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Abstract: Identification and monitoring of unstable slopes across wide regions using Synthetic
Aperture Radar Interferometry (InSAR) can further help to prevent and mitigate geological hazards.
However, the low spatial density of measurement points (MPs) extracted using the traditional time-
series InSAR method in topographically complex mountains and vegetation-covered slopes makes
the final result unreliable. In this study, a method of time-series InSAR analysis using single- and
multi-look phases were adopted to solve this problem, which exploited single- and multi-look phases
to increase the number of MPs in the natural environment. Archived ascending and descending
Sentinel-1 datasets covering Zhouqu County were processed. The results revealed that nine landslides
could be quickly identified from the average phase rate maps using the Stacking method. Then, the
time-series InSAR analysis with single- and multi-look phases could be used to effectively monitor
the deformation of these landslides and to quantitatively analyze the magnitude and dynamic
evolution of the deformation in various parts of the landslides. The reliability of the InSAR results
was further verified by field investigations and Unmanned Aerial Vehicle (UAV) surveys. In addition,
the precursory movements and causative factors of the recent Yahuokou landslide were analyzed in
detail, and the application of the time-series InSAR method in landslide investigations was discussed
and summarized. Therefore, this study has practical significance for early warning of landslides and
risk mitigation.

Keywords: landslides; InSAR; landslide identification; single- and multi-look phases;
deformation monitoring

1. Introduction

Landslides seriously threaten the safety of properties and lives [1–4], causing tens of
billions of dollars in losses and more than 4300 fatalities around the world annually [5–7].
Through the analysis of the characteristics of several landslides that caused heavy casualties
and economic losses, it has been found that these landslides have the common charac-
teristics of high position and concealment, which makes it difficult for geological field
investigations to find these potential threats [8–10]. Therefore, the identification and moni-
toring of deformation areas in topographically complex mountains and vegetation-covered
slopes are significant for the prevention and mitigation of geological hazards.

Landslide surface displacement analysis is the basis of landslide stability research
and is of great significance to landslide identification and monitoring [11–14]. Traditional
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landslide deformation analysis methods are mainly performed using field surveys, incli-
nometers, Global Positioning System (GPS), extensometers, total stations, and so on [15–17].
However, these methods cannot “blindly” monitor for landslides; that is, there needs to be
knowledge of a landslide or, at minimum, a previously identified instability-prone area
to establish monitoring, so they cannot identify and monitor landslides on a large scale.
Optical remote sensing methods can be used to identify landslides that have occurred
and areas with obvious deformation through differences in image spectra and textures,
combined with topographic and geomorphological features, but it is difficult to identify
slowly deforming landslides [10,16,18]. Differential Synthetic Aperture Radar Interferom-
etry (D-InSAR) has the unique ability to measure surface micro-deformation on a large
scale [19–21]. In recent years, time-series InSAR based on D-InSAR has been extensively
applied to identify and monitor landslides over wide areas, and substantial progress has
been made [22–26]. However, InSAR technology still has some problems regarding land-
slide investigations. A key problem is the low density of measurement points (MPs) in
topographically complex mountains and vegetation-covered slopes [27], because moun-
tains with complex topography are prone to geometric distortion (shadow, layover, and
foreshortening) and the existence of vegetation will reduce the coherence. Sparse MPs will
introduce phase unwrapping errors and are not sufficient for detecting small landslides. To
effectively improve the spatial density of MPs, Ferretti et al. [28] proposed the SqueeSARTM

method, which used the embedded DespecKS procedure to identify Statistically Homoge-
neous Pixels (SHP), and then carried out the subsequent solution by combining Persistent
Scatterers (PS). Lv et al. [29] proposed the Joint-Scatterer InSAR (JSInSAR) method, which
used coherence information of neighboring pixel stacks to improve the spatial density of
MPs in the low-coherence region. Fornaro et al. [30] proposed the Component extrAction
and sElection SAR (CAESAR) method, which extracted different scattering components
through the analysis of the covariance matrix to increase the MPs. Dong et al. [31] proposed
the Coherent Scatterer InSAR (CSI) method, which used the generalized likelihood ratio
(GLR) test to identify the SHP and used the phase link algorithm to estimate the optimal
phase for each SHP, and then conducted time-series analysis by combining the PS. These
methods greatly improve the spatial density of the MPs and make the phase unwrapping
more reliable, but they are too time-consuming [8,31]. Thus, it is necessary to balance the
relationship between the spatial density of the MPs and a high computational efficiency,
which may improve the efficiency of landslide identification and monitoring.

