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Abstract: Forest disturbances reduce the extent of natural habitats, biodiversity, and carbon se-
questered in forests. With the implementation of the international framework Reduce Emissions
from Deforestation and forest Degradation (REDD+), it is important to improve the accuracy in the
estimation of the extent of forest disturbances. Time series analyses, such as Breaks for Additive
Season and Trend (BFAST), have been frequently used to map tropical forest disturbances with
promising results. Previous studies suggest that in addition to magnitude of change, disturbance
accuracy could be enhanced by using other components of BFAST that describe additional aspects of
the model, such as its goodness-of-fit, NDVI seasonal variation, temporal trend, historical length of
observations and data quality, as well as by using separate thresholds for distinct forest types. The
objective of this study is to determine if the BFAST algorithm can benefit from using these model
components in a supervised scheme to improve the accuracy to detect forest disturbance. A random
forests and support vector machines algorithms were trained and verified using 238 points in three
different datasets: all-forest, tropical dry forest, and temperate forest. The results show that the
highest accuracy was achieved by the support vector machines algorithm using the all-forest dataset.
Although the increase in accuracy of the latter model vs. a magnitude threshold model is small, i.e.,
0.14% for sample-based accuracy and 0.71% for area-weighted accuracy, the standard error of the
estimated total disturbed forest area was 4352.59 ha smaller, while the annual disturbance rate was
also smaller by 1262.2 ha year−1. The implemented approach can be useful to obtain more precise
estimates in forest disturbance, as well as its associated carbon emissions.

Keywords: random forests; support vector machines; tropical dry forest; forest cover change; time
series analyses; Breaks for Additive Season and Trend (BFAST)

1. Introduction

Forest disturbance has been studied extensively especially after the recognition of its
important role as a source of greenhouse gas (GHG) emissions and climate change since
approximately 12–20% of the global GHG anthropogenic emissions have been attributed to
this process [1,2]. Forest disturbances modify forest canopy structure and biomass content
and can result from deforestation and forest degradation. Deforestation usually consists of
the complete removal of forest cover at a big scale, while forest degradation involves subtle
changes in forest structure and canopy cover [3]. With the future projections of climate
change, improving accuracy and reducing uncertainty in mapping forest disturbances is
critical, since it assures accurate estimations of forest carbon and climate change model-
ing [4]. In this study, forest disturbance was defined as “a relatively discrete event causing
a change in the physical structure of the vegetation and surface soil” [5]. We focus on
identifying disturbances that include both natural events, such as fires and anthropogenic
activities—such as slash and burn agriculture and logging—that cause changes in forest
structure that are detectable by remote sensing.
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Remote sensing has been recognized as an important method to study forest distur-
bances, mapping their occurrence and quantifying their extent and severity [6,7]. Forest
disturbances can be detected using different methods, each one having advantages or
disadvantages depending on the dominating cause of forest disturbance. For example, dis-
turbances caused by forest clearing for plantations (i.e., deforestation) can be estimated with
relatively simple techniques such as comparing land cover maps of two different dates [8,9].
In turn, for disturbances that cause subtler changes in forests and lead to forest degradation,
such as those from shifting cultivation and logging, the accurate estimation usually needs
more sophisticated time series analyses and modeling such as LandTrendr or Breaks for
Additive Season and Trend (BFAST) [7,10–14]. Regardless of the method used to detect
forest disturbances, the final step usually consists of establishing a threshold to classify the
disturbed and undisturbed areas [13]. There are generally two approaches to determine this
threshold: expert knowledge or data-driven approach [15,16]. The first one usually implies
a translation of an expert’s knowledge into a numeric threshold, while in the data-driven
approach, an artificial intelligence algorithm determines the decision threshold based on a
training dataset. Thus, the latter is commonly referred to as a supervised approach.

With the rapid development of artificial intelligence, the application of machine
learning in remote sensing studies and particularly in change detection has become pop-
ular [17,18]. The algorithms—such as decision trees, support vector machines, artificial
neural networks, random forests, among others—have been used to map land cover [19,20],
detect and analyze land cover change patterns [21], and predict forest biomass [22]. For
instance, Grinand et al. [20] used a random forests algorithm with a Landsat time series
(2000, 2005, and 2010) to classify both land cover and deforestation in a tropical forest
and obtained higher accuracy in stable land cover (84.7%) than deforestation (60.7%).
Dlamini [21] predicted deforestation patterns and drivers using Bayesian classifiers and
variables derived from expert knowledge including fuelwood consumption, population
density, and land tenure, among others. For biomass retrieval, in situ measurements are
typically associated with the corresponding spectral data from remote sensors using algo-
rithms such as random forests, artificial neural networks, and support vector machines,
among others [22].

The first step to implement a machine learning (ML) approach on time series data,
usually consists of extracting different metrics that summarize important patterns in the
time series, which the ML algorithms subsequently use as predictors for detecting vegeta-
tion changes or perform land-use/land-cover classifications [23–25]. Nowadays, several
disturbance detection algorithms have included data-driven approaches in their workflows,
such as Continuous Change Detection and Classification (CCDC) or Satellite Image Time
Series Analysis for Earth Observation Data Cubes (SITS) with encouraging results [26,27].
However, other algorithms that have proved useful for disturbance detection, such as
BFAST, have seldom been used in a data-driven approach, although the few examples that
exist suggest that it could help increase its accuracy [7,28].

BFAST is a time series algorithm that fits a harmonic model to the observed data and
then projects this model into the monitoring period [11,29]. Afterward, disturbances are
identified as the observations that diverged from the expected model using a moving sum
approach [29]. Most studies that have used BFAST for disturbance detection have relied
on the use of magnitude (i.e., the difference between the observed and modeled value) to
detect disturbance. However, previous studies have shown that other metrics, which we
refer to as components, can be extracted as descriptors of the fitted model and when used
with magnitude could enable a more accurate detection (e.g., [7,28]). Additionally, fitting
separate models for different types of forest have proved useful to increase the accuracy of
disturbance detection [25,30–32].

In Mexico, the tropical dry forest has been increasingly used for agriculture (mainly
shifting cultivation), cattle raising activities and establishing human settlements, which has
put pressure on local vegetation, causing not only deforestation but also degradation of
the remaining forests [33,34]. As a consequence, the extent of natural habitats, biodiversity,
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and carbon sequestered in forests have been greatly reduced. With the implementation of
the international framework Reduce Emissions from Deforestation and forest Degradation
(REDD+), it is important to reduce the uncertainties in the estimation of the carbon emis-
sions from forest disturbances [35]. Since BFAST has been shown effective in the estimation
of disturbances by shifting cultivation [7,14,36], we believe the adoption of BFAST with ML
algorithms can improve the quantification of forest disturbance [30].

Given the previous context, we wanted to assess the possible beneficial effect of using
two different machine learning approaches on several BFAST components to identify
disturbed forest areas. We focus on the following three main research questions: (1) if
disturbance detection can be enhanced by using other BFAST model components, besides
magnitude, under a ML approach or (2) by training separate models for each forest type
(i.e., all-forest, only tropical dry forest, or only temperate forest), and (3) how random
forests and support vector machines differ in their capabilities for disturbance detection.

2. Materials and Methods
2.1. Study Site

The study area is in the Ayuquila river basin, western Mexico, with elevations ranging
from approximately 250 m to 2500 m above mean sea level [37] (Figure 1). The elevation
variability in the study area translates into a range of climatic conditions that include
tropical semi-dry and sub-humid climates in the lower elevations, and template sub-
humid and humid conditions in the higher altitudes. Annual precipitation is found in the
800–1200 mm interval and the average annual temperature is between 18 and 22 ◦C. The
study area shows a clear rainfall seasonal pattern, where most of the precipitation falls
from June to October [37].

There are two types of natural forest: temperate forest (TF) and tropical dry forest
(TDF): TF covers about 12% of the watershed and is found mostly in higher elevations, while
TDF occupies around 24% of the basin and is distributed usually in the lower areas. The
main composition of TF includes pines (Pinus spp.), firs (Abies spp.), and oaks (Quercus spp.)
and it is exploited mainly for timber, although recently, avocado (Persea americana) planta-
tions have been established in areas previously occupied by TF. The area covered by TDF is
mainly used for shifting cultivation, although residents also use TDF as natural resources
for fuelwood extraction, cattle grazing, and pole extraction for constructing fences [38].

