weights of training stage {𝑋𝑖
′, 𝑦𝑖}, 𝑤ℎ𝑒𝑟𝑒 𝑥𝑖

′ = {𝒴1(𝑋𝑖), 𝒴1(𝑋𝑖), … , 𝒴𝑚 (𝑋𝑖)}

7: Step 3: Learn the Level-1 classifier

8: for 𝑗 ← 𝑚 𝑡𝑜 𝑒 do

9: Redistribute weights based on the new training data and the previous weights. Learn

a new classifier �̂� based on the newly constructed data set

10: end for

11: Return �̂̂�(𝑋) = �̂�(𝒴1(𝑋𝑗), 𝒴1(𝑋𝑗), … , 𝒴𝑒 (𝑋𝑗))

is the score of the level-1 network for the
input data and the output of level-0 models. Algorithm 2 explains the operation of the
meta-leaner and the work of the MLHM framework.

Algorithm 2. The Steps of the Proposed MLHM.

Input: Training data D1 = {Xi, yi}m
i=1

(
Xi ∈ Rn, yi ∈

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 22

2D-CNN

64—(3, 3)—ReLu

2D-CNN

64—(3, 3)—ReLu

Flatten Flatten --

FC

256—ReLu **

FC

256—ReLu
Conct

BN Dropout --

FC

128—ReLu

FC

128—ReLu

FC

128—ReLu

BN BN --

SoftMax SoftMax SoftMax
* Dimensional—(Kernel size)—Activation Function; ** Dimensional—Activation Function.

The level-1 network has three layers: one is the concatenation layer to combine the

output of Level-0 models, the second one is the FC layer which has 128 units, and the last

layer is the SoftMax layer to get the final results. Whiles RAF was used in all layers of the

two levels. In meta-leaner and during the training, the weights are given as:

�̂�𝑚𝑙 =
𝑎𝑟𝑔𝑚𝑖𝑛

𝓌
∑ [𝓎𝒾 ∑ 𝓌𝑚�̂�𝑚(𝓍𝒾)

𝑀

𝑚=1

]

2𝒩

𝒾=1

 (9)

where �̂�𝑚(𝓍𝒾) is the prediction of 𝓍, using model 𝑚 and M in this study = 2, and 𝒩 is

the sample number. Rather than choosing one model (M = 1), the meta-learner combines

the Level-0 models with estimated optimal weights. This method leads to better predic-

tions often. This stage usually works to minimize the loss of the output of the two levels.

The loss function works as follows:

𝐿𝑜𝑠𝑠 = − ∑ 𝒴𝑖 . 𝑙𝑜ℊ�̂̂�𝑖

𝒩

𝑖=1

 (10)

where 𝒴𝑖 is the real value (ground truth), �̂̂�𝑖 is the score of the level-1 network for the

input data and the output of level-0 models. Algorithm 2 explains the operation of the

meta-leaner and the work of the MLHM framework.

Algorithm 2. The Steps of the Proposed MLHM.

Input: Training data 𝒟1 = {𝑋𝑖 , 𝑦𝑖}𝑖=1
𝑚 (𝑋𝑖 ∈ ℝ𝑛, 𝑦𝑖 ∈ ϒ) and

𝒟2 = {𝑋𝑗 , 𝑦𝑗}
𝑗=𝑚

𝑒
 (𝑋𝑗 ∈ ℝ𝑛, 𝑦𝑗 ∈ ϒ)

Output: An ensemble classifier �̂̂�

1: Step 1: Learn Level-0 classifiers

2: for 𝑡 ← 1 to 𝑚 do

3: Learn a base classifier 𝒴𝑡 based on 𝒟1

4: end for

5: Step 2: Train the dataset of 𝒟2

6: Keep the weights of training stage {𝑋𝑖
′, 𝑦𝑖}, 𝑤ℎ𝑒𝑟𝑒 𝑥𝑖

′ = {𝒴1(𝑋𝑖), 𝒴1(𝑋𝑖), … , 𝒴𝑚 (𝑋𝑖)}

7: Step 3: Learn the Level-1 classifier

8: for 𝑗 ← 𝑚 𝑡𝑜 𝑒 do

9: Redistribute weights based on the new training data and the previous weights. Learn

a new classifier �̂� based on the newly constructed data set

10: end for

11: Return �̂̂�(𝑋) = �̂�(𝒴1(𝑋𝑗), 𝒴1(𝑋𝑗), … , 𝒴𝑒 (𝑋𝑗))

)
and

D2 =
{

Xj, yj

}e

j=m

(
Xj ∈ Rn, yj ∈

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 22

2D-CNN

64—(3, 3)—ReLu

2D-CNN

64—(3, 3)—ReLu

Flatten Flatten --

FC

256—ReLu **

FC

256—ReLu
Conct

BN Dropout --

FC

128—ReLu

FC

128—ReLu

FC

128—ReLu

BN BN --

SoftMax SoftMax SoftMax
* Dimensional—(Kernel size)—Activation Function; ** Dimensional—Activation Function.

The level-1 network has three layers: one is the concatenation layer to combine the

output of Level-0 models, the second one is the FC layer which has 128 units, and the last

layer is the SoftMax layer to get the final results. Whiles RAF was used in all layers of the

two levels. In meta-leaner and during the training, the weights are given as:

�̂�𝑚𝑙 =
𝑎𝑟𝑔𝑚𝑖𝑛

𝓌
∑ [𝓎𝒾 ∑ 𝓌𝑚�̂�𝑚(𝓍𝒾)

𝑀

𝑚=1

]

2𝒩

𝒾=1

 (9)

where �̂�𝑚(𝓍𝒾) is the prediction of 𝓍, using model 𝑚 and M in this study = 2, and 𝒩 is

the sample number. Rather than choosing one model (M = 1), the meta-learner combines

the Level-0 models with estimated optimal weights. This method leads to better predic-

tions often. This stage usually works to minimize the loss of the output of the two levels.

The loss function works as follows:

𝐿𝑜𝑠𝑠 = − ∑ 𝒴𝑖 . 𝑙𝑜ℊ�̂̂�𝑖

𝒩

𝑖=1

 (10)

where 𝒴𝑖 is the real value (ground truth), �̂̂�𝑖 is the score of the level-1 network for the

input data and the output of level-0 models. Algorithm 2 explains the operation of the

meta-leaner and the work of the MLHM framework.

Algorithm 2. The Steps of the Proposed MLHM.

Input: Training data 𝒟1 = {𝑋𝑖 , 𝑦𝑖}𝑖=1
𝑚 (𝑋𝑖 ∈ ℝ𝑛, 𝑦𝑖 ∈ ϒ) and

𝒟2 = {𝑋𝑗 , 𝑦𝑗}
𝑗=𝑚

𝑒
 (𝑋𝑗 ∈ ℝ𝑛, 𝑦𝑗 ∈ ϒ)

Output: An ensemble classifier �̂̂�

1: Step 1: Learn Level-0 classifiers

2: for 𝑡 ← 1 to 𝑚 do

3: Learn a base classifier 𝒴𝑡 based on 𝒟1

4: end for

5: Step 2: Train the dataset of 𝒟2

6: Keep the weights of training stage {𝑋𝑖
′, 𝑦𝑖}, 𝑤ℎ𝑒𝑟𝑒 𝑥𝑖

′ = {𝒴1(𝑋𝑖), 𝒴1(𝑋𝑖), … , 𝒴𝑚 (𝑋𝑖)}

7: Step 3: Learn the Level-1 classifier

8: for 𝑗 ← 𝑚 𝑡𝑜 𝑒 do

9: Redistribute weights based on the new training data and the previous weights. Learn

a new classifier �̂� based on the newly constructed data set

10: end for

11: Return �̂̂�(𝑋) = �̂�(𝒴1(𝑋𝑗), 𝒴1(𝑋𝑗), … , 𝒴𝑒 (𝑋𝑗))

)
Output: An ensemble classifier

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 22

2D-CNN

64—(3, 3)—ReLu

2D-CNN

64—(3, 3)—ReLu

Flatten Flatten --

FC

256—ReLu **

FC

256—ReLu
Conct

BN Dropout --

FC

128—ReLu

FC

128—ReLu

FC

128—ReLu

BN BN --

SoftMax SoftMax SoftMax
* Dimensional—(Kernel size)—Activation Function; ** Dimensional—Activation Function.

The level-1 network has three layers: one is the concatenation layer to combine the

output of Level-0 models, the second one is the FC layer which has 128 units, and the last

layer is the SoftMax layer to get the final results. Whiles RAF was used in all layers of the

two levels. In meta-leaner and during the training, the weights are given as:

�̂�𝑚𝑙 =
𝑎𝑟𝑔𝑚𝑖𝑛

𝓌
∑ [𝓎𝒾 ∑ 𝓌𝑚�̂�𝑚(𝓍𝒾)

𝑀

𝑚=1

]

2𝒩

𝒾=1

 (9)

where �̂�𝑚(𝓍𝒾) is the prediction of 𝓍, using model 𝑚 and M in this study = 2, and 𝒩 is

the sample number. Rather than choosing one model (M = 1), the meta-learner combines

the Level-0 models with estimated optimal weights. This method leads to better predic-

tions often. This stage usually works to minimize the loss of the output of the two levels.

The loss function works as follows:

𝐿𝑜𝑠𝑠 = − ∑ 𝒴𝑖 . 𝑙𝑜ℊ�̂̂�𝑖

𝒩

𝑖=1

 (10)

where 𝒴𝑖 is the real value (ground truth), �̂̂�𝑖 is the score of the level-1 network for the

input data and the output of level-0 models. Algorithm 2 explains the operation of the

meta-leaner and the work of the MLHM framework.

Algorithm 2. The Steps of the Proposed MLHM.

Input: Training data 𝒟1 = {𝑋𝑖 , 𝑦𝑖}𝑖=1
𝑚 (𝑋𝑖 ∈ ℝ𝑛, 𝑦𝑖 ∈ ϒ) and

𝒟2 = {𝑋𝑗 , 𝑦𝑗}
𝑗=𝑚

𝑒
 (𝑋𝑗 ∈ ℝ𝑛, 𝑦𝑗 ∈ ϒ)

Output: An ensemble classifier �̂̂�

1: Step 1: Learn Level-0 classifiers

2: for 𝑡 ← 1 to 𝑚 do

3: Learn a base classifier 𝒴𝑡 based on 𝒟1

4: end for

5: Step 2: Train the dataset of 𝒟2

6: Keep the weights of training stage {𝑋𝑖
′, 𝑦𝑖}, 𝑤ℎ𝑒𝑟𝑒 𝑥𝑖

′ = {𝒴1(𝑋𝑖), 𝒴1(𝑋𝑖), … , 𝒴𝑚 (𝑋𝑖)}

7: Step 3: Learn the Level-1 classifier

8: for 𝑗 ← 𝑚 𝑡𝑜 𝑒 do

9: Redistribute weights based on the new training data and the previous weights. Learn

a new classifier �̂� based on the newly constructed data set

10: end for

11: Return �̂̂�(𝑋) = �̂�(𝒴1(𝑋𝑗), 𝒴1(𝑋𝑗), … , 𝒴𝑒 (𝑋𝑗))

1: Step 1: Learn Level-0 classifiers
2: for t ← 1 to m do
3: Learn a base classifier

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 22

2D-CNN

64—(3, 3)—ReLu

2D-CNN

64—(3, 3)—ReLu

Flatten Flatten --

FC

256—ReLu **

FC

256—ReLu
Conct

BN Dropout --

FC

128—ReLu

FC

128—ReLu

FC

128—ReLu

BN BN --

SoftMax SoftMax SoftMax
* Dimensional—(Kernel size)—Activation Function; ** Dimensional—Activation Function.