Therefore, in this study, we combined Stacking and time-series InSAR analysis with
single- and multi-look phases to study and analyze the unstable slopes within Zhouqu
County, the midstream of the Bailong River. First, Stacking was applied to quickly identify
the deformation region, and then time-series InSAR analysis with single- and multi-look
phases was used to monitor the landslides area. In addition, in order to study the character-
istics of landslides in this area in the imminent sliding stage, the precursory movements
and causative factors of the recent Yahuokou landslide were analyzed. Finally, the potential
improvements and limitations of the time-series InSAR methods for landslide identification
and monitoring were considered.

2. Study Area and SAR Data
2.1. Study Area

Zhouqu County is situated in the midstream of the Bailong River (Figure 1). The
Bailong River is 576 km long, located in the transition zone between the Qinghai–Tibet
Plateau and the Sichuan Basin [32]. Zhouqu County is a typical tectonic erosional mountain
with altitudes varying from 1173 m to 4504 m [33]. Influenced by the monsoon climate,
the rainfall in Zhouqu Country is low and unevenly distributed, and its wet season is
from May to October, accounting for approximately 90% of the annual precipitation [34].
The mean annual temperature of the area is 12.7 ◦C. Fracture surfaces (e.g., Pingding-
huama fault and Zhouqu fault) and quaternary deposits are widely distributed in the study
area due to the neotectonic movements [26,33]; meanwhile, the frequency of earthquakes
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is relatively high, with 16 earthquakes with a magnitude above Ms 7.0 [35]. Moreover,
bedrock fissure water, karst-fractured groundwater, and Quaternary pore water are widely
distributed underground [36], which will further increase the possibility of unstable slopes
to form geological disasters. These objective factors result in the frequent occurrences of
landslides, collapses, debris flows, and other geological disasters in the Bailong River valley.
Furthermore, with the growing population and rapidly developed economy of the study
area, unreasonable engineering construction has consequently destabilized the local slopes,
causing the geological environment in Zhouqu to deteriorate. In recent years, various
geological disasters have become frequent in Zhouqu County and its surrounding areas.
A giant debris flow that occurred on 7 August 2010, caused nearly 1800 deaths [37,38]. The
Jiangdingya flowslide occurred on July 12, 2018, and blocked the Bailong River, with a
1.4 × 105 m2 area and a total volume of 5 × 106 m3 [39,40]. Additionally, the Yahuokou
earthflow, which occurred on July 16, 2019, destroyed the road and buildings at the toe of
the landslide [41], with a 2 × 105 m2 area and a total volume of 3.9 × 106 m3 [42,43]. These
events all experienced intense rainfall before their occurrence. The rainfall increased the
self-weight of soil and reduced the shear strength of soil, which triggered the occurrence of
the disasters [35,38,42].
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Figure 1. Location of Zhouqu County. The background image is the Sentinel-2 image on 3 August
2019. The green and blue rectangles represent the coverage of the ascending and descending Sentinel-
1, respectively, and the white labels indicate recent disasters in the study area. In addition, the red
circle marks the location of Zhouqu County in Gansu Province in the inset map at the left–bottom.
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2.2. SAR Data

In this study, two stacks of Sentinel-1 datasets covering the study area were used,
namely the ascending orbit datasets with a path number of 55 and the descending orbit
datasets with a path number of 62, in which an incidence angle of 37.0◦ was applied to
the ascending Sentinel-1 observations, and an angle of 38.4◦ was used for the descending
Sentinel-1 observations. The two datasets cover an area of about 550 km2, and the other
basic parameters are shown in Table 1. The error of satellite orbit was corrected by the
Precise Orbit Ephemerides (POD); meanwhile, the topographic phase was simulated by
the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) with a 30 m
resolution and removed from the interferogram.

Table 1. Basic parameters of the SAR datasets.

Sensor Sentinel-1 Sentinel-1

Orbit direction Ascending Descending
Heading angle (◦) 347 193

Path No. 55 62
Incidence angle (◦) 37.0 38.4
Spacing (Rg × Az) 2.3 m × 14.0 m 2.3 m × 14.0 m
Number of images 147 157
Temporal coverage October 2014 to December 2020 October 2014 to December 2020

The large number of Sentinel-1 images acquired over a long time period had a positive
effect on the quality of the time-series analysis results [8]. Meanwhile, the spatial baselines
of the two Sentinel-1 datasets were small, benefiting from the strict orbit controls, which
helped to reduce geometric errors. Therefore, the two Sentinel-1 datasets were used to
identify the deformation region and to calculate the deformation rate.