2.2. General Workflow

In a previous study, forest disturbances were identified by applying a BFAST model to
an NDVI time series (1994–2018) derived from Landsat 5, 7, and 8 [30]. The time series were
divided into a historical period (1994–2015) and a change monitoring period (2016–2018).
We applied a threshold value of |0.2| for the magnitude of change, which was derived from
field verification, to optimize the detection of disturbances. Finally, we used 624 stratified
random points to evaluate the detected disturbances and obtained 96.52% overall accuracy
with an area-weighted error matrix [30]. These results represent the baseline model to
which the ML models will be compared.
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Figure 1. (A) Study area location and spatial distribution of the temperate and tropical dry forest. 
(B) Illustrations of sample points manually classified as disturbance and non-disturbance in the 
tropical dry forest (TDF) and temperate forest (TF) using Sentinel-2 natural color composites 
available in Google Earth Engine. Here the sample points are depicted by circles with yellow 
outlines. 
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Figure 1. (A) Study area location and spatial distribution of the temperate and tropical dry forest.
(B) Illustrations of sample points manually classified as disturbance and non-disturbance in the
tropical dry forest (TDF) and temperate forest (TF) using Sentinel-2 natural color composites available
in Google Earth Engine. Here the sample points are depicted by circles with yellow outlines.

The general workflow of the methodology is presented in Figure 2. In the present study,
to balance the number of observations of true and false disturbances in the training and
validation datasets, we sampled 238 points based on a gamma distribution of magnitude
values centered at |0.2|. We manually labeled those points as disturbed and non-disturbed
forests using monthly median reflectance composites of Sentinel-2 images (2016–2018)
as reference. Then, we trained two machine learning algorithms, random forests (RF)
and support vector machines (SVM), to classify forest disturbances using the following
components derived from BFAST: magnitude of change, trend, amplitude, goodness-of-fit,
model fitting period, and data quality. In the following sections, we provide detailed
descriptions of the methods.
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Figure 2. Flowchart of the method.

2.2.1. Training and Validation Datasets

Although all the breakpoints detected by the BFAST spatial model with negative
magnitude values are potential forest disturbances, those with magnitude values close
to zero most probably correspond to false disturbances caused by noise or interannual
variations, while those with magnitude values farther from zero will tend to correspond
to true disturbances [29,39]. In order to balance the number of observations of true and
false disturbances to train and validate the models, the raw magnitude output of the
BFAST was used to establish a stratified random sampling design. In this procedure,
we used a gamma distribution centered at magnitude |0.2| to determine the number of
observations for the complete range of magnitude values (0–|0.5|) in 0.05-value steps. A
total of 238 points were selected following this design and distributed proportionally by
the extent of the two types of forest. Thus, most of the visually interpreted points were
close to a magnitude = |0.2|, while the more distant magnitude classes had fewer points
(0–|0.05|: 10 pts, |0.45|–|0.5|: 6 pts; Table A1).

These points were labeled manually as disturbed and non-disturbed. For this, we
consulted Sentinel-2 images from 2016–2018 in GEE at level 1C, which were orthorectified
and radiometrically calibrated. Sentinel-2 images provided by the European Space Agency
(ESA) have spatial resolutions ranging from 10 m to 60 m and multi-spectral bands covering
the visible, red edge, and infrared spectral range and a temporal resolution of 2–5 days [40].
We first applied a cloud mask using the data quality layer ‘QA60’ and then we constructed
monthly time series images using the median value. For each image, we used blue, green,
and red channels with a spatial resolution of 10 m to construct natural color composites.
Using the monthly natural color composites, we visually interpreted the sample points and
labeled them as either disturbed or non-disturbed forest. When the interpretation was not
clear with the Sentinel-2 images, we consulted high spatial resolution images in Google
Earth. Some examples of Sentinel-2 images for sample points interpretation as disturbance
and non-disturbance in TDF and TF are in Figure 1B.

After visually interpreting the 238 points, 143 points corresponded to non-disturbed
forest (TF: 53 and TDF: 48), while 95 points, to disturbed forest (TF: 90, TDF: 47). This
distribution confirmed that the followed stratified random sample helped in obtaining a
more balanced dataset in terms of the number of observations of the disturbance/non-
disturbance classes. Afterward, the verified points were split at random into training and
validation datasets with a proportion of 0.7/0.3, respectively. It has been reported that
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forest type is an important factor in classifying forest disturbance using BFAST [30–32],
therefore, three models were constructed with different forest stratum: all-forest, only TDF,
and only TF.

2.2.2. Variables: BFAST Components and Time Series Landsat Data Quality

BFAST has been successfully applied in characterizing spatial–temporal vegetation
dynamics and detecting changes in a time series [7,11,36]. BFAST model focuses on near
real-time change detection, by which data is divided into a historical and monitoring period.
The stable trend, modeled in the historical period, is projected into the monitoring period
and a breakpoint of change is detected when the difference between the projected and
observed values is larger than a threshold [29]. Usually, magnitude of change is the variable
that is adjusted to optimize the detection [29,39,41]. However, a range of other variables
can be obtained from the BFAST model such as trend, amplitude of the seasonal model,
goodness-of-fit, model fitting period, as well as data quality in the fitted model. These
variables have been tested relevant for vegetation change detection. For example, Grogan
et al. [31] reported that the difference in slope of the model is important in the disturbance
detection of different forest types. De Vries et al. [39] found an enhanced disturbance
detection when using the breakpoints along with magnitude, while Dutrieux et al. [7] and
Schultz et al. [42] reported data availability as an important factor in disturbance detection.

In this work, the following BFAST model components were extracted: magnitude,
trend, amplitude, goodness-of-fit, model fitting period, and data quality (Table 1). The
abbreviations in Table 1 are the following: i stands for each observation in a time series, yi
and ŷi for the observed and predicted NDVI value of i, y stands for the mean NDVI, n for the
number of observations in the time series, x for the independent variable (i.e., days), y stands
for the dependent variable (NDVI), ybreak and ŷbreak for the observed and predicted value
in the detected breakpoint, respectively, ŷmax and ŷmin for the maximum and the minimum
predicted value of the detrended model, respectively, n, represents valid observations and
N represents the total number of observations in the stable historical period, respectively.
We use data quality as a measure of the percentage of valid observations over the total
observations, which are 365 per year. The valid observations correspond to cloudless
observations, while the total observations include valid observations, no data, cloud pixels,
and missing data.

Table 1. Definition and equation of the BFAST components that were used as predictive variables in
the machine learning algorithms.

Seasonal and Trend
Model Components Definition Equation

Magnitude The absolute value of the difference between
the observed and projected NDVI magnitude = |ybreak − ŷbreak|

Trend The trend of the linear model that was fitted in
the stable historical data period

slope =
n ∑i(xiyi)− (∑i xi)(∑i yi)

n(∑i x2
i )− (∑i xi)

2

Amplitude The difference between the maximum and
minimum NDVI of the detrended model amplitude = ŷmax − ŷmin

Goodness-of-fit The goodness-of-fit of the fitted model
measured by R2 R2 = 1− ∑i(yi − ŷi)

2

∑i(yi − yi)
2

Model fitting period
The length in years of the stable historical data
period, corresponding to the time window to

which the BFAST model is fitted

history length
= yearstartMonitoring
−yearlastHistoricalBreak

Data quality The number of valid observations over the total
observations in the stable historical data period

data quality =
n
N

2.2.3. Baseline Model

The baseline model for forest disturbance detection uses only the threshold (|0.2|) of
magnitude of change as a predictive variable, which was determined by field verification.
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With this model, an area with an absolute magnitude value higher than this threshold is
classified as a disturbance. This model is applied in all three datasets with different forest
stratum. The purpose of this baseline model is to have a point of comparison with the ML
models using other variables of BFAST components.

2.2.4. Machine Learning Algorithm

Two ML algorithms, RF and SVM, were applied in a supervised classification scheme
using variables of BFAST components and time series data quality to test if they can
improve upon the baseline model. These two algorithms use non-parametric models that
have been applied previously for land cover classification and change detection [18].

RF is a classification and regression algorithm based on an ensemble of multiple
decision trees, trained using random samples of the data and predictor variables [43].
Predictions are designated by aggregating the estimates made by each tree using a majority
vote. RF is usually trained with a proportion of two-thirds of the training data and validated
by the remaining one-third, also referred to as out-of-bag dataset [43]. Previous studies
have reported that using a high number of decision trees makes the generalization error
converge and reduces the overfitting of the model [19,20,43]. Therefore, we use 500 random
trees to perform the classification, while the number of predictive variables used in each
split of each tree was the square root of the number of predictive variables. Finally, the
out-of-bag ratio was one-third.

