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Abstract: For the purpose of expanding STEM (science, technology, engineering, mathematics)
education with remote sensing (RS) data and methods, an augmented reality (AR) app was developed
in combination with a worksheet and lesson plan. Data from the Hyperspectral Imager for the Coastal
Ocean (HICO) was searched for topics applicable to STEM curricula, which was found in the example
of a harmful algal bloom in Lake Erie, USA, in 2011. Spectral shape algorithms were applied to
differentiate between less harmful green and more harmful blue algae in the lake. The data was pre-
processed to reduce its size significantly without losing too much information and then integrated into
an app that was developed in Unity with the Vuforia extension. It was designed to let students browse
and understand the raw data in RGB and a tangible hyperspectral cube, as well as to analyze algae
maps derived from it. The app runs on Android smartphones with minimized data usage to make it
less dependent on school funding and the socioeconomic background of students. Using educational
concepts, such as active and collaborative learning, moderate constructivism, and scientific inquiry,
the data was integrated into a lesson about environmental problems that was enhanced by the AR
app. The app and worksheet were evaluated in two advanced geography courses (n = 36) and
found to be complex, but doable and understandable, for the target group of German high school
students in their final two school years. Thus, hyperspectral data can be used for STEM lessons using
AR technology on students’ smartphones with several limitations both in the technology used and
gainable knowledge.

Keywords: secondary education; mobile learning; STEM

1. Introduction

RS has been implemented in secondary education in many countries around the world
in recent years [1–6]. The free and easy availability of RS data has certainly played a
role [7,8], as has the need to further a steadily growing field of work and research [9,10].
RS also combines the use of many school subjects with soft skills deemed necessary by
education ministries; the German Kultusministerkonferenz [11] recommended a list of
measures to improve STEM education in the country that is still in the process of being
realized. These measures include more interdisciplinary syllabi, more experiments, more
individual and researching learning, more technology skills, more use of computers, and
more practical relevance. All of these requirements can be met with digital experiments
using remote sensing (RS) data and methods [12,13]. RS requires physics, from the orbital
mechanics of satellites to the sensing of distinctive parts of the electromagnetic spectrum,
mathematics, from the geometric calculations to place the images on their locations to
complex classification methods, and computer science to perform all of these calculations
and visualize the results. Moreover, the results can be applied to a wide range of geograph-
ical topics, as well as to topics from biology, such as plant growth, and chemistry, such
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as aerosol composition [14]. RS also improves data literacy, specifically geo-spatial data
literacy [10].

One type of RS data set is hyperspectral data, which extracts large parts of the electro-
magnetic spectrum in small, back-to-back bands (see Figure 2). Even very similar materials
can be distinguished this way through the use of ratios in the spectra or special markers
in spectral shapes, and their percentages per area can even be calculated through spec-
tral unmixing. The imagery and methods are used, for example, in geology, glaciology,
oceanography, vegetation mapping, and air quality monitoring. This allows for practical
and interdisciplinary approaches to school curricula topics, such as teaching about the
electromagnetic spectrum in great detail, the chemical composition of minerals, plant and
bacteria characteristics, calculus, and image processing. The complex combination of their
prior knowledge from different classes with a real-world application gives students an
indication of what their school education could lead into, possibly even opening up a future
field of work for them. However, it is not as easy to bring these data and methods into
school lessons. Both computing power and a certain skill level with computers are required
to process, or even visualize, hyperspectral data. Many schools in Germany still struggle
with acquiring basic computers for their students, let alone the kind of devices required to
display and process RS data. Practical RS is also only rarely required of aspiring teachers in
their education studies and, if so, only in geography, and the use of hyperspectral data is
even less likely to be learned in that time.

Thus, using hyperspectral data in school lessons in their original form with commonly
used software is inadequate for schools, especially because one cannot rely on existing
school information technology (IT) infrastructure [15]. Teachers need easily understandable,
clear instructions, and students have to be able to do large parts of their tasks autonomously,
with only guidance from the teacher. Bringing hyperspectral data and methods into
school lessons thus requires adjustments. First, students usually carry around their own
devices [16] that do not have the same computing power as a high-end gaming desktop
computer (which is essentially what you would use for processing RS data), but instead
have additional sensors and capabilities, such as a camera and the possibility to be moved.
RS data processing and visualization has to be adjusted to these devices. Everything has
to be applied to competence-oriented concepts that allow the students to explore a totally
new topic on their own, guided by their teacher.

Recently, STEM learning apps have become increasingly popular due to their many
positive effects on the students using them [17]. Augmented reality (AR) in such apps can
be used to enhance real-world objects with additional information, 3D animations, virtual
content [18], and even virtual experiments [13,19]. However, the latter is rare so far, as it
requires advanced software development skills [20]—skills that are also necessary for RS
researchers. Thus, the attempt to bring hyperspectral data and methods into school lessons
is performed using a STEM AR app, as a means to present and apply the data to the topic.

The main question to be answered in this study is thus:
Can real hyperspectral data, processed with scientific methods for real-world applica-

tions, be implemented into school lessons via a topic relevant to the curricula of several
federal states in Germany (Bundesländer) using AR productively? For this, (1) the data
should not be reduced too far or the method be obsolete in the real world, (2) AR should be
usable in regular lessons, not just in special programs, and (3) the AR has to add an element
that would not be possible without it.

Common visualization methods for hyperspectral data include the simple combination
of three greyscale images of spectral bands into RGB false color images, as well as the
image cube, in which one row and one column on the borders of a hyperspectral image
are visualized using a rainbow color scale, where the red end symbolized a high reflection
in the respective spectral band, and the blue/violet end symbolizes low reflection. Both
are complex to use and interpret in geographic information systems (GIS), and thus need
to be simplified for the app, both in terms of user experience and computation power. In
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addition, their use should be interactive, instantaneous, and tangible for the students to be
able to play with the data.

Several restrictions have to be considered:

1. The lesson, consisting of a work sheet and app, is supposed to encourage teachers
and students to explore RS and hyperspectral data. This would be futile if the data or
software were behind paywalls for the target group, so they have to be freely available.

2. Teachers cannot be expected to have deep knowledge about the data, the processing,
or the specific incident and region analyzed in the worksheet and app, nor can they
be expected to understand the app intuitively, even if it is designed that way. They
also have limited time to prepare for their many lessons. Hence, every step has to
be explained, sample solutions and background information given, so the teacher is
perfectly prepared without any additional research.

3. As teachers already have very little time to cover the curriculas’ demands and very
rarely time to do anything outside these curricula, the worksheet and app must fit
into those curricula.

4. IT infrastructure is still lacking in German schools including Wi-Fi. Neither teachers
nor students can rely on streaming while at school. Every part of the app has to be
downloadable at home and small in size to be ready when the lesson begins.

