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Abstract: The high spatial and temporal resolution of water body data offers valuable guidance
for disaster monitoring and assessment. These data can be employed to quickly identify water
bodies, especially small water bodies, and to accurately locate affected areas, which is significant
for protecting people’s lives and property. However, the application of optical remote sensing is
often limited by clouds and fog during actual floods. In this paper, water extraction methods of the
multisource data fusion model (MDFM) and superpixel water extraction model (SWEM) are proposed,
in which the MDFM fuses optical and synthetic aperture radar (SAR) images, and all-weather water
extraction is achieved by using spectral information of optical images, texture information and the
good penetration performance of SAR images. The SWEM further improves the accuracy of the water
boundary with superpixel decomposition for extracted water boundaries using the fully constrained
least squares (FCLS) method. The results show that the correlation coefficient (r) and area accuracy
(Parea) of the MDFM and SWEM are improved by 2.22% and 9.20% (without clouds), respectively,
and 3.61% and 18.99% (with clouds), respectively, compared with the MDFM, and 41.54% and 85.09%
(without clouds), respectively, and 32.31% and 84.31% (with clouds), respectively, compared with the
global surface water product of the European Commission Joint Research Centre’s Global Surface
Water Explorer (JRC-GSWE). The MDFM and SWEM can extract water bodies with all weather
and superpixel and improve the temporal and spatial resolution of water extraction, which has
obvious advantages.

Keywords: all-weather water extraction; fully constrained least squares; multisource data fusion;
random forest; superpixel water extraction

1. Introduction

As one of the indispensable conditions for production and life, water bodies such
as rivers, lakes and reservoirs have an important role in the sustainable development of
society and the economy [1,2]. As climate change increases, frequent extreme precipitation,
temperature events and natural disasters such as floods threaten the security of human life
and property [3]. Timely and accurate information about water area and location is critical
for disaster assessment and rapid response [4,5].

With the rapid development of remote sensing technology, an increasing number of
remote sensing data and products are being widely employed in the identification and
monitoring of water bodies. Remote sensing data sources, such as Sentinel-1 and Sentinel-2
of the Copernicus Project series, MODIS and the Landsat series, can be divided into
optical images and SAR images according to the detection bands. The imaging principles
are different. Optical images are imaged using scanning and photography, and optical
technology is used to obtain spectral information for storage, while SAR images are mainly
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imaged using radio technology, and ground object information is obtained via active
transmission and acceptance or passive acceptance. Optical images have rich spectral
information, which can better achieve water extraction [6,7]. However, optical images are
easily affected by weather factors such as clouds, rain and fog, and the weather is cloudy
both before and after floods occur, which limits the application of optical images. SAR
images have good penetration and can achieve all-day and all-weather water monitoring [8].
However, SAR images lack spectral information, and there are many omissions in water
extraction. Multisource data fusion can effectively combine the advantages of multiple data
sources to obtain higher-resolution images or more comprehensive spectral information and
texture information. Multisource data fusion is commonly classified into three categories:
pixel-level fusion, feature-level fusion and decision-level fusion [3,9]. Pixel-level fusion is
usually chosen for homogeneous remote sensing images, such as optical images of different
spatial, temporal and spectral scales, to obtain the optimal temporal, spatial and spectral
resolution, while heterogeneous remote sensing images often use the method of feature
fusion and decision fusion, such as fusion among optical images, radar images and thermal
infrared images [10,11]. At the pixel level, data fusion can be divided into point-based
methods and area-based methods, such as water extraction based on LBV transformation
(WE-LBV) and area-to-point regression kriging (ATPRK) [12,13]. There are also methods
based on color transformation; band operation and matrix operation, such as intensity-hue-
saturation (IHS) transformation; NDWI; and principal component analysis (PCA), which
effectively improve the resolution and spectral characteristic of remote sensing images at the
pixel level but can cause a certain degree of spectral distortions [6,14–16]. As the lowest level
fusion, pixel-level fusion preserves the original information of an image as much as possible,
but the algorithm is usually complicated, with a large amount of data and a high operation
cost. In the process of data fusion, data features of different sensors are often changed,
and fusion based on the pixel level sometimes has certain blindness [17], which can be
solved using feature-level fusion. Feature-level fusion methods commonly include fuzzy
classification, neural networks (NNs), Markov random fields (MRFs), multivariate logistic
regression models and Kalman filter methods [2,18–21]. Feature-level fusion combines
the advantages of multiple sensors to highlight the edges, texture and similar brightness
areas of an image and is also suitable for the fusion of heterogeneous data. On the basis of
feature-level fusion, decision fusion can be used to integrate multiple features to obtain
the optimal result. Machine learning methods represented by RF and deep learning (DL)
algorithms represented by convolutional neural networks (CNNs) are used for feature
extraction and feature-level fusion [22,23]. Next, decision-level fusion is carried out based
on the concept of voting to further improve the accuracy. However, DL is often suitable
for specific scenes. In the process of multi-scale and multi-source data fusion, there is
a large amount of data and a large number of neurons required, so the algorithm is
relatively complex [24], and its classification result accuracy is often lower than that of the
RF classification method [25]. In addition, commonly employed decision fusion methods
include Bayesian, Dempster–Shafer, fuzzy classification, and multisource classification
methods based on neural networks and statistical modeling [26–29]. Decision-level fusion
is the top data fusion method, which has low requirements on data, a high fault tolerance
rate, and fully utilizes the information required by the classification targets. In the process
of water body extraction using data fusion, there are many mixed pixels in the fused
image that are affected by the resolution of the remote sensing image. As a common
phenomenon, mixed pixels exist in remote sensing images of different resolutions, among
which approximately 10% of water bodies on earth are represented as mixed pixels under
the resolution of Landsat satellite images [30]. Mixed pixels also have a great impact on
the water extraction accuracy of Sentinel data [2]. According to the statistical results of
river data, approximately 80% of the world’s rivers are less than 1.8 m in width [1,31].
In Denmark, approximately 75% of the total river length is less than 2.5 m in width; similarly,
approximately 80% of the total river length in Slovenia is less than 5 m in width [1,32].
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The width of each of these rivers is less than the resolution of the above remote sensing
satellite, making it difficult to monitor them on remote sensing images.

