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Abstract: Whiting events are massive calcite precipitation events turning hardwater lake waters to a
milky turquoise color. Herein, we use a multispectral remote sensing approach to describe the spatial
and temporal occurrences of whitings in Lake Geneva from 2013 to 2021. Landsat-8, Sentinel-2, and
Sentinel-3 sensors are combined to derive the AreaBGR index and identify whitings using appropriate
filters. 95% of the detected whitings are located in the northeastern part of the lake and occur in a
highly reproducible environmental setting. An extended time series of whitings in the last 60 years
is reconstructed from a random forest algorithm and analyzed through a Bayesian decomposition for
annual and seasonal trends. The annual number of whiting days between 1958 and 2021 does not
follow any particular monotonic trend. The inter-annual changes of whiting occurrences significantly
correlate to the Western Mediterranean Oscillation Index. Spring whitings have increased since 2000
and significantly follow the Atlantic Multidecadal Oscillation index. Future climate change in the
Mediterranean Sea and the Atlantic Ocean could induce more variable and earlier whiting events in
Lake Geneva.

Keywords: whitings; remote sensing; machine learning; climate index; ground data

1. Introduction

Calcium carbonate precipitation is an essential biogeochemical process in freshwater
and marine ecosystems [1,2]. In hardwater lakes, calcite precipitation represents a major
component of the inorganic carbon cycle. Calcite precipitation also interferes with lake
nutrient cycles owing to its complexation with phosphates [3]. Calcite precipitation is a
seasonal process that can occur discreetly at a low background level. However, under
favorable conditions, it can also manifest more strikingly through massive short-term tran-
sitory events, so-called whiting events. Whiting events are common phenomena of marine
environments [4–7] and lakes [8–11]. Whitings are characterized by a milky turquoise
coloration of upper surface layers, generated by a fine-grained size calcite precipitates that
increase the turbidity of the water column and its light reflectance [12].

The supersaturation of surface waters for calcite is a necessary but insufficient pre-
requisite for mineral precipitation and thus whiting events. Calcite supersaturation can
be reached through a shift in carbonate equilibria induced by an increase in pH or CO2
removal [3] along with greater water temperatures that decrease the retrograde solubility of
calcite [13]. However, homogeneous nucleation requires overpassing the activation energy
far above the strict supersaturation. Massive events such as whitings require adequate nu-
cleation seeds for heterogeneous precipitation in the water column [14]. In hardwater lakes,
whiting events have mainly been associated with phytoplankton activity. For instance,
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picoplankton growth can create the requested pH and CO2 conditions for supersaturation,
while the cells can act as heterogeneous nuclei [10,15]. Once supersaturation is reached,
river-borne detrital particles can also trigger nucleation [11,16,17]. Altogether, these obser-
vations evidenced that warmer surface temperatures, enhanced primary production, and
fine suspended sediments can potentially all contribute to whiting events, even though
their interplay may vary from one lacustrine system to another. Moreover, whiting events
are likely regulated by a broader combination of climatic and trophic factors that are both
dynamic in time. Therefore, determining the long-term evolution of whiting events oc-
currences in relation to global change impacts on environmental factors (e.g., physical
conditions of lakes, changes in river inputs, lakes’ primary production) appears crucial for
predicting changes in the inorganic carbon cycle of inland waters.