The app and worksheet resulting from these requirements were evaluated with two
advanced geography courses, with 18 students each, using a closed yes/no questionnaire
about previous knowledge before the lesson and about understanding of the individual
parts at the end of the lesson. These two courses were chosen because the teacher regularly
uses satellite imagery in her lessons and works closely with the project this study is a part
of (KEPLER ISS). A larger sample size was not possible due to the COVID-19 regulations in
Europe having started the week after the evaluation.

This paper will start with the technical side, explaining the RS data and the methods
applied to them (Section 2.1), and will then describe the development of the AR app using
the processed data (Section 2.2). The educational concept is then presented (Section 2.3),
followed by a description of the worksheet tasks, in combination with the app functions
(Section 2.4) and teacher materials (Section 2.5). Finally, an evaluation of the app, performed
in a real class environment, is provided (Section 2.6).

2. Materials and Methods

All three aspects of RS methodology, AR development, and an educationally sound
workflow were executed simultaneously, as shown in Figure 1. Hence, the topic was chosen
as a combination of (1) available data from the chosen sensor, (2) processing methods
understandable for high school students, (3) high relevance for at least a few states curricula.
Any unexpected changes to one of the three aspects were reassessed for the other two at all
times. Ultimately, the published app and workflow were evaluated with students in a real
school lesson environment.
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Figure 1. Workflow of the study.

The Hyperspectral Imager for the Coastal Ocean (HICO, Arlington County, VA, USA)
was a hyperspectral imaging sensor aboard the International Space Station (ISS) that
captured freely available data between September 2009 and September 2014. It was chosen
as a basis for the data since the project this work is part of, KEPLER ISS, aims to include
the astronauts’ view on Earth with a variety of ISS-borne imaging sensors to be used
in STEM education [19,21], as this particular view has great potential to excite students
for STEM [13]. At the time of development (2018–2019), HICO was the only ISS-borne
hyperspectral imager and one of only two hyperspectral imagers with freely available data,
the other being Hyperion. While Hyperion was in orbit for a much longer time (2000–2017)
and has a better resolution (10–30 m) than HICO, its swath width is also much smaller at
7.7 km, further limiting potential applications for educational material.

One image was taken per ISS orbit, which takes 90 min each. Each scene consists of
128 bands between 353 nm and 1080 nm wavelength, however, only 87 between 400 and
900 nm are usable (see Figure 2), as the ones above and below those wavelengths contain
a lot of visual noise, i.e., stripes and blur. Each image is 2000 by 512 pixels in size. The
images’ spatial resolution varied around 90 m due to the orbit constellation of the ISS [22].
Over 10,000 scenes were taken. However, many analyzed rock formations, and only very
few were suitable for any topic that could be covered in lessons. The authors searched
specifically for algal blooms in Europe, since the materials are to be used primarily by
German schools, but no image covered a sufficiently visible bloom. In the end, the algal
bloom in Lake Erie was determined to be the best topic to create a lesson from under the
given requirements. HICO data can be downloaded for free at the NASA Ocean Color
portal and processed with the free ESA Sentinel Applications Toolbox.



Remote Sens. 2022, 14, 791 5 of 28

Figure 2. HICO bands on the electromagnetic spectrum and band 36 (553 nm), cut and resized to fit
the area of interest, but not oriented. Scene H2011246173456 (Data source: NASA Ocean Color portal).

2.1. Remote Sensing Data and Methods: Preparing Hyperspectral Imagery for Use in an AR Lesson

Lake Erie is the smallest and shallowest of the Great Lakes and thus warms quickly in
spring and summer. The shallowest part, with an average depth of 7.4 m, is the western
basin, where the focus of this study lies. It is connected to the upper Great Lakes through
the Detroit River and the much smaller Lake St. Clair (see Figure 3). This accounts for
80% of Lake Erie’s total inflow, with only 9% coming from other tributaries and 11% from
precipitation. Retention time in the lake is about 2.6 years before the water leaves the Lake,
through the Niagara river at the eastern end [23].

The Lake Erie watershed is inhabited by 12 million people and is largely agricultural
with several industrial centers, including the city of Detroit. Compared to the other Great
Lakes, it has the highest stress from effluent, but also sediment loading due to the local
geology and land use [23]. The increasing phosphorus load from agriculture provides
nutrients for algae growth and certain weather conditions, that are expected to occur
more often in the future due to climate change, can lead to extreme blooms of harmful
cyanobacteria in the lake [24]. Since 2008, the yearly algal bloom in Lake Erie exceeded the
desired maximum in all but one year, with 2011 and 2015 standing out due to their extreme
algal bloom events [25]. Water from Lake Erie serves as drinking water for about 11 million
people nearby [23].
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Figure 3. Location of the utilized HICO scene H201124617359 in Lake Erie as true color image. (Data
source: NASA Ocean Color portal).

2.1.1. Spectral Shape Algorithm to Distinguish Harmful from Harmless Algae

Data was extracted from an HICO scene from 3 September 2011 displaying an al-
gal bloom in the western basin of Lake Erie and the adjacent Lake St. Clair. Remotely
sensed chlorophyll a from MERIS data was used by the NOAA for their weekly informa-
tion bulletin during the bloom. However, chlorophyll a concentration does not translate
well into toxin concentrations from cyanobacteria as it is an indicator for all kinds of
phytoplankton [26]. Ref. [27] chose phycocyanin as a cyanobacteria indicator. It can be
distinguished from chlorophyll a using spectral shapes (SS), or second derivatives, in the
spectral signatures of both pigments, according to the equation

SS(λ) = R(λ)− R(λ−) + (R(λ−)− R(λ+)) ∗
(λ − λ−)

(λ+ − λ−)
(1)

in which R is the reflectance or radiance, λ is the band with the central dip, λ− and λ+ the
bands with the adjacent peaks with shorter and larger wavelengths, respectively. This SS
was used as a chlorophyll index (CI) by [28] and has been used and adapted widely in the
detection of algae [24,29,30]. Due to the second derivative, top-of-atmosphere data works
similarly well as atmospherically corrected data [31], hence no atmospheric correction was
performed. While [27] applied this to MODIS bands, which are not optimally spread out to
cover the dips and peaks of the two pigments, HICO has the advantage of back-to-back
bands, allowing adjustment of the equation much more exactly to the actual SS. The local
absorption maximum of phycocyanin is found at 620 nm, coinciding with MERIS band
6 [26,27], whereas spectral signatures show the local absorption maximum is closer to
630–640 nm [27,30,32] and [26], who used band ratios instead of SS, determined the best
ratios at 630–640 nm to 650–660 nm. Neither the two pigments, nor the water they are
dissolved in, absorbs strongly around 709 nm [27].

