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Abstract: Crop-distribution information constitutes the premise of precise management for crop
cultivation. Euclidean distance and spectral angle mapper algorithms (ED and SAM) mostly use
the spectral similarity and difference metric (SSDM) to determine the spectral variance associated
with the spatial location for crop distribution acquisition. These methods are relatively insensitive
to spectral shape or amplitude variation and must reconstruct a reference curve representing the
entire class, possibly resulting in notable indeterminacy in the ultimate results. Few studies utilize
these methods to compute the spectral variance associated with time and to define a new index
for crop identification—namely, the spectral variance at key stages (SVKS)—even though this tem-
poral spectral characteristic could be helpful for crop identification. To integrate the advantages
of sensibility and avoid reconstructing the reference curve, an object self-reference combined algo-
rithm comprising ED and SAM (CES) was proposed to compute SVKS. To objectively validate the
crop-identification capability of SVKS-CES (SVKS computed via CES), SVKS-ED (SVKS computed
via ED), SVKS-SAM (SVKS computed via SAM), and five spectral index (SI) types were selected
for comparison in an example of maize identification. The results indicated that SVKS-CES ranges
can characterize greater interclass spectral separability and attained better identification accuracy
compared to other identification indexes. In particular, SVKS-CES2 provided the greatest interclass
spectral separability and the best PA (92.73%), UA (100.00%), and OA (98.30%) in maize identification.
Compared to the performance of the SI, SVKS attained greater interclass spectral separability, but
more non-maize fields were incorrectly identified as maize fields via SVKS usage. Owning to the
accuracy-improvement capability of SVKS-CES, the omission and commission errors were obviously
reduced via the combined utilization of SVKS-CES and SI. The findings suggest that SVKS-CES
application is expected to further spread in crop identification.

Keywords: crop identification; spectral variance; remote sensing; Euclidean distance; spectral
angle mapper

1. Introduction

Crop production is the cornerstone of social development. According to the Statistical
Yearbook 2021 of the Food and Agriculture Organization of the United Nations, about
1.6 billion ha of global croplands provided all cereals, vegetables, fruits, and other crop
products to support peoples’ lives [1]. Such large-scale crop production and important
food-security issues pose serious challenges to the precise management of crop cultivation.
Remote sensing technology has become an effective means to provide accurate and low-cost
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services for crop cultivation [2–5], including early warning of pests and diseases [6,7], mon-
itoring of nutrient and phenological phases [8,9], and irrigation–water estimations [10,11],
etc. Spatial information on crop distribution is a prerequisite for specific analysis using
remote sensing.

There are two main strategies for crop identification via remote sensing technology [12].
The first strategy considers the spectral characteristics of a single remote sensing image
captured at a certain time; however, the optimal date can hardly be determined because crop
fields exhibit similar spectral characteristics to those of other fields during the early and
growing seasons [12,13]. The conspicuous phenomenon of different objects with the same
spectral characteristics can produce more identification errors [14,15]. Therefore, the second
strategy uses the spectral and temporal characteristics to characterize unique identification
features including specific spectral values revealing phenological characteristics and the
spectral variance reflecting growth variation [16–19]. For instance, Hu et al. [16] identified
maize by using the differences in vegetation index (VI) values between maize and other
fields over time. Shahrabi et al. [18] found that the temporal–spectral variance in the
normalized difference vegetation index (NDVI) during the crop growing season could be
used to compute an appropriate variable for maize identification.

The spectral similarity and difference metric (SSDM) is usually used to classify surface
objects. This can characterize the interclass spectral separability or intraclass spectral
variability [20–23]. There are four main SSDM computation methods: (1) the SSDM is
computed based on the spectral distance, including the Euclidean distance algorithm
(ED) [20,22] and the Jeffries–Matusita distance algorithm [23,24]; (2) the SSDM is computed
using the spectral angle, including the spectral angle mapper algorithm (SAM) [25,26] and
spectral gradient angle algorithm [27]; (3) the SSDM is computed via spectral information
metrics, including the spectral information divergence algorithm [28]; and (4) the SSDM is
computed considering the spectral correlation, including the spectral correlation measures
algorithm [29]. Methods (1) and (2) are commonly used to identify crops involving remote
sensing data, which assumes that the spectral characteristics are vectors in high-dimensional
space, the dimensionality matches the number of spectral characteristics, and that the vector
elements are the reflectance or VI [20,22,23]. Several researchers [20–23,30,31] directly
computed the SSDM between a reference-class spectrum and other pixel spectra with
different spatial locations using methods (1) and (2). According to the quantized values of
SSDM, they mapped the large-scale spatial distribution of crops including maize, soybean,
wheat, and paddy rice in China and the United States, utilizing a Moderate Resolution
Imaging Spectroradiometer (MODIS) and Sentinel-1 and Sentinel-2 (S2) data. The above
SSDM could be equivalent to the spectral variance associated with the spatial location.
If two spectra of a single pixel on different dates were used for SSDM computation via
methods (1) and (2), the obtained SSDM would be equivalent to the spectral variance
associated with the time. As mentioned above, the temporal–spectral variance is helpful for
crop identification [17,18], so we conjecture that the temporal–spectral variance computed
via the SSDM computation methods has the same capability. However, there is little
research that has validated this.