Remote sensing data products are usually generated by analyzing and reprocessing
remote sensing data. Remote sensing products for water bodies include the Shuttle Radar
Topography Mission (SRTM) Water Body Dataset (SWBD, 2005) created by SRTM, which
can map water bodies in most parts of the world and has a spatial resolution of 90 m;
however, there are certain misclassifications and interruptions of flow [33]. Afterward, the
Conservation Science Program of the World Wildlife Fund also developed Hydrological
Data and Maps Based on Shuttle Elevation Derivatives at Multiple Scales (HydroSHEDS)
based on SRTM data, mapping streams, lakes and watersheds on a global scale, including
three products at 3, 15 and 30 arc (approximately 90 m, 500 m and 1 km at the equator)
resolutions [20,34,35]. The development of computers and the improvement of computing
capacity has led to water datasets with long time series; the GSWE developed by the JRC
and the Global Land Analysis and Discovery Group’s Global Surface Water Dynamics
(GLAD-GSWD) have appeared [31,36], and are based on Landsat satellites and can generate
a water body map at least every month with a spatial resolution of 30 m.

In summary, current water remote sensing products are mostly based on optical
satellite images, with the shortest temporal resolution of a month and the highest spatial
resolution of 30 m, which cannot meet the requirements of temporal and spatial resolution
for water identification in flood disaster assessment. In the process of multisource remote
sensing data fusion and extraction of water bodies, optical features are mostly employed.
SAR features account for a small proportion due to few parameters, so the classification
results depend on optical images, and the texture information of SAR images is difficult to
maximize. In addition, due to the limited resolution of the sensor, there are mixed pixels
on the boundary of the water body, which affects the accuracy of water body extraction.
Therefore, the important objectives of this study are to (1) solve the influence of weather
factors, such as clouds and fog, on the application of optical images and achieve all-weather
monitoring of water bodies and (2) identify and decompose the mixed pixels of water
boundaries to achieve superpixel extraction of water boundaries.

2. Materials and Methods
2.1. Study Area

The Changbai Mountain area (N 40◦4′47′′~45◦26′22′′, E 123◦36′6′′~131◦14′58′′) is
located in northeastern China, as shown in Figure 1, and includes the Yalu River, Tumen
River and Second Songhua River, covering an area of approximately 127,080 km2. This area
is hot and rainy in summer and less rainy and foggy in autumn, with an annual precipitation
in the range of approximately 600~900 mm and an annual average temperature of 2.8 ◦C.
The altitude of the study area gradually increases from northwest to southeast. The peak of
the area is 2711 m and is located near the Changbai Mountains, where many rivers originate.
The entire Changbai Mountain area has a dense water network and numerous rivers.
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2.2. Data Sources
2.2.1. Remote Sensing Images

The optical image utilized in this study is Sentinel-2 (https://sentinel.esa.int/web/
sentinel/missions/sentinel-2/data-products (accessed on 2 August 2021)), which is com-
posed of two satellites 2A and 2B and has a revisit time of 5 days. Sentinel 2 images have
13 bands, specifically aerosols, blue, green, red, near-infrared and short-wave infrared
bands, and their resolutions include 10 m, 20 m and 60 m. They are used for the monitoring
of vegetation, soil and water cover, as well as observation of inland waterways and coastal
areas. The SAR image is Sentinel-1 IW model data (https://sentinel.esa.int/web/sentinel/
missions/sentinel-1/data-products (accessed on 12 September 2021)). Sentinel 1 satellite is
composed of A and B satellites and is an active microwave remote sensing satellite with a
revisit time of 6 days. The IW mode is the main acquisition mode on land. Satellite images
mainly include two intensification modes: VV and VH, which are used to observe land
with a resolution of 10 m. The verification data are the Jilin-1 Kuanfu01 (JL-1) satellite data
in August 2020 (http://www.jl1.cn/idex.aspx (accessed on 18 September 2021)), which
have four bands, specifically blue, green, red and near-infrared, with a resolution of 0.75 m.
The parameters of each satellite image are shown in Table 1.

Table 1. Spectral bands for the JL-1 satellite.