Due to their episodic and transient nature, the dynamics of whiting events can only
be captured by high-frequency monitoring. However, whiting events are also patchy
in space and can be missed by moored high-frequency sensors. In fact, as the typical
turquoise coloration of whiting events usually covers large areas, these phenomena are
excellent candidates for remote sensing detection. Whiting events have, for instance,
been monitored through remote sensing techniques in diverse marine areas such as the
Arabian Gulf [6,7], the Bahamas sea [18], or Florida coastal waters [19] as well as in diverse
lacustrine systems in Germany [20], Switzerland [11], or North America [21]. However,
while these approaches provided detailed information on the spatial extent of whiting
events, they were also characterized by specific limitations in terms of temporal coverage.
For instance, remote sensing datasets can be discontinuous due to both the satellite time
resolution and a potential absence or limited quality of images associated with cloud
cover. Hence, because of this limitation and the restricted availability of time-resolved,
multi-annual ground monitoring data, there are few references of continuous records of
whiting occurrences long enough to evaluate how their dynamics respond to changing
environmental and climatic conditions. For instance, ref. [22] investigated the annual mean
whiting occurrence frequency and spatial distribution from MODIS data on a decadal
timescale in the coastal waters of Florida. However, they could not provide insights on the
underlying drivers. Similarly, ref. [21] provided an extensive description of water clarity-
inferred whiting event dynamics in the Great Lakes on multi-decadal scales. However, they
only related the observed changes to the reported long-term biogeochemical evolution of
the lacustrine systems without statistically exploring the environmental drivers supporting
the triggering of whiting events in the short term nor the response of these factors to
long-term climatic forcing.

Herein, we aim to use machine learning techniques to combine ground-based and
remote sensing data to fill the gap of the long-term dynamics of whiting events in a large
peri-alpine hardwater lake—Lake Geneva. Accordingly, (i) we build an innovative dataset
of multispectral long-term remote sensing data of Landsat-8, Sentinel-2, and Sentinel-3, to
determine for the first time, the spatial and temporal occurrences of whiting events in Lake
Geneva from 2013 to 2021. Then, (ii) we apply a random forest machine learning algorithm
to identify, from ground-based monitoring data, the environmental setting during observed
whitings in the lake and reconstruct the past “unseen” whiting days from 1958 to 2021 using
an appropriate statistical approach. This is an important step forward in the understanding
of the environmental conditions necessary for the onset of whiting events in Lake Geneva.
Finally, (iii) we analyze the temporal dynamics of whiting occurrence over the past 60 years
in relation to the relevant climate indices affecting Central Europe. This represents a better
understanding of the influence of climatic activity in the phenology of whitings occurring
in Lake Geneva.

2. Study Site

Lake Geneva is a peri-alpine lake along the Swiss–French border, at 372 m above sea
level (46◦26′ N, 6◦33′ E, see Figure 1). The lake’s surface area is about 580 km2, and its
maximum depth (309 m) makes it the largest freshwater body in Western Europe, with a
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volume of 89 km3. Lake Geneva is oligomictic; however, complete mixing happens only
during exceptionally cold winters, and recent studies describe the lake as meromictic [23].
On an interannual scale, the long-term variability of the Atlantic climate influences the
thermal conditions of Lake Geneva. Subtropical Atlantic activity, reflected by the Atlantic
Multidecadal Oscillation (AMO), has been described as the main factor influencing summer
conditions in the lake [24]. Winter conditions have been mostly related to the activity of the
North Atlantic, reflected by the Northern Atlantic Oscillation (NAO, [25]).
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whiting areas (i.e., turquoise ‘milky’ color of surface waters) are specified. The SHL2 monitoring 
point is shown in grey in the middle of the lake. The Rhone River is shown in blue. The lake’s loca-
tion between France and Switzerland is shown in the top-left corner. The 20 m isobath is shown in 
yellow and the Rhone estuary area in red. 
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mates, and data export using the cloud computing platform Google Earth Engine (GEE) 
[30,31] for Landsat-8 and Sentinel-2 data and from Datalakes (https://www.datalakes-ea-
wag.ch/, accessed on 20 October 2022) for Sentinel-3 data. The next processing steps are 
computed in Matlab. They comprise a sensor response inter-calibration and identify and 
characterize whiting events. The final, aggregated metrics include the spatial extent and 
temporal occurrence of whiting events. Factors controlling whiting events in 2013 to 2021 
are then studied through decision tree and random forest algorithms, computed in Py-
thon. Next, whiting events are classified using environmental indicators, such as meteor-
ological data, Rhone River discharge, and the lake physical conditions. Finally, the opti-
mized random forest is used to reconstruct ‘unseen’ whiting days from 1958 to 2021.  