SVM is also a classification and regression algorithm that tries to find a hyperplane
that minimizes the error in the predictions [44]. The hyperplane for the classification is
determined by the subset of the data that fall in the decision boundary (these points are
referred to as support vectors). SVM assumes that the data are linearly separable in a
multidimensional space; but, since this is often not the case, kernel functions are used
to transform the feature space to facilitate the classification [17]. SVM can use different
types of kernel functions; however, in this study, we applied the radial basis function,
which has been frequently used in remote sensing applications [45,46]. On the other hand,
a key concept in SVM is the margin, which refers to the distance between the decision
hyperplane and the closest observation. Usually, a large margin allows clear discrimination
by the hyperplane. Thus, the cost parameter consists of a positive value indicating the
penalization for predicting a sample within or on the wrong side of the margin, while the
sigma is the precision parameter. In this case, we use cost = 1 and sigma was calculated
automatically from the data in a heuristic procedure [47].

2.3. Variable Importance

The importance value of each predictive variable was calculated for both ML algo-
rithms using models that included all the predictive variables. Based on the importance
values, multiple models were trained sequentially, including the most important variables
first. This sequential model training was applied for the three datasets: all-forest, TDF and
TF. The all-forest dataset included forest-type as an additional predictor, besides the BFAST
components; while the forest-type specific datasets included only the BFAST components
as predictive variables. In total, seven models were trained for the all-forest dataset and six
models for each of the forest-type specific datasets.

For RF models, the variable importance was calculated as a linear transformation of
the Mean Decrease Gini into a 0–100 range, which measures the total decrease in node
impurities resulting from splitting the data according to each predictive variable and then
averaging this decrease over all the constructed trees [43]. For SVM models, the variable
importance was calculated by permuting the independent variables and fitting a single-
predictor model on the complete data [48]. Afterward, the predictor variable that obtained
the highest value of the area under the curve (AUC) of the receiver operating characteristic
(ROC) curve was ranked as 100 and the variable with the lowest AUC value as zero, while
all the other importance values were scaled to this range.
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2.4. Best Model Selection

To find the best model configuration in terms of the predictive variables, different
models were trained using only the training dataset (n = 168), while leaving the valida-
tion data untouched (n = 70). The model training was based on a 3-fold cross-validation
with 40 repeats. In this way, each model ran 120 iterations from which the average ac-
curacy and standard error were calculated. Afterward, the best configuration was se-
lected based on a balance between the overall accuracy and the number of variables
included, such that models with fewer predictive variables and a non-significant differ-
ence with the highest achieved accuracy were prioritized (i.e., within the range of mean
accuracy ± 1.96 standard error).

The identical procedure was followed in the three datasets: all-forest, TDF and TF.
Although the split ratio between the training and validation datasets was the same for
all the three datasets, for TDF and TF datasets, the total number of observations for each
split was smaller in comparison with the all-forest dataset. In the case of TDF, training
and validation datasets had 97 and 41 observations, respectively; while for TF, the same
datasets had 72 and 29 observations, respectively.

The overall accuracy is defined as a metric that summarizes the number of correct
predictions over the total predictions [49]. It is calculated as the ratio of the sum of the true
positive and true negative cases over the total predictions as summarized in an error matrix
(Table 2, Equation (1)).

Overall accuracy = (TP + TN)/(TP + TN + FP + FN) (1)

Table 2. TP (true positive), FP (false positive), FN (false negative), and TN (true negative) in an error
matrix for a binary classification of disturbance and non-disturbance. The ground data are located in
the columns, and the predicted data are located in the rows.

Disturbance Non-Disturbance

Disturbance TP FP
Non-disturbance FN TN

2.5. Model Validation

The trained model was tested using the validation data, which was kept untouched.
Several metrics were calculated including overall accuracy, F1-score, and ROC AUC. Overall
accuracy evaluates the correct detection of both disturbance and non-disturbance samples,
while F1-score and ROC AUC focus on the class of interest (i.e., disturbance). Therefore,
each metric evaluates a different aspect of the results.

F1-score corresponds to the harmonic mean of precision and recall, calculated as
Equation (2), where p stands for precision (or user’s accuracy) and r for recall (or producer’s
accuracy) [50,51]. Precision is calculated as the ratio of true positives over the total of
positive predictions and recall is calculated as the ratio of the true positives over the sum of
true positives and false negatives [51].

F1-score = 2 × p × r/(p + r) (2)

The ROC curve is constructed by plotting the false positive rate against the true
positive rate of a classification model, using different probability thresholds. True posi-
tive rate is a synonym for recall (see Equation (2)), while false positive is calculated as
1 − TN/(TN + FN).

ROC curves can be used to interpret the skill of a model to correctly classify a binary
outcome (true or false). In our case, it shows the ability of the model to classify the
disturbance class. In turn, the AUC of a ROC plot is calculated as the area under the ROC
curve. For a random guess, the AUC is 0.5, while a perfect model will have an AUC of 1.
Models with AUC between 0.5 and 1 represent a better prediction than a random guess,
while higher AUC values are considered better models.
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2.6. Post Classification Processing and Accuracy Assessment

The best model (SVM all-forest) was used to predict forest disturbance in the complete
study area. Although the validation dataset was used to verify the models using an
independent set of observations, this dataset was created following a gamma distribution
of magnitude. Thus, it was not considered as a representative sample of the entire study
area. To assess the accuracy of this classification using an independent set of validation data,
a stratified random sampling was implemented based on the area occupied by each class of
interest in the classification map, following [52]. The number of samples was calculated
using Equation (3)

n =
(∑ WiSi)

2

[S(Ô)]
2
+ (1/N)∑ WiSi

2
≈
(∑ WiSi

S(Ô)

)2
, (3)

where S(Ô) is the standard error of the estimated overall accuracy. As suggested by
Olofsson et al. [52] a value of 0.01 was used. Wi is the mapped proportion of the area of class
i and Si is the standard deviation of class i, and Si =

√
Ui(1−Ui). This formula estimated

a sample size of 624 observations. For the rare classes—i.e., disturbances—50 random
points were assigned for each forest type. The rest of the validation points were defined
according to the predicted proportional area of the remaining strata (i.e., non-disturbed
forest in both TF and TDF). Afterward, these points were verified by visual interpretation
in Google Earth Engine (GEE) using Sentinel-2 images.

2.7. R Packages

The complete method was carried out in an R 4.0.5 environment. Variable importance
was calculated using the caret package [48], the training and validation of the ML algo-
rithms were performed using the tidymodels [53] and yardstick packages [54], the spatial
information operations were done using the sf [55] and raster packages [56], while for data
wrangling and plots the tidyverse package [57] was used.

3. Results
3.1. Variable Importance

The variable importance values show that the essential variables to correctly identify
disturbances vary with the algorithm and dataset used (all-forest, TDF, or TF). Nevertheless,
regardless of the dataset and ML algorithm, magnitude was always ranked as the most
important predictor, while other important variables included trend, data quality, model
fitting period, and amplitude. On the contrary, forest-type and R2 were ranked as the least
important (Figure 3).
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3.2. Best Model Selection

The exploration of the models with a different number of predictive variables indicated
that the accuracy ranged from 61.48% to 87.89% (see Figure 3 and Table A2). From these
results, the models that were not significantly different from the highest achieved accuracy
and with less predictive variables were selected and verified on the validation set (Table 3).
For the all-forest model, both SVM and RF favored three identical predictive variables:
magnitude, trend, and model fitting period, in the same order of importance; however,
SVM obtained higher overall accuracy than RF on the validation dataset. In turn, in the
RF model of TDF, the best model included magnitude, trend, and amplitude; while using
SVM, it included magnitude, trend, model fitting period, and data quality. In the TF model,
RF and SVM used fewer predictive variables, either magnitude and data quality for RF or
magnitude and model fitting period for SVM (Table 3).

Table 3. Predictive variables in the best models selected by criteria of the highest accuracy and fewer
predictive variables. The order of the variables indicates their importance in the model. Finally, the
accuracy achieved on the validation set is shown.