Study [30] showed that the SS in (1) can be applied to HICO data but did not specify
which bands were used. The wavelengths given could be used to determine HICO bands
for the detection of phycocyanin, while the wavelengths given in [27] were used for the
detection of chlorophyll a. The wavelengths were adjusted to the available HICO bands
in relation to the absorption minima and maxima of the two pigments, resulting in the
wavelength combinations in Table 1.
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Table 1. HICO bands chosen for the detection of chlorophyll a and phycocyanin through the spectral
shape. (Data source: https://oceancolor.gsfc.nasa.gov/hico/instrument/dataset-characteristics/,
accessed on 1 December 2021).

Chlorophyll a Phycocyanin

λ− 650.4 nm 558.7 nm
λ 679.0 nm 638.9 nm

λ+ 707.7 nm 650.4 nm

In the 2011 Lake Erie bloom, the phytoplankton consisted almost entirely of poten-
tially toxic Microcystis in August and was replaced by the also potentially toxic Anabaena
after Microcystis had depleted the bioavailable nitrogen in the Lake [24]. Both species are
cyanobacteria containing the phycocyanin pigment and thus show the characteristic local
absorption maximum at around 638 nm [33,34]; thus, no change to the selected band was
necessary. Due to the high variability in the relation between detected phycocyanin and the
exact species composition in the 2014 data [27], no correlation between the concentration
of the detected pigments and the occurrence of certain algae was determined. The maxi-
mum CI detected in the HICO scene corresponded well with the annual CI from MODIS
composites in [35], but, due to the high interannual variability, also iterated in [27], no
correlation from that data was determined. For the students, the CI values would make
no sense; thus, these values have to be converted into something more useful, such as
pigment concentrations.

2.1.2. Correlation of Pigment with Toxin Concentrations

Biological data was provided by the Cooperative Institute for Great Lakes Research
(CIGLR), who performed an extensive bloom survey in 2011. The in situ samples taken
closest to the HICO acquisition date were taken on 23 August, 12, and 14 September 2011
(see Figure 4). The values show a high spatial and temporal variability, with extracted
chlorophyll a ranging from 18.88 µg/L to 109.20 µg/L (both 23 August) with no data for
14 September and extracted phycocyanin ranging from 0.67 µg/L to 10,855.30 µg/L (both
14 September). The latter was an extreme outlier sampled in the northern bay of South
Bass Island that is rather shallow and used as a marina. Hence, it was not included in
the following considerations. The data of 29 individual measurements from the above for
phycocyanin and microcystin from these three days could be used; however, there were no
chlorophyll measurements for 14 September, reducing the total number of measurements
for this pigment to 17. This was not enough for a scientific analysis; however, since the goal
was “only” to demonstrate the use of hyperspectral imagery to school and college students,
it was viewed as sufficient.

Between measurements, water in the lake moved significantly. A total of 11 days
passed between the first in situ measurement and the acquisition of the HICO data, and
then another 9 days until the next measurements. As [36] demonstrated for the algal blooms
in Lake Erie from 2008 to 2010, the concentration distributions can vary drastically in a
short span of time, and [24] supplement data suggests medium circulation conditions. In
situ measurements cannot, therefore, be correlated to the pixel values in the same, or even
close, positions. The modeling necessary to produce accurate results is beyond the scope of
this work, especially considering its overall goal.

Nonetheless, this data is valuable to relate the chlorophyll a and phycocyanin indices
measured from the HICO data. The next highest phycocyanin value after the extreme
outlier was 1327.05µg/L that was sampled in between the western islands and was much
closer in value to the next two highest sampled values and their locations. It was also
the closest to the highest values of phycocyanin detected in the HICO images from a few
days before.

https://oceancolor.gsfc.nasa.gov/hico/instrument/dataset-characteristics/
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Figure 4. Distribution of sample sites. (Data source: CIGLR).

While [27] states that twice the concentration of phycocyanin is needed for an equiva-
lent response to a given concentration of chlorophyll a, this is only true when using the
same spectral bands. Assuming the maximum phycocyanin concentration from the satellite
imagery to be in the same range as the maximum concentration from the in situ samples was
the closest approximation possible without extensive modeling; thus, the maximum value
of 67 in the phycocyanin map was assumed to be equal to the maximum value of 1327.05
µg/L from the in situ measurements. For the minimal value of 30 in the phycocyanin map,
the total cyanobacteria cell count had to be considered. A response in the spectral data
was not expected below a cell count of 104 mL−1 in the MERIS data [27], however, in the
biological data, there was large variability between the phycocyanin and cyanobacteria cell
counts (see Figure 5). Using a regression curve, the threshold of 104 cells/L was met at
roughly 10 µg/L phycocyanin. Hence, this was used as the minimum value.

1 
 

 
 

 

Figure 5. Correlation between extracted phycocyanin and total cell count of cyanobacteria from
CIGLR data. (Data source: CIGLR).
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As for the 2013/2014 data in [27], a double logarithmic relation between phycocyanin
and microcystin can be deduced from the 2011 biological data (see Figure 6).

1 
 

 
 

 
Figure 6. Correlation between extracted phycocyanin and particulate microcystin from the CIGLR
data. (Data source: CIGLR).

Furthermore, the relationship between the CI and chlorophyll a was more or less
linear [37] and, since there are no similar studies for phycocyanin yet, it was assumed to be
linear here as well. The resulting values can be seen in Table 2.

Table 2. Phycocyanin index derived from HICO image, correlated with phycocyanin in situ measure-
ments, and correlated with microcystin concentration.

Phycocyanin Index Phycocyanin [µg/L] Microcystin [µg/L]

67 1327.07 3.38
30 10.05 0.43

For chlorophyll a, the lowest value detectable by the CI was between 10 and 20 µg/L [27].
The minimum CI value was 4, the maximum was 17. There were no chlorophyll measure-
ments on the day or in the area with the highest and lowest phycocyanin measurements.
The highest CI values for chlorophyll were in a completely different area than the highest
measurements, while the measurements roughly in the same area as the highest CI values
were moderate with respect to the overall highest measurements. On the other hand, the
highest CI values were spatially very limited in an area with moderate values. This was the
only data available and, despite the small sample size of chlorophyll a (17 samples), it was
used in the same way as the phycocyanin data (see Table 3).

Table 3. Chlorophyll Index derived from HICO image, correlated with phycocyanin in situ measure-
ments and correlated with microcystin concentration.