Band Band Name Wavelength Range (nm) Resolution (m)

B1 Blue 450~510 0.75
B2 Green 510~580 0.75
B3 Red 630~690 0.75
B4 NIR 770~895 0.75

2.2.2. Sample Data

A total of 38,406 samples of water (9248) and non-water (29,158) were selected from
the JL-1 satellite image and GF-1 image (http://gaofenplatform.com/channels/45.html
(accessed on 25 September 2021)), and 4436 samples were selected using visual interpreta-
tion of Sentinel 2 false-color images, as shown in Figure 2. Seventy percent of all samples
are used for training, and thirty percent of the sample are used for verification.
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2.3. Methodology

The algorithm in this paper is divided into two parts. The first part is the MDFM based
on the RF. First, the optical image and SAR image are preprocessed, including the removal
of clouds and cloud shadows, filtering, mean synthesis and clip. Second, the water indices
are calculated for the optical image; the entropy, contrast and water index are calculated for

https://sentinel.esa.int/web/sentinel/missions/sentinel-2/data-products
https://sentinel.esa.int/web/sentinel/missions/sentinel-2/data-products
https://sentinel.esa.int/web/sentinel/missions/sentinel-1/data-products
https://sentinel.esa.int/web/sentinel/missions/sentinel-1/data-products
http://www.jl1.cn/idex.aspx
http://gaofenplatform.com/channels/45.html


Remote Sens. 2022, 14, 6177 5 of 21

the SAR image; the above-mentioned parameters serve as the model input; and the known
water and non-water sample points are employed as training samples to build an MDFM
based on the RF and to generate a water dataset based on the MDFM. The second part is a
SWEM based on the MDFM. On the basis of the MDFM dataset, the water boundary was
extracted, and buffer analysis was performed to obtain the water boundary. Last, the FCLS
method was used to perform superpixel decomposition to construct a model of superpixels
based on multisource data fusion and generate a superpixel water dataset based on the
SWEM. The flowchart for this article is shown in Figure 3.

Remote Sens. 2022, 14, x FOR PEER REVIEW 3 of 11 
 

 

 
Figure 3. Flow chart of MDFM and SWEM. 

2.3.1. Image Preprocessing 
The image preprocessing in this paper includes SAR image preprocessing and optical 

image preprocessing. The process is shown in Figure 4. 
(1) Preprocessing of SAR image 
The SAR image employed in this paper is the Sentinel-1 ground range detection 

(GRD) product, which performs boundary noise removal, radiometric calibration, geo-
metric correction and topographic correction [37,38]. Considering the influence of terrain 
factors on SAR imaging, the tilted terrain is converted to flat terrain based on the relation-
ship between terrain geometry and image parameters, which suppresses the influence of 
different terrain factors on SAR imaging. In this study, angular-based radiometric slope 
correction model is used for terrain correction [38]. Due to the coherent imaging mode 
and scattering characteristic of SAR, some speckles and noise will be generated in the ac-
quisition of ground object information, especially when the ground object background is 
complex. The  

 
 
 
 
 
 
 
 
 
 
 
 
 
speckles and noise will make the gray value of the image more uneven, thus affecting 

the imaging accuracy of the SAR image. To ensure good image quality, the refined lee 
filter [39] was applied to the SAR image, which was then clipped to cover the entire study 

Figure 3. Flow chart of MDFM and SWEM.

2.3.1. Image Preprocessing

The image preprocessing in this paper includes SAR image preprocessing and optical
image preprocessing. The process is shown in Figure 4.
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(1) Preprocessing of SAR image
The SAR image employed in this paper is the Sentinel-1 ground range detection (GRD)

product, which performs boundary noise removal, radiometric calibration, geometric cor-
rection and topographic correction [37,38]. Considering the influence of terrain factors on
SAR imaging, the tilted terrain is converted to flat terrain based on the relationship be-
tween terrain geometry and image parameters, which suppresses the influence of different
terrain factors on SAR imaging. In this study, angular-based radiometric slope correction
model is used for terrain correction [38]. Due to the coherent imaging mode and scattering
characteristic of SAR, some speckles and noise will be generated in the acquisition of
ground object information, especially when the ground object background is complex. The
speckles and noise will make the gray value of the image more uneven, thus affecting the
imaging accuracy of the SAR image. To ensure good image quality, the refined lee filter [39]
was applied to the SAR image, which was then clipped to cover the entire study area.
The preprocessed image can be used to calculate SAR image parameters and water indices.

(2) Preprocessing of optical image
The optical images used in this study are Sentinel-2 surface reflectance (SR) data, which

are radiometrically calibrated and atmospherically corrected and need to be synthesized
with the mean value of the images and clipped prior to cloud and cloud shadow removal.
First, the images in this period were synthesized with the mean value according to the
minimum cloud amount, and the images covered by the study area were clipped out.
Second, cloud and cloud shadow removal processing was carried out. In this study, the
steps of cloud and cloud shadow removal based on the RF algorithm with multisource data
are presented as follows:

i. Using the measured data, 39 clouds, 32 shadows, 23 water bodies and 35 other regions
of interest (ROIs) were selected as training labels;

ii. The B1~B12 bands of the optical image and VV and VH of the SAR image were
selected as input parameters. Among them, the SAR image is not affected by cloud
shadows, and its reflection characteristics are quite different from those of water,
so VV and VH can be used to remove cloud shadows;

iii. A RF model was established based on the data (step (i)) to extract clouds and
cloud shadows;

iv. Buffer analysis was performed on the clouds and shadows obtained in Step (iii) to
achieve cloud removal after deleting the cloud and cloud shadow areas.

(3) Image geometric registration
Considering the different imaging modes and angles of sensors, the same ground

object may have position deviation in remote sensing images of multiple sensors. To reduce
the error caused by image deviation, it is necessary to carry out geometric registration
for multisource remote sensing images. Because Sentinel-1 and Sentinel-2 images have
the same sensor, each band is matched at the pixel level. Thus, the registration of the
Sentinel-1 image was achieved when JL-1 was registered with Sentinel-2. In this paper, the
cross-correlation algorithm was chosen for image registration [40].