Three Forest Stratum Random Forests (RF) Support Vector Machine (SVM) Accuracy (%; RF vs. SVM)

All-forest Magnitude, trend, model
fitting period

Magnitude, trend, model
fitting period 75.71 vs. 80.00

TDF Magnitude, trend, amplitude Magnitude, trend, model fitting
period, data quality 80.49 vs. 75.61

TF Magnitude, data quality Magnitude, model fitting period 86.21 vs. 79.31

3.3. Model Validation

Regardless of the ML algorithm used, the validation of these models showed the same
accuracy or an increase in accuracy of up to 21.95% compared to the baseline models (∆ Best
vs. Baseline, Table 4). The largest difference was observed in the TDF dataset, where the
baseline model achieved an accuracy of 58.54% on the validation dataset, while the RF
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model had an accuracy of 80.49%. On the contrary, the smallest difference was observed in
the TF dataset, where the baseline model and SVM model obtained the same accuracy of
79.31%. When comparing the two ML algorithms, SVM showed a higher accuracy on the
all-forest dataset, while RF achieved higher accuracies on the TDF and TF datasets (Table 4).
Finally, the model that enabled the highest accuracy was SVM with the all-forest dataset.

Table 4. Evaluation of the baseline model (with magnitude threshold = |0.2|) and the best models
using RF and SVM on the validation dataset.

Dataset Evaluation Metric
RF & SVM (%) RF (%) SVM (%) ∆RF

vs.
SVM (%)Baseline Best ∆ Best vs.

Baseline Best ∆Best vs.
Baseline

All-Forest Accuracy 68.57 75.71 7.14 80.00 11.43 −4.29
F1-score 65.63 66.67 1.04 74.07 8.45 −7.40

ROC AUC 69.64 81.16 11.52 90.14 20.49 −8.98
Tropical Dry
Forest (TDF) Accuracy 58.54 80.49 21.95 75.61 17.07 4.88

F1-score 51.43 69.23 17.80 54.55 3.12 14.68
ROC AUC 59.92 88.36 28.44 79.63 19.71 8.73

Temperate
Forest (TF) Accuracy 79.31 86.21 6.90 79.31 0.00 6.90

F1-score 81.25 86.67 5.42 78.57 2.68 8.10
ROC AUC 79.76 90.24 10.48 91.90 12.14 −1.66

3.4. ROC Curve and AUC

The ROC curves of the models with the highest accuracy indicate that in all cases
the models showed a higher AUC than a random guess and less than the perfect model.
Additionally, both ML algorithms have a higher AUC than the baseline model. The plot
shows the possible combinations of true positive rate and false positive rate given the data.
For example, when the true positive rate and the false positive rate are both at one (1, 1),
all the validation data are classified as disturbed forest; while the opposite combination
of (0, 0) happens when none of the validation data is classified as disturbed forest. All the
points between these two extremes show a combination of different true and false positive
rates in the detection (Figure 4).
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3.5. Forest Disturbance Prediction in the Study Area

The all-forest with the SVM model was used to predict forest disturbance for the
complete study area (Figure 5). Evaluated by 624 random points, the prediction obtained an
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overall accuracy of 94.87%, while the user’s and producer’s accuracy for the disturbance and
non-disturbance were between 82.69% and 97.31%. When weighted by the area proportion
of each class, the overall accuracy increased to 97.23%, while the producer’s accuracy for
forest disturbance was lowered from 86% to 13.77% (Table 5). Overall accuracy can be
biased by the imbalance in the number of observations between the classes. Therefore,
high overall accuracy values can disguise the low classification capabilities for rare classes.
Other methods can give further insights into the classification capabilities for both common
and rare classes, such as the F1-score. Although the F1-score can give a better idea of
the classification capabilities for all the classes, the overall accuracy reports the precision
of the entire map. Thus, the two metrics can be used to describe different aspects of the
classification performance.

When the accuracy assessment was weighted by area proportion, due to the extremely
large area occupied by the non-disturbance class, a small commission error can have a
detrimental effect on the area estimation of the disturbance class [48]. In our case, the
commission error weighted by the area of the non-disturbance class (99.48%) reduces
the producer’s accuracy of the disturbance class from 86% to 13.77%, when weighted by
area proportion.

Table 5. Confusion matrix for the accuracy assessment of the classification by the SVM all-forest
model for the complete study area; the area-weighted accuracy indices including the producer’s,
user’s, and overall accuracy, as well as area estimates for each class are shown. The actual disturbance
and non-disturbance are located in the columns, and the predicted disturbance and non-disturbance
are located in the rows.

Non-Disturbance Disturbance User’s Accuracy (%)

Non-disturbance 506 14 97.31
Disturbance 18 86 82.69

Producer’s accuracy (%) 96.56 86.00
Overall accuracy (%) 94.87

Area and weighted area estimates

Area proportion (%) 99.48 0.52
Map area (ha) 175,436.37 912.06

Unbiased area estimate (ha) 170,870.94 5477.49
Standard Error (SE) 1246.90 1246.90

Weighted producer’s accuracy (%) 99.91 13.77
Weighted overall accuracy (%) 97.23
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Figure 5. Visual comparison of the predicted disturbance by the most accurate models using dif-
ferent datasets. The points indicate the validation data for the disturbance class (orange) and
non-disturbance class (blue) (A) Complete study area disturbance prediction using the all-forest
baseline model. Examples of the disturbed areas detected using different models and datasets are
presented in line; (B) All-forest; (C) Tropical dry forest (TDF); and (D) temperate forest (TF). The three
best models are in column 1: Baseline model, 2: random forests (RF), and 3: support vector machines
(SVM). The three maps at line B illustrate the disturbance detected by the three models using the
all-forest dataset; similarly, the three maps at line C illustrate the disturbance with the TDF dataset
and line D with the TF dataset.

4. Discussion
4.1. Improvement in Disturbance Detection Using Machine Learning Algorithms

This study demonstrates that using ML algorithms and BFAST model components
(ML+BFAST) enabled higher accuracy in forest disturbance detection in comparison with
the baseline model, which relies only on a magnitude threshold. In all datasets (i.e., all-
forest, TDF, TF), the ML algorithms (i.e., SVM or RF) improved the accuracy achieved
in the validation dataset, except for SVM with the TF dataset, which obtained the same
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accuracy as the baseline model (79.31%). Other evaluations reached similar conclusions
when using additional BFAST components or ML algorithms to improve the disturbance
detection [28,31].

In the all-forest dataset, SVM over-performed RF with a small difference (4.29%). In
turn, in both TDF and TF models, RF obtained 4.88–6.90% higher accuracy than SVM.
The similar performance of SVM and RF in remote sensing-based classifications has been
commonly reported [18,45]. However, it is unclear if there is a particular advantage of one
algorithm over the other, as both algorithms can deal with heterogeneous data, data of high
dimensionality, and a limited number of observations [18,45].

Compared with the baseline model, ML approaches did not show an advantage when
using magnitude as the single predictive variable (Table A2). This suggests that when
magnitude is the only variable used, expert knowledge enables a higher accuracy than a
ML approach; however, when the number of variables increases, ML algorithms achieved
a higher accuracy (Table A2). A prior report on the use of ML and BFAST has shown the
advantages of ML over a simple threshold procedure to identify disturbances [28]. In our
case, we used a small training sample and therefore, the advantage of expert knowledge vs.
ML is still yet to be tested with a larger dataset.

Interestingly, the most accurate model was the one with the all-forest data instead
of the forest-type specific models. This seems to contradict the results from previous
findings [28,30,31]. However, a smaller sample size in the forest-type specific models
may have caused the lower observed accuracies, since the reduction of the size of the
training dataset can have repercussions over the accuracy, particularly with an already
small dataset [58,59]. Further research is needed to separate the confounding effects of
forest type, sample size and data heterogeneity on the accuracy of the tested models. On
the other hand, the importance of forest-type as a predictive variable is less than magnitude,
trend, and model fitting period; nonetheless, the importance of this variable is relative to
the number of predictive variables included in the models. For example, if fewer predictive
variables were used, the importance of forest-type would be enhanced. Additionally,
because in our study we only included two types of forest over a relatively small area, it is
unclear if forest-type might indeed act as an important variable when including a larger
variety of forests [31] or with other forest types [60].

In comparison with similar studies, our model had slightly lower accuracy [28,31],
which might be related to the data and the data quality. Experiments with better results
have used datasets with higher observation density (e.g., MODIS), a harmonized collec-
tion from different sensors or data with improved quality through pre-processing with
filtering [31,61,62]. Better results have also been reported when using different indices
(e.g., NDMI, NDFI, or multiple spectral indices; [7,28,39,42]), or by including SAR together
with optical images [60,63].