Chlorophyll Index Chlorophyll Conc. [µg/L] Microcystin [µg/L]

17 109.2001 4.46
4 18.88 0.38
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The correlation of the pigments with toxins resulted in the maps in Figures 7 and 8:

Figure 7. Map of microcystin content derived from phycocyanin content derived from HICO im-
ages. Not oriented to better fit the screen in the app (see Section 2.2) (Data source: NASA Ocean
Color portal).

Figure 8. Map of microcystin content derived from chlorophyll a content derived from HICO
images. Not oriented to better fit the screen in the app (see Section 2.2) (Data source: NASA Ocean
Color portal).

In addition, 8 pixels were chosen to extract spectral signatures from display in the app
representing certain types of surfaces or certain places. The points chosen are shown in
Figure 9.
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Figure 9. Map of extraction points for exemplary spectral signatures. The points represent: (1) one
of the highest chlorophyll values, (2) one of the highest phycocyanin values with low chlorophyll
value, (3) one of the darkest water points with low chlorophyll and phycocyanin values, (4) urban
surface in Toledo without vegetation, (5) green fields on the peninsula between Lake Erie and Lake St.
Clair, (6) near the Toledo water pump intake, (7) in the western corner of Sandusky bay with medium
chlorophyll and very low phycocyanin values, and (8) near the Ottawa County water pump intake.
(Data source: NASA Ocean Color portal).

2.2. Application Implementation

The AR app is part of an extendable unified AR platform in the project Columbus
Eye/KEPLER ISS [13,19] and was developed in Unity 5.6 with the Vuforia extension 6.2 by
the main author of this study.

The app featured in this paper consists of four main parts. The app starts with a video
of algal blooms around the world, as seen from the ISS, to introduce the AR functionality
with a simple interaction—pressing a play button. It is included as a simple video overlay
on an image target, using a video cut from scenes taken by NASA’s high definition Earth
viewing (HDEV) cameras [38], showing a variety of marine algal blooms. The second
element is a UI that displays an RGB viewer of the HICO scene with spectral signatures
(RGB Viewer). The third is a collection of maps: A Landsat 5 image taken shortly before
(3 September 2011, 15:59 GMT) as the HICO image (3 September 2011, 17:34 UTC) for
comparison with a higher spatial resolution. In the Landsat image, boat wakes and small
differences in surface algae concentration are visible, and the two maps of microcystin
derived from chlorophyll a and phycocyanin, respectively. The fourth and final element is
an image stack where all images from the scene are stacked on top of each other.

2.2.1. RGB Viewer

The UI displays the HICO scenes as an interchangeable RGB image. Three sliders in
the lower third of the display define which bands the RGB image consists of and there is a
display for spectral signatures at the top. The image is not oriented, as this would lead to
large white corners (compare Figure 9 with Figure 10). Instead, the students are supposed
to find out the cardinal directions in comparison with one of the marker images (Figure 13,
p4) that is oriented properly.
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Figure 10. Implementation of the RGB viewer (Source: authors).

The scene was cropped in order to focus on the lake and resampled to compensate
for the non-quadratic ground sampling distance, reducing the image size to 491*725 pixels.
Each of the 87 bands used was stored in PNG format with 8-bit grayscale. This reduces the
total file size of the scene from 591 MB to 18 MB. The band images are not “read/write”
enabled as this would double the required data storage and increase the required computing
power. Due to the AR camera functions, depending on the smartphone model, there is very
little computing power left for the remote sensing data.

As the RGB image from the individual bands cannot be computed without “read/write”
enabled ([13]), another solution had to be found. Unity 5.6 provides the developer with
a range of different shaders that are designed for 3D-environment development, which
is ideal for game worlds. Shaders define the way surfaces are rendered. This can include
how they are affected by light sources, how colors are displayed, metallic or skin effects,
etc. However, there is no shader available that would do the same as a calculated RGB
image from grayscale bands in regular GIS (i.e., multiply one grayscale band each with
red, green, and blue and add them together). While the documentation on the high-level
shading language (HLSL) that Unity utilizes is rather limited, a shader equal to the required
task could be compiled from community resources. As visualized in Figure 10, this shader
simply reads the pixel grayscale value at any given coordinate of the required band and
multiplies it with the color and alpha or transparency values defined in the 3D object that
holds the band. This object is one of three planes colored in blue: no transparency, green:
67% transparency and red: 84% transparency, stacked right on top of each other. The
transparency values were defined by testing. This method works instantaneously, and the
user can slide through the bands in real time using the three color sliders at the bottom of
the UI. Alternatively, the band number can be typed in, making the band definition easier
on smaller displays, where the difference between two neighboring bands on the display
may be too small for human fingers to select.

Spectral signatures are to be displayed as well, emphasizing the use of hyperspectral
data for the students. As the images are not read/write enabled, this data cannot be read
in real time from the images and has to be prepared. Eight signatures were extracted as
examples for certain surfaces (cf. Section 2.2.2). These signatures can be made visible by
hitting invisible buttons on the image. The lines are drawn with the “LineRenderer” asset
and a script filling each line with the values from the spectral signatures. Colored bars
represent the bands chosen in the RGB viewer and help the students to connect between
spectral features and coloring, as seen in Figure 11.
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Figure 11. Spectral signatures as seen in the app UI and their origins. The circle arrow resets all
signatures when they get too cluttered. The signatures are numbered as in Figure 9 (Source: authors).

2.2.2. Image Stack

The image stack was developed based on the so-called image cube, a visualization
method for hyperspectral data that displays the spectrum of all edge pixels of a given image
using a color bar. In, e.g., ENVI, acquiring one image cube is complicated and requires
many steps, but only gives the profiles of one row and one line of pixels. In the EnMAP
Toolbox, one slice of each axis of the cube can be picked with enough knowledge of the
program. The image stack in this app is meant to give the user access to all possible profiles
of the hyperspectral image in a very easy way, with little background knowledge required.
It is displayed on top of a static worksheet image; a true color RGB image subset of the
original image that has all edge pixels’ profiles displayed in the style of the ENVI image
cube serves as a marker. A legend, north arrow and some annotated lines help both the
users to understand what they see and Vuforia to recognize the image due to additional,
detectable edges [13].

In Unity, the image target has a script attached that loads the individual band images
and creates quad objects to store them. A quad is a primitive type of game object that only
has four vertices in the four corners, as opposed to a plane, cylinder, etc., which have many
vertices. While this makes little difference for a single quad versus plane, using 87 quads
will significantly reduce computing power in comparison.

The quads are not created until the required marker image is detected. Then, each
quad is created according to the specifics (e.g., size, scale, rotation, position plus a few
pixels upward) of an inactive example quad attached to the image target in Unity. Each
quad receives a renderer with a custom shader and a script to move the quad out of sight.