The level-1 network has three layers: one is the concatenation layer to combine the

output of Level-0 models, the second one is the FC layer which has 128 units, and the last

layer is the SoftMax layer to get the final results. Whiles RAF was used in all layers of the

two levels. In meta-leaner and during the training, the weights are given as:

�̂�𝑚𝑙 =
𝑎𝑟𝑔𝑚𝑖𝑛

𝓌
∑ [𝓎𝒾 ∑ 𝓌𝑚�̂�𝑚(𝓍𝒾)

𝑀

𝑚=1

]

2𝒩

𝒾=1

 (9)

where �̂�𝑚(𝓍𝒾) is the prediction of 𝓍, using model 𝑚 and M in this study = 2, and 𝒩 is

the sample number. Rather than choosing one model (M = 1), the meta-learner combines

the Level-0 models with estimated optimal weights. This method leads to better predic-

tions often. This stage usually works to minimize the loss of the output of the two levels.

The loss function works as follows:

𝐿𝑜𝑠𝑠 = − ∑ 𝒴𝑖 . 𝑙𝑜ℊ�̂̂�𝑖

𝒩

𝑖=1

 (10)

where 𝒴𝑖 is the real value (ground truth), �̂̂�𝑖 is the score of the level-1 network for the

input data and the output of level-0 models. Algorithm 2 explains the operation of the

meta-leaner and the work of the MLHM framework.

Algorithm 2. The Steps of the Proposed MLHM.

Input: Training data 𝒟1 = {𝑋𝑖 , 𝑦𝑖}𝑖=1
𝑚 (𝑋𝑖 ∈ ℝ𝑛, 𝑦𝑖 ∈ 03D2) and

𝒟2 = {𝑋𝑗 , 𝑦𝑗}
𝑗=𝑚

𝑒
 (𝑋𝑗 ∈ ℝ𝑛, 𝑦𝑗 ∈ ϒ)

Output: An ensemble classifier �̂̂�

1: Step 1: Learn Level-0 classifiers

2: for 𝑡 ← 1 to 𝑚 do

3: Learn a base classifier 𝒴𝑡 based on 𝒟1

4: end for

5: Step 2: Train the dataset of 𝒟2

6: Keep the weights of training stage {𝑋𝑖
′, 𝑦𝑖}, 𝑤ℎ𝑒𝑟𝑒 𝑥𝑖

′ = {𝒴1(𝑋𝑖), 𝒴1(𝑋𝑖), … , 𝒴𝑚 (𝑋𝑖)}

7: Step 3: Learn the Level-1 classifier

8: for 𝑗 ← 𝑚 𝑡𝑜 𝑒 do

9: Redistribute weights based on the new training data and the previous weights. Learn

a new classifier �̂� based on the newly constructed data set

10: end for

11: Return �̂̂�(𝑋) = �̂�(𝒴1(𝑋𝑗), 𝒴1(𝑋𝑗), … , 𝒴𝑒 (𝑋𝑗))

based on D1
4: end for
5: Step 2: Train the dataset of D2

6: Keep the weights of training stage

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 22

2D-CNN

64—(3, 3)—ReLu

2D-CNN

64—(3, 3)—ReLu

Flatten Flatten --

FC

256—ReLu **

FC

256—ReLu
Conct

BN Dropout --

FC

128—ReLu

FC

128—ReLu

FC

128—ReLu

BN BN --

SoftMax SoftMax SoftMax
* Dimensional—(Kernel size)—Activation Function; ** Dimensional—Activation Function.

The level-1 network has three layers: one is the concatenation layer to combine the

output of Level-0 models, the second one is the FC layer which has 128 units, and the last

layer is the SoftMax layer to get the final results. Whiles RAF was used in all layers of the

two levels. In meta-leaner and during the training, the weights are given as:

�̂�𝑚𝑙 =
𝑎𝑟𝑔𝑚𝑖𝑛

𝓌
∑ [𝓎𝒾 ∑ 𝓌𝑚�̂�𝑚(𝓍𝒾)

𝑀

𝑚=1

]

2𝒩

𝒾=1

 (9)

where �̂�𝑚(𝓍𝒾) is the prediction of 𝓍, using model 𝑚 and M in this study = 2, and 𝒩 is

the sample number. Rather than choosing one model (M = 1), the meta-learner combines

the Level-0 models with estimated optimal weights. This method leads to better predic-

tions often. This stage usually works to minimize the loss of the output of the two levels.

The loss function works as follows:

𝐿𝑜𝑠𝑠 = − ∑ 𝒴𝑖 . 𝑙𝑜ℊ�̂̂�𝑖

𝒩

𝑖=1

 (10)

where 𝒴𝑖 is the real value (ground truth), �̂̂�𝑖 is the score of the level-1 network for the

input data and the output of level-0 models. Algorithm 2 explains the operation of the

meta-leaner and the work of the MLHM framework.

Algorithm 2. The Steps of the Proposed MLHM.

Input: Training data 𝒟1 = {𝑋𝑖 , 𝑦𝑖}𝑖=1
𝑚 (𝑋𝑖 ∈ ℝ𝑛, 𝑦𝑖 ∈ 03D2) and

𝒟2 = {𝑋𝑗 , 𝑦𝑗}
𝑗=𝑚

𝑒
 (𝑋𝑗 ∈ ℝ𝑛, 𝑦𝑗 ∈ ϒ)

Output: An ensemble classifier �̂̂�

1: Step 1: Learn Level-0 classifiers

2: for 𝑡 ← 1 to 𝑚 do

3: Learn a base classifier 𝒴𝑡 based on 𝒟1

4: end for

5: Step 2: Train the dataset of 𝒟2

6: Keep the weights of training stage {𝑋𝑖
′, 𝑦𝑖}, 𝑤ℎ𝑒𝑟𝑒 𝑥𝑖

′ = {𝒴1(𝑋𝑖), 𝒴1(𝑋𝑖), … , 𝒴𝑚 (𝑋𝑖)}

7: Step 3: Learn the Level-1 classifier

8: for 𝑗 ← 𝑚 𝑡𝑜 𝑒 do

9: Redistribute weights based on the new training data and the previous weights. Learn

a new classifier �̂� based on the newly constructed data set

10: end for

11: Return �̂̂�(𝑋) = �̂�(𝒴1(𝑋𝑗), 𝒴1(𝑋𝑗), … , 𝒴𝑒 (𝑋𝑗))

7: Step 3: Learn the Level-1 classifier
8: for j← m to e do
9: Redistribute weights based on the new training data and the previous weights. Learn

a new classifier

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 22

2D-CNN

64—(3, 3)—ReLu

2D-CNN

64—(3, 3)—ReLu

Flatten Flatten --

FC

256—ReLu **

FC

256—ReLu
Conct

BN Dropout --

FC

128—ReLu

FC

128—ReLu

FC

128—ReLu

BN BN --

SoftMax SoftMax SoftMax
* Dimensional—(Kernel size)—Activation Function; ** Dimensional—Activation Function.

The level-1 network has three layers: one is the concatenation layer to combine the

output of Level-0 models, the second one is the FC layer which has 128 units, and the last

layer is the SoftMax layer to get the final results. Whiles RAF was used in all layers of the

two levels. In meta-leaner and during the training, the weights are given as:

�̂�𝑚𝑙 =
𝑎𝑟𝑔𝑚𝑖𝑛

𝓌
∑ [𝓎𝒾 ∑ 𝓌𝑚�̂�𝑚(𝓍𝒾)

𝑀

𝑚=1

]

2𝒩

𝒾=1

 (9)

where �̂�𝑚(𝓍𝒾) is the prediction of 𝓍, using model 𝑚 and M in this study = 2, and 𝒩 is

the sample number. Rather than choosing one model (M = 1), the meta-learner combines

the Level-0 models with estimated optimal weights. This method leads to better predic-

tions often. This stage usually works to minimize the loss of the output of the two levels.

The loss function works as follows:

𝐿𝑜𝑠𝑠 = − ∑ 𝒴𝑖 . 𝑙𝑜ℊ�̂̂�𝑖

𝒩

𝑖=1

 (10)

where 𝒴𝑖 is the real value (ground truth), �̂̂�𝑖 is the score of the level-1 network for the

input data and the output of level-0 models. Algorithm 2 explains the operation of the

meta-leaner and the work of the MLHM framework.

Algorithm 2. The Steps of the Proposed MLHM.

Input: Training data 𝒟1 = {𝑋𝑖 , 𝑦𝑖}𝑖=1
𝑚 (𝑋𝑖 ∈ ℝ𝑛, 𝑦𝑖 ∈ 03D2) and

𝒟2 = {𝑋𝑗 , 𝑦𝑗}
𝑗=𝑚

𝑒
 (𝑋𝑗 ∈ ℝ𝑛, 𝑦𝑗 ∈ ϒ)

Output: An ensemble classifier �̂̂�

1: Step 1: Learn Level-0 classifiers

2: for 𝑡 ← 1 to 𝑚 do

3: Learn a base classifier 𝒴𝑡 based on 𝒟1

4: end for

5: Step 2: Train the dataset of 𝒟2

6: Keep the weights of training stage {𝑋𝑖
′, 𝑦𝑖}, 𝑤ℎ𝑒𝑟𝑒 𝑥𝑖

′ = {𝒴1(𝑋𝑖), 𝒴1(𝑋𝑖), … , 𝒴𝑚 (𝑋𝑖)}

7: Step 3: Learn the Level-1 classifier

8: for 𝑗 ← 𝑚 𝑡𝑜 𝑒 do

9: Redistribute weights based on the new training data and the previous weights. Learn

a new classifier �̂� based on the newly constructed data set

10: end for

11: Return �̂̂�(𝑋) = �̂�(𝒴1(𝑋𝑗), 𝒴1(𝑋𝑗), … , 𝒴𝑒 (𝑋𝑗))

based on the newly constructed data set
10: end for

11: Return

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 22

2D-CNN

64—(3, 3)—ReLu

2D-CNN

64—(3, 3)—ReLu

Flatten Flatten --

FC

256—ReLu **

FC

256—ReLu
Conct

BN Dropout --

FC

128—ReLu

FC

128—ReLu

FC

128—ReLu

BN BN --

SoftMax SoftMax SoftMax
* Dimensional—(Kernel size)—Activation Function; ** Dimensional—Activation Function.

The level-1 network has three layers: one is the concatenation layer to combine the

output of Level-0 models, the second one is the FC layer which has 128 units, and the last

layer is the SoftMax layer to get the final results. Whiles RAF was used in all layers of the

two levels. In meta-leaner and during the training, the weights are given as:

�̂�𝑚𝑙 =
𝑎𝑟𝑔𝑚𝑖𝑛

𝓌
∑ [𝓎𝒾 ∑ 𝓌𝑚�̂�𝑚(𝓍𝒾)

𝑀

𝑚=1

]

2𝒩

𝒾=1

 (9)

where �̂�𝑚(𝓍𝒾) is the prediction of 𝓍, using model 𝑚 and M in this study = 2, and 𝒩 is

the sample number. Rather than choosing one model (M = 1), the meta-learner combines

the Level-0 models with estimated optimal weights. This method leads to better predic-

tions often. This stage usually works to minimize the loss of the output of the two levels.

The loss function works as follows:

𝐿𝑜𝑠𝑠 = − ∑ 𝒴𝑖 . 𝑙𝑜ℊ�̂̂�𝑖

𝒩

𝑖=1

 (10)

where 𝒴𝑖 is the real value (ground truth), �̂̂�𝑖 is the score of the level-1 network for the

input data and the output of level-0 models. Algorithm 2 explains the operation of the

meta-leaner and the work of the MLHM framework.