Reducing the dimensionality of the feature space before training the ML algorithms
has been suggested as a necessary preprocess to improve model performance [64]. However,
our study used a limited number of predictors, so we used the importance value analysis
instead to determine the predictors included in the simplest models, as they offered more
critical information for the classification. Additionally, to avoid overfitting, the best model
was selected as the one with fewer predictive variables and not significantly different from
the model with the highest accuracy.

4.2. Variable Selection

Our results show that magnitude and trend were ranked most important in all the
models. Similar results have also been reported [30,31]. Since magnitude represents the
difference between the observed and predicted NDVI, disturbances with higher magnitude
values represent a larger deviance from a stable trend, and therefore are more likely
correspond to a correct disturbance detection [29,39]. On the contrary, lower magnitude
values are often related to interannual variations or noise, and they correspond more often
to false detection. As for trend, we found that small trend values usually correspond to a
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long stable period, which facilitates a correct detection; while high trend values (negative
or positive) often were fitted either to a short historical data period or very noisy data
(Figure 6). Grogan et al. [31] applied a variable of difference in slope (diff.slope) before and
after the breakpoint together with amplitude and other variables and found that diff.slope
enabled an increase in ROC AUC of 4–0.14% when used with magnitude and depending
on forest-type. Thus, trend seems to be the second most important BFAST component to
aid in disturbance detection, just after magnitude of change.
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Figure 6. Example of areas with correct disturbance detection ((A) TDF and (C) TF) and false detection
((B) TDF and (D) TF) in the baseline model, but correctly classified as non-disturbance in the SVM
all-forest model. Each point corresponds to an observed NDVI value in the time series, while its color
indicates its correspondence to the historical (green) or monitoring period (red). In turn, the blue
solid line shows the model fitted to the data in the historical period and projected to the monitoring
window. The dashed lines show the NDVI behavior through time in the historical (green) and
monitoring periods (red). Finally, the black dashed line indicates the start of the monitoring period,
while the solid yellow line indicates the date of the detected breakpoint.

Data quality and model fitting period were ranked as either the second or third most
important variables. Data quality contributed to accuracy improvement in the RF with TF
dataset model in comparison with the baseline model (86.21% vs. 79.31%). The importance
of data quality for disturbance detection has also been reported in [7,60]. In turn, the model
fitting period is related to the model fitting quality, since models with longer fitting periods
are more robust to interannual variation or noise (e.g., in Figure 6A,C). Time series data
can have the same percentage of ‘no-data’ values, implying similar data quality, but the
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ones with a longer model fitting period would normally render better results. We interpret
that this is the reason why model fitting period was selected in the SVM all-forest model,
instead of data quality.

4.3. Disturbance Area and Rate Estimation

The increase in accuracy of the ML+BFAST compared with the baseline model is
small (overall accuracy: 0.14%; area-weighted accuracy: 0.71%). In addition, both the
estimated area of forest disturbance and disturbance rate of the ML+BFAST model overlaps
with the previous estimate using the baseline model (baseline: 9136.43 ± 5599.49 ha vs.
ML+BFAST: 5477.49 ± 1246.90 ha; baseline: 3654.7 ± 2239.8 ha year−1 vs. ML+BFAST:
2191.0 ± 977.6 ha year−1) [30]. However, in both cases, the ML+BFAST model has a smaller
standard error, which translates to less uncertainty in the estimated disturbed area and
disturbance rate. This is particularly relevant for forest disturbance quantification since
it helps reduce uncertainties in estimating carbon and GHG emissions and therefore is
significant for REDD+ implementation [1,65].

On the other hand, the results show that regardless of the method (i.e., using magni-
tude threshold or ML), most of the forest disturbances remain undetected in the final map
(see Table 4, mapped disturbance vs. unbiased disturbance area estimate). Therefore, the
validation with stratified sampling is essential to estimate the total area of forest disturbance
in the study area.

4.4. Study Limitations

Admittedly, the spatial resolution of the Sentinel-2 images might have been too coarse
to distinguish fine-scale degradations in the validation process. In these cases, other
available imagery such as Google Earth could have been more informative; however, the
problem we encountered was that frequently the available images were from very different
dates, which introduced uncertainty in distinguishing seasonal changes from actual dis-
turbances. Thus, we prioritized temporal agreement between the comparisons, instead of
spatial resolution. A direct consequence of this decision was that fine-scale degradations
could remain undetected in the validation process. Therefore, probably most of the detected
disturbances correspond to deforestation. Particularly for very seasonal systems, like the
one studied here, the availability of freely available images with high spatial and temporal
resolution will be critical to help identify and verify fine-scale disturbances.

Another limitation shown by the followed approach is that it lacks a temporal label
for each detected disturbance, as the final map only classifies areas into disturbance and
non-disturbance in the monitoring period. One way to identify the dates of the disturbances
is to consult the breakpoint date of each change detected by BFAST.

5. Conclusions

This study demonstrates that BFAST can benefit from using a machine learning ap-
proach to increase its accuracy for disturbance detection, particularly using magnitude of
change, trend, and model fitting period. Support vector machines achieved higher accuracy
using the all-forest dataset, while random forests over-performed support vector machines
in forest-type specific datasets. We found that expert knowledge over-performed machine
learning algorithms when using only magnitude as a predictive variable; however, when
the number of variables increases, machine learning algorithms performed better than
expert knowledge. Since we used a rather small sample size (238 points), the advantage of
expert knowledge vs. machine learning algorithm needs to be tested with training data of
a larger sample size to be conclusive. Nevertheless, our results suggest that ML algorithms
can be used with BFAST to enhance the accuracy achieved to detect disturbances and
obtain disturbance area estimates with lower errors. Future studies should address if the
advantage of BFAST+ML for disturbance detection is relative to sample size or the scale
of disturbances.
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Appendix A

Table A1. The extracted BFAST model components for the 238 training and validation data for
tropical dry forest (TDF) and temperate forest (TF). The column “Change” includes disturbances,
coded as 1, and non-disturbances, as 0.