Our group intends to use ED and SAM for computing a new identification index;
namely, the spectral variance at key stages (SVKS), in which the key stages cover phe-
nological and land-use changes. Given that the computation processes of the ED and
SAM are relatively uncomplicated, SVKS could become a type of universal and effective
identification index similar to vegetation indexes for crop identification. Nevertheless,
certain limitations of the ED and SAM cannot be neglected before application. The above
temporal–spectral variance is directly related to the value of each element of the multidi-
mensional vectors used in ED, while ED is insensitive to spectral shape variation [28]. Even
if the variation in the spectral shape could be described, two curves with similar shapes but
greatly different amplitudes could not be accurately captured with SAM [32]. Moreover,
the reference curve selection and reconstruction problem cannot be ignored when using
the algorithm to determine the spectral similarity and the difference between the target
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and reference [21,22]. Initially, a reference curve representing the entire class could be ob-
tained by averaging multiple standard curves, resulting in a susceptibility of the reference
curve to sequence shifts and dislocations, thus ultimately affecting the crop-identification
accuracy [20]. Furthermore, the intraclass spectral variability cannot be represented by
the reference curve [33] and researchers need to first determine the threshold range of
each class [21,34]. Optimization methods for reference-curve reconstruction have been
proposed [30]; for example, Li et al. [20], Shao et al. [21], and Mondal et al. [35] used the
singular-value decomposition, Savitzky–Golay smoothing algorithm, asymmetric Gaussian
smoothing algorithm, Fourier transformation and other methods for reference-curve re-
construction and found that spectral reconstruction could enhance the target identification
accuracy. Nevertheless, the identification accuracy highly depends on the accuracy of the
reconstructed reference curve.

To integrate the sensibility advantages, a combined algorithm comprising ED and
SAM (CES) was applied in SVKS calculation, which can eliminate the limitations of using
ED or SAM alone. Furthermore, we proposed an object self-reference method for ED and
SAM usage to avoid reconstructing a reference curve representing the entire class. Such
improvements would universalize and simplify the calculation of SVKS; however, the
crop identification potential for CES is unknown. Therefore, three contents were designed
to validate the crop identification capability of SVKS-CES (SVKS computed via CES):
(1) analyzing the SVKS-CES performances for characterizing interclass spectral separability;
(2) selecting maize and non-maize as examples and comparing the maize-identification
accuracy of SVKS-CES to SVKS-ED (SVKS computed via ED), SVKS-SAM (SVKS computed
via SAM), and five spectral index (SI) types; and (3) applying combined utilization of
SVKS-CES and SI for classification and assessing the capability of accuracy improvement.

2. Materials and Methods
2.1. Study Area

In this study, we selected the agricultural area of Anqiu City, located in the eastern
North China Plain within a geographical range of longitude 118◦44′–119◦40′E and latitude
36◦05′–36◦38′N (Figure 1). The North China Plain region is one of the most important
agricultural hubs in China with a high population density and high demand for grain
crops, producing approximately 23% of the national maize output [36,37]. As a typical
agricultural county in the North China Plain, Anqiu City is the national demonstration base
for the mechanization of major crop production. Arable land covering an area of 722.94 km2

occurs in the study area, which exhibits a temperate continental monsoon climate with
a significant temperature variation between winter and summer. This area experiences
an annual sunshine duration, rainfall, and average temperature of 2436 h, 631 mm, and
13 ◦C, respectively. Suitable climatic conditions and planting environments are provided
for crops including maize, wheat, ginger, scallion, garlic, cherry, etc. Maize is one of the
most widely planted crops in Anqiu City, commonly growing from June to October, after
which it is rotated with winter wheat. During the maize-growing season, other open-air
crops—mainly ginger, scallion, taro, nursery stock and fruit trees—are grown in this area.
A calendar of these crops is shown in Figure 2.



Remote Sens. 2022, 14, 6390 4 of 21Remote Sens. 2022, 14, x FOR PEER REVIEW 4 of 22 
 

 