Algorithm 2. The Steps of the Proposed MLHM.

Input: Training data 𝒟1 = {𝑋𝑖 , 𝑦𝑖}𝑖=1
𝑚 (𝑋𝑖 ∈ ℝ𝑛, 𝑦𝑖 ∈ 03D2) and

𝒟2 = {𝑋𝑗 , 𝑦𝑗}
𝑗=𝑚

𝑒
 (𝑋𝑗 ∈ ℝ𝑛, 𝑦𝑗 ∈ ϒ)

Output: An ensemble classifier �̂̂�

1: Step 1: Learn Level-0 classifiers

2: for 𝑡 ← 1 to 𝑚 do

3: Learn a base classifier 𝒴𝑡 based on 𝒟1

4: end for

5: Step 2: Train the dataset of 𝒟2

6: Keep the weights of training stage {𝑋𝑖
′, 𝑦𝑖}, 𝑤ℎ𝑒𝑟𝑒 𝑥𝑖

′ = {𝒴1(𝑋𝑖), 𝒴1(𝑋𝑖), … , 𝒴𝑚 (𝑋𝑖)}

7: Step 3: Learn the Level-1 classifier

8: for 𝑗 ← 𝑚 𝑡𝑜 𝑒 do

9: Redistribute weights based on the new training data and the previous weights. Learn

a new classifier �̂� based on the newly constructed data set

10: end for

11: Return �̂̂�(𝑋) = �̂�(𝒴1(𝑋𝑗), 𝒴1(𝑋𝑗), … , 𝒴𝑒 (𝑋𝑗))

3. Experiment

The experiments were executed on three widely used datasets of hyperspectral images,
the Indian Pines dataset, the Pavia-University dataset, and the Kennedy Space Center.

3.1. Datasets

The first data set is the Indian Pines (IPs) dataset gathered by the AVIRIS sensor from
northwest India, containing 16 classes and having 145× 145 spatial dimensions. The spatial
resolution is 20 m per pixel. It contains 220 spectral bands with a wavelength ranging from

Remote Sens. 2022, 14, 1038 8 of 21

0.4 µm to 2.5 µm. However, after removing bands covering the water absorption region,
the bands have been reduced to 200, as shown in Figure 2.

Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 22

3. Experiment
The experiments were executed on three widely used datasets of hyperspectral im-

ages, the Indian Pines dataset, the Pavia-University dataset, and the Kennedy Space Cen-
ter.

3.1. Datasets
The first data set is the Indian Pines (IPs) dataset gathered by the AVIRIS sensor from

northwest India, containing 16 classes and having 145 × 145 spatial dimensions. The spa-
tial resolution is 20 m per pixel. It contains 220 spectral bands with a wavelength ranging
from 0.4 μm to 2.5 μm. However, after removing bands covering the water absorption
region, the bands have been reduced to 200, as shown in Figure 2.

Figure 2. Dataset images with the ground truth.

The second data set is the Pavia-University dataset which was collected by the Re-
flective Optics System Imaging Spectrometer (ROSIS) sensor from northern Italy, includ-
ing nine urban land-cover types and having 610 × 340 spatial dimensions, Figure 2. The
spatial resolution is 1.3 m per pixel. The original data set contains 103 spectral bands with
wavelength ranging from 0.43 to 0.86 μm.

The third dataset is the Kennedy Space Center (KS_Center) dataset which was ac-
quired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor over
KS_Center, Florida. It contains 13 classes. The image dimension is 512 × 614 pixels, and
the high spatial resolution is 18 m pixels. The original data set contains 176 spectral bands,
Figure 2.

The class names of each dataset and the sample number in level-0, level-1 models,
and testing sets are shown in Tables 2–4. The three datasets were split into three parts,
representing 20% of the training set for the level-0 models, 10% of the training set for the
level-1 model, and the rest of the data, which is 70%, is the testing set to test the final
results of this study framework.

Figure 2. Dataset images with the ground truth.

The second data set is the Pavia-University dataset which was collected by the Reflec-
tive Optics System Imaging Spectrometer (ROSIS) sensor from northern Italy, including
nine urban land-cover types and having 610 × 340 spatial dimensions, Figure 2. The
spatial resolution is 1.3 m per pixel. The original data set contains 103 spectral bands with
wavelength ranging from 0.43 to 0.86 µm.

The third dataset is the Kennedy Space Center (KS_Center) dataset which was acquired
by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor over KS_Center,
Florida. It contains 13 classes. The image dimension is 512 × 614 pixels, and the high
spatial resolution is 18 m pixels. The original data set contains 176 spectral bands, Figure 2.

The class names of each dataset and the sample number in level-0, level-1 models,
and testing sets are shown in Tables 2–4. The three datasets were split into three parts,
representing 20% of the training set for the level-0 models, 10% of the training set for the
level-1 model, and the rest of the data, which is 70%, is the testing set to test the final results
of this study framework.

Table 2. One example for the data distribution of the Indian Pines (IPs) dataset (band-1). (a) is the
distribution of the original data, (b) is for the data after using PCA, and (c) is the shape of the data
after using QPCA.

Normal PCA QPCA

Count 21,025 21,025 21,025

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 22

Table 2. One example for the data distribution of the Indian Pines (IPs) dataset (band-1). (a) is the
distribution of the original data, (b) is for the data after using PCA, and (c) is the shape of the data
after using QPCA.

Normal PCA QPCA

Count 21025 21025 21025

Mean 2957.36 6.5 × 10−16 −0.0011
Std 354.919 1 0.95359
Min 2560 −2.2061 −5.1993
25% 2602 −0.887 −0.6739
50% 2780 0.0208 0.0031
75% 3179 0.97266 0.67668
Max 4536 2.58808 5.19934 (a) (b) (c)

Table 3. The sample number of level-0 and level-1 datasets. It also indicates the results of the two
level-0 models and the final results of the level-1 model for the IPs dataset.

Classes Level-0
Samples

Level-1
Samples

Testing
Samples

Level-0 Level-1
QPCA-

Model-1
QPCA-

Model-2
QPCA-
MLHM

1 Alfalfa 9 4 33 1 1 1
2 Corn-notill (CN) 285 114 1029 0.964 0.977 0.983
3 Corn-mintill (CM) 166 66 598 0.998 1 1
4 Corn 47 19 171 0.988 1 1
5 Grass-pasture (GP) 97 39 347 0.994 1 0.997
6 Grass-trees (GT) 146 58 526 0.998 0.990 0.994

7 Grass-pasture-mowed
(GPM) 6 2 20 1 1 1

8 Hay-windrowed (HW) 96 38 344 1 1 1
9 Oats 4 2 14 1 1 1
10 Soybean-notill (SN) 194 78 700 0.994 1 1
11 Soybean-mintill (SM) 491 197 1767 0.998 0.998 0.997
12 Soybean-clean (SC) 118 48 427 0.991 0.979 0.998
13 Wheat 41 16 148 0.993 1 1
14 Woods 253 101 911 1 1 1

15 Buildings-Grass-Trees-
Drives (BGTD)

77 31 278 1 0.996 1

16 Stone-Steel-Towers
(SST)

19 7 67 0.970 0.970 0.970

 Kappa accuracy (%) 99.119 99.320 99.536
 Overall accuracy (%) 99.228 99.404 99.594
 Average accuracy (%) 99.310 99.443 99.618
 Training Time (s) 138.50 70.02 28.28
 Testing Time (s) 1.61 1.22 2.66

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 22

Table 2. One example for the data distribution of the Indian Pines (IPs) dataset (band-1). (a) is the
distribution of the original data, (b) is for the data after using PCA, and (c) is the shape of the data
after using QPCA.

Normal PCA QPCA

Count 21025 21025 21025

Mean 2957.36 6.5 × 10−16 −0.0011
Std 354.919 1 0.95359
Min 2560 −2.2061 −5.1993
25% 2602 −0.887 −0.6739
50% 2780 0.0208 0.0031
75% 3179 0.97266 0.67668
Max 4536 2.58808 5.19934 (a) (b) (c)

Table 3. The sample number of level-0 and level-1 datasets. It also indicates the results of the two
level-0 models and the final results of the level-1 model for the IPs dataset.

Classes Level-0
Samples

Level-1
Samples

Testing
Samples

Level-0 Level-1
QPCA-

Model-1
QPCA-

Model-2
QPCA-
MLHM

1 Alfalfa 9 4 33 1 1 1
2 Corn-notill (CN) 285 114 1029 0.964 0.977 0.983
3 Corn-mintill (CM) 166 66 598 0.998 1 1
4 Corn 47 19 171 0.988 1 1
5 Grass-pasture (GP) 97 39 347 0.994 1 0.997
6 Grass-trees (GT) 146 58 526 0.998 0.990 0.994

7 Grass-pasture-mowed
(GPM) 6 2 20 1 1 1

8 Hay-windrowed (HW) 96 38 344 1 1 1
9 Oats 4 2 14 1 1 1
10 Soybean-notill (SN) 194 78 700 0.994 1 1
11 Soybean-mintill (SM) 491 197 1767 0.998 0.998 0.997
12 Soybean-clean (SC) 118 48 427 0.991 0.979 0.998
13 Wheat 41 16 148 0.993 1 1
14 Woods 253 101 911 1 1 1

15 Buildings-Grass-Trees-
Drives (BGTD)

77 31 278 1 0.996 1

16 Stone-Steel-Towers
(SST)

19 7 67 0.970 0.970 0.970

 Kappa accuracy (%) 99.119 99.320 99.536
 Overall accuracy (%) 99.228 99.404 99.594
 Average accuracy (%) 99.310 99.443 99.618
 Training Time (s) 138.50 70.02 28.28
 Testing Time (s) 1.61 1.22 2.66

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 22

Table 2. One example for the data distribution of the Indian Pines (IPs) dataset (band-1). (a) is the
distribution of the original data, (b) is for the data after using PCA, and (c) is the shape of the data
after using QPCA.

Normal PCA QPCA

Count 21025 21025 21025

Mean 2957.36 6.5 × 10−16 −0.0011
Std 354.919 1 0.95359
Min 2560 −2.2061 −5.1993
25% 2602 −0.887 −0.6739
50% 2780 0.0208 0.0031
75% 3179 0.97266 0.67668
Max 4536 2.58808 5.19934 (a) (b) (c)

Table 3. The sample number of level-0 and level-1 datasets. It also indicates the results of the two
level-0 models and the final results of the level-1 model for the IPs dataset.

Classes Level-0
Samples

Level-1
Samples

Testing
Samples

Level-0 Level-1
QPCA-

Model-1
QPCA-

Model-2
QPCA-
MLHM

1 Alfalfa 9 4 33 1 1 1
2 Corn-notill (CN) 285 114 1029 0.964 0.977 0.983
3 Corn-mintill (CM) 166 66 598 0.998 1 1
4 Corn 47 19 171 0.988 1 1
5 Grass-pasture (GP) 97 39 347 0.994 1 0.997
6 Grass-trees (GT) 146 58 526 0.998 0.990 0.994

7 Grass-pasture-mowed
(GPM) 6 2 20 1 1 1

8 Hay-windrowed (HW) 96 38 344 1 1 1
9 Oats 4 2 14 1 1 1
10 Soybean-notill (SN) 194 78 700 0.994 1 1
11 Soybean-mintill (SM) 491 197 1767 0.998 0.998 0.997
12 Soybean-clean (SC) 118 48 427 0.991 0.979 0.998
13 Wheat 41 16 148 0.993 1 1
14 Woods 253 101 911 1 1 1

15 Buildings-Grass-Trees-
Drives (BGTD)

77 31 278 1 0.996 1

16 Stone-Steel-Towers
(SST)

19 7 67 0.970 0.970 0.970

 Kappa accuracy (%) 99.119 99.320 99.536
 Overall accuracy (%) 99.228 99.404 99.594
 Average accuracy (%) 99.310 99.443 99.618
 Training Time (s) 138.50 70.02 28.28
 Testing Time (s) 1.61 1.22 2.66

Mean 2957.36 6.5 × 10−16 −0.0011
Std 354.919 1 0.95359
Min 2560 −2.2061 −5.1993
25% 2602 −0.887 −0.6739
50% 2780 0.0208 0.0031
75% 3179 0.97266 0.67668
Max 4536 2.58808 5.19934 (a) (b) (c)

To assess the accuracy of final results and to compare them with the results of other
methods, the Kappa coefficient (KA), overall accuracy (OA), and average accuracy (AA)
were used to measure the classification accuracy. Adam was used as an optimizer function
with a 0.001 learning rate in the training time. The number of epochs and batch size were
100 and 256 in the level-0 and level-1 networks.