3. Methodology

The main flowchart is shown in Figure 2. First, the SAR data needed to be preprocessed;
then the deformation regions were identified by Stacking method, which can quickly
identify the deformation regions in a large range. Based on the identified deformation
regions, the topographic boundary was delimited, and the standard of delineation was
along the ridge line where the deformation area is located, because landslides mostly occur
in the area below the ridge line. Next, the deformation rates of the landslides were inverted
by time-series InSAR analysis with single- and multi-look phases. This method greatly
increases the number of MPs and avoids the situation of sparse MPs in mountainous
areas. Finally, the results of the InSAR analysis were verified through a field investigation.
Following this methodology, we identified and monitored landslides in Zhouqu County.
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Figure 2. Flowchart of this study. Radar remote sensing images were used to identify the deformation
regions and invert the deformation rates. Optical remote sensing images were used to delimit the
topographic boundary. An Unmanned Aerial Vehicle (UAV) was used for photogrammetry, Real-Time
Kinematic (RTK) was used for control point surveying, and tape was used for on-site measurements.



Remote Sens. 2022, 14, 1026 6 of 24

3.1. Stacking

Assuming that N + 1 SAR images are acquired according to time-series, M differential
interferograms can be obtained by setting an appropriate time–space baseline, and then
M unwrapping phase maps can be obtained by phase unwrapping. Stacking was used to
estimate the average phase rate by taking M unwrapped phase maps and then stacking
the weighted unwrapping phases together (Figure 2) [44]. This technique can weaken
the influence of orbital, atmospheric, and topographic errors in the unwrapped phase
map. Benefiting from the open source of Sentinel-1 data, the role of this technology in the
general surveys of land surface deformation is attracting more attention [44–47]. Since
the atmospheric phase component has the characteristics of low frequency in the spatial
domain and high frequency in the time domain, Stacking minimizes the atmospheric errors
and improves the calculation accuracy of the deformation rate [48]. The method assumes
that the regional deformation rate is the ratio of the total deformation to time, without
considering the distribution of the other noise in each independent unwrapping phase;
that is, the linear deformation rate and the atmospheric delay error are random and equal.
Normally, to ensure the accuracy of the results, the data with a short temporal baseline
and a spatial baseline are selected for combination. The constant rate of each pixel was
estimated using M individual unwrapping phases in the following Equation (1):

Vave =
∑M

j=1 ∆tj ϕj

∑M
j=1 ∆t2

j
(1)

where Vave is the average phase rate, ϕj is the unwrapped phase, and ∆tj is the temporal
baseline of the jth interferogram. In Equation (1), the unwrapping phases are weighted
according to the time interval [44].

In this study, 147 ascending and 157 descending orbit datasets were processed by
Stacking, respectively, and the time span was from October 2014 to December 2020. First
of all, based on the condition that only two interferometric pairs were generated for each
date, 291 and 311 interferometric pairs were created from the ascending and descending
orbit datasets, respectively. Next, the factors of 4 (range) and 1 (azimuth) (approximately
15 m resolution) were used for the interferogram and differential interferogram. Then, the
pixels with coherence greater than 0.35 were selected to use the Minimum Cost Flow (MCF)
method for phase unwrapping. Finally, all of the phase unwrapping results were stacked
to obtain the result of Stacking.

3.2. Time-Series InSAR Analysis with Single- and Multi-Look Phases

The single-look phases (Figure 3), which corresponded primarily to point scatterers,
were initially selected using the spectral diversity criteria and the low temporal ampli-
tude variation criterion of the GAMMA IPTA software [49–52]. The multi-look phases
(Figure 3) used primarily corresponded to distributed scatterers, because the distributed
scatterers were statistically consistent in the spatial distribution, which were determined
using the factors of 12 (range) and 3 (azimuth) (approximately 40 m resolution). Multi-
look phases can not only reduce the phase noise in areas with lower coherence, but also
improve the spatial coverage in areas with gravel or sparse vegetation. Expect for the
geometrical distortion regions (foreshortening, layover, and shadow), water surfaces and
forests, multi-look phases covered the whole study area [52]. In this study, the SLC area of
ascending and descending orbit datasets was 6800 columns × 1400 rows, which produced
566 × 466 multi-look phases. In the end, 12,733 single-look phases and 197,914 multi-look
phases were selected in the ascending orbit dataset, while 17,453 single-look phases and
197,842 multi-look phases were selected in the descending orbit dataset.
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Figure 3. Schematic diagram of the SLC, single-look phase, Rmli (multi-look intensity images from
SLC images), and multi-look phases.

After the initial selection, the single- and multi-look phases were triangulated, and
their interferometric phases were unwrapped with the MCF method [51,52]. Then, the
phase components were separated one by one according to their different characteristics.
The orbital phase ramps were obtained by a biquadratic model and the linear relation-
ship between the perpendicular baselines and the terrain was used to estimate the DEM
errors [25]. Due to the complexity of the atmospheric composition in mountainous areas,
it can be divided into stratified troposphere and turbulence effect signals, in which the
stratified troposphere can be obtained by using the linear relationship with elevation,
and the turbulence effect signal can be obtained by combined spatiotemporal filters [53].
After the above four components were removed from the unwrapped phases, Singular
Value Decomposition (SVD) was applied to the residual phase to obtain the time-series
displacements and the mean rate map.