3.2. Satellite Data 
Landsat-8, Sentinel-2, and Sentinel-3 satellites are considered in this work. Landsat-

8 satellite has a 16-day temporal resolution (under cloud-free conditions; see Table 1 for 
details). Landsat-8 carries the Operational Land Imager (OLI), which collects image data 
in nine visible to shortwave infrared bands with a spatial resolution of 30 m. We use the 
Landsat-8 Collection 1 Tier 1 Raw Scenes (L1TP) provided by USGS on GEE platform to 
produce the reflectance factors in the RGB bands [32]. 

The Copernicus Sentinel-2 mission comprises two satellites. The satellites’ Multispec-
tral Imager (MSI) acquires data in high temporal resolution (5 days with two satellites at 
the equator under cloud-free conditions), high spatial resolution (10–60 m pixels, swath 

Figure 1. Map of the study area. RGB image from Landsat-8 of Lake Geneva on 29 June 2019. The
whiting areas (i.e., turquoise ‘milky’ color of surface waters) are specified. The SHL2 monitoring
point is shown in grey in the middle of the lake. The Rhone River is shown in blue. The lake’s location
between France and Switzerland is shown in the top-left corner. The 20 m isobath is shown in yellow
and the Rhone estuary area in red.

The main tributary to Lake Geneva is the Rhone, representing approximately 70%
of the total water input. The Rhone River is also the primary supplier of sediment and
phosphate to the lake [26,27] and plays a major role in lake ecosystem dynamics in terms
of biogeochemical processes (primary production, fine sediments delivery, transport, and
settling [17,28]). On the interannual scale, rainfall and summer temperature changes are
expected to play a role in discharge variability. The Atlantic (AMO, NAO), Mediterranean
(such as Western Mediterranean Oscillation Index; WeMOi), and even global (Oceanic Nino
Index; ONI) climate indices appear to be crucial in describing this variability.

The inflowing water from the Rhône generally takes the form of an interflow when the
lake is thermally stratified, i.e., a turbid layer that propagates along the thermocline where
the Rhône water finds its neutral buoyancy [29]. However, these particulate inputs can
also flow along the bottom of the lake when extreme densities are reached (cold water and
high concentration of suspended particles). During these events, the Rhone inflow is not
observable by satellite. However, extreme discharge events when the lake is not stratified
can cause overflows detraining suspended particles toward surface waters. These events,
episodically visible by remote sensing, are poorly described in the literature. It is therefore
important to discriminate these events from whiting events in Lake Geneva, which will be
addressed in this study.
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Recent studies on whiting events in Lake Geneva have been carried out by in situ
measurements, remote sensing, and hydrological modeling. So far, whiting events have
been observed in late spring/early summer when (1) the Rhône discharge is high due to
catchment snowmelt, and (2) the lake’s waters are stratified and surface temperatures are
warm. Ref. [11] demonstrated that whiting events are triggered along the Rhône interflow
into the lake and that its spatial extent, influenced by local hydrodynamics, corresponds to
the northeastern dispersion of riverine particles. Moreover, ref. [17] filled in the gap of in
situ monitoring of whiting dynamics. They showed that there are different contributions
of in situ CaCO3 particles. A detrital part eroded from the Rhône catchment and brought
into the interflow, and an authigenic part (i.e., newly formed CaCO3 particles) probably
precipitated on the surface of fine fluvial particles transported into the lake. This authigenic
calcite component tends to increase with distance from the mouth of the Rhône, highlighting
the role of the physical stability of the water column and the spread of the interflow in the
dynamics of whitings in Lake Geneva.