 
Figure 1. Study area. The background is an S2 image acquired on 8 September 2021, shown as a false 
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(GEE; https://earthengine.google.com (accessed on 26 April and 13 July 2022)) and Coper-
nicus Open Access Hub (https://scihub.copernicus.eu (accessed on 2 and 5 November 
2021)). According to the coverage of clouds and cloud shadows, five better-observed im-
ages acquired on 20 June, 10 July, 4 August, 8 September, and 13 October 2021 were se-
lected. These images cover the growth stages of maize as well as the maize sowing and 
harvesting dates (Figure 2). Nine bands were used for calculation and analysis, including 
blue (band 2, B2), green (band 3, B3), red (band 4, B4), red-edge-1 (band 5 B5), red-edge-2 
(band 6, B6), red-edge-3 (band 7, B7), near-infrared (NIR; band 8, B8), shortwave infrared-
1 (SWIR-1; band 11, B11), and SWIR-2 (band 12, B12). The S2 data preprocessing workflow 
is shown in Figure 3. The spatial resolution of each image was resampled to 10 m in 
SNAP® software (https://step.esa.int/main/toolboxes/snap/ (accessed on 11 November 
2021)) and GEE. Two tiles (50 SPF and 50 SQF) of image layers covering Anqiu City were 
stacked, clipped, and mosaicked in ENVI® software (https://www.l3harrisgeospa-
tial.com/Software-Technology/ENVI (accessed on 27 July 2021)). Clouds and cloud shad-
ows in each image were masked by using band QA60 and visual interpretation based on 
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Figure 1. Study area. The background is an S2 image acquired on 8 September 2021, shown as a false
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Figure 2. Crop calendar. The crop calendar is derived from our ground investigation.

2.2. Sentinel-2 Data and Preprocessing

Considering the availability of images and the spatial resolution of data in the study
area, we collected S2 Multispectral Instrument data in this study. S2 Level-2A bottom-
of-atmosphere (BOA) reflectance images were downloaded from the Google Earth En-
gine (GEE; https://earthengine.google.com (accessed on 26 April and 13 July 2022))
and Copernicus Open Access Hub (https://scihub.copernicus.eu (accessed on 2 and
5 November 2021)). According to the coverage of clouds and cloud shadows, five better-
observed images acquired on 20 June, 10 July, 4 August, 8 September, and 13 October 2021
were selected. These images cover the growth stages of maize as well as the maize
sowing and harvesting dates (Figure 2). Nine bands were used for calculation and
analysis, including blue (band 2, B2), green (band 3, B3), red (band 4, B4), red-edge-1
(band 5 B5), red-edge-2 (band 6, B6), red-edge-3 (band 7, B7), near-infrared (NIR; band
8, B8), shortwave infrared-1 (SWIR-1; band 11, B11), and SWIR-2 (band 12, B12). The S2
data preprocessing workflow is shown in Figure 3. The spatial resolution of each image
was resampled to 10 m in SNAP® software (https://step.esa.int/main/toolboxes/snap/
(accessed on 11 November 2021)) and GEE. Two tiles (50 SPF and 50 SQF) of image layers
covering Anqiu City were stacked, clipped, and mosaicked in ENVI® software (https:
//www.l3harrisgeospatial.com/Software-Technology/ENVI (accessed on 27 July 2021)).
Clouds and cloud shadows in each image were masked by using band QA60 and visual
interpretation based on GEE and ENVI® software.

https://earthengine.google.com
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software (https://step.esa.int/main/toolboxes/snap/ (accessed on 2 and 5 November 2021)), and
ENVI denotes ENVI® software (https://www.l3harrisgeospatial.com/Software-Technology/ENVI
(accessed on 27 July 2021)).

2.3. Field Observation

A field campaign was conducted in early August 2021 that covered the vigorous
growth stage of maize. During the field campaign, 684 sampling points were recorded
using a handheld Global Positioning System device with a positional error smaller than 2 m
and 256 sampling points were established via visual interpretation of S2 images which were
evenly distributed across the study area. We collected reference data including field types,
geographic coordinates, photos, crop growth conditions, and phenological information.
Considering the various field types, spectral characteristics, and crop phenology aspects,
the sampling points could be divided into 220 maize sampling points, 200 ginger sampling
points, 160 nursery stock and fruit tree sampling points, 180 greenhouse sampling points,
and 180 other sampling points (including bare field, taro, scallion, and tobacco). The number
of sampling points not covered by clouds or cloud shadows in each image is shown in
Figure 4. Half of the sampling points were randomly selected for classifier training and
the remaining points were employed for testing. The spatial distribution of the sampling
points is shown in Figure 5.
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2.4. Experimental Design

To validate the crop-identification capability of SVKS-CES, the experiments were de-
signed in three parts (the technical route is shown in Figure 6). The first part involved the
construction of identification index time-series ranges. After pre-processing, the images
were segmented into a spatially contiguous set of objects in eCognition® software and each
object comprised a neighboring group of pixels with homogeneity or semantic significance.
Following segmentation, SVKS-CES, SVKS-ED, SVKS-SAM, and five SI types were selected
for computation via object self-reference. Additionally, SVKS and SI values were extracted
at the sampling points for training to construct identification index time-series ranges for
each class. The second part of the experiment entailed random forest (RF) and decision
tree (DT) classifiers for classification; we constructed the RF and DT classifiers by using the
time-series SVKS and SI values for machine learning, after which we used the constructed
RF and DT classifiers to identify maize and non-maize. Finally, we mapped maize based
on the classification results. The third part of the experiment involved accuracy assess-
ment and analysis. We employed the performances of characterizing interclass spectral
separability, overall accuracy (OA), producer accuracy (PA), and user accuracy (UA) to
analyze and assess the crop identification capability of SVKS-CES. Finally, we selected the
SI types exhibiting the best and worst performances to combine with the best SVKS-CES
for classification and assessed the capability of accuracy improvement.
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Figure 6. The technical route of the experiments, where SVKS denotes the spectral variance at key
stages, SVKS-CES denotes SVKS computed by CES and SI denotes spectral index. The background
image is an S2 image acquired on 8 September 2021, shown as a false color band composite image
(red (8), green (3), and blue (2)).