2.3.2. MDFM Based on RF

(1) RF algorithm
The RF algorithm is an ensemble classifier constructed using several decision tree

models in the bagging integration mode {h(X, θk), k = 1, . . . , K}.{θk} is an independent
random vector with the same distribution. Sample X is input to the RF to obtain the
final output f (x) = majority{h(x, θk)|k = 1, 2, . . . , K}. The specific process is described as
follows: the training dataset D = {(x1, y1), (x2, y2), . . . , (xn, yn)} is known, and the sample
feature number is m. The bootstrap sampling method is used to extract K datasets with
size n from D and to train K decision tree models. In the process of spanning the tree, the
dividing node selects log2 m or

√
m features each time and then selects the most important

feature according to the feature evaluation method for node division. The RF algorithm
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usually integrates K decision tree models in the bagging way and obtains the final result
via the majority voting principle or average method [41].

(2) Multi-source data fusion water extraction model
In this paper, the MDFM based on the RF algorithm was constructed; the steps are

listed as follows:

i. Water indices of optical images

The water indices of the optical images include NDWI, MNDWI, NDVI, WI 2015,
AWEI_sh and AWEI_nsh. The calculation formulas are shown in Table 2.

Table 2. Water indexes of the optical image.

Name Abbreviation Equation Reference

Normalized difference
water index NDWI NDWI = (GREEN − NIR)/(GREEN + NIR) [6]

Modified normalized
difference water index MNDWI MNDWI = (GREEN − SWIR)/(GREEN + SWIR) [42]

Normalized difference
vegetation index NDVI NDVI = (NIR− RED)/(NIR + RED) [43]

Automated water
extraction index (1) AWEI_sh AWEIsh = BLUE + 2.5GREEN − 1.5(NIR + SWIR)−0.25SWIR2 [3]

Automated water
extraction index (2) AWEI_nsh AWEInsh = 4(GREEN − SWIR1)/(0.25NIR + 2.75SWIR2) [2]

Water index 2015 WI 2015 WI2015 = 1.7204+ 171GREEN+3RED− 70NIR− 45SWIR1− 71SWIR2) [44]

Note: GREEN is the reflectance of the green band; NIR is the reflectance of the near infrared band; BLUE is the
reflectance of the blue band; SWIR, SWIR1 and SWIR2 are the reflectance of shortwave infrared bands; and RED
is the reflectance of the red band in Sentinel-2 images. AWEI_nsh and AWEI_sh are both automated water body
extraction indices, wherein AWEI_nsh applies to areas without shadow, and AWEI_sh applies to distinguish and
eliminate ground objects with backgrounds similar to water bodies [3].

ii. Water index of the SAR image

The input parameters of the SAR image include entropy, contrast and Sentinel-1 Dual-
Polarized Water Index (SDWI). Entropy and contrast are derived from the gray level cooc-
currence matrix (GLCM); the formula is expressed as follows:

Pd(i, j) = #{(x1, y1), (x2, y2) ∈ #j| f (x1, y1) = i, f (x2, y2) = j}, (1)

Con = ∑L−1
i=0 ∑L−1

j=0 (i− j)2Pd(i, j), (2)

Ent = ∑L−1
i=0 ∑L−1

j=0 Pd(i, j) log2[Pd(i, j)], (3)

where Pd is the GLCM, f(x,y) is a remote sensing image, # represents the number of occur-
rence of point pairs (xi, yi) and (xj, yj), Con is contrast, Ent is entropy, L means that the image
has L gray levels, that is, the image dimension is L× L. Pd is the normalized GLCM, which
represents the occurrence probability of two pixels with grayscale values of i and j having a
certain spatial relation d.

SDWI is a band operation based on the backscattering coefficient of the SAR image to
further expand the difference between water bodies and other ground objects. The calcula-
tion formula is expressed as follows:

SDWI = ln(10×VV ×VH)− 8, (4)

where VV and VH are the backscattering coefficients of the SAR image.

iii. Construction of the MDFM based on the RF

Selecting the water indices calculated in (i) and (ii) and the bands B1~B12 of the optical
image, VV and VH of the SAR image, and the DEM serve as input parameters to build
a water body extraction model based on the RF. The samples are utilized for training
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and validation. Among them, B1~B12, VV and VH are used to characterize the water
information contained in remote sensing images. Each water index, entropy and contrast are
used to suppress the features that are similar to water and enhance the spectral and texture
characteristics of water. DEM is used to reduce the influence of ground object shadow
and ground objects with similar background for water during optical image imaging, and
correct the effects of topography for water extraction.

2.3.3. Water Boundary Extraction

To achieve the superpixel decomposition of the water boundary, the water boundary
needs to be extracted. In this study, a canny edge detection algorithm [45] was used to
extract the boundary of the water extracted using the MDFM, and then a buffer of two
pixels was set for the extracted water boundary to retain more water boundary information.
The water boundary can be obtained after the water from the MDFM has been extracted
using a buffer.

2.3.4. Super-Pixel Decomposition of Water Boundary

(1) FCLS
When there are mixed pixels in the ground object, the linear spectral mixing model is

generally utilized for image unmixing; its formula is expressed as follows:

X = AS + N, (5)

where X is the remote sensing image, A is the endmember of the image, S is the abundance,
and N are the noise and error.