3. Workflow and Data
3.1. Workflow

The workflow consists of multiple processing steps from remote sensing images selec-
tion, data filtering (region of interest, 30% cloud cover filtering), whiting index estimates,
and data export using the cloud computing platform Google Earth Engine (GEE) [30,31]
for Landsat-8 and Sentinel-2 data and from Datalakes (https://www.datalakes-eawag.ch/,
accessed on 20 October 2022) for Sentinel-3 data. The next processing steps are computed
in Matlab. They comprise a sensor response inter-calibration and identify and characterize
whiting events. The final, aggregated metrics include the spatial extent and temporal
occurrence of whiting events. Factors controlling whiting events in 2013 to 2021 are then
studied through decision tree and random forest algorithms, computed in Python. Next,
whiting events are classified using environmental indicators, such as meteorological data,
Rhone River discharge, and the lake physical conditions. Finally, the optimized random
forest is used to reconstruct ‘unseen’ whiting days from 1958 to 2021.

3.2. Satellite Data

Landsat-8, Sentinel-2, and Sentinel-3 satellites are considered in this work. Landsat-8
satellite has a 16-day temporal resolution (under cloud-free conditions; see Table 1 for
details). Landsat-8 carries the Operational Land Imager (OLI), which collects image data
in nine visible to shortwave infrared bands with a spatial resolution of 30 m. We use the
Landsat-8 Collection 1 Tier 1 Raw Scenes (L1TP) provided by USGS on GEE platform to
produce the reflectance factors in the RGB bands [32].

The Copernicus Sentinel-2 mission comprises two satellites. The satellites’ Multispec-
tral Imager (MSI) acquires data in high temporal resolution (5 days with two satellites at the
equator under cloud-free conditions), high spatial resolution (10–60 m pixels, swath width
of 290 km) and 13 spectral bands ranging from visible to shortwave infrared wavelengths.
Sentinel-2 Level-2A data are available on GEE platform. Data are downloaded from the
Copernicus datahub and are processed using sen2cor to produce the reflectance factors in
the RGB bands [33]. Finally, images are exported from GEE using a spatial resolution of
30 m to correspond to the Landsat-8 dataset.

Sentinel-3 satellites (3A and 3B) have a daily temporal resolution. They carry the Ocean
and Land Colour Instrument (OLCI), which acquires data along 21 spectral bands ranging
from visible to shortwave infrared wavelengths. Medium-resolution (300 m) images
are processed using the Python package SenCast (https://gitlab.com/eawag-rs/sencast,
accessed on 23 October 2022). Normalized water-leaving reflectance in the RGB bands is
calculated using the Polymer algorithm v4.13 [34], which is tried and tested for lake water
quality retrieval in the Copernicus Global Land Service [35] and ESA’s Climate Change
Initiative [36]. All Sentinel-3 data used in this study are available in the Datalakes webportal
(www.datalakes-eawag.ch, accessed on 20 October 2022).

https://www.datalakes-eawag.ch/
https://gitlab.com/eawag-rs/sencast
www.datalakes-eawag.ch
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Table 1. Specifications of the Landsat-8 OLI, Sentinel-2 MSI, and Sentinel-3 OLCI data used for the
study. The number of cloud-free images available during the period of interest is specified. * Nominal
temporal resolution. Actual temporal resolution depends on the cloudiness of the study area. ** MSI
data was resampled to 30 m to fit with the resolution of OLI data.

Sensor OLI MSI OLCI

Spatial resolution (m) 30 10−60 ** 300

Swath width (km) 180 290 1270

Temporal resolution * (days) 16 5 1

Available period 2013−2021 2017−2021 2016−2021

λblue 480 490 490

λgreen 560 560 560

λref 655 665 665

Cloud−free images used 140 101 766

3.3. Meteorological, Monitoring, and Climate Data

Daily mean meteorological conditions from 1958 to 2021 are downloaded from the Me-
teoSwiss IDAWEB website (https://gate.meteoswiss.ch/idaweb/login.do, accessed on 23
October 2022). Air temperature and wind speed are measured at the Geneva-Cointrin Sta-
tion (code station GVE; 6◦08’ E; 46◦15’ N). Water temperature profiles measured fortnightly
since 1958 are extracted from the SI OLA database [37]. Data are interpolated within a 1 m
vertical 1-day temporal resolution grid. In this work, surface water temperature (0–10 m)
is used as a filter to discard false-positive whiting days (see Section 4.1). The thermocline
depth is computed over the entire period (i.e., 1958–2021). Historical discharge data of the
Rhone River (1958–2021) are downloaded from the FOEN website [38]. Discharge data are
monitored at the Porte du Scex station with a daily resolution.