2.4.1. Image Segmentation

Intraclass spectral variability or interfield spectral variability could limit accuracy and
result in a conspicuous salt-and-pepper effect when high-resolution data are subjected to
pixel-based classification. Object-based classification could potentially overcome the inher-
ent problems of pixel-based classification techniques [38]. Therefore, eCognition® software
(https://geospatial.trimble.com/products-and-solutions/trimble-ecognition (accessed on
20 August 2021)) was utilized for image segmentation to perform object-based classification
in this study [38,39]. Five parameters were needed in this segmentation algorithm: image
layer weights, thematic layer usage, scale parameter, shape, and compactness. We set the
image layer weights on 8 September to one and those on the other dates to zero, which
guaranteed that the image segmentation process referred to the spectral and geometric
characteristics of the image acquired on 8 September. The image acquired on 8 Septem-
ber was chosen as the reference image owing to the high image quality and abundant
spectral information at the mature stage of maize. A vector of field boundaries (provided
by GEOVIS Company Limited) covering the study area was input as the thematic layer,
guaranteeing that the reference image acquired on 8 September was segmented along the
vector of field boundaries. Any two parameters (scale parameter, shape, and compactness)
were maintained as constants while the remaining parameter was varied to determine the
appropriate input value (the test combinations are listed in Table 1), thus guaranteeing
the prevention of undersegmentation and oversegmentation. Finally, we selected scale
parameter, shape, and compactness values of 30, 0.1, and 0.5, respectively. The selection of
these parameters was performed to avoid undersegmentation and excessive oversegmenta-
tion. We only needed to ensure that the pixels in each object belonged to the same class, so

https://geospatial.trimble.com/products-and-solutions/trimble-ecognition
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moderate oversegmentation was permitted. The image segmentation result is shown in
Figure 7.

Table 1. Test combinations of the required parameters in the segmentation.

First Fixed Parameter Second Fixed Parameter Variable Parameter

shape = 0.1 compactness = 0.5

scale parameter = 10
scale parameter = 30
scale parameter = 50
scale parameter = 70
scale parameter = 90

scale parameter = 50 compactness = 0.5

compactness = 0.1
compactness = 0.3
compactness = 0.5
compactness = 0.7
compactness = 0.9

scale parameter = 50 shape = 0.1

shape = 0.1
shape = 0.3
shape = 0.5
shape = 0.7
shape = 0.9
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2.4.2. Computation of the Identification Indexes

As temporal–spectral variance can be used in crop identification [18], SVKS was
proposed to indicate the spectral characteristic of each class in this study. We used ED
and SAM as well as a combined ED with SAM to calculate SVKS through object self-
reference, as is expressed in Equations (1)–(3). Instead of exhaustive combinations, two-
band combinations were selected for SVKS calculation on 20 June, 10 July, 4 August, and
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13 October as validation of the potential of SVKS-CES for crop identification was the main
purpose of this study. The band combinations are summarized in Table 2.

SVKS-CES =

√
n

∑
i=1

(OSi −OCi)
2·
[

1−
(

n

∑
i=1

OSi·OCi

)
/

(√
n

∑
i=1

OSi
2·
√

n

∑
i=1

OCi
2

)]
(1)

SVKS-ED =

√
n

∑
i=1

(OSi −OCi)
2 (2)

SVKS-SAM =

(
n

∑
i=1

OSi·OCi

)
/

(√
n

∑
i=1

OSi
2·
√

n

∑
i=1

OCi
2

)
(3)

where OSi denotes the BOA reflectance of the object within the i-th band in the reference
image acquired on 8 September, OCi denotes the BOA reflectance of the object within the
i-th band in the image at the comparison time, and n denotes the number of bands in the
spectrum curve.

Table 2. Band combinations of SVKS. SVKS-CES1 denotes SVKS computed by CES with band
combination 1, SVKS-CES2 denotes SVKS computed by CES with band combination 2, SVKS-ED1
denotes SVKS computed by ED with band combination 1, SVKS-ED2 denotes SVKS computed by ED
with band combination 2, SVKS-SAM1 denotes SVKS computed by SAM with band combination 1,
and SVKS-SAM1 denotes SVKS computed by SAM with band combination 2.