Linear spectral unmixing is usually expanded based on the least square method. When
the noise and error are disregarded, solving the abundance S can be transformed into a
linear estimation problem:

S = (AT A)
−1

ATX, (6)

The conditions of “nonnegative” and “normalization” are added on the basis of the
least squares method, and the matrix is constructed as follows:

A′ =
[

A
δ1T

]
,X′ =

[
X

δ1T

]
, (7)

where 1T represents the column vector with all elements of 1, which is a constant used to
control the error. A’ and X’ are substituted for A and X, respectively, and the result is ob-
tained. The least squares algorithm that satisfies both “nonnegativity” and “normalization”
is referred to as FCLS [46,47].

(2) SWEM based on multi-source data fusion
Based on the advantages and disadvantages of optical and SAR remote sensing images,

the superpixel decomposition of the water boundary is divided into the without clouds
situation and with clouds situation. When there are clouds, the optical image is affected by
clouds and shadows, which leads to a loss of water boundary data. This part needs to be
completed using the SAR image, and then the FCLS method is employed for superpixel
decomposition. If there is no cloud in the optical image, the water boundary is decomposed
using the optical image.

2.4. Accuracy Evaluation

To measure the accuracy of the algorithm, this paper selects the JL-1 image as the
measured data, resamples them to the resolution of the water extraction results, conducts
correlation analysis and area statistics with the water extraction results, and uses the
correlation coefficient r and water area accuracy Parea for evaluation.



Remote Sens. 2022, 14, 6177 9 of 21

The correlation coefficient r is calculated by:

r(X,Y) =

n
∑

i=1
(Xi − X)(Yi −Y)√√√√ n

∑
i=1

(Xi − X)
2
√

n
∑

i=1
(Yi −Y)2

, (8)

where r is the correlation coefficient and X and Y are two variables representing the pixel
values of water and non-water extracted in this study and the corresponding measured
data, respectively. The closer the absolute value of r is to 1, the higher the correlation
between the two variables.

The calculation formula of water area accuracy Parea is expressed as follows:

Parea = 1− |Acal − Atrue|
Atrue

, (9)

where Parea is the accuracy of the water area, Acal is the calculated water area, and Atrue is
the measured area. The closer Parea is to 1, the higher the area accuracy. The calculation
process of Acal is expressed as follows:

i. A fishnet was created in the study area based on the pixel size of Sentinel-1 and
Sentinel-2 images, and sample labels were created in each grid;

ii. The actual area value represented by the grid was calculated;
iii. The pixel values of each grid were counted using the sample labels in step (i);
iv. The water area can be obtained by accumulating the grid pixel values calculated in

step (iii) and multiplying by the grid area in step (ii).

3. Results
3.1. Image Preprocessing Results

Figure 5 shows the images and preprocessing results of the Yinma River, in which
Figure 5a is the original Sentinel-2 image. The results obtained after mean synthesis and
cloud and cloud shadow removal are shown in Figure 5b. It can be seen that the clouds
and cloud shadows in the image are removed to the maximum extent, and the effect is
good. Figure 5c is the original image of Sentinel-1. The result after the refined lee filter is
shown in Figure 5d, which inhibits speckle noise while preserving the edge information
of ground objects. Figure 5e is a false color composite image of the JL-1 image, and the
water is obtained as shown in Figure 5f, which is classified using SVM from Figure 5e and
utilized for accuracy evaluation.

3.2. Results of Water Extraction of the Multisource Remote Sensing Data Fusion

To compare the results of different data sources, this paper only used optical images,
SAR images and multisource data (optical images and SAR images) as inputs and selected
the RF algorithm to extract the water bodies of the Yinma River. The optical image can be
divided into the without clouds condition and with clouds condition; the results are shown
in Figure 6.
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The results show that when there is a cloud in the optical image (Figure 6a), water
omissions are caused by clouds and cloud shadows covering (red part in the figure). When
the optical image does not contain clouds (Figure 6b), the water body extraction effect
is good. The boundary of water extracted from the SAR image is relatively complete
(Figure 6c) but lacks spectral information, resulting in the loss of some water (marked part
in Figure 6c). When there are clouds in the optical image, using multisource data identifies
the part that is missed when only the optical image is employed for water extraction
(marked part in Figure 6d), fully utilizing the penetrating characteristics of the SAR image.
When there are no clouds in the optical image, the water extracted using the MDFM has
a good effect (Figure 6e), and the spectral information of the optical image and texture
information of the SAR image are fully and simultaneously utilized in this process. The
water body results of the JRC-GSWE (Figure 6f) in the same month had many omissions
(marked part of Figure 6f) because of data loss caused by clouds, rain, fog, cloud shadows
and other factors or insufficient image resolution, which made it difficult to extract small
water bodies.

To quantitatively describe the water extraction accuracy, r and Parea were calculated
between the above-mentioned water extraction results (Figure 6) and the high-resolution
water extraction results of the JL-1 satellite (Figure 5f). The obtained results are shown in
Table 3.

Table 3. Accuracy of water extraction results in different images.