The shader has to fulfil two functions (see Figure 12): color each grayscale image in
the color scale of an image cube and cut off the sides of all the quads so the user can see
inside the image stack. Again, no Unity shader can achieve this, therefore a custom shader
was created. This shader utilizes an image with the fixed color bar that is loaded into Unity
and replaces the grayscale value from each pixel of the band image with the color at the
according horizontal segment of the color bar. In addition, it is fed four vectors defining
the borders: values from 0 to 1 for North/South and East/West. Everything outside these
borders is clipped, meaning the pixels are not rendered. The shader was compiled from
freely available open community resources.

The default borders are set to the same values as the image in the marker image. They
are accessed by a script attached to the container for two double sliders in the image stack’s
UI. Each slider handle (N/S, E/W) is prevented from going past the complementing one
and can be one of as many values as the image width and height, respectively, making
the minimum displayed profile that of just one pixel. A button to reset the borders to the
marker image borders is included.

The quads can be moved out of the view of the smartphone camera but are not
destroyed or disabled due to the high number of errors that occurred using these methods.
Another slider in the image stack’s UI defines which band is displayed at the top, with all
the higher band numbers being displayed below, while lower band numbers are moved
out of the camera view.
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Figure 12. Implementation of the image stack with special rainbow coloring and edge transparency.
(Source: authors).

2.3. Educational Concept

Due to the combination of physics (characteristics of the electromagnetic spectrum),
biology (cyanobacteria, green algae, nutrient cycles), and geography (RS, landforms, agri-
culture), the materials are highly interdisciplinary and thus have to be contextual, instead
of fitting tightly into one subject’s structure [39], while still fitting into one of the regular
subjects. Geography is the subject that brings other STEM subjects together to apply them
to the real world and is thus chosen as the main subject to focus on. In applying theoretical
and practical knowledge from the past few years of their regular education, students learn
that studying these, often considered boring, subjects can lead into interesting careers.
However, at this point, not all of the prior knowledge and competencies from all three dis-
ciplines can be expected from every student. Thus, before the lessons start, students are to
prepare themselves in a flipped classroom approach [40]. The learning materials are based
on a moderate constructivist approach [41] with active and collaborative learning [40]. The
instructions lead to scientific inquiry, encouraging the students to think actively and draw
their own conclusions from their prior and newly acquired knowledge [42], which has been
proven the most effective approach to increase conceptual understanding [43]. The ultimate
goal of the learning material is to use STEM knowledge with complex RS data and methods
to discuss problems and solutions in order to make spatial decisions. At the same time,
it has to be simplified enough for students to be understandable and solvable within the
90 min a typical double lesson takes. Finding the balance between realistic and simple is
one of the most complicated tasks in this endeavor. In addition, the smartphones have to be
used productively, demonstrating for the students that computers of any size can be used
for more than social media, but also as tools to visualize scientific data in tangible ways.

In order to understand how hyperspectral data work, deeper knowledge of the elec-
tromagnetic spectrum is required, which should have been learned in physics lessons in
the previous years of school. To learn how hyperspectral data is applied to the detection of
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algae, the students need to know the basics of how algae live and what chlorophyll is and
does, which should have been covered in prior biology lessons. On top of that, the students
must have learned about the broader topic of environmental problems from agricultural
practices before, so as to present the topic in the right context. Due to the federal structure of
education in Germany, any of these topics are covered in different years on different levels
per federal state, ranging from grade 7 to grade 10 [44–46]. Even then, not all students are at
the same level of understanding due to differences between individual schools. Hence, the
very complex topic chosen for this study is implemented on a level expected from students
in the final three years of high school.

Students of this age are expected to display certain hard and soft skills in the subject of
geography, but also from other related subjects, as knowledge gathered from other subjects
is compiled and applied in geography. These performance requirements are defined in
detail in the curricula of North Rhine–Westphalia [47], which are the basis for this app
and worksheet. The main topic the app and worksheet fit in is “habitats and their natural
and anthropogenic endangerment”. The required soft skills include, but are not limited to,
human-environment interactions, reading thematic maps, technical methodologies, analysis
and interpretation of geographic information, use of technical terms, good judgement
regarding land use and its consequences from a variety of perspectives, as well as using all
of these autonomously and presenting their results in a professional manner. All of these
are propaedeutic skills that prepare the students for their academic studies in many fields
of science. The workflow was thus created considering these soft skills.

In other German states, the app and worksheet fit into similar overarching topics of
anthropogenic influences on natural resources, e.g., “Water as the basis of life” in grade 11 in
Bavaria, that includes anthropogenic influences on the water supply [45], “Use of resources”
in grades 9/10 in Berlin and Brandenburg [46], and “Sustainable use of resources” in grades
12/13 in Hesse [48].

The holistic framework for the evaluation of learning materials by [49] takes many of
these skills into consideration as well, albeit more abstractly for use in different subjects,
and is thus both a guide for the development of the worksheet and app and used in
their evaluation.

2.4. Workflow of App and Worksheet

The worksheet and the app are designed to work together—neither makes sense
without the other. Hence, the workflow is described as one.

For repetition, or catching up, about the characteristics of electromagnetic waves, two
learning videos are to be watched at home as a preparatory task (i.e., “Electromagnetic
resolution” and “Spatial resolution”), with additional videos about the topic being available
on the same website [50,51]. To test the students’ understanding of the content, they have
to answer two questions as part of preparatory homework. The app is to be downloaded at
home in case there is no free sufficient Wi-fi at school (Figure 13 p1).

In the first task, the students are to read the introductory text on the sheet and watch
the short AR video about algal blooms all over the world (Figure 13 p4). While the 3D
approach to displaying the 2D video in AR does not add anything of value in itself, it
introduces the students to the principle of AR, overlaying animated information on the
static worksheet. The video serves to show that algae blooms are not uniformly distributed
in large bodies of water but depend on the properties of the different currents and the
composition of additives.

The second task focuses on the hyperspectral data. It starts with the 2D user interface
(UI) of the app with three color sliders to introduce them to hyperspectral data and red,
green, and blue (RGB) image composition (Figure 10). The students are expected to become
familiar with the UI before they have to combine the bands into a true color image.
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Figure 13. Worksheet “Algal bloom in the water supply”. (P1): cover sheet, doubles as marker image
for maps in Figure 14. (P2): Tasks 0 (preparatory) to 3. (P4): Introduction text to be read in task 1 and
respective marker for the HDEV video (P7): Optional task 5 using the image stack from Figure 12.
(Source: authors).

Figure 14. Microcystin distribution maps based on chlorophyll a and phycocyanin (English version
of the app). Students can zoom in to see individual pixels by positioning their smartphone closer to
the marker image below (Source: authors).