SVKS Type Bands in the Computation Process

SVKS-CES1 B2, B3, B4
SVKS-CES2 B2, B3, B4, B5, B6, B7, B8
SVKS-ED1 B2, B3, B4
SVKS-ED2 B2, B3, B4, B5, B6, B7, B8

SVKS-SAM1 B2, B3, B4
SVKS-SAM2 B2, B3, B4, B5, B6, B7, B8

To evaluate the performance of SVKS, the enhanced vegetation index (EVI), NDVI,
green-normalized difference vegetation index (GNDVI), land surface water index (LSWI),
and red-edge position (REP) were calculated based on five images. The NDVI and EVI can
represent crop growth with a sufficient sensitivity; NDVI performs better during lower-
biomass periods and EVI performs better during higher-biomass periods [40]. The GNDVI
has been verified as an effective index for representing the content of photosynthetic
pigments [40]. The LSWI is a suitable indicator of the vegetation moisture content and can
facilitate crop identification during the growing season [13]. In addition, REP contributes
to crop identification [13]. These indexes can be obtained as follows:

EVI = 2.5· ρB8 − ρB4
ρB8 + 6·ρB4 − 7.5·ρB2 + 1

(4)

NDVI =
ρB8 − ρB4
ρB8 + ρB4

(5)

GNDVI =
ρB8 − ρB3
ρB8 + ρB3

(6)

LSWI =
ρB8 − ρB11
ρB8 + ρB11

(7)

REP = 705 + 35·0.5·(ρB7 + ρB4)− ρB5
ρB6 − ρB5

(8)

where ρB2, ρB3, ρB4, ρB5, ρB6, ρB7, ρB8, and ρB11 denote the BOA reflectance of the object
within B2, B3, B4, B5, B6, B7, B8, B11, and B12, respectively.
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2.4.3. Random Forest and Decision Tree-Based Classification

In this study, we selected RF and DT classifiers for classification in eCognition® soft-
ware owning to their mature remote sensing applications. RF is an assembler machine
learning program which can handle big data efficiently and qualify outliers and overfit-
ting [41,42]. DT is similar, with a hierarchy composed of a root node including all samples, a
node separator containing decision rules, and the end of the leaf node representing desired
classes [43]. Some non-parametric classification and decision tree or CART (classification
and regression trees) can form an RF [43]. There are six parameters required in an RF
classifier: depth, minimum sample count, maximum categories, active variables, maximum
tree number, and forest accuracy. Additionally, a DT classifier needs four parameters:
depth, minimum sample count, maximum categories, and cross validation folds. Given
that the purpose of this study is not to improve the classifiers, we set all the above-listed
parameters as software default values (listed in Table 3). RF and DT classifiers were trained
and applied via machine learning with time-series identification indexes.

Table 3. The selected parameters in RF and DT classifiers.

Classifier Type Parameter Name Value

Random Forest

depth 0
min sample count 0

max categories 16
active variables 0

max tree number 50
forest accuracy 0.01

Decision Tree

depth 0
min sample count 0

max categories 16
cross validation folds 3

2.4.4. Accuracy Computation

The predictions for each class derived from RF and DT classification were compared
to 470 sampling points for testing. The results are presented in three confusion matrices
(Sections 3.2–3.4) considering OA, PA, and UA. To objectively assess and analyze the crop iden-
tification capability of SVKS-CSE, we compared the SVKS-CSE performance to those of other
identification indexes. OA, PA, and UA can be calculated with Equations (7)–(9), respectively.

OA =
TP + TN

N
(9)

PA =
TP

TP + FN
(10)

UA =
TP

TP + FP
(11)

where TP and FN denote the number of sampling points employed for testing correctly iden-
tified as maize fields and the number of sampling points employed for testing incorrectly
identified as non-maize fields (including ginger, nursery stock and fruit tree, greenhouse,
and others), respectively. Moreover, TN and FP denote the number of sampling points
employed for testing correctly identified as non-maize and the number of sampling points
employed for testing incorrectly identified as maize, respectively, and N denotes the total
number of sampling points considered for testing.