Forest Magnitude Model Fitting Period R2 Amplitude Trend Data Quality Change

TDF −0.0453 13.33973 0.742599 0.424708 1.84 × 10−5 96.3039 0
TDF −0.03336 15.44384 0.784402 0.528003 1.69 × 10−5 96.9138 0
TDF −0.0349 15.46575 0.797803 0.565893 1.75 × 10−5 96.52852 0
TDF −0.0479 18.79452 0.769971 0.567595 2.05 × 10−5 96.18131 0
TDF −0.03756 23.30685 0.820069 0.543106 1.09 × 10−5 96.34462 0
TDF −0.02102 14.80822 0.628496 0.319633 2.39 × 10−5 97.00333 0
TDF −0.00864 12.85753 0.68601 0.364489 3.27 × 10−5 96.82574 0
TDF −0.06631 15.44384 0.697506 0.473892 2.15 × 10−5 96.64775 1
TDF −0.05915 14.89589 0.687518 0.482008 2.30 × 10−5 96.39574 0
TDF −0.05569 13.33973 0.738573 0.456286 2.86 × 10−5 96.22176 0
TDF −0.05614 13.25206 0.78678 0.524416 3.29 × 10−5 96.46548 0
TDF −0.09008 13.12055 0.802909 0.531653 3.38 × 10−5 96.59708 0
TDF −0.07047 9.484932 0.809726 0.57334 4.58 × 10−5 95.75513 0
TDF −0.07922 11.23836 0.747789 0.484405 5.31 × 10−5 96.29539 0
TDF −0.06806 13.25206 0.795391 0.527232 2.91 × 10−5 96.52749 0
TDF −0.07734 23.30685 0.824435 0.566505 1.97 × 10−5 96.37988 0
TDF −0.05171 22.95617 0.763023 0.491165 1.58 × 10−5 96.73031 0
TDF −0.07921 13.12055 0.751532 0.506748 3.74 × 10−5 96.51357 0
TDF −0.09603 18.92603 0.735989 0.515702 1.73 × 10−5 96.65653 0
TDF −0.08817 11.36986 0.741998 0.441381 3.89 × 10−5 96.21778 0
TDF −0.10289 13.47123 0.56757 0.450491 3.20 × 10−5 96.40098 0
TDF −0.10503 9.441096 0.743041 0.49261 5.59 × 10−5 95.88048 0
TDF −0.13812 4.358904 0.3772 0.182208 6.35 × 10−5 94.53518 0
TDF −0.1096 13.38356 0.699271 0.510579 4.29 × 10−5 97.89194 0
TDF −0.11448 13.12055 0.735314 0.50283 4.16 × 10−5 96.59708 0
TDF −0.10046 10.84384 0.696341 0.465479 4.73 × 10−5 96.46375 1
TDF −0.10623 12.15616 0.635221 0.470523 5.27 × 10−5 96.4849 0
TDF −0.11491 8.257534 0.668242 0.388748 9.26 × 10−5 94.95854 0
TDF −0.11653 23.30685 0.802533 0.536494 1.30 × 10−5 95.95675 0
TDF −0.1045 13.33973 0.752179 0.49432 2.59 × 10−5 96.52978 0
TDF −0.11158 11.28219 0.768633 0.506031 4.18 × 10−5 95.92134 0
TDF −0.12218 11.28219 0.775196 0.462432 4.91 × 10−5 96.04273 0
TDF −0.11224 12.85753 0.744677 0.481245 4.12 × 10−5 96.46357 0
TDF −0.13279 8.958904 0.719625 0.443881 6.46 × 10−5 95.38367 0
TDF −0.12852 9.397261 0.708184 0.413003 5.80 × 10−5 96.93967 0
TDF −0.10397 20.89589 0.745697 0.491635 2.77 × 10−5 97.129 0
TDF −0.1244 11.89315 0.711711 0.461465 4.04 × 10−5 96.269 0
TDF −0.11094 16.16438 0.699765 0.422634 3.46 × 10−5 96.61074 0
TDF −0.12291 8.30137 0.639768 0.270452 5.85 × 10−5 95.31508 0
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TDF −0.12518 23.30685 0.740104 0.349312 2.01 × 10−5 96.73249 1
TDF −0.12974 23.30685 0.74704 0.463843 9.89 × 10−6 96.4504 0
TDF −0.11058 9.528768 0.638787 0.434527 5.24 × 10−5 96.43576 0
TDF −0.15147 23.30685 0.746398 0.502824 1.15 × 10−5 96.63846 1
TDF −0.18708 9.441096 0.818664 0.584014 4.80 × 10−5 95.79344 1
TDF −0.17212 10.23014 0.697291 0.434703 5.31 × 10−5 96.76038 1
TDF −0.17997 9.441096 0.67116 0.360017 4.48 × 10−5 95.70641 1
TDF −0.18231 10.84384 0.750788 0.480562 4.91 × 10−5 96.26168 0
TDF −0.15695 6.331507 0.587813 0.265593 0.000104 95.02596 0
TDF −0.17338 2.213699 0.457311 0.253858 9.94 × 10−5 91.22373 0
TDF −0.16738 18.70685 0.817585 0.562854 2.83 × 10−5 96.11949 1
TDF −0.15555 13.38356 0.796706 0.574832 2.33 × 10−5 96.33647 1
TDF −0.16485 11.84931 0.819431 0.542392 4.09 × 10−5 96.37078 0
TDF −0.15863 13.23014 0.613797 0.435501 3.96 × 10−5 98.07453 0
TDF −0.1543 14.43562 0.591812 0.397466 3.81 × 10−5 97.3055 0
TDF −0.15364 6.2 0.635558 0.288652 8.94 × 10−5 94.92049 0
TDF −0.15916 9.00274 0.781614 0.421343 8.11 × 10−5 95.6191 0
TDF −0.16295 13.25206 0.669782 0.363889 4.88 × 10−5 96.09343 0
TDF −0.17784 8.082191 0.806799 0.411957 0.000107 95.73026 0
TDF −0.15906 2.213699 0.602617 0.329651 8.89 × 10−5 91.96539 0
TDF −0.15487 13.25206 0.681363 0.456178 3.65 × 10−5 96.5895 0
TDF −0.18407 15.44384 0.704641 0.455582 2.65 × 10−5 96.80738 1
TDF −0.18126 8.30137 0.669672 0.383595 7.59 × 10−5 95.24909 0
TDF −0.15282 9.441096 0.748614 0.464724 6.52 × 10−5 96.51871 0
TDF −0.15459 8.213698 0.678228 0.373325 8.90 × 10−5 95.23174 0
TDF −0.154 13.38356 0.772406 0.491027 2.40 × 10−5 96.6844 0
TDF −0.15438 8.213698 0.7376 0.370441 8.89 × 10−5 95.4985 0
TDF −0.16954 8.257534 0.697736 0.344804 4.68 × 10−5 95.42288 1
TDF −0.15948 2.126027 0.394608 0.193095 9.77 × 10−5 92.02059 0
TDF −0.2016 4.972603 0.537538 0.237246 7.83 × 10−5 94.43832 0
TDF −0.21545 14.39178 0.702173 0.422295 3.38 × 10−5 96.00304 0
TDF −0.20137 9.309589 0.771202 0.497091 6.13 × 10−5 96.08708 0
TDF −0.21943 9.00274 0.725147 0.461319 4.80 × 10−5 95.71037 0