3.3. Unmanned Aerial Vehicle and Field Surveys

The role of UAV photogrammetry in landslide investigation has been widely recog-
nized, and the high-precision digital elevation model (DEM) data and digital surface model
(DSM) data obtained based on UAV photogrammetry technology can intuitively display
the basic characteristics of landslides [54–56]. In the July 2021 survey, we mainly used the
DJI Phantom4 Real-Time Kinematic (RTK) drone to obtain orthophotos of the landslide;
meanwhile, we used the RTK global navigation satellite system to obtain the real-time
coordinates of the control points as the mapping control. In addition, we also verified
whether the InSAR results were consistent with the actual surface deformation through
careful field investigations.

4. Results and Analysis
4.1. Landslide Detection
4.1.1. Identification of Deformation Region

Stacking was used to quickly identify the deformation regions in Zhouqu County
and its surrounding area. The Stacking results are shown in Figure 4. The noise signal in
Figure 4 mainly came from orbital, atmospheric, and topographic error, which was mainly
because the Stacking method weakened the influence of these errors, rather than removed
them. The method used to identify the deformation region was visual interpretation, which
was to confirm the deformation region through human–computer interaction. Compared
with the stable region, the deformation region exhibited an obvious color change. At the
same time, to improve the accuracy of the deformation region recognition, multi-temporal
optical remote sensing images were used for multiple checks. The Stacking results from the
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ascending and descending orbits indicated that at least nine landslides remained active
between October 2014 and December 2020. Additionally, the Suoertou, Xieliupo, Zhongpai,
Qinyu, and Jiangdingya landslides were identified in both the ascending and descending
results, while the Nanshan and Yahuokou landslides were only identified in the ascending
results and the Luojiayu and Mentouping landslides were only observed in the descending
results. Moreover, some small movement areas with relatively weak signals were also
identified, as shown by the red circles in Figure 4. These areas were studied further using
time-series InSAR.
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4.1.2. Inversion of Deformation Rate

Figure 5a shows the Line of Sight (LOS) deformation rate measure by the ascending
Sentinel-1 datasets in the midstream of the Bailong River Basin in Zhouqu County. The time-
series InSAR analysis with single- and multi-look phases identified 120,783 MPs (including
single- and multi-look phases), producing an overall spatial density of over 240 MPs/km2.
Since 12 range looks and 3 azimuth looks were used during the processing of the multi-look
phases, the ground resolution of each multi-look element was approximately 40 m, while
the single-look element retained the resolution of the original pixels. According to previous
research results and the actual results obtained [26,32–34], we set the region where the
deformation rates were between −10 mm/yr and 10 mm/yr as the stable region, and set it
as the unstable region when the threshold was exceeded. The InSAR results showed that
about 86% of the MPs were in a stable state, indicating that the entire area remained stable.

Combined with the results of Stacking, a total of seven landslides with a deforma-
tion rate exceeding 10 mm/yr had been monitored from the ascending Sentinel-1 rate
map, namely the Suoertou, Xieliupo, Zhongpai, Qinyu, Jiangdingya, Yahuokou, and Nan-
shan landslides. In the result of the ascending orbit, the area of all unstable regions was
about 70 km2.

Correspondingly, 129,533 MPs were detected from the descending Sentinel-1 dataset in
the same region, producing an overall density of 260 MPs/km2. The InSAR results showed
that about 88% of the MPs were in a stable state, indicating that the study area remained
stable. The Suoertou, Xieliupo, Zhongpai, Qinyu, Jiangdingya, Yahuokou, Luojiayu, and
Mentouping landslides were identified in the descending Sentinel-1 rate map (Figure 5b).
In the result of the descending orbit, the area of all unstable regions was about 60 km2.

It could be seen from the deformation rates of the ascending orbit and descending
orbit that they were consistent. However, to further prove the reliability of the InSAR
results, field investigations were needed to verify the InSAR results.

4.2. Verification of InSAR Results through Field Investigations

We conducted a field investigation in July 2021 to verify the reliability of the InSAR
results for landslide detection. After comprehensive consideration of the landslide area,
threat degree, and deformation intensity, four typical landslides were selected as the targets
of the field investigation. The LOS deformation rates, field investigation data, UAV aerial
images, and optical images (obtained from Google EarthTM) were used to analyze and
research the landslides.