3. Results
3.1. Feature Analysis of the Identification Index Time-Series Ranges

The time-series ranges of each identification index are shown in the boxplots below
(Figure 8). The upper and lower bounds of each range (the minimum and maximum
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range values can be calculated with Equations (12) and (13), respectively) in the boxplots
determine the range of SVKS or SI for a given class. An overlap of the interclass ranges of
SVKS or SI could indicate that the same values of SVKS or SI occur in different classes, which
could produce identification errors. Therefore, we must focus on the non-overlapping
interclass ranges of SVKS and SI which could provide better interclass spectral separability.
There was no overlap between the ranges of maize and nursery stock and fruit tree for SVKS-
CES1 (SVKS computed via CES with band combination 1), SVKS-CES2 (SVKS computed via
CES with band combination 2), SVKS-ED2 (SVKS computed via ED with band combination
2), EVI, GNDVI, LSWI, and NDVI on 20 June and NDVI on 10 July. The ranges of maize
did not overlap the ranges of ginger for SVKS-CES1, SVKS-CES2, SVKS-ED2, SVKS-SAM1
(SVKS computed via SAM with band combination 1), SVKS-SAM2 (SVKS computed via
SAM with band combination 2), EVI, GNDVI, LSWI, and NDVI, the ranges of greenhouse
for SVKS-CES1, SVKS-CES2, SVKS-ED2, SVKS-SAM1, and SVKS-SAM2, as well as the
ranges of others for SVKS-CES2, SVKS-SAM1 and SVKS-SAM1 on 13 October. Additionally,
the ranges of maize did not overlap the ginger and greenhouse ranges, including GNDVI
and NDVI, on 4 August. There was less or no overlap between ginger, nursery stock,
and fruit tree ranges for SVKS-CES2, SVKS-SAM2, NDVI, GNDVI, and EVI on 20 June
and 10 July, as well as SVKS-ED1 (SVKS computed via SAM with band combination 1)
and LSWI on 20 June. The ranges of ginger overlapped less with the greenhouse ranges
for SVKS-CES2 and SVKS-SAM2. There was less or no overlap between greenhouse,
nursery stock, and fruit tree ranges for NDVI and GNDVI on 20 June, 10 July and 4 August.
However, the ranges of maize overlapped with the ranges of others for all SI types and
also overlapped with the non-maize ranges for REP at all times. In conclusion, SVKS-CES2
ranges provide the least overlap between different crops, which characterizes the greatest
interclass spectral separability. Furthermore, we found that band increase resulted in a
conspicuous intraclass spectral variability phenomenon based on the wider ranges of SVKS.

Maximum = 2.5Q3 − 1.5Q1 (12)

Minimum = 2.5Q1 − 1.5Q3 (13)

where Q1 and Q3 are the first and third quartiles, respectively.

3.2. Maize Identification Based on a Single SVKS Type

Here, a single SVKS type was used to train RF and DT classifiers for classification. In
terms of the mapping results, we found that maize was mainly distributed in the plains
of central and eastern Anqiu City (Figure 9), which is consistent with the actual situation.
The SVKS map could produce homogeneous fields with clear boundaries and few salt-and-
pepper effects (Figure 9a–f). The different SVKS types achieved various performance levels
in maize identification. The confusion matrices indicating the identification accuracy of
each SVKS type are provided in Table 4. More bands involved in SVKS calculation seem to
upgrade the identification accuracy, regardless of whether the classifier or SVKS calculation
method was used. For example, the UA, PA, and OA of SVKS-CES1 were lower than those
of SVKS-CES2, and the UA and OA of SVKS-ED2 were higher than those of SVKS-ED1. We
found that the identification accuracy of SVKS-CES performed better than that of SVKS-ED
and SAM. In particular, the accuracy of SVKS-CES2 indicated the highest PA, UA, and
OA. According to the classifier comparison, an RT can slightly improve the performance
of SVKS-CSE. Owing to the fewer omission errors (objects where the identification result
was non-maize but the true result was maize) and commission errors (objects where the
identification result was maize but the true result was non-maize) in maize-identification
results, SVKS-CES can increase PA, UA, and OA by 0–9.09%, 1.94–45.55%, and 0.43–19.78%,
respectively, compared to SVKS-ED and SAM.
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worst performances of SVKS-CES, SVKS-ED, and SVKS-SAM, respectively; the RF-based results of
SVKS-CES2 (b) and SAM2 (f) and DT-based results of SVKS-ED2 (d) were selected to denote the
best performances of SVKS-CES, SVKS-ED, and SVKS-SAM, respectively. The blue rectangular areas
indicate the differences between the SVKS results. The background is an S2 image acquired on 8
September 2021, shown as a false color band composite image (red (8), green (3), and blue (2)).

Table 4. Confusion matrices and identification accuracy of each SVKS type, where OA, PA, and UA
denote overall accuracy, producer accuracy, and user accuracy, respectively.