Category r Parea

Without clouds
Optical image only 0.90 0.86

MDFM 0.90 0.87

With clouds
Optical image only 0.56 0.38

MDFM 0.83 0.79
SAR image only 0.78 0.63

JRC-GSWE 0.65 0.51

As Table 3 shows, when the optical image only served as an input, the correlation
coefficients between the without clouds condition and the with clouds condition were 0.90
and 0.54, respectively, and the area accuracies were 0.86 and 0.38, respectively, indicating
that clouds have a great influence on the water identification accuracy. When the SAR
image only served as an input, the correlation coefficient and area accuracy were 0.78 and
0.63, respectively. Compared with the scenario of using only optical images with clouds,
the water recognition result was more complete, with some omissions. The correlation
coefficient and area accuracy (r = 0.90 and 0.83; Parea = 0.87 and 0.79, respectively) of water
extracted using the MDFM were better than those obtained in the scenario in which only
optical and SAR images were utilized (r = 0.90, 0.56, and 0.78; Parea = 0.86, 0.38, and 0.63,
respectively) under without clouds and with clouds conditions. The correlation coefficient
and area accuracy of the MDFM were also higher than those of the JRC-GSWE (r = 0.65
and Parea = 0.51, respectively) in the same month. This finding shows that the MDFM in
this paper has the complementary advantages of optical images and SAR images and can
achieve all-weather water extraction and improve the accuracy of water identification.

3.3. Water Extraction in Changbai Mountain area Based on MDFM

Applying the MDFM algorithm to the Changbai Mountain area, the water body results
from September 11, 2020, to September 24, 2020, were obtained (Figure 7a). The water body
results of the JRC-GSWE in the same month are shown in Figure 7b. The results reveal that
the results obtained in this study are generally close to the JRC-GSWE. To further compare
the extraction effect of different characteristic water bodies, such as watersheds, reservoirs
and streams, watersheds (circles 1 and 2 in Figure 7a), reservoirs (circle 3 in Figure 7a) and
streams (circle 4 in Figure 7a) were selected for magnification comparison. The results are
shown in Figure 7a-1–c-4.
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Figure 7. Water extraction results and enlarged view of water extraction results for the Changbai
Mountain area. (a) Water results using the MDFM. (b) Water results of JRC-GSWE. (a-1–a-4) False
color image of the circle 1 to circle 4. (b-1–b-4) JRC-GSWE water results of the circle 1 to circle 4.
(c-1–c-4) Water results using the MDFM from circle 1 to circle 4.
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The results show that the MDFM identified the unrecognized part of the JRC-GSWE
(marked in Figure 7b-1) and the disconnected part of the JRC-GSWE (marked in Figure 7b-2).
As shown in Figure 7a-1–c-2), the MDFM has a better identification effect than JRC-GSWE
in large watersheds, making the water more complete as a whole. As shown in the en-
larged effect of the reservoir, the MDFM identified the missing water of the JRC-GSWE
(Figure 7b-3). In stream identification, the MDFM recognized the cutoff part (marked part
in Figure 7b-4) in the JRC-GSWE identification result. Based on Figure 7a-3–c-4, the MDFM
is superior to JRC-GSWE in reservoir and stream identification. In conclusion, the MDFM
has better identification results than the JRC-GSWE for large watersheds and small inland
water bodies (streams and reservoirs).

3.4. Water Extraction Results of MDFM and SWEM

The water boundary extracted from the MDFM was decomposed using the FCLS
method for superpixel decomposition, and the decomposed water results of the Yinma
River are shown in Figure 8.
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Figure 8. Decomposition results for the Yinma River Basin. (a) The overall decomposition results in
the Yinma River Basin. (b) Decomposition results of the optical image in the Yinma River (without
clouds). (c) Decomposition results of the SAR image in the Yinma River (without clouds). (d) Decom-
position results of the spliced image in the Yinma River. (e) Decomposition results of the SAR image
in the Yinma River (with clouds). (f) Measured water map of the Yinma River.

As shown in Figure 8, Figure 8a is the overall decomposition results in the Yinma
River Basin. In the case of the no clouds condition, Figure 8b shows the water results
of optical image decomposition. After superpixel decomposition of the water boundary,
water bodies in small areas and large areas are similar to the measured results. Figure 8c
shows the decomposition results of the SAR image in the Yinma River. The SAR image
can well decompose the water boundary, and the decomposition effect is weaker than that
of the optical image. In the case of clouds, Figure 8d shows the decomposition results
of the spliced image of the Yinma River. The light red area represents optical image
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decomposition, and the light yellow area denotes SAR image decomposition. The water
boundary decomposition effect is good in both the optical image decomposition area and
the SAR decomposition area, and the pixel value of water gradually decreases outward at
the boundary. Figure 8e shows the decomposition results of the SAR image of the Yinma
River, which can comprehensively decompose the water boundary. Figure 8f shows the
measured results of the water body in the Yinma River. By creating a fishnet, the measured
results of subresolution is cut to the same resolution as the optical and SAR images for
comparison of the decomposition results.

In this study, the correlation coefficient and accuracy of the water area between the
water extraction results and the JL-1 satellite images were calculated. The results are shown
in Table 4.

Table 4. Water extraction accuracy in the Yinma River.

Category r Increase of
r Parea

Increase of
Parea

Without
clouds

MDFM 0.90 / 0.87 /
(MDFM and SWEM)_MDFM

(Optical image decomposition) 0.92 2.22% 0.95 9.20%

(MDFM and SWEM)_ JRC-GSWE
(Optical image decomposition) 0.92 41.54% 0.95 85.09%

(MDFM and SWEM)_MDFM
(SAR image decomposition) 0.91 1.11% 0.88 1.15%

(MDFM and SWEM)_ JRC-GSWE
(SAR image decomposition) 0.91 40.00% 0.88 72.55%

With
clouds

MDFM 0.83 / 0.79 /
(MDFM and SWEM)_MDFM

(Spliced image decomposition) 0.86 3.61% 0.94 18.99%

(MDFM and SWEM)_ JRC-GSWE
(Spliced image decomposition) 0.86 32.31% 0.94 84.31%

(MDFM and SWEM)_MDFM
(SAR image decomposition) 0.86 3.61% 0.88 11.39%

(MDFM and SWEM)_ JRC-GSWE
(SAR image decomposition) 0.86 32.31% 0.88 72.55%

JRC-GSWE 0.65 / 0.51 /
Note: (MDFM+SWEM) _MDFM refers to the comparison with the results of the MDFM, and (MDFM+SWEM) _
JRC-GSWE refers to the comparison with the results of JRC-GSWE.