Remote Sens. 2022, 14, 1038 9 of 21

3.2. Experimental Results and Comparisons

This section clearly shows the output of QPCA and its effect on the data distribu-
tion. The output of each level in MLHM is presented for the three different datasets
and their performance. Furthermore, MLHM is compared with other methods; with and
without QPCA.

Table 3. The sample number of level-0 and level-1 datasets. It also indicates the results of the two
level-0 models and the final results of the level-1 model for the IPs dataset.

Classes
Level-0

Samples
Level-1

Samples
Testing

Samples

Level-0 Level-1

QPCA-
Model-1

QPCA-
Model-2

QPCA-
MLHM

1 Alfalfa 9 4 33 1 1 1
2 Corn-notill (CN) 285 114 1029 0.964 0.977 0.983
3 Corn-mintill (CM) 166 66 598 0.998 1 1
4 Corn 47 19 171 0.988 1 1
5 Grass-pasture (GP) 97 39 347 0.994 1 0.997
6 Grass-trees (GT) 146 58 526 0.998 0.990 0.994
7 Grass-pasture-mowed (GPM) 6 2 20 1 1 1
8 Hay-windrowed (HW) 96 38 344 1 1 1
9 Oats 4 2 14 1 1 1
10 Soybean-notill (SN) 194 78 700 0.994 1 1
11 Soybean-mintill (SM) 491 197 1767 0.998 0.998 0.997
12 Soybean-clean (SC) 118 48 427 0.991 0.979 0.998
13 Wheat 41 16 148 0.993 1 1
14 Woods 253 101 911 1 1 1

15 Buildings-Grass-Trees-Drives
(BGTD) 77 31 278 1 0.996 1

16 Stone-Steel-Towers (SST) 19 7 67 0.970 0.970 0.970

Kappa accuracy (%) 99.119 99.320 99.536
Overall accuracy (%) 99.228 99.404 99.594
Average accuracy (%) 99.310 99.443 99.618

Training Time (s) 138.50 70.02 28.28
Testing Time (s) 1.61 1.22 2.66

Table 4. The sample number of level-0 and level-1 datasets. It also indicates the results of the two
level-0 models and the final results of the level-1 model for the Pavia-University dataset.

Classes
Level-0

Samples
Level-1

Samples
Testing

Samples

Level-0 Level-1

QPCA-
Model-1

QPCA-
Model-2

QPCA-
MLHM

1 Asphalt 1326 530 4775 1 1 1
2 Meadows 3730 1492 13427 1 1 1
3 Gravel 420 168 1511 0.999 1 1
4 Trees 613 245 2206 0.995 0.995 0.999
5 Painted metal sheets (BMS) 269 108 968 1 1 1
6 Bare Soil (BS) 1006 402 3621 1 1 1
7 Bitumen 266 106 958 1 0.994 1
8 Self-Blocking Bricks (SBB) 736 295 2651 0.999 0.995 0.999
9 Shadows 189 76 682 1 1 1

Kappa accuracy (%) 99.931 99.880 99.978
Overall accuracy (%) 99.948 99.909 99.984
Average accuracy (%) 99.920 99.83 99.977

Training Time (s) 117.32 79.65 27.00
Testing Time (s) 2.40 2.33 3.92

Remote Sens. 2022, 14, 1038 10 of 21

3.2.1. QPCA Output

Generally, collected data have many things that affect the training, such as insufficient
data, missing values, highly skewed distribution, and outliers. In order to train the data,
first, showing data by a specific graph is necessary to decide which kind of processing is
needed to improve the input data before and through training time, as shown in Figure 3a
the original data distribution of band-1 for Indian Pines dataset. When the dataset has
values with variance dimensions, some larger than others, these large values can dominate
the training in DL and affect the accuracy [61]. Therefore, to enhance the data before feeding
it to the training network, preprocessing methodologies are necessary.

Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 22

Figure 3. The three shapes of the data distribution, (a) is the original data, (b) is the change of data
distribution after using principal components analysis (PCA), and (c) is the data distribution after
using quantile transformation principal components analysis (QPCA).

The output of PCA depends on the results of the mean and variance—standardiza-
tion; both are very sensitive to the outliers. This way of standardization is difficult with
outlier values because this equation results would be skewed. Standardization works to
shift the data, but the shape of the distribution does not change. Hence, the PCA does not
work to enhance the data distribution and classification. Figure 3b shows that features
with a large variance will dominate the training and affect the final results. On the other
hand, in some cases, the outliers help to enhance the classification, especially in a huge
and multi-class dataset, so they cannot be neglected. Quantile transformation (Q) is used
to solve this problem.

The problem of outliers and skewed distribution is solved by Equation (4). As shown
in Figure 3c, all the data are transferred under a normal curve and thus improves the clas-
sification process. With little frequency data and more correlation and repetition, data
form the same normal distribution curve. Unlike the PCA, GCDF does not neglect any
value. Hence, it enhances the data. Equation (4) normalizes the data to be normal-like.
Figure 3 and Table 2 show the big difference between the original data distribution, PCA
and QPCA. The data of QPCA is more stable and has normal distribution than PCA, which
helps to obtain more stable training and higher accurate classification.

3.2.2. Meta-Learner Hybrid Model (MLHM) Results
The MLHM is a framework that follows the meta-learner technique or meta-learning.

The network of level-1 works to train the trained weight of level-0 models. In the same
word, the level-1 network learns from level-0 learning models. Level-1 network freezes
the level-0 models to prevent them from modifying their generated weights, and it works
to train them with its new extracted weights to reach the best accuracy. It can be observed
that MLHM does not let the input data pass through a very deep network, and at the same
time, it takes the benefits of deep training models to obtain more accurate features.

First of all, the two models of Level-0 were trained separately and later combined the
output of these two models and fed them into the level-1 model to enhance the operation
of the previous level and train it with different data. This operation allowed the network
to decide, choose, and obtain the best weight for each class. While model-1 works to
deeply extract the complex classes’ features, model-2 enhances feature extraction and the
localization of less complex and small data. Both models of Level-0 work to extract spatial-
spectral features. Therefore, the level-1 model is fed by the features of the level-0 models
and it, in turn, enhances the extracted weight and provides the best results for the different
classes.

Tables 3–5 show the results of each level of the three different datasets. In level-0
models, model-1 results are better than model-2. However, in some classes of IPs and Pa-
via-University datasets, model-2 had better results. The data distribution of KS_Center is

Figure 3. The three shapes of the data distribution, (a) is the original data, (b) is the change of data
distribution after using principal components analysis (PCA), and (c) is the data distribution after
using quantile transformation principal components analysis (QPCA).

The output of PCA depends on the results of the mean and variance—standardization;
both are very sensitive to the outliers. This way of standardization is difficult with outlier
values because this equation results would be skewed. Standardization works to shift
the data, but the shape of the distribution does not change. Hence, the PCA does not
work to enhance the data distribution and classification. Figure 3b shows that features
with a large variance will dominate the training and affect the final results. On the other
hand, in some cases, the outliers help to enhance the classification, especially in a huge and
multi-class dataset, so they cannot be neglected. Quantile transformation (Q) is used to
solve this problem.

The problem of outliers and skewed distribution is solved by Equation (4). As shown
in Figure 3c, all the data are transferred under a normal curve and thus improves the
classification process. With little frequency data and more correlation and repetition, data
form the same normal distribution curve. Unlike the PCA, GCDF does not neglect any
value. Hence, it enhances the data. Equation (4) normalizes the data to be normal-like.
Figure 3 and Table 2 show the big difference between the original data distribution, PCA
and QPCA. The data of QPCA is more stable and has normal distribution than PCA, which
helps to obtain more stable training and higher accurate classification.

3.2.2. Meta-Learner Hybrid Model (MLHM) Results

The MLHM is a framework that follows the meta-learner technique or meta-learning.
The network of level-1 works to train the trained weight of level-0 models. In the same
word, the level-1 network learns from level-0 learning models. Level-1 network freezes the
level-0 models to prevent them from modifying their generated weights, and it works to
train them with its new extracted weights to reach the best accuracy. It can be observed
that MLHM does not let the input data pass through a very deep network, and at the same
time, it takes the benefits of deep training models to obtain more accurate features.

First of all, the two models of Level-0 were trained separately and later combined the
output of these two models and fed them into the level-1 model to enhance the operation

Remote Sens. 2022, 14, 1038 11 of 21

of the previous level and train it with different data. This operation allowed the network
to decide, choose, and obtain the best weight for each class. While model-1 works to
deeply extract the complex classes’ features, model-2 enhances feature extraction and
the localization of less complex and small data. Both models of Level-0 work to extract
spatial-spectral features. Therefore, the level-1 model is fed by the features of the level-0
models and it, in turn, enhances the extracted weight and provides the best results for the
different classes.

Tables 3–5 show the results of each level of the three different datasets. In level-0
models, model-1 results are better than model-2. However, in some classes of IPs and
Pavia-University datasets, model-2 had better results. The data distribution of KS_Center is
very complex, and the sample numbers of its classes are almost similar. For these reasons,
the accuracy of model-2 is very high compared to model-1 for all classes. Although the
Level-1 model has fewer layers, it appreciably optimized the final results of IPs and Pavia-
University datasets. In the KS_Center dataset, because the accuracy of model-1 of Level-0
is less than model-2 of Level-0, that affected the final results of QPCA-MLHM and obtained
relatively lower results, barely 0.03. Figures 4–6 show the final results of each model. It
clearly showed the ability of the framework to extract the features and detect the classes of
each target correctly.

Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 22

very complex, and the sample numbers of its classes are almost similar. For these reasons,
the accuracy of model-2 is very high compared to model-1 for all classes. Although the
Level-1 model has fewer layers, it appreciably optimized the final results of IPs and Pavia-
University datasets. In the KS_Center dataset, because the accuracy of model-1 of Level-0
is less than model-2 of Level-0, that affected the final results of QPCA-MLHM and ob-
tained relatively lower results, barely 0.03. Figures 4–6 show the final results of each
model. It clearly showed the ability of the framework to extract the features and detect the
classes of each target correctly.

Figure 4. The results of both levels models for the IPs dataset.

Figure 5. The results of both levels models for the Pavia-University dataset.

Table 5. The sample number of level-0 and level-1 datasets. It also indicates the two level-0 models’
results and the final results of the level-1 model for the KS_center dataset.

Classes Level-0
Samples

Level-1
Samples

Testing
Samples

Level-0 Level-1
QPCA-

Model-1
QPCA-

Model-2
QPCA-
MLHM

1 Scrub 152 61 548 1 1 1
2 Willow swamp (WS) 49 19 175 0.817 0.977 0.971

3
Cabbage palm hammock

(CPH) 51 21 184 0.152 0.984 0.989

4 Cabbage palm/oak
hammock (CPOH)

50 20 182 0.967 0.995 0.995

5 Slash pine (SP) 32 13 116 0.793 0.991 0.991

Figure 4. The results of both levels models for the IPs dataset.

Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 22

very complex, and the sample numbers of its classes are almost similar. For these reasons,
the accuracy of model-2 is very high compared to model-1 for all classes. Although the
Level-1 model has fewer layers, it appreciably optimized the final results of IPs and Pavia-
University datasets. In the KS_Center dataset, because the accuracy of model-1 of Level-0
is less than model-2 of Level-0, that affected the final results of QPCA-MLHM and ob-
tained relatively lower results, barely 0.03. Figures 4–6 show the final results of each
model. It clearly showed the ability of the framework to extract the features and detect the
classes of each target correctly.

Figure 4. The results of both levels models for the IPs dataset.

Figure 5. The results of both levels models for the Pavia-University dataset.

Table 5. The sample number of level-0 and level-1 datasets. It also indicates the two level-0 models’
results and the final results of the level-1 model for the KS_center dataset.

Classes Level-0
Samples

Level-1
Samples

Testing
Samples

Level-0 Level-1
QPCA-

Model-1
QPCA-

Model-2
QPCA-
MLHM

1 Scrub 152 61 548 1 1 1
2 Willow swamp (WS) 49 19 175 0.817 0.977 0.971

3
Cabbage palm hammock

(CPH) 51 21 184 0.152 0.984 0.989

4 Cabbage palm/oak
hammock (CPOH)

50 20 182 0.967 0.995 0.995

5 Slash pine (SP) 32 13 116 0.793 0.991 0.991

Figure 5. The results of both levels models for the Pavia-University dataset.

Remote Sens. 2022, 14, 1038 12 of 21

Table 5. The sample number of level-0 and level-1 datasets. It also indicates the two level-0 models’
results and the final results of the level-1 model for the KS_center dataset.

Classes
Level-0

Samples
Level-1

Samples
Testing

Samples

Level-0 Level-1

QPCA-
Model-1

QPCA-
Model-2

QPCA-
MLHM

1 Scrub 152 61 548 1 1 1
2 Willow swamp (WS) 49 19 175 0.817 0.977 0.971

3 Cabbage palm hammock
(CPH) 51 21 184 0.152 0.984 0.989

4 Cabbage palm/oak hammock
(CPOH) 50 20 182 0.967 0.995 0.995

5 Slash pine (SP) 32 13 116 0.793 0.991 0.991

6 Oak/broadleaf hammock
(OBH) 46 18 165 1 1 1

7 Hardwood swamp (HS) 21 8 76 1 1 1
8 Graminoid marsh (GM) 86 34 311 0.936 1 0.997
9 Spartina marsh (SM) 104 42 374 1 1 1
10 Cattail marsh (CM) 81 32 291 0.990 1 1
11 Salt marsh (SM) 84 34 301 1 1 1
12 Mud flats (MF) 101 40 362 0.994 1 1
13 Wate 185 74 668 1 1 1

Kappa accuracy (%) 92.774 99.733 99.703
Overall accuracy (%) 93.525 99.760 99.734
Average accuracy (%) 89.610 99.590 99.563

Training Time (s) 86.13 15.28 6.04
Testing Time (s) 0.35 0.31 0.51

Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 22

6
Oak/broadleaf hammock

(OBH) 46 18 165 1 1 1

7 Hardwood swamp (HS) 21 8 76 1 1 1
8 Graminoid marsh (GM) 86 34 311 0.936 1 0.997
9 Spartina marsh (SM) 104 42 374 1 1 1

10 Cattail marsh (CM) 81 32 291 0.990 1 1
11 Salt marsh (SM) 84 34 301 1 1 1
12 Mud flats (MF) 101 40 362 0.994 1 1
13 Wate 185 74 668 1 1 1
 Kappa accuracy (%) 92.774 99.733 99.703
 Overall accuracy (%) 93.525 99.760 99.734
 Average accuracy (%) 89.610 99.590 99.563
 Training Time (s) 86.13 15.28 6.04
 Testing Time (s) 0.35 0.31 0.51

Figure 6. The results of both levels models for the KS_Center dataset.

In addition, using BN in the deeper network such as Model 1 of Level-0 in the exper-
iment was more effective than using the dropout layer. That notwithstanding, using the
dropout layer in the shallow model provides higher accuracy than using BN, which was
observed in model 2 of Level-0.

Figure 7 shows the loss values during the training time, and it can be observed that
the Level-1 model gives a more stable and smoother training than models of Level-0.

Figure 6. The results of both levels models for the KS_Center dataset.

In addition, using BN in the deeper network such as Model 1 of Level-0 in the experi-
ment was more effective than using the dropout layer. That notwithstanding, using the
dropout layer in the shallow model provides higher accuracy than using BN, which was
observed in model 2 of Level-0.

Remote Sens. 2022, 14, 1038 13 of 21

Figure 7 shows the loss values during the training time, and it can be observed that
the Level-1 model gives a more stable and smoother training than models of Level-0.

Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 22

Figure 7. Loss values of the three datasets for the two models of Level-0 (QPCA-Model 1 and QPCA-
Model 1) and Level-1 model (QPCA-MLHM). (a) is the loss values of the IPs dataset, (b) is the loss
values of the Pavia-University dataset, and (c) is the loss values of the Kennedy Space Center da-
taset.

3.2.3. Comparisons with Other Methods
Also, to see the effectiveness of the QPCA optimizer and MLHM framework, four

different state-of-the-art models with various structures were trained, one time with PCA
and the other with QPCA preprocessing. The four models are SVM, CNN-1d [62], VGG-
16 [63], and HybridCNN [19]. The experiments of MLHM and other methods have been
repeated 10 times, and the mean and standard deviation of KA, OA, and AA coefficients
are recorded to compare the results of the various methods.

VGG-16 is a deep network of 14 2D-CNN layers having the same kernel size (KS) (3
× 3), two FC layers, both using RAF, and four layers of max pooling (2, 2). The bounds
number was reduced to 30 for the IP dataset and 15 for Pavia-University and KS_Center
datasets. The training and testing set rates were 20% and 80%.

CNN1d is a layer of 1D-CNN to train spatial information with RAF, and 24 KS, two
layers of FC, max pooling (2, 2), and BN. The bounds number of all datasets was reduced
to 30 and split into 20% as training set and 80% as testing set, respectively.

HybridCNN works to train spectral-spatial features of hybrid window sizes (15, 13,
9) reduced by PCA in the preprocessing stage to 15 for all input data. Also, it divides the
input data into three sets of representation: 20% training, 10% validation, and 70% for
testing. Three layers of 3D-CNN trained each window size with different KSs and RAFs.
Then, extracted features of the three networks were then concatenated and fed into a net-
work of two 2D-CNN layers with different KSs and RAF to obtain the final classification.
The epoch and batch sizes were 50 and 200. Adam optimizer with 0.001 learning rate (LR)
was used in VGG-16, CNN1d, and HybridCNN.

Tables 6 and 7 shows that SVM and CNN1d with QPCA achieved less accuracy in
the IPs and Pavia-University datasets. On the other hand, because the KS_Center dataset
is the most complex, QPCA enhanced the data distribution to be more normal. So, QPCA
significantly increased the accuracy of SVM, which is around 25%, and 19% for CNN1d
in the KS_Center dataset, as indicated in Table 8. Furthermore, the QPCA optimizer
played a great role with all the other models in all the datasets, as shown in Tables 6–8.
For instance, with the IPs dataset, QPCA improved the output of the VGG-16 by 10% com-
pared to using only PCA, Table 6. Similarly, in the KS_Center dataset, the QPCA increased
the results of the HybridCNN model by more than 13%, Table 8. QPCA functioned to
obtain the most influential bands of the input dataset. Thus, it improved the models’ re-
sults.

The KS_Center dataset has the most complex data distribution, so getting very high
accuracy classification without enhancing the data distribution beforehand is complicated
in the classification [39,64]. Not always increasing the number of samples gives higher
accuracy. Thus, using QPCA introduced a very significant enhancement with the KS_Cen-
ter dataset and gave the best accuracy in all models used, as can be seen in Table 8.

Figure 7. Loss values of the three datasets for the two models of Level-0 (QPCA-Model 1 and QPCA-
Model 1) and Level-1 model (QPCA-MLHM). (a) is the loss values of the IPs dataset, (b) is the loss
values of the Pavia-University dataset, and (c) is the loss values of the Kennedy Space Center dataset.

3.2.3. Comparisons with Other Methods

Also, to see the effectiveness of the QPCA optimizer and MLHM framework, four
different state-of-the-art models with various structures were trained, one time with PCA
and the other with QPCA preprocessing. The four models are SVM, CNN-1d [62], VGG-
16 [63], and HybridCNN [19]. The experiments of MLHM and other methods have been
repeated 10 times, and the mean and standard deviation of KA, OA, and AA coefficients
are recorded to compare the results of the various methods.

VGG-16 is a deep network of 14 2D-CNN layers having the same kernel size (KS)
(3 × 3), two FC layers, both using RAF, and four layers of max pooling (2, 2). The bounds
number was reduced to 30 for the IP dataset and 15 for Pavia-University and KS_Center
datasets. The training and testing set rates were 20% and 80%.

CNN1d is a layer of 1D-CNN to train spatial information with RAF, and 24 KS, two
layers of FC, max pooling (2, 2), and BN. The bounds number of all datasets was reduced
to 30 and split into 20% as training set and 80% as testing set, respectively.

HybridCNN works to train spectral-spatial features of hybrid window sizes (15, 13, 9)
reduced by PCA in the preprocessing stage to 15 for all input data. Also, it divides the input
data into three sets of representation: 20% training, 10% validation, and 70% for testing.
Three layers of 3D-CNN trained each window size with different KSs and RAFs. Then,
extracted features of the three networks were then concatenated and fed into a network
of two 2D-CNN layers with different KSs and RAF to obtain the final classification. The
epoch and batch sizes were 50 and 200. Adam optimizer with 0.001 learning rate (LR) was
used in VGG-16, CNN1d, and HybridCNN.

Tables 6 and 7 shows that SVM and CNN1d with QPCA achieved less accuracy in the
IPs and Pavia-University datasets. On the other hand, because the KS_Center dataset is
the most complex, QPCA enhanced the data distribution to be more normal. So, QPCA
significantly increased the accuracy of SVM, which is around 25%, and 19% for CNN1d in
the KS_Center dataset, as indicated in Table 8. Furthermore, the QPCA optimizer played a
great role with all the other models in all the datasets, as shown in Tables 6–8. For instance,
with the IPs dataset, QPCA improved the output of the VGG-16 by 10% compared to using
only PCA, Table 6. Similarly, in the KS_Center dataset, the QPCA increased the results of
the HybridCNN model by more than 13%, Table 8. QPCA functioned to obtain the most
influential bands of the input dataset. Thus, it improved the models’ results.

Remote Sens. 2022, 14, 1038 14 of 21

Table 6. The comparison of the various models with PCA and QPCA preprocessing for the IPs dataset.