Classifier Identification Index User Class
Sampling Points Employed for Testing

Maize Non-maize Total UA

RF

SVKS-CES1

Maize 99 4 103 96.12%
Non-maize 11 356 367 97.00%

Total 110 360
PA 90.00% 98.89% OA: 96.81%

SVKS-CES2

Maize 102 0 102 100.00%
Non-maize 8 360 368 97.83%

Total 110 360
PA 92.73% 100.00% OA: 98.30%

SVKS-ED1

Maize 97 72 169 57.40%
Non-maize 13 288 301 95.68%

Total 110 360
PA 88.18% 80.00% OA: 81.91%

SVKS-ED2

Maize 102 12 114 89.47%
Non-Maize 8 348 356 97.75%

Total 110 360
PA 92.73% 96.67% OA: 95.74%

SVKS-SAM1

Maize 95 8 103 92.23%
Non-maize 15 352 367 95.91%

Total 110 360
PA 86.36% 97.78% OA: 95.11%

SVKS-SAM2

Maize 101 2 103 98.06%
Non-maize 9 358 367 97.55%

Total 110 360
PA 91.82% 99.44% OA: 97.66%

DT

SVKS-CES1

Maize 99 4 103 96.12%
Non-maize 11 356 367 97.00%

Total 110 360
PA 90.00% 98.89% OA: 96.81%

SVKS-CES2

Maize 101 0 101 100.00%
Non-maize 9 360 369 97.56%

Total 110 360
PA 91.82% 100.00% OA: 98.09%

SVKS-ED1

Maize 89 87 176 50.57%
Non-maize 21 273 294 92.86%

Total 110 360
PA 80.91% 75.83% OA: 77.02%

SVKS-ED2

Maize 101 2 103 98.06%
Non-maize 9 358 367 97.55%

Total 110 360
PA 91.82% 99.44% OA: 97.66%

SVKS-SAM1

Maize 93 9 102 91.18%
Non-maize 17 351 368 95.38%

Total 110 360
PA 84.55% 97.50% OA: 94.47%

SVKS-SAM2

Maize 101 2 103 98.06%
Non-maize 9 358 367 97.55%

Total 110 360
PA 91.82% 99.44% OA: 97.66%
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3.3. Maize Identification Based on a Single SI Type

We conducted the same experiments as above (Section 3.2) for the five SI types to
assess their individual performance in terms of maize identification. In the SI map, some
fields were inhomogeneous with unobvious boundaries (Figure 10a–c). The confusion
matrices indicating the identification accuracy of each SI type are provided in Table 5.
There were significant differences in the performance among the various SI and classifier
types. Even if the accuracy of EVI, NDVI, GNDVI, and LSWI demonstrated that the OA
value exceeded 91% and the UA value exceeded 82%, REP attained the lowest OA (85.53%)
and UA (65.91%) from DT-based classification which resulted from the larger number of
incorrectly identified fields. The LSWI was the best SI owing to its exhibition of steadily
better performance, regardless of whether the classifier was used. Although all the SI types
except REP performed well in excluding non-maize (higher UA values), they produced
larger commission errors in maize extraction.
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Table 5. Confusion matrices and identification accuracy of each SI type.

Classifier Identification Index User Class
Sampling Points Employed for Testing

Maize Non-Maize Total UA

RF

EVI

Maize 92 1 93 98.92%
Non-maize 18 359 377 95.23%

Total 110 360
PA 83.64% 99.72% OA: 95.96%

NDVI

Maize 92 3 95 96.84%
Non-maize 18 357 375 95.20%

Total 110 360
PA 83.64% 99.17% OA: 95.53%

GNDVI

Maize 94 3 97 96.91%
Non-maize 16 357 373 95.71%

Total 110 360
PA 85.45% 99.17% OA: 95.96%

LSWI

Maize 97 2 99 97.98%
Non-maize 13 358 371 96.50%

Total 110 360
PA 88.18% 99.44% OA: 96.81%

REP

Maize 86 16 102 84.31%
Non-maize 24 344 368 93.48%

Total 110 360
PA 78.18% 95.56% OA: 91.49%

DT

EVI

Maize 81 1 82 98.78%
Non-maize 29 359 388 92.53%

Total 110 360
PA 73.64% 99.72% OA: 93.62%

NDVI

Maize 77 3 80 96.25%
Non-maize 33 357 390 91.54%

Total 110 360
PA 70.00% 99.17% OA: 92.34%

GNDVI

Maize 77 5 82 93.90%
Non-maize 33 355 388 91.49%

Total 110 360
PA 70.00% 98.61% OA: 91.91%

LSWI

Maize 94 20 114 82.46%
Non-maize 16 340 356 95.51%

Total 110 360
PA 85.45% 94.44% OA: 92.34%

REP

Maize 87 45 132 65.91%
Non-maize 23 315 338 93.20%

Total 110 360
PA 79.09% 87.50% OA: 85.53%

3.4. Crop Identification Capability Analysis and Assessment

Comparing the performance of SVKS to SI, we found that SVKS-CES was the best
identification index for characterizing the best interclass spectral separability and providing
the best classification accuracy. To further validate the crop-identification capability of
SVKS-CES, we selected LSWI and REP, respectively having the best and worst perfor-
mances, and time-series SVKS-CES2 (having the best performances) was combined with
LSWI and REP to train the RF classifier for maize identification. The confusion matrices
indicating the identification accuracy of each combined utilization type are provided in
Table 6. We found that the addition of SVKS-CES2 can obviously improve the identification
accuracy using a single LSWI or REP. Owing to the decrease in omission errors and com-
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mission errors (Figure 11), the PA, UA, and OA maximums increased by 7.27%, 15.69% and
5.11%, respectively.

Table 6. Confusion matrices and identification accuracy of each combined utilization type.