TDF −0.23151 9.221918 0.387895 0.180028 9.39 × 10−5 95.78259 0
TDF −0.21745 15.46575 0.756869 0.484993 3.41 × 10−5 95.90861 1
TDF −0.21089 2.126027 0.396737 0.251341 0.000136 92.79279 1
TDF −0.21431 12.76986 0.736191 0.47357 3.91 × 10−5 96.46075 1
TDF −0.21274 12.15616 0.712597 0.379622 2.98 × 10−5 96.03425 1
TDF −0.22979 13.33973 0.737281 0.510973 3.07 × 10−5 96.83778 1
TDF −0.20081 13.47123 0.748393 0.500066 2.53 × 10−5 96.52298 0
TDF −0.21194 9.221918 0.575599 0.391682 6.96 × 10−5 95.6935 0
TDF −0.2365 2.038356 0.417297 0.112016 0.000314 91.81208 0
TDF −0.21285 9.221918 0.820589 0.548374 5.06 × 10−5 95.7529 1
TDF −0.24967 12.06849 0.746606 0.480799 5.48 × 10−5 96.09623 1
TDF −0.22409 4.358904 0.507792 0.25495 0.000128 94.47236 0
TDF −0.22582 9.00274 0.776578 0.513665 7.33 × 10−5 96.0146 1
TDF −0.26288 13.38356 0.740385 0.447047 2.50 × 10−5 96.72533 1
TDF −0.25233 7.690411 0.781609 0.3282 8.94 × 10−5 95.37037 1
TDF −0.26758 1.20548 0.173027 0.127181 0.000184 93.19728 0
TDF −0.2557 13.12055 0.69426 0.402674 1.98 × 10−5 96.34656 1
TDF −0.29151 15.46575 0.713207 0.318498 3.80 × 10−5 96.79419 1
TDF −0.25723 4.972603 0.596336 0.324313 4.65 × 10−5 94.65859 1
TDF −0.25124 9.353425 0.70172 0.372796 5.92 × 10−5 96.07613 1
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TDF −0.2522 23.30685 0.777187 0.475274 2.21 × 10−5 95.90973 1
TDF −0.25617 13.33973 0.613308 0.377054 2.39 × 10−5 96.44764 1
TDF −0.2642 19.32055 0.77771 0.49598 2.09 × 10−5 96.3278 1
TDF −0.25994 5.016438 0.537049 0.279299 0.000112 94.65066 1
TDF −0.28576 11.28219 0.641284 0.407793 5.45 × 10−5 95.82423 1
TDF −0.25507 7.778082 0.69847 0.328702 0.000112 95.38732 0
TDF −0.26736 1.928767 0.430775 0.10271 0.000274 92.05674 0
TDF −0.26181 4.79726 0.345256 0.230716 7.42 × 10−5 95.26256 0
TDF −0.27483 14.28219 0.669939 0.494723 3.56 × 10−5 97.81358 0
TDF −0.31231 13.25206 0.64658 0.30675 4.80 × 10−5 96.89954 1
TDF −0.3047 9.484932 0.645115 0.420937 6.90 × 10−5 95.69737 1
TDF −0.34894 5.936986 0.745417 0.151747 0.000195 94.97233 0
TDF −0.30696 4.819178 0.545039 0.258097 8.34 × 10−5 94.375 1
TDF −0.33039 4.928767 0.478812 0.290819 0.000117 95.22222 1
TDF −0.32061 5.10411 0.606013 0.162013 0.000169 95.49356 0
TDF −0.33084 1.972603 0.444768 0.096748 0.000329 92.23301 0
TDF −0.31088 2.016438 0.460919 0.17107 0.000253 91.72321 0
TDF −0.31157 3.221918 0.329094 0.305707 5.59 × 10−5 93.71283 1
TDF −0.34317 4.819178 0.495519 0.113864 0.000169 94.65909 0
TDF −0.38357 19.93151 0.812695 0.263614 4.40 × 10−5 96.1105 1
TDF −0.35445 1.315068 0.093447 0.086669 0.000251 93.34719 0
TDF −0.35312 14.72055 0.274482 0.248357 3.63 × 10−5 99.33011 0
TDF −0.36574 9.309589 0.658602 0.392694 7.94 × 10−5 95.61636 1
TDF −0.38864 23.30685 0.679754 0.328225 1.58 × 10−5 96.28585 1
TDF −0.37412 23.30685 0.62383 0.253992 2.19 × 10−5 96.23883 1
TDF −0.35913 5.542466 0.530187 0.193277 0.000159 95.65218 0
TDF −0.36352 2.191781 0.681885 0.131829 0.000522 93.13358 0
TDF −0.35709 9.441096 0.691955 0.296064 6.17 × 10−5 95.70641 1
TDF −0.36066 4.753425 0.613245 0.417467 4.41 × 10−6 94.93088 1
TDF −0.35418 8.345205 0.670651 0.391838 8.52 × 10−5 95.43813 1
TDF −0.35952 5.871233 0.481878 0.14312 0.000147 95.89552 0
TDF −0.35333 5.10411 0.572429 0.185931 0.000162 95.27897 0
TDF −0.43061 5.060274 0.541295 0.088574 0.000207 95.34632 0
TDF −0.40675 4.79726 0.414465 0.292673 0.000112 94.92009 1
TDF −0.4392 3.964384 0.625067 0.101401 0.000212 94.40607 0
TDF −0.41748 4.819178 0.426473 0.291789 0.00012 94.77273 1
TDF −0.43424 4.753425 0.674289 0.134221 0.000208 94.87327 0
TDF −0.40256 1.643836 0.396256 0.261978 0.000442 92.34609 0
TDF −0.42082 5.016438 0.543248 0.077793 0.000196 95.19651 0
TDF −0.41716 19.05754 0.855686 0.288564 5.29 × 10−5 96.11902 1
TDF −0.40572 5.542466 0.781963 0.129629 0.000244 94.96047 0
TDF −0.46477 1.249315 0.323113 0.127325 0.000484 92.77899 0
TDF −0.48301 13.38356 0.591082 0.190154 2.10 × 10−5 96.47974 1
TDF −0.47109 14.72055 0.600144 0.21734 1.68 × 10−5 96.57611 1
TDF −0.49806 1.249315 0.283891 0.108266 0.000501 93.21663 0
TF −0.02262 12.94521 0.290045 0.162023 9.13 × 10−6 97.67245 0
TF −0.04735 13.33973 0.533457 0.384551 2.15 × 10−5 96.55031 0
TF −0.04572 18.53151 0.610069 0.435479 1.48 × 10−5 96.4819 0
TF −0.03922 14.39178 0.459061 0.339841 2.66 × 10−5 97.0118 0
TF −0.01476 22.95617 0.194485 0.061185 1.06 × 10−5 96.84964 0
TF −0.09167 11.63288 0.648829 0.32088 5.35 × 10−5 97.00965 0
TF −0.0851 17.08493 0.794337 0.541089 2.39 × 10−5 96.5368 0
TF −0.07219 11.84931 0.719495 0.305059 2.03 × 10−5 96.67129 0
TF −0.05056 9.309589 0.527394 0.237606 3.91 × 10−5 96.41071 0
TF −0.05958 23.30685 0.813945 0.567206 1.74 × 10−5 95.9685 0