The climatic indexes tested encompass the AMO (https://www.psl.noaa.gov/data/
timeseries/AMO/, accessed on 23 October 2022), which is referenced as a good indicator
of the summer climate in central Europe [24], and the NAO (https://www.ncei.noaa.gov/
access/monitoring/nao/, accessed on 23 October 2022), which has been described as the
main winter climate forcing [25]. Besides, we also test the WeMOi (https://crudata.uea.ac.
uk/cru/data/moi/, accessed on 23 October 2022), estimated from the difference between
atmospheric pressure from Northern Italy to Southwestern Spain [39]. It is representative of
rainfall variability in both areas. Positive phases typically show an anticyclone in the Gulf
of Cadiz and a low-pressure area over the Ligurian Sea, leading to increased precipitations
in Northern Italy, and probably in our study area [40]. Finally, the Oceanic Nino Index
(ONI, https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_
v5.php, accessed on 23 October 2022) is also tested, as this index is referenced as the
primary index for tracking the El Nino Southern Oscillation phenomenon, which is a major
contributor of worldwide climate variability [41], and potentially a predictable signal in
European rainfall [42].

4. Methods
4.1. Whiting Detection Using Remote Sensing

The AreaBGR index (see detail in [20]), i.e., the triangular area between the blue, green,
and red reflectance values, determines the whiting spatial and temporal occurrences. We
use this index as it is the best indicator available to study whiting events in inland waters.
The AreaBGR index is computed for all pixels in the abovementioned satellite data of Lake
Geneva, using the following expression:

AreaBGR = 0.5 (λblue × Refgreen + λgreen × Refred + λred × Refblue - λgreen × Refblue - λred × Refgreen - λblue × Refred)

https://gate.meteoswiss.ch/idaweb/login.do
https://www.psl.noaa.gov/data/timeseries/AMO/
https://www.psl.noaa.gov/data/timeseries/AMO/
https://www.ncei.noaa.gov/access/monitoring/nao/
https://www.ncei.noaa.gov/access/monitoring/nao/
https://crudata.uea.ac.uk/cru/data/moi/
https://crudata.uea.ac.uk/cru/data/moi/
https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php
https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php
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An inter-calibration of the different satellite sensors is performed. We compare the
AreaBGR estimates for the whiting day on 29 June 2019 for which we have simultaneous
images from Landsat-8, Sentinel-2, and Sentinel-3 satellites (see Figure 2) and ground data [17].
The range of the index measured by Sentinel-2 and Sentinel-3 is slightly lower than that
of Landsat-8, as a likely result of different product types and sources, and atmospheric
corrections [20]. The obtained equation AreaBGRS2 = 0.28 × AreaBGRL8 + 11066.43 with
R2 = 0.97 and AreaBGRS3 = 0.23 × AreaBGRL8 + 10650.23 with R2 = 0.97 allows expression
of the Sentinel-2 and Sentinel-3 derived AreaBGR indexes in the same range as the one
determined by the Landsat-8 satellite (see Figure 2a). The residuals from the inter-calibration
equation can be explained by differences in the sensors’ spectral response functions and by
the time difference between the shots. Nevertheless, this complementarity allows us to use
the Landsat-8 (n = 140), Sentinel-2 (n = 101), and Sentinel-3 (n = 766) databases to describe the
spatial and temporal occurrences of whiting days between 2013 and 2021.

Positive whiting is attributed to any pixel whose AreaBGR value is >13,000, according
to [20] (see magenta contours in Figure 2b). The surface area of whitings for each image
is then estimated by summing flagged pixels of 30 m2. This database is completed with
the daily Sentinel-3 database, from which the AreaBGR is derived following a similar
processing. Summing flagged pixels of 300 m2 provides the area of whiting events.