The results shown that in the without clouds condition, the correlation coefficients
(r = 0.92 and 0.91, respectively) and area accuracy (Parea = 0.95 and 0.88, respectively) of
optical image decomposition and SAR image decomposition are higher than those of the
MDFM (r = 0.90 and Parea = 0.87, respectively) and JRC-GSWE (r = 0.65 and Parea = 0.51,
respectively), and the water correlation coefficient and area accuracy decomposed with
the optical image are higher than the decomposition results obtained using only the SAR
image, which also shows that the optical image decomposition effect is superior to that of
the SAR images. The reason is that the optical image bands are more abundant and the
spectral information is rich, which have obvious advantages for ground object recognition
when there are no clouds and can well decompose the water boundary.

In the case of clouds, the correlation coefficient (r = 0.86) and area accuracy (Parea = 0.94,
0.88) of spliced image decomposition and SAR image decomposition exceed the results of
the MDFM (r = 0.83 and Parea = 0.79, respectively) and JRC-GSWE (r = 0.65 and Parea = 0.51,
respectively). In conclusion, the accuracy of the water extracted using the MDFM and
SWEM under the without clouds and with clouds conditions was increased compared
with that of the MDFM, which had a higher degree of increase than JRC-GSWE. The water
extraction results of the MDFM and SWEM were the best.
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3.5. Water Extraction Results of MDFM and SWEM in Changbai Mountain Area

The MDFM and SWEM algorithms were applied to the Changbai Mountain area, and
the results are shown in Figure 9. The results show that superpixel decomposition for the
water boundary can effectively obtain the water proportion of mixed pixels in the water
boundary and improve the accuracy of water extraction. Similarly, the watershed (circles 1
and 2 in Figure 9), reservoir (circle 3 in Figure 9) and stream (circle 4 in Figure 9) were
compared on a large scale.
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Figure 9. Water map of superpixel decomposition and the results of water decomposition at a
larger scale in the Changbai Mountain area. (a) Water results using the SWEM. (a-1–a-4) False color
image of circle 1 to circle 4. (b-1–b-4) Water results using the MDFM and SWEM from circle 1
to circle 4. (c-1–c-4) Enlarged water results using the MDFM and SWEM from circle 1 to circle 4.
(d-1–d-4) Enlarged water results using the MDFM from circle 1 to circle 4.
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It can be seen from the results that the water proportion of the mixed pixels in water
boundary are obtained and reach the super-pixel level. In circle 1 and 2, the super-pixel
decomposition of water boundary makes the watershed boundary have layers, as shown in
(b-1)–(c-1) and (b-2)–(c-2) of Figure 9. In streams and reservoirs, super-pixel decomposition
makes local small water bodies in streams and reservoirs more finely identified, and the
boundaries of small water bodies are more complete, as shown in (b-3)–(c-3) and (b-4)–(c-4)
in Figure 9.

In summary, MDFM and SWEM have achieved the all-weather, super-pixel extraction
of the water body, and have high spatial resolution.

3.6. Temporal Resolution of Water Extraction in the Changbai Mountain Area

To determine the temporal resolution of water extraction, optical and SAR remote sens-
ing images (https://scihub.copernicus.eu/ (accessed on 2 August 2021 and 12 September
2021)) of the study area from 1 September 2020, to 31 October 2020, were counted. The
specific date and data synthesis time are shown in Table 5. As shown in Table 5, the water
body results covering the whole research area can be obtained by using the algorithm in
this paper every 6–13 days, which has a higher temporal resolution than the JRC-GSWE
(30 days).

Table 5. Image synthesis table for the Changbai Mountain area.

The Serial
Number Image Type The Time Interval Revisit

Time /Days

Minimum Image
Synthesis

Time/Days

Number
of Images

The Date of
Indispensable Image

1
Optical image 2020.09.03–

2020.09.08 5 5 64 /

SAR image 2020.09.05–
2020.09.11 6 6 12 2020.09.05

2
Optical image 2020.09.08–

2020.09.13 5 5 63 /

SAR image 2020.09.11–
2020.09.24 6 13 22 2020.09.11

3
Optical image 2020.09.13–

2020.09.18 5 5 64 /

SAR image 2020.09.24–
2020.10.06 6 12 20 2020.10.05

4
Optical image 2020.09.18–

2020.09.23 5 5 64 /

SAR image 2020.10.06–
2020.10.18 6 12 20 2020.10.17

5
Optical image 2020.09.23–

2020.09.28 5 5 70 /

SAR image 2020.10.18–
2020.10.30 6 12 20 2020.10.29

4. Discussion

(1) Influence of input parameters of multisource data fusion on water extraction results
In this study, entropy, contrast, DEM and SDWI were selected as input parameters

for SAR images, which effectively solves the problem that SAR image parameters are few
and comprise a small proportion in data fusion. The entropy (Figure 10a) and contrast
(Figure 10b) are sensitive to the water boundary and their characteristics are more distinct
than other ground objects, which has obvious advantages. For optical images, the water
features are highlighted to the maximum extent by the water indices of NDWI, MNDWI,
AWEI, NDVI and WI 2015 to further improve the accuracy of water extraction.