Combined
Utilization Type User Class

Sampling Points Employed for Testing

Maize Non-Maize Total UA

SVKS-CES2, LSWI

Maize 101 0 101 100.00%
Non-maize 9 360 369 97.56%

Total 110 360
PA 91.82% 100.00% OA: 98.09%

SVKS-CES2, REP

Maize 94 0 94 100.00%
Non-maize 16 360 376 95.74%

Total 110 360
PA 85.45% 100.00% OA: 96.60%
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4. Discussions

In this study, an object self-reference combined algorithm comprising ED and SAM
(CES) was proposed to calculate SVKS and the crop-identification capability of SVKS-
CES had been validated and discussed. Regarding the unique features characterized by
the identification indexes, we found that SVKS-CES2 ranges of different classes had the
least overlap compared to that of other identification indexes, which characterized that
SVKS-CES2 ranges can provide the best interclass spectral separability. When selecting the
feature for classifier training before classification, good interclass spectral separability is a
useful indicator for determining which index has better crop-identification potential. For
example, SVKS-CES2 and REP provide the best and worst interclass spectral separability
and attained the best and worst identification accuracy, respectively. Regarding the SVKS
performance in maize identification, the OA of SVKS-CES exceeded 96%, the PA of SVKS-
CES exceeded 90%, and the UA exceeded 96%. Compared to the accuracy of other SVKS
types, SVKS-CES exhibited the highest OA and UA which integrated the advantages of the
highest PA of SVKS-ED and the higher UA of SVKS-SAM. The reason for these results could
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be that more key information benefiting identification is provided by the red-edge and NIR
bands [13,44,45]. It is helpful for SVKS to characterize the intraclass spectral variability and
improve identification accuracy by increasing the number of bands in SVKS calculation.
The number of bands could not exhibit the same increasing relationship as that of the SVKS
accuracy as redundant bands could mask the distinction between classes and aggravate
the typical phenomenon of different objects with the same spectral characteristics [16,46].
Compared to the accuracy of SVKS-CES2, SVKS-CES1 exhibited a lower PA, UA, and OA
because the similar interclass spectral variance values attributed to similar visible-light
absorption and chlorophyll-reflection levels could reduce the spectral separability between
maize and non-maize fields [12].

According to the temporal characteristics of SVKS, SVKS-CES could favorably dis-
tinguish maize from non-maize on 20 June and 13 October. We found that the SVKS-CES
values of maize deviated from zero on 20 June, while those of nursery stock and fruit trees
exhibited the opposite phenomenon as the spectrum curve of maize was similar to that of
bare soil before the seedling stage but significantly different from that at the mature stage,
while no considerable spectral variation occurred in nursery stock and fruit tree fields
owing to the absence of senescence and harvesting. Furthermore, the SVKS-CES values
of maize deviated from zero on 13 October while those of ginger, greenhouse, and others
exhibited the opposite phenomenon due to the spectrum curve of maize being similar to
that of bare soil or maize straw after the harvest. No considerable variation in the spectrum
curve occurred in the ginger, greenhouse, and other fields owing to the absence of sowing
or harvesting.

Compared to the performance of SI (the average PA, UA, and OA were 79.73%, 91.23%
and 93.15%, respectively), we found that the average PA (89.39%) and OA (93.94) of SVKS
were higher because of the better interclass spectral separability that occurred in SVKS
ranges. However, more non-maize fields were incorrectly identified as maize fields using
SVKS (the average UA was 88.94%), which indicates that interclass spectral variance simi-
larity produced larger commission errors. The different performance levels of the various
SI types indicated a great variation in identification results. Therefore, higher accuracy can
be obtained by combining SVKS and certain SI types in maize identification [12]. To assess
the capability of accuracy improvement, SVKS-CES2 was selected to be combined with
LSWI and REP for classification. The results showed that the addition of SVKS-CES2 can
obviously reduce the omission and commission errors from LSWI- or REP-based classi-
fication, which illustrated that SVKS-CES provides greater application potential in crop
identification. This is a promotion for feature selection before classifier training. We also
applied various SVKS-CES and SI combinations to identify glycyrrhiza uralensis Fisch. plants
and achieved satisfactory results.

The following limitations of this study should be noted, which represent future direc-
tions to further improve the proposed identification method: first, only five images were
selected at the key stages of maize, while some features benefiting identification may have
been ignored due to the large time interval. Second, missing data in certain regions due
to clouds and cloud shadows may lead to uncertainties in the identification results. In
particular, this identification method cannot be used in regions of the reference image with
missing data. Third, the importance of each band for SVKS-CES identification accuracy
was not evaluated in this study.

5. Conclusions

SVKS computed via the object self-reference combined algorithm provides a new use-
ful index for crop identification. Compared to the performances of SVKS-ED, SVKS-SAM,
and SI, SVKS-CES characterizes greater interclass spectral separability and attained better
identification accuracy, which demonstrates that SVKS-CES integrated the advantages of
SVKS-ED and SVKS-SAM. The crop-identification capability assessment of each index
illustrated that SVKS-CES2 provided the greatest interclass spectral separability and the
best PA (92.73%), UA (100.00%), and OA (98.30%) in maize identification. A performance
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comparison of SVKS to SI confirmed that the ranges of SVKS provided greater interclass
spectral separability. However, more non-maize fields were incorrectly identified as maize
fields via SVKS usage, which indicates that interclass spectral variance similarity could
produce larger commission errors. Although the different performance levels of the var-
ious SI types indicated great variation in identification results, the combined utilization
of SVKS-CES2 and SI can obviously reduce the omission and commission errors from the
SI-based classification.
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