Calsses PCA-
SVM

QPCA-
SVM

PCA-
CNN1d

QPCA-
CNN1d

PCA-
VGG-

16

QPCA-
VGG-

16

PCA-
Hybrid
CNN

QPCA-
Hybrid
CNN

PCA-
MLHM

QPCA-
MLHM

1 Alfalfa 0.70 0.16 0.78 0.44 0.00 0.00 0.97 0.97 1 1
2 CN 0.72 0.72 0.79 0.72 0.92 0.98 0.98 1 0.98 0.98
3 CM 0.75 0.67 0.71 0.70 0.94 0.99 0.99 1 1 1
4 Corn 0.64 0.45 0.62 0.60 1.00 0.93 0.98 1 1 1
5 GP 0.92 0.87 0.91 0.94 0.66 0.86 0.98 0.98 0.99 1
6 GT 0.95 0.96 0.93 0.95 0.57 0.99 1.00 1 1 0.99
7 GPM 0.96 0.82 1.00 1.00 0.00 0.00 1.00 1 1 1
8 HW 0.97 0.96 1.00 1.00 0.14 1.00 1.00 1 1 1
9 Oats 0.56 0.38 0.25 0.50 0.00 0.38 0.86 1 0.86 1

10 SN 0.72 0.65 0.73 0.70 0.93 0.95 0.98 0.98 1 1
11 SM 0.86 0.78 0.86 0.82 0.99 0.99 1.00 1 1 1
12 SC 0.74 0.64 0.69 0.69 0.95 0.98 0.97 0.99 0.98 1
13 Wheat 0.97 0.93 0.95 1.00 0.99 1.00 1.00 1 1 1
14 Woods 0.96 0.91 0.97 0.99 0.99 0.99 1.00 1 1 1
15 BGTD 0.61 0.57 0.69 0.60 0.96 0.84 0.99 1 1 1
16 SST 0.87 0.81 0.84 0.79 0.00 0.04 0.97 0.99 1 0.97

KA (%) 80
(0.09)

73.91
(0.35)

80.39
(1.27)

78.33
(0.93)

83.77
(13.13)

94.68
(2.86)

98.96
(0.82)

99.25
(0.28)

99.39
(0.07)

99.41
(0.06)

OA (%) 82.50
(0.08)

77.16
(0.31)

82.84
(1.11)

81.03
(0.80)

85.87
(11.38)

95.34
(2.50)

99.09
(0.72)

99.34
(0.25)

99.47
(0.07)

99.47
(0.06)

AA (%) 80.28
(0.18)

70.63
(0.54)

79.48
(3.15)

78.24
(2.16)

66.58
(19.31)

81.89
(9.03)

98.17
(1.04)

98.71
(0.51)

99.01
(0.40)

99.36
(0.27)

Tr.T. 1

(s)
0.41 0.67 21.87 36.04 53.44 50.95 65.60 60.40 41.67 25.47

Ta.T. 2

(s)
2.40 2.45 0.25 0.27 2.20 2.24 1.93 1.83 4.53 3.64

1 Trining Time (Tr.T); 2 Testing Time (Ta.T).

Table 7. The comparison of the various models with PCA and QPCA preprocessing for the Pavia-
University dataset.

Calsses PCA-
SVM

QPCA-
SVM

PCA-
CNN1d

QPCA-
CNN1d

PCA-
VGG-

16

QPCA-
VGG-

16

PCA-
Hybrid
CNN

QPCA-
Hybrid
CNN

PCA-
MLHM

QPCA-
MLHM

1 Asphalt 0.95 0.94 0.95 0.90 1 1 1 1 1 1
2 Meadows 0.98 0.96 0.98 0.96 1 1 1 1 1 1
3 Gravel 0.80 0.74 0.80 0.72 1 1 1 1 1 1
4 Trees 0.94 0.90 0.94 0.86 0.99 0.99 1 1 1 1
5 BMS 1.00 1.00 0.99 0.99 1 1 1 1 1 1
6 BS 0.88 0.88 0.91 0.83 1 1 1 1 1 1
7 Bitumen 0.86 0.86 0.91 0.79 1 1 0.99 1 1 1
8 SBB 0.91 0.82 0.89 0.82 1 1 0.98 1 1 1
9 Shadows 1 1 1 0.99 0.96 0.98 1 1 0.99 1

KA (%) 92.09
(0.01)

89.66
(0.03)

93.69
(0.30)

91.88
(0.46)

99.68
(0.24)

99.81
(0.05)

99.86
(0.06)

99.93
(0.04)

99.93
(0.01)

99.94
(0.02)

OA (%) 93.86
(0.62)

92.22
(0.02)

95.25
(0.22)

93.89
(0.35)

99.76
(0.18)

99.86
(0.04)

99.90
(0.05)

99.95
(0.03)

99.94
(0.01)

99.96
(0.02)

AA (%) 92.37
(0.59)

90.07
(0.02)

93.70
(0.40)

92.01
(0.49)

99.48
(0.29)

99.68
(0.07)

99.82
(0.07)

99.91
(0.05)

99.88
(0.04)

99.90
(0.04)

Tr.T. (s) 1.58 2.03 77.81 78.64 234.05 208.66 239.24 211.71 38.25 38.05
Ta.T.(s) 6.34 7.01 0.66 0.71 7.45 7.39 7.88 7.51 6.08 6.03

Remote Sens. 2022, 14, 1038 15 of 21

Table 8. The comparison of the various models with PCA and QPCA preprocessing for the
KS_center dataset.

Calsses PCA-
SVM

QPCA-
SVM

PCA-
CNN1d

QPCA-
CNN1d

PCA-
VGG-

16

QPCA-
VGG-

16

PCA-
Hybrid
CNN

QPCA-
Hybrid
CNN

PCA-
MLHM

QPCA-
MLHM

1 Scrub 0.97 0.90 0.97 0.95 0.98 1 0.96 1 1 1
2 WS 0 0.71 0.78 0.78 0.59 0.62 0.92 0.98 0.96 0.99
3 CPH 0 0.68 0 0.71 0 0.92 0.80 0.97 0.98 0.99
4 CPOH 0 0.35 0.16 0.48 0.60 0.94 0.64 0.99 0.88 0.99
5 SP 0 0.46 0 0.28 0.95 0 0.84 0.95 0.94 0.98
6 OBH 0 0.32 0 0.30 0.10 1 0.43 0.99 0.99 1
7 HS 0 0.71 0 0.71 0 0 0.70 1 0.93 1
8 GM 0.18 0.55 0.36 0.58 0.02 0.96 0.79 0.98 0.96 1
9 SM 0.71 0.83 0.76 0.87 0.04 1 0.80 1 1 1

10 CM 0.02 0.55 0.04 0.49 0.84 1 0.94 0.99 0.95 1
11 SM 0.88 0.92 0.83 0.96 0.60 1 1 1 1 1
12 MF 0.52 0.69 0.65 0.76 0.97 0.95 0.97 1 1 1
13 Wate 1 0.98 0.98 0.95 0.97 1 1 1 1 1

KA (%) 45.36
(0.10)

71.80
(0.39)

54.07
(1.69)

73.36
(0.79)

54.32
(13.94)

91.54
(5.01)

85.97
(4.59)

99.11
(0.15)

97.44
(0.61)

99.57
(0.13)

OA (%) 52.68
(0.08)

74.71
(0.35)

59.54
(1.55)

76.08
(0.72)

60.15
(11.51)

92.41
(4.49)

87.38
(4.19)

99.20
(0.14)

97.70
(0.55)

99.62
(0.11)

AA (%) 32.87
(0.06)

66.85
(0.54)

42.73
(0.96)

69.39
(1.60)

53.93
(12.17)

85.54
(8.59)

84.63
(3.10)

98.76
(0.27)

96.42
(0.83)

99.34
(0.20)

Tr.T. (s) 0.07 0.04 20.14 21.15 72.54 72.72 32.42 36.96 8.80 8.38
Ta.T.(s) 0.31 0.20 0.25 0.17 1.07 0.99 0.96 1.06 0.91 0.89

The KS_Center dataset has the most complex data distribution, so getting very high
accuracy classification without enhancing the data distribution beforehand is complicated
in the classification [39,64]. Not always increasing the number of samples gives higher
accuracy. Thus, using QPCA introduced a very significant enhancement with the KS_Center
dataset and gave the best accuracy in all models used, as can be seen in Table 8.

The structure of each compared model is different; SVM is simple and one of the old
classification methods, SVM and CNN1d, have a less complex operation than others. The
VGG-16 has 16 layers; 14 are 2D-CNN, and two are FC layers with RAF. HybridCNN is
a hybrid model of three parallel lines of 3D-CNN layers, combined by 2D-CNN layers
and hybrid window sizes with RAF to extract spatial-spectral features of the input data.
However, the MLHM framework combines and trains the output of different computation
and structure models. These models use hybrid CNN (2D and 3D) with different kernel
sizes and BN and dropout layers to avoid overfitting. From Tables 6–8, it can be seen that
this study’s framework with QPCR normalization had the best results in all datasets.

Furthermore, the MLHM framework with PCA also obtained the highest accuracy
compared to the other models with PCA only. Because HybridCNN was designed to obtain
the spatial-spectral features simultaneously and use 3D-CNN, it had better results than
VGG-16, even though it had more layers than others. In general, the QPCA-MLHM was
the best flexible framework that provided an effective way to classify HS images and had
the highest accuracy. Moreover, it introduced the best results for the most accurate different
classes in all datasets, as shown in Figures 8–10.

Remote Sens. 2022, 14, 1038 16 of 21Remote Sens. 2022, 14, x FOR PEER REVIEW 17 of 22

Figure 8. The output of the various models with PCA and QPCA preprocessing for the IPs dataset.

Figure 9. The output of the various models with PCA and QPCA preprocessing for the Pavia Uni-
versity dataset.

Figure 8. The output of the various models with PCA and QPCA preprocessing for the IPs dataset.

Remote Sens. 2022, 14, x FOR PEER REVIEW 17 of 22

Figure 8. The output of the various models with PCA and QPCA preprocessing for the IPs dataset.

Figure 9. The output of the various models with PCA and QPCA preprocessing for the Pavia Uni-
versity dataset.
Figure 9. The output of the various models with PCA and QPCA preprocessing for the Pavia
University dataset.

Remote Sens. 2022, 14, 1038 17 of 21
Remote Sens. 2022, 14, x FOR PEER REVIEW 18 of 22

Figure 10. The output of the various models with PCA and QPCA preprocessing for the KS_Center
dataset.

In the very deep networks (VGG-16, HybridCNN, MLHM), the QPCA preprocessing
speeded up the running time more than PCA. QPCA works to normalize the distribution;
thus, it improves spatial information. Moreover, the VGG-16 model focuses on extracting
the spatial features, while HybridCNN and MLHM focus on extracting spatial-spectral
features. These models achieved higher accuracy and less performance time with QPCA.
The SVD and CNN1d process the spectral features, resulting in less accuracy with QPCA.
MLHM as a deep model extracting spatial-spectral features is the fastest model, Tables 6–
8.

Figure 11 shows the accuracy during the training time for the eight experiments of
the four models with PCA and QPCA. It can be observed that QPCA makes the training

Figure 10. The output of the various models with PCA and QPCA preprocessing for the
KS_Center dataset.

In the very deep networks (VGG-16, HybridCNN, MLHM), the QPCA preprocessing
speeded up the running time more than PCA. QPCA works to normalize the distribution;
thus, it improves spatial information. Moreover, the VGG-16 model focuses on extracting
the spatial features, while HybridCNN and MLHM focus on extracting spatial-spectral
features. These models achieved higher accuracy and less performance time with QPCA.
The SVD and CNN1d process the spectral features, resulting in less accuracy with QPCA.
MLHM as a deep model extracting spatial-spectral features is the fastest model, Tables 6–8.

Figure 11 shows the accuracy during the training time for the eight experiments of
the four models with PCA and QPCA. It can be observed that QPCA makes the training

Remote Sens. 2022, 14, 1038 18 of 21

more stable and accelerates the process of obtaining higher accuracy more than using PCA,
especially with the KS_Center dataset. Moreover, MLHM introduces the best processing,
and it is the smoothest model during the training time.