4.2.1. Suoertou Landslide

Figure 6a,b shows the LOS deformation rates of the Suoertou landslide overlaid on
Google EarthTM. The points in blue indicate movement toward the satellite, while the
red points indicate movement away from the satellite, and the green points indicate good
stability. The length of the landslide was about 3300 m, and the widest part was about
700 m. The landslide faced almost east, with a gradient angle of less than 20◦, and the
thickness of the landslide body ranged from 20 to 100 m, which was a flowslide [43]. The
Bailong River flowed along the front of the slope, causing intense river erosion at the toe
of the slope [32]. As shown in Figure 6a,b, the top and bottom of Suoertou landslide were
unstable, and the middle part was not covered by MPs due to the intensive activity [57] and
relatively dense vegetation coverage. The maximum average displacement rate of the MPs
at the top and bottom of the Suoertou landslide exceeded 100 mm/yr. Figure 6i shows the
displacement time series of points P3 and P4 (marked by white circles in Figure 6b), and
the average displacement rates of these two points were determined to be 161.4 mm/yr
and 115.3 mm/yr, respectively.
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Figure 5. The LOS deformation rate maps in the midstream of the Bailong River. (a) Ascending track;
(b) descending track. The black circles mark the location of reference point. Negative values (red
color) and positive values (blue color) indicate that the measurement point is moving away from and
toward the radar sensor, respectively. The red circles indicate the identified potential landslide areas.



Remote Sens. 2022, 14, 1026 11 of 24Remote Sens. 2022, 14, x FOR PEER REVIEW  12  of  27 
 

 

 

Figure 6. Suoertou landslide. LOS deformation rate of the MPs from the (a) ascending track and (b) 

descending track, overlaid on Google EarthTM; (c,d,e,f,g), and (h) photos acquired using a UAV on 

11 July 2021; (i) InSAR time‐series displacement of points P1, P2, P3, and P4. 

   

Figure 6. Suoertou landslide. LOS deformation rate of the MPs from the (a) ascending track and
(b) descending track, overlaid on Google EarthTM; (c–h) photos acquired using a UAV on 11 July
2021; (i) InSAR time-series displacement of points P1, P2, P3, and P4.

Moreover, deformation with a mean LOS rate greater than 100 mm/yr was detected
in the Daxiaowan landslide (Figure 6a,b) to the south of the Suoertou landslide. Figure 6i
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gives the LOS displacements time-series of two selected points, P1 and P2 (marked by white
circles in Figure 6a), with average displacement rates of −117.5 mm/yr and −154.9 mm/yr,
respectively. During the field survey, an obvious white fresh scarp was observed at the top
of the landslide, and signs of a damaged road were observed at the bottom of the landslide.
The corresponding deformation characteristics indicated that the Suoertou and Daxiaowan
landslides remained active from October 2014 to December 2020.

Through field investigation, it was found that the upper part of the landslide had an
obvious scarp and a large amount of debris (Figure 6c,d,h). Based on this, it was identified
as the source area. The flowing area was mainly determined by the time-series InSAR
results and whether there were scour marks on both sides of the slideway in the middle of
the landslide (Figure 6e,h). If there was an alluvial fan in the lower part of the landslide, it
could be determined as an accumulation area (Figure 6f,g).

4.2.2. Xieliupo Landslide

The Xieliupo landslide was a typical large flowslide that developed in the Zhouqu
fracture zone [26,43,58]. The slope was 800 m wide and 2700 m long. The elevation ranged
from 1300 m to 2200 m [41]. The Bailong River and Provincial Road S313 passed through
the slope’s toe.

Based on the LOS deformation rates derived by Sentinel-1 overlaid on Google EarthTM

(Figure 7a,b), the deformation areas in the middle and bottom part of the slope were
detected, and the deformation in the middle was significantly more severe. In the mid-
dle, the maximum displacement rates detected by the ascending and descending orbits
were 304.9 mm/yr and −314.8 mm/yr, respectively; and at the bottom, the maximum
displacement rates detected by the ascending and descending orbits were 221.7 mm/yr
and −150.8 mm/yr, respectively. A white fresh scarp, which was the scarp of landslide
that occurred not long ago, was observed at the top of the landslide (Figure 7c). Figure 7d
shows a building at the toe of the slope (marked by white triangles in Figure 7a), which
exhibited cracks on the surface and about 20 mm of ground subsidence. The toe of the
Xieliupo landslide was seriously eroded by the Bailong River (Figure 7e). Provincial Road
S211 at the toe of the slope was damaged (Figure 7f). Figure 7g shows the area with severe
deformation at the foot of the slope, which clearly shows that the vegetation cover was
sparse and the surface erosion was severe, which verified the reliability of the InSAR results.
The displacement time series of points P5, P6, P7, and P8 are shown in Figure 7h.

As the bottom of the landslide kept moving toward the Bailong River, it easily
formed a landslide dam and dammed the lake, thus threatening local residents and the
town downstream.