Remote Sens. 2022, 14, 803 20 of 25

Table A1. Cont.

Forest Magnitude Model Fitting Period R2 Amplitude Trend Data Quality Change

TF −0.05932 11.89315 0.791564 0.491535 4.10 × 10−5 96.70659 0
TF −0.05597 14.30411 0.700437 0.414025 3.26 × 10−5 97.35734 0
TF −0.06039 22.95617 0.651963 0.371185 1.80 × 10−5 96.31265 0
TF −0.05082 12.76986 0.431005 0.151947 1.39 × 10−5 97.29729 0
TF −0.0906 11.10685 0.668254 0.311451 6.02 × 10−5 96.94205 0
TF −0.12488 21.44384 0.45162 0.102976 1.95 × 10−5 99.66786 0
TF −0.10756 21.4 0.737156 0.237393 1.74 × 10−5 99.66718 0
TF −0.11522 11.89315 0.684706 0.415467 4.90 × 10−5 96.79871 0
TF −0.10173 11.23836 0.703277 0.336983 3.85 × 10−5 95.90543 0
TF −0.11942 13.5589 0.696524 0.445791 4.17 × 10−5 96.60606 0
TF −0.13365 11.93699 0.732592 0.393546 4.92 × 10−5 96.71868 0
TF −0.10699 12.98904 0.680897 0.455962 3.91 × 10−5 96.2674 0
TF −0.12874 12.15616 0.664849 0.364463 3.99 × 10−5 96.66516 0
TF −0.12132 12.15616 0.694252 0.444977 2.90 × 10−5 96.77782 0
TF −0.11947 10.8 0.628612 0.407771 4.43 × 10−5 96.47476 0
TF −0.10282 12.76986 0.725571 0.460912 3.73 × 10−5 96.50365 0
TF −0.10412 14.28219 0.675229 0.420696 3.12 × 10−5 97.52589 0
TF −0.1135 11.84931 0.67075 0.437291 3.66 × 10−5 96.60194 0
TF −0.11109 8.871233 0.802405 0.473938 6.59 × 10−5 96.14079 0
TF −0.14817 8.652055 0.618584 0.328632 6.05 × 10−5 96.5812 1
TF −0.1203 9.353425 0.665537 0.399402 5.84 × 10−5 96.19327 0
TF −0.17207 13.38356 0.704662 0.452327 2.81 × 10−5 96.60254 1
TF −0.16097 9.441096 0.785223 0.545458 3.92 × 10−5 96.02553 1
TF −0.15033 11.63288 0.632914 0.329545 4.00 × 10−5 96.77419 0
TF −0.15738 23.30685 0.553428 0.165368 1.99 × 10−5 96.96756 0
TF −0.1807 3.616438 0.446501 0.250369 8.97 × 10−5 95.76079 0
TF −0.16262 11.84931 0.719112 0.470987 5.08 × 10−5 96.11651 1
TF −0.16764 23.30685 0.682412 0.394082 1.45 × 10−5 96.25059 1
TF −0.15789 10.58082 0.107594 0.091385 −8.90 × 10−6 97.25602 0
TF −0.15251 14.80822 0.75305 0.477127 4.00 × 10−5 96.70736 0
TF −0.16294 13.38356 0.725956 0.459349 2.95 × 10−5 96.54114 1
TF −0.17463 11.84931 0.771981 0.42334 5.44 × 10−5 96.78687 0
TF −0.17676 4.753425 0.558608 0.289002 4.29 × 10−5 95.39171 0
TF −0.19765 17.96164 0.749915 0.492095 2.97 × 10−5 96.41605 1
TF −0.16569 21.44384 0.620788 0.197482 2.65 × 10−5 99.62953 0
TF −0.19886 12.85753 0.761269 0.506095 3.72 × 10−5 96.44227 0
TF −0.17335 4.490411 0.649241 0.376716 9.77 × 10−5 98.10976 0
TF −0.1625 4.79726 0.683543 0.332143 3.88 × 10−5 96.00457 0
TF −0.17013 8.082191 0.754489 0.377575 7.03 × 10−5 96.34023 0
TF −0.16837 8.345205 0.783846 0.366675 6.62 × 10−5 96.7509 0
TF −0.21632 13.12055 0.76959 0.512075 4.15 × 10−5 96.05428 1
TF −0.22559 23.30685 0.67785 0.289514 1.75 × 10−5 96.19182 1
TF −0.21154 12.85753 0.766562 0.538063 5.30 × 10−5 96.48487 1
TF −0.2329 12.98904 0.720822 0.459314 2.35 × 10−5 96.39393 1
TF −0.20149 22.95617 0.360888 0.153679 1.54 × 10−5 96.34845 1
TF −0.20698 15.29041 0.710478 0.461842 2.48 × 10−5 96.16625 1
TF −0.22487 18.66301 0.737929 0.454678 3.01 × 10−5 96.46265 1
TF −0.22928 3.090411 0.465788 0.396536 3.93 × 10−5 95.5713 0
TF −0.20556 4.643836 0.518488 0.233282 0.000115 96.93396 0
TF −0.24299 23.30685 0.684501 0.287483 2.18 × 10−5 96.20358 1
TF −0.22637 15.33425 0.618501 0.349496 7.43 × 10−6 96.01643 1
TF −0.21411 11.89315 0.633748 0.382813 5.96 × 10−5 96.91386 0
TF −0.28623 23.30685 0.539063 0.233548 1.54 × 10−5 96.21532 1
TF −0.25423 14.43562 0.811445 0.387543 6.03 × 10−5 96.33776 1
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TF −0.26478 4.709589 0.650802 0.40437 7.81 × 10−5 96.10465 1
TF −0.27368 11.89315 0.760329 0.481602 5.42 × 10−5 96.79871 1
TF −0.26242 8.082191 0.497489 0.22214 7.84 × 10−5 96.00136 0
TF −0.25918 13.33973 0.726444 0.275718 2.65 × 10−5 96.50924 1
TF −0.29659 23.30685 0.615274 0.209382 2.50 × 10−5 96.25059 1
TF −0.27568 14.34795 0.598175 0.308084 8.78 × 10−6 96.37266 1
TF −0.2631 8.871233 0.646465 0.278076 9.89 × 10−5 96.17166 0
TF −0.27551 7.164383 0.440842 0.227169 9.23 × 10−5 95.75688 0
TF −0.25938 7.164383 0.52456 0.260804 9.30 × 10−5 95.83334 0
TF −0.27658 22.95617 0.665763 0.373353 1.70 × 10−5 96.46778 1
TF −0.31804 5.958904 0.720874 0.496008 9.05 × 10−5 99.35662 0
TF −0.30249 23.30685 0.581094 0.218389 1.65 × 10−5 96.2976 1
TF −0.32208 23.30685 0.611473 0.238884 2.01 × 10−5 96.19182 1
TF −0.3278 4.709589 0.52152 0.35563 8.87 × 10−5 96.10465 1
TF −0.33703 23.30685 0.614924 0.252018 1.54 × 10−5 96.25059 1
TF −0.33582 23.30685 0.629637 0.266593 2.00 × 10−5 96.26234 1
TF −0.34522 4.79726 0.498216 0.230261 5.87 × 10−5 94.97717 1
TF −0.34275 12.37534 0.751576 0.302551 4.66 × 10−5 96.28154 1
TF −0.3581 23.30685 0.463526 0.196457 1.43 × 10−5 96.22708 1
TF −0.36095 7.361644 0.596833 0.209501 0.000146 96.05655 0
TF −0.36794 23.30685 0.522918 0.224043 1.50 × 10−5 96.34462 1
TF −0.36408 12.85753 0.503183 0.289444 1.40 × 10−5 96.25053 1
TF −0.35931 23.30685 0.592758 0.219493 1.60 × 10−5 96.27409 1
TF −0.36242 12.94521 0.59287 0.368999 2.72 × 10−5 95.93737 1
TF −0.37269 23.30685 0.589095 0.22655 1.72 × 10−5 96.32111 1
TF −0.38235 11.15069 0.55248 0.184192 1.70 × 10−5 95.99607 1
TF −0.37201 23.30685 0.553574 0.112416 2.19 × 10−5 97.03808 1
TF −0.37854 12.33151 0.665211 0.251212 2.17 × 10−5 96.24612 1
TF −0.41557 10.27397 0.534546 0.178508 2.16 × 10−5 96.16103 1
TF −0.41685 23.30685 0.561889 0.199097 1.80 × 10−5 96.30936 1
TF −0.41672 10.75616 0.560494 0.169953 2.24 × 10−5 96.15482 1
TF −0.40322 13.33973 0.295362 0.09462 1.64 × 10−5 97.41273 1
TF −0.43973 23.30685 0.570338 0.228854 1.47 × 10−5 96.30936 1
TF −0.41507 23.30685 0.522161 0.207258 1.56 × 10−5 96.20358 1
TF −0.45598 23.30685 0.560614 0.209294 1.73 × 10−5 96.32111 1
TF −0.48716 4.79726 0.691486 0.300189 0.000124 94.97717 0
TF −0.45247 23.30685 0.560478 0.205325 1.56 × 10−5 96.41514 1
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Table A2. Mean accuracy in range of confidence interval at 95% level obtained for each of the
constructed models using the RF and SVM algorithms. The models were trained using only the
random subsets of the training data (not validation data), with 120 iterations. Additionally, the
models were applied in three datasets, All-forest, TDF, TF, and the variables for each dataset are
indicated. The best model, marked by underlined bold font, is selected by a balance between the
accuracy and the number of variables. Given similar accuracy, the models with lower number of
predictive variables were preferred.

Dataset
RF SVM
Predictive Variables Accuracy (%) Predictive Variables Accuracy (%)

All-forest Baseline 76.78 ± 0.87 Baseline 76.78 ± 0.87
Magnitude 70.64 ± 0.84 Magnitude 73.7 ± 0.96
Magnitude + trend 84.15 ± 0.56 Magnitude + trend 86.45 ± 0.64
Magnitude + trend + model
fitting period

85.45 ± 0.66 Magnitude + trend + model
fitting period

87.35 ± 0.59

Magnitude + trend + model fitting
period + amplitude

85.62 ± 0.68 Magnitude + trend + model fitting
period + forest-type

86.02 ± 0.67

Magnitude + trend + model fitting
period + amplitude + data quality

85.87 ± 0.76 Magnitude + trend + model fitting
period + forest-type + data quality

87 ± 0.61

Magnitude + trend + model fitting
period + amplitude + data quality + R2

85.52 ± 0.76 Magnitude + trend + model fitting
period + forest-type + data quality
+ amplitude

87.89 ± 0.71

Magnitude + trend + model fitting
period + amplitude + data quality + R2

+ forest-type

85.04 ± 0.8 Magnitude + trend + model fitting
period + forest-type + data quality +
amplitude + R2

86.56 ± 0.67

TDF Baseline 71.04 ± 1.08 Baseline 71.04 ± 1.08
Magnitude 61.48 ± 1.25 Magnitude 66.9 ± 1.12
Magnitude + trend 79.17 ± 1.06 Magnitude + trend 81.93 ± 1.03
Magnitude + trend + amplitude 80.96 ± 0.93 Magnitude + trend + model

fitting period
81.9 ± 1.01

Magnitude + trend + amplitude + data
quality

81.38 ± 1 Magnitude + trend + model
fittingperiod + data quality

84.22 ± 1.02

Magnitude + trend + amplitude + data
quality + R2

81.93 ± 0.93 Magnitude + trend + model fitting
period+ data quality + R2

84.58 ± 0.98

Magnitude + trend + amplitude + data
quality + R2 + model fitting period

80.29 ± 1.04 Magnitude + trend + model fitting
period+ data quality + R2 + amplitude

83.41 ± 1.04

TF Baseline 84.75 ± 1.17 Baseline 84.75 ± 1.17
Magnitude 79.46 ± 1.22 Magnitude 80.04 ± 1.15
Magnitude + data quality 85.85 ± 1.2 Magnitude + model fitting period 85.97 ± 1.15
Magnitude + data quality + trend 85.65 ± 1.16 Magnitude + model fitting period

+ trend
85.89 ± 1.07

Magnitude + data quality + trend +
model fitting period

85.28 ± 1.09 Magnitude + model fitting period +
trend + data quality

86.55 ± 1.03

Magnitude + data quality + trend +
model fitting period + R2

84.82 ± 1.16 Magnitude + model fitting period +
trend + data quality + R2

86.23 ± 1.1

Magnitude + data quality + trend +
model fitting period + R2 + amplitude

84.64 ± 1.18 Magnitude + model fitting period +
trend + data quality + R2 + amplitude

85.43 ± 1.11
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