The AreaBGR index can be sensitive to the presence of other suspended particles [6].
In Lake Geneva, in the case of wave-induced resuspension of fine sediments near the
coast, AreaBGR may respond to an increase in the near-infrared wavelengths. Events when
sediments brought by the Rhone reach the surface (i.e., unstratified lake and cold surface
waters, see an example on 25 April 2013 in Figure 3) generate similar signals. Due to
these processes, we apply several filters to discard satellite images showing false-positive
whiting days.

First, we only select images with whitings larger than 15 km2 to avoid minor con-
taminations due to remaining clouds. Then, we exclude the shallowest depths of the lake
(i.e., <20 m depth) and the region of the Rhone mouth for our calculations (see the yellow
isobath and red area in Figure 1). Another filter is applied to discard false-positive AreaBGR
images due to Rhone inflow at the surface. We base this latter filter on the surface water
temperature of the lake (SHL2 monitoring point). [17] showed that whiting events only
happened when the lake’s surface temperature reaches a minimum of 15 ◦C. Below 15 ◦C,
calcite supersaturation is unlikely, while the lake stratification is not strong enough to allow
for a Rhone interflow. Therefore, all images with a positive AreaBGR index but surface
temperature below 15 ◦C (averaged over 0–10 m depth) are discarded.

4.2. Reconstruction of Past Whitings

We use available environmental indicators from 2013 to 2021, i.e., water discharge
of the Rhone River, meteorological conditions over Lake Geneva, and the lake physical
conditions (surface water temperature, thermocline depth) as input features of a machine
learning classification algorithm for whiting occurrence (i.e., whitings or non-whitings, two
classes with values of 1 and 0, respectively). The machine learning approach consists of a
Decision Tree (DT) and a Random Forest (RF) to find the best classification method based
on classical metrics [43,44]. The detail of the model development carried out in this work is
specified in the Supplementary Material.

First, we split our database into three sub-datasets: (1) the training set (60% of the
whole database), (2) the validation set (20%), and (3) the test set (20%). The training set is
used to train the different models, i.e., to set the model parameters. The validation set is
used to compare the model performances between different models and to choose the most
accurate one. The test set is finally used to test the performance of the best model on the
remaining ‘unused’ data.
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Figure 2. (a) Inter-calibration of the AreaBGR index of Landsat-8, Sentinel-2 and Sentinel-3 images
on 29 June 2019. Regression between Landsat-8 and Sentinel-2 AreaBGR estimates (grey points) is
shown in blue. Regression between Landsat-8 and Sentinel-3 AreaBGR estimates (black points) is
shown in orange. The linear equations and correlation coefficients are specified. (b) Results of the
inter-calibration of AreaBGR of Lake Geneva on 29 June 2019 for Landsat-8, Sentinel-2, and Sentinel-3
satellites. The whiting area is specified on each image. The delimitation of whiting areas based on the
threshold of AreaBGR = 13,000 is shown in magenta. The 20 m isobath used to discard shallow depth
is shown in yellow. The Rhone estuary area is shown in red and is discarded from the calculation.
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Figure 3. (a) Landsat-8 RGB image of Rhone inflow at the lake’s surface on 25 April 2013. (b) False-
positive AreaBGR index caused by the spread of the Rhone inflow at the surface when the lake is
unstratified. The area’s delimitation based on the area threshold of AreaBGR = 13,000 is shown in
magenta. The Rhone discharge and the lake’s surface temperature corresponding to the image’s date
are specified.

To evaluate the performances of the models, we use classical metrics such as the
confusion matrix (i.e., a table including true negatives, false positives, false negatives,
and true positives), the accuracy rate (i.e., the percentage of correct predictions for a given
dataset), which is a summary of the confusion matrix, and the AUC (i.e., the Area Under the
receiver operating characteristic Curve), which measures how well the whitings and non-
whitings events can be separated or distinguished by the model. This Machine Learning
approach is expected to provide the main driving factors (among the input features) of
the whiting events in Lake Geneva. The best model is then used to reconstruct the past
unseen whiting days from 1958 to 2021 relying on the same input features used to train
and validate the model for the 2013–2021 period.