4.2.3. Zhongpai Landslide

The Zhongpai landslide was shaped like an irregular funnel and was about 4600 m
long [41], belonging to the flowslide category [43]. The InSAR results indicated that the
toe moved faster than the head between October 2014 and December 2020 (Figure 8a,b).
The maximum LOS displacement rate detected by the ascending and descending orbit
datasets were −214.7 mm/yr and 126.6 mm/yr, respectively. The time-series displacements
of points P9 and P10 are shown in Figure 8f. The cross-section of the landslide was V-
shaped, the height changed greatly, and there were numerous small rockfalls at the toe
of the slope, which are shown in the photos in Figure 8c. Several faults passed through
the landslide (Figure 8d), and the Yahuokou landslide formed on the middle fault on
16 July 2019 (Figure 8e). The precursory movements and causative factors of the Yahuokou
landslide will be discussed further in Section 5.1.
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Figure 7. Xieliupo landslide. LOS deformation rate of the MPs from the (a) ascending track and
(b) descending track superimposed on Google EarthTM; (c,e,g) photos acquired using a UAV taken
on 11 July 2021; (d,f) photos of sites d and f taken on 11 July 2021; and (h) time-series displacement of
points P5, P6, P7, and P8.
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Figure 8. Zhongpai landslide. LOS deformation rate of the MPs from the (a) ascending track and
(b) descending track superimposed on Google EarthTM; (c,d) photos acquired using a UAV on 13 July
2021; (e) photos of site e taken on 13 July 2021; and (f) time-series displacement of points P9 and P10.

The middle part of the Zhongpai landslide was mainly cultivated land and residential
buildings. The InSAR results showed that this area was relatively stable, but the severe
deformation in the bottom part posed a potential threat. In addition, both the Min River
(a tributary of the Bailong River) and National Road G212 passed through the toe of the
slope, so the rapid deformation of the toe of the slope may lead to river blockage and road
damage. Therefore, it is necessary to use InSAR to monitor the region for a long time.
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4.2.4. Qinyu Landslide

The Qinyu landslide was situated on the right bank of the Min River. It had an irregular
dumbbell shape and belonged to the flowslide category [43]. Its front edge was about
1700 m wide, its middle was about 300 m wide, and the back edge was about 1500 m wide
(Figure 9d) [59]. Choujiashan Village was located at the back of the landslide (Figure 9c) and
several engineering plants were located at its front edge (Figure 9d). Figure 9c illustrates
that an earthflow threatened Choujiashan Village. Figure 9d shows that obvious erosion
occurred at the toe of the Qinyu landslide, exposing the underground white soil and
forming continuous small landslides. The Min River flowed from south to southeast at the
toe of the slope.
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Figure 9. Qinyu landslide. LOS deformation rate of the MPs from the (a) ascending track and
(b) descending track superimposed on Google EarthTM; (c,d) photos acquired using a UAV on 12
July 2021; (e–h) photos of sites (e–h) taken on 12 July 2021; and (i) time-series displacement of points
P11 and P12.
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The lower parts of the Qinyu landslide were unstable (Figure 9a,b). The LOS deforma-
tion rate detected by the ascending and descending orbit datasets were −103.6 mm/yr to
26.0 mm/yr and −78.3 mm/yr to 39.2 mm/yr, respectively. Many large cracks were found
at the bottom of the landslide (Figure 9e). In addition, Road G212 was damaged (Figure 9f),
and a warning sign was erected on the side of the road (Figure 9g). Additionally, the lower
parts of the Qinyu landslide were reinforced by walls. During our field investigation on
12 July 2021, the retaining walls were undergoing maintenance (Figure 9h). The time-series
displacement of points P11 and P12 are shown in Figure 9i, and the cumulative displace-
ments at points P11 and P12 were greater than 500 mm and 350 mm, respectively, during
the six-year period.

5. Discussion
5.1. Measuring Precursory Movements of the Recent Yahuokou Landslide

The Yahuokou landslide occurred on July 16, 2019, but, in the field investigation on
13 July 2021, it was found that slow deformation was still continuing. The road (Figure 10d)
and buildings (Figure 10f) within the boundary of the landslide were basically destroyed,
and part of the landslide collapsed into the Min River, reducing its channel width from
26 m to 6 m [41] (Figure 10i,j). To enable the villagers to travel, a construction organization
is repairing the portion of the road affected by the landslide (Figure 10e). Owing to the
slow movement of the landslide, there were no casualties. This landslide was an earthflow.
There was a rockfall on the north side of the back edge of the landslide (Figure 10c), while
numerous new and old rockfalls (Figure 10b) were distributed on the south side. The
landslide potentially threatened the lives and property of people in Maojia Village in
Dongshan Town. An introduction to and schematic map of the Yahuokou landslide were
erected at the toe of the landslide (Figure 10g,h).

5.1.1. Precursory Movements Measured by Time-Series InSAR Analysis

To analyze the precursory movement before the Yahuokou landslide, 103 images of
ascending datasets from 21 October 2014, to 15 July 2019, and 107 images of descending
datasets from 9 October 2014, to 15 July 2019, were collected. Time-series InSAR analysis
with single- and multi-look phases was carried out to obtain the expected results.