Remote Sens. 2022, 14, x FOR PEER REVIEW 19 of 22

more stable and accelerates the process of obtaining higher accuracy more than using
PCA, especially with the KS_Center dataset. Moreover, MLHM introduces the best pro-
cessing, and it is the smoothest model during the training time.

Figure 11. The training accuracy in each model for the three used datasets: (a) IPs dataset, (b) the
Pavia University dataset, and (c) the KS_Center dataset.

4. Conclusions
This study proposed quantile transformation principal component analysis (QPCA)

as preprocessing to enhance the variations between HS image pixels and the discrimina-
bility of different pixels, and to redistribute data so that it appeared normal. However, to
improve the feature extraction and deal with the challenges of HS images, this study com-
bined the shallow and deep network of hybrid structures of 2D and 3D-CNN in a novel
framework to provide high classification accuracy for the HS image data on two levels.
This framework structure with two learning levels was proposed, MLHM. It follows the
meta-learner technique to learn from learned models. Two base models (shallow and
deep) used hybrid CNN with different kernel sizes; three HS image datasets were used to
evaluate the proposed framework. From experiments of MLHM and the other compared
methods, the following conclusions were drawn: (1) combining the output of shallow and
deep models using meta-learner techniques provides better results than training a deep
or hybrid model. (2) QPCA enhances the data distribution and reduces the dimension of
each input dataset before training. (3) QPCA-MLHM showed the best classification for
each class in each dataset. (4) BN works better in deep networks, and dropout is better in
shallow networks. (5) QPCA enhanced the results by 13% for several models and more
than 25% for the SVM model. (6) MLHM, compared with the deep models, provides the
best performance and speed. Future work needs to be focused on improving the data dis-
tribution and skewness and promoting feature extraction performance.

Figure 11. The training accuracy in each model for the three used datasets: (a) IPs dataset, (b) the
Pavia University dataset, and (c) the KS_Center dataset.

4. Conclusions

This study proposed quantile transformation principal component analysis (QPCA) as
preprocessing to enhance the variations between HS image pixels and the discriminability
of different pixels, and to redistribute data so that it appeared normal. However, to
improve the feature extraction and deal with the challenges of HS images, this study
combined the shallow and deep network of hybrid structures of 2D and 3D-CNN in a
novel framework to provide high classification accuracy for the HS image data on two
levels. This framework structure with two learning levels was proposed, MLHM. It follows
the meta-learner technique to learn from learned models. Two base models (shallow and
deep) used hybrid CNN with different kernel sizes; three HS image datasets were used to
evaluate the proposed framework. From experiments of MLHM and the other compared
methods, the following conclusions were drawn: (1) combining the output of shallow and
deep models using meta-learner techniques provides better results than training a deep
or hybrid model. (2) QPCA enhances the data distribution and reduces the dimension of
each input dataset before training. (3) QPCA-MLHM showed the best classification for
each class in each dataset. (4) BN works better in deep networks, and dropout is better in
shallow networks. (5) QPCA enhanced the results by 13% for several models and more
than 25% for the SVM model. (6) MLHM, compared with the deep models, provides the
best performance and speed. Future work needs to be focused on improving the data
distribution and skewness and promoting feature extraction performance.

Remote Sens. 2022, 14, 1038 19 of 21

Author Contributions: Conceptualization, M.A.A.A.-q. and Z.C.; Formal analysis, D.A.-A. and
A.D.; Funding acquisition, M.A.A.A.-q.; Methodology, D.A.-A.; Project administration, M.A.A.A.-
q.; Software, D.A.-A.; Supervision, Z.C., and M.A.A.A.-q.; Validation, Z.C.; Visualization, D.A.-A.;
Writing—original draft, D.A.-A.; Writing—review & editing, M.A.A.A.-q., A.D., Y.S. and S.I. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by LIESMARS Special Research Funding.

Data Availability Statement: All the datasets are available at this link: http://www.ehu.eus/
ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes, accessed on 10 October 2021.

Conflicts of Interest: The authors reported no potential conflict of interest.

References
1. Mei, X.; Pan, E.; Ma, Y.; Dai, X.; Huang, J.; Fan, F.; Du, Q.; Zheng, H.; Ma, J. Spectral-Spatial Attention Networks for Hyperspectral

Image Classification. Remote Sens. 2019, 11, 963. [CrossRef]
2. Tao, C.; Wang, Y.; Cui, W.; Zou, B.; Zou, Z.; Tu, Y. A transferable spectroscopic diagnosis model for predicting arsenic contamina-

tion in soil. Sci. Total Environ. 2019, 669, 964–972. [CrossRef]
3. Ma, L.; Crawford, M.M.; Zhu, L.; Liu, Y. Centroid and Covariance Alignment-Based Domain Adaptation for Unsupervised

Classification of Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2018, 57, 2305–2323. [CrossRef]
4. Luft, L.; Neumann, C.; Freude, M.; Blaum, N.; Jeltsch, F. Hyperspectral modeling of ecological indicators—A new approach for

monitoring former military training areas. Ecol. Indic. 2014, 46, 264–285. [CrossRef]
5. Camps-Valls, G.; Tuia, D.; Bruzzone, L.; Benediktsson, J.A. Advances in Hyperspectral Image Classification: Earth Monitoring

with Statistical Learning Methods. IEEE Signal Process. Mag. 2013, 31, 45–54. [CrossRef]
6. Tusa, E.; Laybros, A.; Monnet, J.-M.; Dalla Mura, M.; Barré, J.-B.; Vincent, G.; Dalponte, M.; Féret, J.-B.; Chanussot, J. Fusion of

hyperspectral imaging and LiDAR for forest monitoring. In Hyperspectral Imaging; Amigo, J.M., Ed.; Elsevier: Amsterdam, The
Netherlands, 2020; Volume 32, pp. 281–303. ISBN 0922-3487. [CrossRef]

7. Guo, A.T.; Huang, W.J.; Dong, Y.Y.; Ye, H.C.; Ma, H.Q.; Liu, B.; Wu, W.B.; Ren, Y.; Ruan, C.; Geng, Y. Wheat Yellow Rust Detection
Using UAV-Based Hyperspectral Technology. Remote Sens. 2021, 13, 123. [CrossRef]

8. Zheng, Q.; Huang, W.; Ye, H.; Dong, Y.; Shi, Y.; Chen, S. Using continous wavelet analysis for monitoring wheat yellow rust in
different infestation stages based on unmanned aerial vehicle hyperspectral images. Appl. Opt. 2020, 59, 8003. [CrossRef]

9. Cui, J.; Yan, B.; Dong, X.; Zhang, S.; Zhang, J.; Tian, F.; Wang, R. Temperature and emissivity separation and mineral mapping
based on airborne TASI hyperspectral thermal infrared data. Int. J. Appl. Earth Obs. Geoinf. 2015, 40, 19–28. [CrossRef]

10. Li, Y.; Qian, M.; Liu, P.; Cai, Q.; Li, X.; Guo, J.; Yan, H.; Yu, F.; Yuan, K.; Yu, J.; et al. The recognition of rice images by UAV based
on capsule network. Clust. Comput. 2018, 22, 9515–9524. [CrossRef]

11. Zhang, Y.; Ma, Y.; Dai, X.; Li, H.; Mei, X.; Ma, J. Locality-constrained sparse representation for hyperspectral image classification.
Inf. Sci. 2020, 546, 858–870. [CrossRef]

12. McInnes, L.; Healy, J.; Melville, J. Umap: Uniform manifold approximation and projection for dimension reduction. arXiv 2018,
arXiv:1802.03426.

13. Anowar, F.; Sadaoui, S.; Selim, B. Conceptual and empirical comparison of dimensionality reduction algorithms (PCA, KPCA,
LDA, MDS, SVD, LLE, ISOMAP, LE, ICA, t-SNE). Comput. Sci. Rev. 2021, 40, 100378. [CrossRef]

14. Imani, M.; Ghassemian, H. An overview on spectral and spatial information fusion for hyperspectral image classification: Current
trends and challenges. Inf. Fusion 2020, 59, 59–83. [CrossRef]

15. Ghojogh, B.; Samad, M.N.; Mashhadi, S.A.; Kapoor, T.; Ali, W.; Karray, F.; Crowley, M. Feature Selection and Feature Extraction in
Pattern Analysis: A Literature Review. arXiv 2019, arXiv:1905.02845.

16. Zhang, X.; Wei, Y.; Yao, H.; Ye, Z.; Zhou, Y.; Zhao, Y. Locally Homogeneous Covariance Matrix Representation for Hyperspectral
Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 9396–9407. [CrossRef]

17. Yao, H.; Yang, M.; Chen, T.; Wei, Y.; Zhang, Y. Depth-based human activity recognition via multi-level fused features and fast
broad learning system. Int. J. Distrib. Sens. Netw. 2020, 16, 1550147720907830. [CrossRef]

18. Yuan, Y.; Jin, M. Multi-type spectral spatial feature for hyperspectral image classification. Neurocomputing 2021, in press. [CrossRef]
19. Mohan, A.; Venkatesan, M. HybridCNN based hyperspectral image classification using multiscale spatiospectral features. Infrared

Phys. Technol. 2020, 108, 103326. [CrossRef]
20. Roy, S.K.; Dubey, S.R.; Chatterjee, S.; Chaudhuri, B.B. FuSENet: Fused squeeze-and-excitation network for spectral-spatial

hyperspectral image classification. IET Image Process. 2020, 14, 1653–1661. [CrossRef]
21. Roy, S.K.; Krishna, G.; Dubey, S.R.; Chaudhuri, B.B. HybridSN: Exploring 3-D–2-D CNN Feature Hierarchy for Hyperspectral

Image Classification. IEEE Geosci. Remote Sens. Lett. 2019, 17, 277–281. [CrossRef]
22. Li, S.; Song, W.; Fang, L.; Chen, Y.; Ghamisi, P.; Benediktsson, J.A. Deep Learning for Hyperspectral Image Classification: An

Overview. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6690–6709. [CrossRef]
23. Camps-Valls, G.; Bruzzone, L. Kernel-based methods for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2005,

43, 1351–1362. [CrossRef]

http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://doi.org/10.3390/rs11080963
http://doi.org/10.1016/j.scitotenv.2019.03.186
http://doi.org/10.1109/TGRS.2018.2872850
http://doi.org/10.1016/j.ecolind.2014.06.025
http://doi.org/10.1109/MSP.2013.2279179
http://doi.org/10.1016/B978-0-444-63977-6.00013-4
http://doi.org/10.3390/rs13010123
http://doi.org/10.1364/AO.397844
http://doi.org/10.1016/j.jag.2015.03.014
http://doi.org/10.1007/s10586-018-2482-7
http://doi.org/10.1016/j.ins.2020.09.009
http://doi.org/10.1016/j.cosrev.2021.100378
http://doi.org/10.1016/j.inffus.2020.01.007
http://doi.org/10.1109/JSTARS.2021.3110779
http://doi.org/10.1177/1550147720907830
http://doi.org/10.1016/j.neucom.2021.12.055
http://doi.org/10.1016/j.infrared.2020.103326
http://doi.org/10.1049/iet-ipr.2019.1462
http://doi.org/10.1109/LGRS.2019.2918719
http://doi.org/10.1109/TGRS.2019.2907932
http://doi.org/10.1109/TGRS.2005.846154

Remote Sens. 2022, 14, 1038 20 of 21

24. Chen, Y.; Nasrabadi, N.M.; Tran, T.D. Hyperspectral Image Classification Using Dictionary-Based Sparse Representation. IEEE
Trans. Geosci. Remote Sens. 2011, 49, 3973–3985. [CrossRef]

25. Li, S.; Wu, H.; Wan, D.; Zhu, J. An effective feature selection method for hyperspectral image classification based on genetic
algorithm and support vector machine. Knowl.-Based Syst. 2011, 24, 40–48. [CrossRef]