As they have learned from the videos in the preparatory task what spectral signatures
are, the students are now to find eight in the image and assign them to their surfaces
(Figures 9 and 11). Finally, the two main “types” of water need to be distinguished with
those spectral signatures and their differences discussed.



Remote Sens. 2022, 14, 791 17 of 28

The third task is entirely content based. The students are to read a news article about
the algal bloom in question and compare the reasons for the extreme bloom from the text
with what they can see in their own image in the app. These reasons are sorted into natural
and anthropogenic with their own ideas expanding the lists. Consequences for humans
and the environment are to be listed. Based on these lists, students are to come up with
measures to protect the people and the environment in both the short- and long-term and
include how satellite imagery can help with these tasks.

The fourth task brings all of the information together and introduces students to the
method of distinguishing between harmless and potentially harmful algae with hyperspec-
tral imagery. The students are to read an information text about the differences between
green and blue algae and how their pigments, chlorophyll a and phycocyanin, can be
differentiated using images of high spectral and high spatial resolution. They are also
introduced to the toxin produced by the algae in this specific algae bloom, microcystin.
Together with the information from the videos earlier, the students are to discuss how
images of different spatial and spectral resolution yield different results. Through the app,
they can see two maps of algae concentration derived from the HICO data in Lake Erie in
2011 (Figure 14) and the Landsat image. The virtual content replaces the on-screen zoom
function, so the students can see details in the maps by moving their smartphone closer to
the marker image. This allows them to see each pixel in the small maps as well as the very
large Landsat image that spans more than one A4 sheet to provide a high resolution.

Based on all the knowledge gained so far, the students can now interpret the maps
and satellite images. Five points are marked in the maps where the students have to make
decisions on what to do as a local government under the given circumstances. One of them
is the water extraction point for the City of Toledo, three are beaches with very different
algae concentrations, and one is an area exemplary for commercial fishing.

In an optional task, students are introduced to a different way of displaying hyper-
spectral data: the image cube, in which light intensity is colored in rainbow colors. In this
case, it is an image stack (Figure 12). The tasks are to compare this way of hyperspectral
display with the one from the RGB slider view, familiarize themselves with the options in
the UI, and discuss other topics hyperspectral data could be useful for in this image.

2.5. Teacher Material

Earth observation is not necessarily covered in geography education studies, nor those
of any other subject. While the use of smartphones and AR in school lessons is on the rise,
it is far from ubiquitous [52]. Hence, the teacher material needs to be extensive, explaining
every step the students have to undertake and vast background information to be able
to answer questions that might come up. The material includes a lesson plan in which
the teacher is advised when to organize students into groups that use the app together to
discuss certain tasks, or do some tasks at the black or white board with the entire class,
furthering communication within the class. These are entirely advisory, depending on
factors such as prior knowledge, class size and available mobile devices; they can and
should be changed to better fit the needs of the class. In particular, the level of prior
knowledge in the class is important for how much time the preparatory videos and possible
explanation of biology components will take in the lesson. Sample solutions for each task
are also given with extensive background information about the actual event in Lake Erie
in 2011 and the methodology used for this study, as well as general tips about the app and
advice on common mistakes.

2.6. Evaluation

A preparatory questionnaire for previous knowledge was developed, testing whether
the students have used satellite imagery (especially hyperspectral imagery), digital learning,
and mobile learning before. Another question was about curricular context, to ensure the
topic fits into the curriculum and the students have some previous knowledge of it.
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The preparatory questionnaire was a standardized, closed multiple-choice test where
students could choose statements on how often or how intensively they have used certain
media or studied certain topics. For the final evaluation, a fully standardized, written
questionnaire with “yes/no” answers was chosen [53], mainly due to the time, as the
evaluation has to fit into the same lesson as the use of the app to avoid changes in perception
over time and using only an appropriate amount of time for the students [54]. A field to
add free text was also added to see if the students had any additional comments.

The evaluation’s overarching goals are to find out:

• whether the students can understand how the complex hyperspectral data is used
• whether the students are able to use and understand the contents of the app intuitively
• how to improve the worksheet and app

It is thus both summative and formative in nature [55]. There is no control group, as
no other learning material using and explaining hyperspectral data could be found and
this is the central question of this study.

The evaluation takes the holistic framework by [49] into consideration but is reduced
due to the aforementioned time constraints. The material fulfils the conditions for “didacti-
cized” material, that is “characterized by combining tools and tests and facilitating learning
and teaching: including textbooks, online teaching materials, and educational games” [49].
The potential learning includes both primary skills, or what the students learned, and
secondary skills, or how the students used the materials. The former is tested by including
many questions about the understanding of the hyperspectral data and its uses. As the
latter is only detectable in the final task, where students have to read the microcystin maps
to make spatial decisions, this is tested with their understanding of this task.

The actual learning potential is based on the ways that students communicate while
using the learning material, including communication with the teacher, each other, and
media. As is written in the teacher material, several tasks are to be performed in small
groups and discussed in the class. The solutions to the tasks are not universal and allow
for the students to come to different conclusions if the teacher decides to follow this
recommendation. Only the communication with the media, which is the app, was tested
in the questionnaire, by asking how well students subjectively understood the individual
app parts and whether these added value to the worksheet. The results of the questions on
understanding are reinforced with objective questions about the content of the worksheet
and app. The temporal considerations of the actual learning potential are an inherent part
of the worksheet in the form of the workflow described in Section 2.2.

The actual learning outcomes can be divided into three categories: intended learning,
unintended, but valuable learning, and unintended and undesirable learning [49]. The
intended learning includes facts about the algal bloom in question, about hyperspectral
data, and certain soft skills, as defined in Section 2.1, and can be determined in the closed
questionnaire. Unintended learning, whether valuable or undesirable, is harder to deter-
mine. The “wrong” questions in the questionnaire aim to find misunderstandings and
wrong assumptions. Some of the right questions are also above what would be expected
of students this age to determine valuable, but “unintended” learning. True unintended
learning cannot be determined with closed questions but can be observed by an onlooker.

For each of the five tasks in the worksheet, five “yes/no” questions were chosen to
see if the basics were retained or whether there were misconceptions. These tasks can be
summarized as: hyperspectral data, spectral signatures, use of hyperspectral data on algal
blooms, microcystins (Figures 10, 11 and 14), and image stack (Figure 12). The questionnaire
was presented to several experts from the field of geography didactics and geomatics where
it was discussed and improved.