Figure 11d,e shows the annual mean LOS displacement rate maps obtained from the
two Sentinel-1 data stacks. Owing to the difference in the observation geometry, the range
and degree of the deformation results obtained from the ascending and descending track
datasets were not consistent. The maximum displacement rate detected by the ascending
and descending orbits were −135.3 mm/yr and 77.3 mm/yr, respectively. As can be seen
from the annual mean LOS displacement rate graphs (Figure 11d,e), the deformation at the
top was significantly more severe. Therefore, it could be inferred that the landslide was a
typical thrust-type landslide. That is, the upper part of the rock layer slid and squeezed the
lower part to produce deformation. When the sliding speed was faster, the surface of the
sliding body exhibited undulation, which was mostly observed on the slopes with deposits.
To further show the temporal pattern of pre-failure deformation, we used the method
proposed by Bianchini et al. [60] to estimate the mean of the time-series displacements for
each SAR acquisition at the points of active motion outlined by the white curved line on the
map in Figure 11d,e, and we plotted them in Figure 12a. The cumulative LOS movements of
the points of active motion outlined from 9 October 2014, to 15 July 2019, by the ascending
and descending orbit datasets were about −387.7 mm and 241.4 mm, respectively. Overall,
the InSAR technique can be used to effectively identify dangerous landslide areas before a
disaster occurs, and it can also be used to infer the type of landslide, such as a retrogressive
or thrust-type landslides.
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Figure 10. Field investigation of the Yahuokou landslide on 13 July 2021. (a) Digital Surface Model
(DSM); (b) rockfalls; (c) rockfall; (d) damaged road; (e) construction organization; (f) building;
(g) schematic map of the landslide; (h) introduction to landslide; (i) direction of landslide movement;
(j) accumulation area; and (k) landslide panorama.
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Figure 11. Yahuokou landslide. (a) Digital Surface Model (DSM); (b) slope; (c) elevation. LOS
displacement rates derived from the (d) ascending and (e) descending Sentinel-1 data stack and the
background image is the DSM.
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Figure 12. InSAR displacement time series and distribution of rainfall. (a) The time-series average
LOS displacements of the moving points outlined from the ascending Sentinel-1 data stack and the
descending Sentinel-1 data stack by the white curve on the map in Figure 11d,e. (b) Non-linear
deformation and daily precipitation from 9 October 2014, to 15 July 2019. (c) Daily precipitation from
16 June 2019, to 15 July 2019.
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5.1.2. Causative Factors of the Yahuokou Landslide

Multiple studies have confirmed that rainfall, irrigation, river erosion, and human
activities easily cause loess-bedrock landslides [61,62]. Due to the characteristics of porosity
and water permeability of loess, loess bedrock landslides are susceptible to rainfall. As
can be seen from Figure 12b, the daily precipitation in Zhouqu County from 9 October
2014, to 15 July 2019, was obviously concentrated in May to October. By observing the
daily precipitation during the month before the landslide, it was determined that the
precipitation was up to 26 mm (Figure 12c) on 11 July 2019. The concentrated rainfall
caused the groundwater level to rise rapidly and the soil moisture in the loess layer to
increase, which reduced the shear strength of the slope soil, increased the instability of the
slope, and eventually led to the reactivation of the landslide.

In addition, the displacement time series can be divided into linear deformation
(Figure 12a) and non-linear deformation (Figure 12b). By observing the relationship be-
tween the non-linear deformation and the daily precipitation (Figure 12b) [63], it was found
that, in the wet season, the fluctuation in the non-linear deformation from the ascending
data was obvious, while it was not obvious from the descending data. This may be ex-
plained by the fact that ascending data are more suitable for the analysis of east-facing
slopes, while descending data are more suitable for the analysis of west-facing slopes [8].
That is, this showed that there was an obvious relationship between the precipitation and
the deformation of the landslide from another point of view.

According to our field survey, the factors influencing the Yahuokou landslide’s sta-
bility were fluvial erosion by the Min River (Figure 10j) and fault activity (Figure 8d) [41].
Moreover, the landslide area was also disturbed by the previous road constriction and agri-
cultural cultivation activities. The road construction reduced the stability of the landslide
and caused the landslide to move under the effect of gravity. The agricultural cultivation ac-
tivities needed irrigation to support them, but intensive irrigation can easily cause changes
in the groundwater level, resulting in the local deformation of landslides [31]. This may be
one of the important reasons for the serious deformation in the upper part of the Yahuokou
landslide. Therefore, it is speculated that fluvial erosion, fault activity, road construction,
and agricultural cultivation activities created the conditions for the landslide, while rainfall
was the main triggering factor.