https://scihub.copernicus.eu/
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(2) Influence of different data sources on superpixel decomposition for the water
boundary

In this study, there are many clouds and cloud shadows at the water boundary of the
Yinma River, which make the optical image account for a relatively small proportion in the
spliced image, and the correlation coefficient r of the MDFM and SWEM decomposed using
the spliced image is almost equal to that using only the SAR image. However, the area
accuracy Parea of the MDFM and SWEM using the spliced image is 6.82% higher than that
of only the SAR image, indicating that Parea is more sensitive to water boundary changes
than r.

(3) Comparison between MDFM and DL
As an important breakthrough in deep learning, deep belief networks (DBNs) have

been widely considered by scholars since they were proposed [48].In recent years, DL has
made important breakthroughs in the field of computer vision and has been widely used in
surface water mapping as a more advanced method [22,24,49]. An adaptive model based
on DL WatNet, is proposed, and combines image classification technology and a semantic
segmentation method to establish a global surface water knowledge base composed of
satellite images, with high accuracy and stability [5]. In this study, a deep learning water
extraction experiment was carried out to compare the accuracy of MDFM and the WatNet
algorithm. The results are shown in the Figure 11 and Table 6.

Table 6. Water extraction accuracy table of WatNet and MDFM.

Category r Parea

Without clouds
Optical image only 0.90 0.86

MDFM 0.90 0.87

WatNet 0.83 0.76

With clouds
Optical image only 0.56 0.38

MDFM 0.83 0.79

WatNet 0.64 0.44

SAR image only 0.78 0.63

JRC-GSWE 0.65 0.51
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It can be seen from Figure 11 and Table 6, that the water extracted using MDFM in this
study is more complete (Figure 11a,b), and there certain flows disconnected and missing
in WatNet (Figure 11c,d). At the same time, the accuracy of MDFM between the without
clouds condition (r= 0.90, Parea = 0.87) and the with clouds condition (r = 0.83, Parea = 0.79)
were both higher than that of WatNet (r = 0.83, Parea = 0.76; r = 0.64, Parea = 0.44, respectively).
The reason for Figure 11c is that WatNet uses optical images for water extraction, which
is affected by clouds and cloud shadows, resulting in the absence of water extraction.
The MDFM fuses of optical and SAR images can better solve the problem. Figure 11d
mainly shows that there are many wetlands and buildings on the boundary of water bodies,
and the scene is relatively complex. Optical images are easy to cause misclassification and
leakage. The fusion of SAR images maximize the accuracy of water body extraction.

(4) Existing problems
First, Sentinel-1 images started in 2014, and Sentinel-2 images started in 2015. Before

2014, there were no Sentinel-1 images, and the time length of the water dataset had certain
limitations. In the future, Radarsat, TerraSAR, ALOS-PALSAR and other SAR images and
Landsat series satellite images will be employed for multisource data fusion to extract
water, and then the extracted water boundary will be decomposed using superpixels
to further improve the accuracy of water and to generate a water dataset with a longer
interval time series. Second, the validation results of this study were only evaluated for
accuracy in the Yinma River. Although both the correlation coefficient and area accuracy
are high, there are certain limitations in the validation area. In the future, experiments
and accuracy verification will be carried out in several different areas. At the same time,
by fusing optical and SAR images, the algorithm in this study can extract water bodies in
all-weather conditions and obtain the disaster affected area and distribution of disasters.
With high temporal and spatial resolution, it can be used for sudden disaster monitoring
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and disaster control. Next, we will carry out time series extraction of water bodies, expand
the monitoring scope, and further promote the dataset. The evolution of flood disaster in
recent decades will be analyzed to provide theoretical basis for further improvement of
prevention and control measures.

5. Conclusions

In this study, an all-weather and superpixel water extraction method of the MDMF
and SWEM is proposed. The results are presented as the follows:

(1) The correlation coefficient accuracy and area accuracy (r = 0.90 and 0.83; Parea = 0.87
and 0.79, respectively) of the MDFM in the without clouds and with clouds conditions
are higher than those when only optical and SAR images were used (r = 0.90, 0.56,
and 0.78; Parea = 0.86, 0.38, and 0.63, respectively).

(2) The correlation coefficient and area accuracy of the MDFM and SWEM under the
without clouds condition are improved by 2.22% and 9.20%, respectively, compared
with the MDFM, and 41.54% and 85.09%, respectively, compared with the JRC-GSWE.
The correlation coefficient and area accuracy of the MDFM and SWEM under the with
clouds condition are 3.61% and 18.99% higher, respectively, than those of the MDFM
and 32.31% and 84.31% higher, respectively, than those of the JRC-GSWE, indicating
that the MDFM and SWEM could further improve the accuracy of water extraction.

(3) The water dataset of the Changbai Mountain area is generated every 6~13 days with
high temporal resolution.

The algorithm proposed in this paper can achieve all-weather water extraction with
high spatiotemporal resolution and has outstanding advantages in monitoring extreme
climate disasters and identifying small water bodies such as ponds and reservoirs, which
has significance for ensuring the safety of people’s lives and property and for promoting
the sustainable development of production and life.
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