The app was evaluated in March 2020 with two advanced geography courses at the
Gymnasium Siegburg Alleestraße (ger. “Gymnasium” is an academically oriented grammar
school). The school lies in the city center of Siegburg near the former German capital Bonn
and has a diverse student body with children from all socio-economic backgrounds. The
two courses were:
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• Course “Q1”: year 11 (Q1: “Qualifikationsphase 1”—second-to-last year of high
school as qualification phase for the Abitur (high school diploma)), 18 students were
present, 9f/9m

• Course “Q2”: year 12 (Q2 (“Qualifikationsphase 2”—final year of high school and
qualification phase, ends with Abitur)), 18 students were present, 9f/9m

For comparison, the written grades of the students in the same term were acquired
fully anonymized in accordance with the school’s strict privacy protection guidelines.
Grades from other subjects were not acquired as only very few students took any of the
relevant ones (e.g., physics, biology) in the same year. Both courses are taught by the
same teacher, who works in close cooperation with the project and regularly uses satellite
imagery in her classes for nearly every topic. The school follows very strict anonymization
standards and, as such, no data that could be traced back to any individual student could
be acquired.

The app and worksheet developer was present for the test lessons to take additional
notes, such as unintended learning not covered in the questionnaire, and to help with
technical problems, but did not engage with the students in any other capacity. Notable
subjective observations by the developer include: (1) The students were excited by using
their smartphones in class but even more so about having handouts printed in color;
(2) The students had no problems using the technology in itself and were better organized
than the teacher regarding quick adjustments (like opening a Wi-Fi tether for fellow students
to download materials) or just trying the app content out and experimenting with it;
(3) Especially, the RGB image seemed a fun thing to play around with and create something
“artsy” with the channels, but students also wanted to know why the colors changed as
they did; (4) The students seemed unusually motivated to take part in the lesson. All
chatter overheard in the class was about the topic and no student was caught using their
smartphone for anything but the app.

3. Results

The project app was published on the Google Play Store at [56] with the algal bloom
part being initially released in June 2019 and presented at the EARSeL Symposium in
Salzburg, Austria. Subsequent updates until the evaluation in March 2020 saw improve-
ments in data handling and UI intuitivity. Only minor adjustments to the app part were
made afterwards. The app received an update to Unity 2019 in version 2.0, released in
August 2021 due to the Google Play Store requirement to allow for 64-bit processing. The
main functions described here were not affected.

In the evaluation, the short preparatory questionnaire revealed that only a few of the
students were aware that they worked with satellite imagery on a regular basis: although
according to the teacher, it had been part of their lessons, 25% had never heard the terms
multispectral or hyperspectral to the extent that they put an extra remark on the question-
naire one step further than “I have never dealt with [multi- or hyperspectral data] before”.
Of the rest, only three students had ever knowingly dealt with multispectral data and only
one with hyperspectral data. It is important to note that this does not mean the students
had never used an RGB satellite image, only that they were not aware of it. The answers
showed that educational apps were used in this class occasionally (according to the teacher:
the other project apps [57], again emphasizing that the students do work with satellite
images regularly). Although this class had desktop computers readily available in their
classroom, working with mobile devices happened more often than on those. The lack of
desktop computer use was summarized by the students as the devices and the internet
being too slow and too restrictive at this school (i.e., digital materials get deleted randomly,
even teaching websites are blocked sometimes). The answers also showed that students
have learned about the overarching topic of the app, which is environmental problems
due to agriculture, in their regular lessons. The fact that environmental problems from
agriculture are part of the regular curriculum is important for the usability of the app, as
teachers rarely have time to incorporate off-curriculum topics into their lessons.
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The app was tested in regular two-hour lessons (plus a 5 min break in between) with
each class, resulting in 95 min total for settling down, working with the worksheet and app,
and evaluating it.

In the Q2 group, most students admitted to not having watched the introductory
videos, which was then done on their private smartphones, but took away a valuable
15 min from the allotted time. Thus, there was not enough time to finish the fourth and
final task for many students and not even time to look at the optional task at the end. In Q1,
most had seen the videos and were sufficiently prepared. Thus, most students finished the
fourth task and a few spent the time waiting until they could compare it with their peers
when doing the optional task.

Despite not having completed all of it, many students completely filled out the ques-
tionnaires. Answers that cannot be anything but guessed, because the students of the
respective group did not reach that stage, were excluded from the results. Hence, the last
set of questions is only given for Q1.

The final evaluation shows that the app worked for most students, as long as they had
Android phones, as the app does not exist for iOS yet. These students partook in the lesson
in small groups with the Android users. In the subjective part (see Figures 15 and 16), most
students claimed to have understood what was going on in the individual parts of the app
and considered the app a good addition to the worksheet.

The objective part of the evaluation supports their answers:

• The questions about the properties of hyperspectral data (Figure 17) were answered
correctly by the majority. The only question that was problematic was whether hyper-
spectral data contain the visible part of the electromagnetic spectrum:

• The part about spectral signatures (Figure 18) proved more problematic as the students
did not have the required prior knowledge about atmospheric scattering and did
not know what an elevation model was (according to the teacher, these topics are
described as necessary prior knowledge in the teacher material, though, and examples
for teaching materials are given). The other three questions however were rarely
answered incorrectly:

• The questions about using hyperspectral data for the analysis of algal blooms (Figure 19)
revealed a good understanding of the possibilities. The only problematic question was
whether hyperspectral data can help to use fertilizer in a more focused way: Many
students thought this was possible:

• Several students answered these two parts (spectral signatures and the use of hyper-
spectral data in algal blooms) entirely, or almost entirely, correctly.

• Only the Q1 group had the time to do the fourth task and, thus, the questions about
this part were only evaluated from that group (Figure 20). Students came to the correct
conclusion about the content of toxic algae but thought the hyperspectral data could
determine the exact amount of the toxin, when the worksheet should have taught
them that there are several ways to approximate the content from hyperspectral data.

• The question about the image cube were only answered by up to eight students and
therefore were not included here. These complained that the cube was stuttering, i.e.,
bringing their devices to their limits.
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Figure 15. Subjective answers regarding the understanding of the app.

Figure 16. Subjective answers regarding the students’ opinion of the app.

Figure 17. Answers from both test groups about the properties of hyperspectral data.
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Figure 18. Answers from both test groups about the properties of spectral signatures.

Figure 19. Answers from both test groups about the use of hyperspectral data in algal blooms.

Figure 20. Answers from Q1 group to determine whether they understood the conclusive task that
combines all knowledge gathered through the worksheet and app.

In comparison with their written grades in the rest of the semester, Q1 performed
slightly worse in the evaluation and Q2 slightly better (Figures 21 and 22). The written
grades are an average of all written exams per student in the semester. There were more
students in the “very good” range (100 to 85%) in both tests than through the average
written grades, but the only two failing grades (<40%) were also from the tests. Due to the
high anonymization standards of the school, no direct comparison between individuals
could be drawn.
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Figure 21. Comparison of the grades of the Q1 class between the evaluation results and the written
grades they achieved in the same semester.