5.2. Significance for Applications

Stacking and time-series InSAR analysis with single- and multi-look phases has a great
potential in landslide identification and monitoring. The potential applications of these
techniques are discussed from three perspectives.

First, as a robust, straightforward, and easy-to-implement method, Stacking provides a
fast and effective way to identify deformation regions across wide areas. The landslides that
cause disasters are often characterized by a high position [64] (the high position means that
the source area of the landslide is located in the middle and upper parts of the mountain,
which are difficult for personnel to reach) and concealment (the concealment comes from
two aspects: on the one hand, the source area of the disaster is covered by vegetation
or ice and snow, making it difficult to identify with the naked eye and using traditional
means; on the other hand, the disasters are located in inaccessible areas) [10], so geological
field investigations overlook these deformation areas. Nonetheless, it is very important
to identify these unstable areas as soon as possible to prevent disasters in advance and to
protect the security of lives and property. The experimental results presented in Section 4.2.1
demonstrated that Stacking can be used to quickly and effectively identify deformation in
the visible regions of radar sensors, making it an important supplement to traditional field
investigations. Moreover, progress has been made in GACOS-corrected InSAR Stacking
based on Stacking, which will greatly improve the accuracy of the Stacking results; thus, it
can be used in large-scale ground deformation general surveys [44].

Second, for areas with serious geological disasters, such as Zhouqu County, time-series
InSAR analysis with single- and multi-look phases can be used as an effective tool for the
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long-term monitoring and stability evaluation of unstable areas. It provided the data
needed to understand the possibility of these unstable areas transforming into disasters in
advance, which will play a key role in disaster prevention and mitigation. Furthermore,
because of the high spatial density of the single- and multi-look phases in the study area,
the deformation rate maps of the time-series InSAR data can be used to determine the
spatial range of the unstable areas, which provides basic data for the engineering treatment
of these areas.

Finally, time-series InSAR analysis with single- and multi-look phases can provide
early warning information to avoid tragedies before landslides occur. In Section 5.1, time-
series InSAR analysis with single- and multi-look phases was used to process the Sentinel-1
data before the Yahuokou landslide occurred, and the deformation signal was successfully
monitored due to the fact that Sentinel-1 has the advantage of short revisit cycles. This
provides the possibility to establish a geological disaster early warning system based on
InSAR monitoring results [40,65,66].

5.3. Limitations

Compared with conventional time-series InSAR analysis in Zhouqu County [26,32–34],
the time-series InSAR analysis with single- and multi-look phases has more advantages in
areas with complex topography, sparse vegetation cover, and a large deformation gra-
dient. Compared with the second-generation time-series InSAR techniques, such as
SqueeSARTM [28], JSInSAR [29], CAESAR [30], and CSI [31], time-series InSAR anal-
ysis with single- and multi-look phases avoids complex algorithms in point selection
and has improved operational efficiency. However, the limitation of the conventional
InSAR techniques’ parameters also affects the time-series InSAR analysis with single- and
multi-look phases, such as the SAR observation mode, sensor parameters, and direction of
landslide movement [8].

In addition, the time-series InSAR analysis with single- and multi-look phases has
some inherent limitations. On one hand, combining single- and multi-look phases has
a lower accuracy than the single-look phase only, because the coherence of the single-
look phase is higher and it is not easily affected by orbital, atmospheric, and topographic
errors. Additionally, the spatial resolution is sampled to approximately 40 m during the
preprocessing of the multi-look phases, which is not conducive to the detection of small-
scale landslides. Therefore, to some extent, time-series InSAR analysis with single- and
multi-look phases is gained at the expense of loss of accuracy and spatial resolution.

6. Conclusions

In this study, Stacking and time-series InSAR analyses with single- and multi-look
phases were used to identify and monitor landslides in the middle reaches of the Bailong
River Basin in Zhouqu County using archived C-band Sentinel-1 ascending and descending
datasets. Among them, time-series InSAR analysis combines single- and multi-look phases
to increase the density of the MPs, which improves the deformation measurement results.
The Stacking and time-series InSAR analyses were used to identify nine landslides and to
monitor their deformation degrees. Through field investigations and UAV surveys, the
reliability of the InSAR results was validated, which also illustrated the potential of using
Sentinel-1 data for landslide investigations.

Time-series InSAR analysis with single- and multi-look phases was demonstrated to
be accurate and efficient in measuring landslide deformation. It can not only quantitatively
analyze the magnitude and dynamic evolution of the deformation in various parts of
landslides, but also capture the deformation signals before the occurrence of landslides,
such as the Yahuokou landslide. However, due to its inherent limitations, it has obvious
inadequacies in measurement accuracy and its ability to monitor small-scale landslides.
So, through further analysis of time-series displacement information and the combination
of the ascending and descending orbit data, the method can be better applied to disaster
prevention and the mitigation of geological disasters.
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