26. Yang, L.; Yang, S.; Jin, P.; Zhang, R. Semi-Supervised Hyperspectral Image Classification Using Spatio-Spectral Laplacian Support
Vector Machine. IEEE Geosci. Remote Sens. Lett. 2014, 11, 651–655. [CrossRef]

27. Chen, Y.-N.; Thaipisutikul, T.; Han, C.-C.; Liu, T.-J.; Fan, K.-C. Feature Line Embedding Based on Support Vector Machine for
Hyperspectral Image Classification. Remote Sens. 2021, 13, 130. [CrossRef]

28. Guo, Y.; Han, S.; Li, Y.; Zhang, C.; Bai, Y. K-Nearest Neighbor combined with guided filter for hyperspectral image classification.
Procedia Comput. Sci. 2018, 129, 159–165. [CrossRef]

29. Tu, B.; Huang, S.; Fang, L.; Zhang, G.; Wang, J.; Zheng, B. Hyperspectral Image Classification via Weighted Joint Nearest Neighbor
and Sparse Representation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 4063–4075. [CrossRef]

30. Huang, K.; Li, S.; Kang, X.; Fang, L. Spectral–Spatial Hyperspectral Image Classification Based on KNN. Sens. Imaging 2016, 17,
1–13. [CrossRef]

31. Cao, X.; Yao, J.; Xu, Z.; Meng, D. Hyperspectral Image Classification with Convolutional Neural Network and Active Learning.
IEEE Trans. Geosci. Remote Sens. 2020, 58, 4604–4616. [CrossRef]

32. Hang, R.; Li, Z.; Liu, Q.; Ghamisi, P.; Bhattacharyya, S.S. Hyperspectral Image Classification with Attention-Aided CNNs. IEEE
Trans. Geosci. Remote Sens. 2021, 59, 2281–2293. [CrossRef]

33. Yu, C.; Han, R.; Song, M.; Liu, C.; Chang, C.-I. A Simplified 2D-3D CNN Architecture for Hyperspectral Image Classification
Based on Spatial–Spectral Fusion. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2485–2501. [CrossRef]

34. Bandyopadhyay, M. Multi-stack hybrid CNN with non-monotonic activation functions for hyperspectral satellite image classifica-
tion. Neural Comput. Appl. 2021, 33, 14809–14822. [CrossRef]

35. Huang, L.; Chen, Y. Dual-Path Siamese CNN for Hyperspectral Image Classification with Limited Training Samples. IEEE Geosci.
Remote Sens. Lett. 2021, 18, 518–522. [CrossRef]

36. Zhao, Q.; Jia, S.; Li, Y. Hyperspectral remote sensing image classification based on tighter random projection with minimal
intra-class variance algorithm. Pattern Recognit. 2021, 111, 107635. [CrossRef]

37. Ramamurthy, M.; Robinson, Y.H.; Vimal, S.; Suresh, A. Auto encoder based dimensionality reduction and classification using
convolutional neural networks for hyperspectral images. Microprocess. Microsyst. 2020, 79, 103280. [CrossRef]

38. Paul, A.; Bhoumik, S.; Chaki, N. SSNET: An improved deep hybrid network for hyperspectral image classification. Neural Comput.
Appl. 2020, 33, 1575–1585. [CrossRef]

39. Wei, Y.; Zhou, Y. Spatial-Aware Network for Hyperspectral Image Classification. Remote Sens. 2021, 13, 3232. [CrossRef]
40. Zhao, J.; Huang, T.; Zhou, Z. Hyperspectral image super-resolution using recursive densely convolutional neural network with

spatial constraint strategy. Neural Comput. Appl. 2020, 32, 14471–14481. [CrossRef]
41. Zhao, G.; Liu, G.; Fang, L.; Tu, B.; Ghamisi, P. Multiple convolutional layers fusion framework for hyperspectral image

classification. Neurocomputing 2019, 339, 149–160. [CrossRef]
42. Al-Alimi, D.; Shao, Y.; Feng, R.; Al-Qaness, M.A.A.; Elaziz, M.A.; Kim, S. Multi-Scale Geospatial Object Detection Based on

Shallow-Deep Feature Extraction. Remote Sens. 2019, 11, 2525. [CrossRef]
43. Cao, F.; Guo, W. Cascaded dual-scale crossover network for hyperspectral image classification. Knowl.-Based Syst. 2019, 189,

105122. [CrossRef]
44. Yang, J.; Xiong, W.; Li, S.; Xu, C. Learning structured and non-redundant representations with deep neural networks. Pattern

Recognit. 2018, 86, 224–235. [CrossRef]
45. Guo, Y.; Cao, H.; Bai, J.; Bai, Y. High Efficient Deep Feature Extraction and Classification of Spectral-Spatial Hyperspectral Image

Using Cross Domain Convolutional Neural Networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 1–12. [CrossRef]
46. Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141.
47. Lin, T.-Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125.
48. Gao, H.; Yang, Y.; Li, C.; Zhang, X.; Zhao, J.; Yao, D. Convolutional neural network for spectral-spatial classification of

hyperspectral images. Neural Comput. Appl. 2019, 31, 8997–9012. [CrossRef]
49. Ribeiro, M.H.D.M.; Coelho, L.D.S. Ensemble approach based on bagging, boosting and stacking for short-term prediction in

agribusiness time series. Appl. Soft Comput. 2019, 86, 105837. [CrossRef]
50. Shamaei, E.; Kaedi, M. Suspended sediment concentration estimation by stacking the genetic programming and neuro-fuzzy

predictions. Appl. Soft Comput. 2016, 45, 187–196. [CrossRef]
51. Pernía-Espinoza, A.; Fernandez-Ceniceros, J.; Antonanzas, J.; Urraca, R.; Martinez-De-Pison, F. Stacking ensemble with parsimo-

nious base models to improve generalization capability in the characterization of steel bolted components. Appl. Soft Comput.
2018, 70, 737–750. [CrossRef]

52. Wozniak, M.; Graña, M.; Corchado, E. A survey of multiple classifier systems as hybrid systems. Inf. Fusion 2014, 16, 3–17.
[CrossRef]

http://doi.org/10.1109/TGRS.2011.2129595
http://doi.org/10.1016/j.knosys.2010.07.003
http://doi.org/10.1109/LGRS.2013.2273792
http://doi.org/10.3390/rs13010130
http://doi.org/10.1016/j.procs.2018.03.066
http://doi.org/10.1109/JSTARS.2018.2869376
http://doi.org/10.1007/s11220-015-0126-z
http://doi.org/10.1109/TGRS.2020.2964627
http://doi.org/10.1109/TGRS.2020.3007921
http://doi.org/10.1109/JSTARS.2020.2983224
http://doi.org/10.1007/s00521-021-06120-5
http://doi.org/10.1109/LGRS.2020.2979604
http://doi.org/10.1016/j.patcog.2020.107635
http://doi.org/10.1016/j.micpro.2020.103280
http://doi.org/10.1007/s00521-020-05069-1
http://doi.org/10.3390/rs13163232
http://doi.org/10.1007/s00521-019-04484-3
http://doi.org/10.1016/j.neucom.2019.02.019
http://doi.org/10.3390/rs11212525
http://doi.org/10.1016/j.knosys.2019.105122
http://doi.org/10.1016/j.patcog.2018.08.017
http://doi.org/10.1109/JSTARS.2018.2888808
http://doi.org/10.1007/s00521-019-04371-x
http://doi.org/10.1016/j.asoc.2019.105837
http://doi.org/10.1016/j.asoc.2016.03.009
http://doi.org/10.1016/j.asoc.2018.06.005
http://doi.org/10.1016/j.inffus.2013.04.006

Remote Sens. 2022, 14, 1038 21 of 21

53. Kang, S.; Cho, S.; Kang, P. Multi-class classification via heterogeneous ensemble of one-class classifiers. Eng. Appl. Artif. Intell.
2015, 43, 35–43. [CrossRef]

54. Taormina, V.; Cascio, D.; Abbene, L.; Raso, G. Performance of Fine-Tuning Convolutional Neural Networks for HEp-2 Image
Classification. Appl. Sci. 2020, 10, 6940. [CrossRef]

55. Zhong, C.; Zhang, J.; Wu, S.; Zhang, Y. Cross-Scene Deep Transfer Learning with Spectral Feature Adaptation for Hyperspectral
Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2861–2873. [CrossRef]

56. Liu, X.; Yu, L.; Peng, P.; Lu, F. A Stacked Generalization Framework for City Traffic Related Geospatial Data Analysis. In Web
Technologies and Applications; Morishima, A., Zhang, R., Zhang, W., Chang, L., Fu, T.Z.J., Liu, K., Yang, X., Zhu, J., Zhang, Z., Eds.;
Springer International Publishing: Cham, Switzerland, 2016; pp. 265–276.

57. Garcia-Ceja, E.; Galván-Tejada, C.E.; Brena, R. Multi-view stacking for activity recognition with sound and accelerometer data.
Inf. Fusion 2018, 40, 45–56. [CrossRef]

58. Xu, Y.; Du, B.; Zhang, F.; Zhang, L. Hyperspectral image classification via a random patches network. ISPRS J. Photogramm.
Remote Sens. 2018, 142, 344–357. [CrossRef]

59. Cheng, C.; Li, H.; Peng, J.; Cui, W.; Zhang, L. Hyperspectral Image Classification Via Spectral-Spatial Random Patches Network.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 4753–4764. [CrossRef]

60. Garbin, C.; Zhu, X.; Marques, O. Dropout vs. batch normalization: An empirical study of their impact to deep learning. Multimed.
Tools Appl. 2020, 79, 12777–12815. [CrossRef]

61. Fernández, A.; García, S.; Galar, M.; Prati, R.C.; Krawczyk, B.; Herrera, F. Learning from Imbalanced Data Sets, 1st ed.; Springer
International Publishing: Cham, Switzerland, 2018; ISBN 978-3-319-98073-7. [CrossRef]

62. Paoletti, M.E.; Haut, J.M.; Plaza, J.; Plaza, A. Deep learning classifiers for hyperspectral imaging: A review. ISPRS J. Photogramm.
Remote Sens. 2019, 158, 279–317. [CrossRef]

63. Jiao, L.; Liang, M.; Chen, H.; Yang, S.; Liu, H.; Cao, X. Deep Fully Convolutional Network-Based Spatial Distribution Prediction
for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5585–5599. [CrossRef]

64. Chu, Y.; Lin, H.; Yang, L.; Zhang, D.; Diao, Y.; Fan, X.; Shen, C. Hyperspectral image classification based on discriminative locality
preserving broad learning system. Knowl.-Based Syst. 2020, 206, 106319. [CrossRef]

http://doi.org/10.1016/j.engappai.2015.04.003
http://doi.org/10.3390/app10196940
http://doi.org/10.1109/JSTARS.2020.2999386
http://doi.org/10.1016/j.inffus.2017.06.004
http://doi.org/10.1016/j.isprsjprs.2018.05.014
http://doi.org/10.1109/JSTARS.2021.3075771
http://doi.org/10.1007/s11042-019-08453-9
http://doi.org/10.1007/978-3-319-98074-4
http://doi.org/10.1016/j.isprsjprs.2019.09.006
http://doi.org/10.1109/TGRS.2017.2710079
http://doi.org/10.1016/j.knosys.2020.106319

	Introduction
	Methodology and Framework
	Optimize the Data Distribution (QPCA, Quantile Transformation Principal Components Analysis)
	Framework

	Experiment
	Datasets
	Experimental Results and Comparisons
	QPCA Output
	Meta-Learner Hybrid Model (MLHM) Results
	Comparisons with Other Methods

	Conclusions
	References