Figure 22. Comparison of the grades of the Q2 class between the evaluation results and the written
grades they achieved in the same semester.

4. Discussion

The worksheet was timed well for a 90-min lesson if the preparatory task was per-
formed by the students. The desired primary skills were acquired by the majority of
students and secondary skills furthered, including the use of technology. The students
were able to work with the given media and could follow the workflow of the worksheet
and app. The majority of students learned what was intended, but some answers revealed
unintended, undesirable learning as well. Unintended, valuable learning was not observed.
From this, we deduce that many students in the group understood the basics of using
hyperspectral data, and its uses, but not its limitations. The topic is thus understandable
for the students to a degree that is expected at their level. Comparing the scores from the
evaluation with the average written grades of the students showed that the Q1 performed
slightly worse (6 percentage points) with the app and the Q2 slightly better (7 percentage
points) than their written tests in the same semester, indicating no major problems with the
worksheet. The teacher considered the worksheet very challenging for the students, but
doable under the condition that there were students who were taking biology classes in
that same year. A major remark was that there was too much text in the worksheet. In the
subsequent version, the very long introductory text of the fourth task was broken down
and shortened. The lesson plan in the teachers’ material is, though, only a recommendation
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and so are parts of the sample solutions. Different classes taught by different teachers will
thus differ in their achieved learning.

The data used in this study was, at the time of the development of the app, not
easily available with atmospheric correction. This led to problems both in the RS research
part as well as the understanding part for students, who may have had to handle too
much information at once when learning about the hyperspectral data. A future iteration
should utilize atmospherically corrected data. The app itself, or its individual functions,
can easily be reused with other data. More applications for hyperspectral data could
thus be implemented according to the official curricula and available data from other
hyperspectral sensors.

The evaluation is sufficient to show whether the topic was understandable for students
at all, but has limitations on further details, mostly due to the sample size and the high
degree of anonymization required by the school. A long-term evaluation on how much
students have retained from the worksheet at the end of the year, or how it changed their
perception on any of the topics within, should be performed in the next iteration. Due
to the lack of a comparison group, the results are only partially informative. If similar
materials without the AR, or any digital, component are created in the future, a comparison
with the material evaluated here would be beneficial.

5. Conclusions

The massive harmful algal bloom in Lake Erie in 2011 served as a topic to create a
worksheet and app for German school lessons that used freely available hyperspectral data
for a STEM lesson on how such data is used in determining anthropogenic influences on
natural habitats. Two maps of microcystin content (Figures 7 and 8), derived from different
pigments, could be produced from September 2011 HICO data at the height of the algal
bloom. Spectral shape algorithms were adjusted to optimally detect chlorophyll a and phy-
cocyanin as proxies for all photosynthesizing matter and potentially microcystin-producing
cyanobacteria. Discerning the two pigments was possible, but an accurate correlation with
in situ measurements was not possible due to inconsistencies with measurement dates from
the sensor and in situ. Despite the large variances in the correlations and data uncertainties,
the maps showed a significant difference in pigment distribution, and therefore algae
distribution and thus possible toxin distribution.

In order to create an app with the data, the HICO data set was reduced from 591 MB to
18 MB by cutting or clipping bands and reducing bit depth, and from a format only readable
by certain GIS to ubiquitous PNG format, allowing for implementation in an app useable
by smartphones but losing a lot of information in the process. Current hyperspectral
sensor data, such as DESIS with its more than 200 bands, may be too much to handle for
current devices, even when reduced. Any information depending on high accuracy of the
radiometric resolution, such as the spectral signatures of interesting points, or the data
for image calculations, had to be extracted prior to the data size reduction. Two different
visualization methods for the hyperspectral data using minimal computing power were
developed using HLSL shaders, the RGB viewer (Figure 10) and the image stack (Figure 12).
The RGB viewer is to display the R, G, and B parts individually from greyscale images,
resulting in instantly combinable RGB images. The image stack is an enhancement of the
image cube, in which the borders on which the spectra are displayed are instantly adjustable
through user input. While the first does not necessarily need AR, the second benefits from
the 3D visualization bound to an object in the real world that serves as an explanation for
how it works as much as a means to turn the stack around. The maps derived from the
two different pigments to show potential toxin distribution (Figures 7 and 8) in the lake
were also included, since calculating and rendering them live on the users’ smartphones
was considered too processing power intensive, and too complex a topic given the prior
knowledge of the target group. The main benefit of the maps in an app versus printed
material is that a wide range of colors can be used and will not be affected by the printing
capabilities, but the AR improves zooming in and out by moving the smartphone closer or
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further away from the image target. The included video benefits from the AR in the same
way—thus, it serves as an easy introduction into AR for the users. The app with all the
intended features is published in the Google Play Store [56] and the worksheet is made
available through the project’s website [57].

The game development environment Unity requires additional functions and shaders
to be used with hyperspectral data on smartphones. This includes the visualization of
such data, as they are too large to be processed on mobile devices at the moment. The
data therefore have to be pre-processed and selected to minimize both data volume and
processing power. Smartphone apps can be utilized to display colorful, animated content
not otherwise printable in schools. AR can make up for deficiencies of mobile devices, such
as small screens, and even create possibilities in 3D that are not possible on 2D screens.
However, the required processing power for AR is already high, and the processing power
for the many bands of hyperspectral data brings some devices to their limits. The data
have to be reduced in size, visualization methods adjusted, processing eliminated, and all
processing steps performed prior to implementation.

Considering all these restrictions and possibilities, it is possible to implement hyper-
spectral data into an AR app, as long as the original data is not required, which is the case
for educational apps. The app developed in this study shows that it is possible to convey
complex RS data and methodology in a simplified manner to high school students and at
the same time as conveying knowledge about its application in ecological research and
environmental protection.

The worksheet and app about hyperspectral data for the detection of harmful algae
blooms in Lake Erie with real RS data and methods were doable for the students of the
advanced geography courses, meaning hyperspectral imagery can be used in regular school
lessons by use of AR on students’ smartphones. The students experimented digitally and
performed research-like tasks on their smartphones, applying their prior knowledge from
geography, physics, and biology to RS data in a real-world example, fitting into their regular
curriculum that they need to complete to qualify for the Abitur. AR was used productively,
using visualization methods not possible with printed materials alone, and even going
beyond common GIS visualizations. The lesson could be performed by a teacher who uses
satellite imagery and AR regularly, but it needs to be considered how teachers with less
prior knowledge and experience in these fields would fare with the given materials. More
apps of this kind using other sensors’ data will be created based on this model with options
to use other complex data, such as InSAR, in curriculum-oriented lessons using AR. The
app presented here will also be published in iOS within the first half of 2022.
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