Changes in the annual whiting occurrence reconstructed between 1958 and 2021 are
tested using Mann–Kendall tests on the time series [45,46] and a BEAST decomposition
(Bayesian Estimator of Abrupt change, Seasonality, and Trend). BEAST is a generic Bayesian
model averaging algorithm to decompose time series or 1D sequential data into individual
components, such as abrupt changes, trends, and periodic/seasonal variations [47]. The
relations between the annual whiting frequency and large synoptic climatic indexes are
tested using the Pearson correlation coefficient r and the related p-value.

5. Results
5.1. Spatial and Temporal Occurrences of Whitings in Lake Geneva from 2013 to 2021
5.1.1. Spatial Occurrences of Observed Whitings in Lake Geneva

Altogether, 113 whiting days of surface area >15 km2 are detected in Lake Geneva
in 2013–2021 using the dataset composed of Landsat-8, Sentinel-2, and Sentinel-3 data.
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Overall, the long-term dataset build in this work offers a unique view of the occurrence of
whitings in Lake Geneva with high temporal and spatial resolutions. The description of
the spatial occurrence of the whiting days, i.e., the number of pixels flagged as whitings
between 2013 and 2021, can be challenging as it depends on the available images, i.e., on
the temporal resolution and cloud coverage. Note that this result is relative, i.e., a good
description of the spatial variability, more than a good estimate of the absolute number of
whiting days detected over the study period.

The distribution of whitings by areal coverage is bimodal (Figure 4a). In 96% of the
days, the whiting covers < 40% of the lake area, and exceptional whitings occupy almost
the whole lake surface (50–80%). Therefore, we consider them separately (class 1 for partial
whitings and 2 for total whitings). Figure 4b,c shows the spatial occurrence of both classes
of whiting days as seen by Landsat-8 (2013–2021), Sentinel-2 (2017–2021), and Sentinel-3
(2016–2021). Class 1 whitings are invariably located to the East, near the mouth of the
Rhone (class 1; Figure 4b). Class 2 whitings cover the central part of the lake, even up to the
small lake basin (class 2; Figure 4c). At the level of the pixel grid, the frequency of whitings
increases significantly with decreasing distance from the river mouth (n > 40). The central
and western parts of the lake show a very low frequency of whitings, <10 occurrences
counted between 2013 and 2021.
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of observed whiting days of class 1 (b) and the whitings of class 2 in Lake Geneva from 2013 to
2021 (c). (d) Temporal distribution of whiting days (both class 1 (green) and class 2 (yellow) are
stacked) are expressed as a function of the day of the year of occurrence. The black line is the kernel
fit. The date of the peak distribution is shown in red. (e) Boxplots of the AreaBGR index values for
whitings of classes 1 and 2. The median value is shown in red, and the top and bottom edges of the
box show the 25th and 75th percentiles. The black whiskers show extreme values, and the red crosses
show outliers.

Figure 4d shows the temporal distribution of whitings (expressed in days of the year)
for classes 1 and 2 observed between 2013 and 2021. Whitings of class 1 extend from late
May to mid-September, with a peak in the second half of June. In contrast, the few whitings
of class 2 occur in early August and early September (two events of 3 and 4 days in August
2017 and September 2021, respectively). The average AreaBGR values for both whiting
types are shown in Figure 4e. The average AreaBGR index value for all events combined
by class is about the same (~1.6 × 104). However, the whitings of class 1 show a higher
range and outliers in the highest values (AreaBGR > 2.6 × 104).

5.1.2. Temporal Occurrences of Observed Whitings in Lake Geneva

The days of whiting and their spatial extent over 2013–2021, as detected from Landsat-
8, Sentinel-2, and Sentinel-3 satellite images, are presented in Figure 5. Whitings are more
frequently observed in 2018–2019 and 2021 (i.e., >25 days) and reach greater maximal
areas. Whiting days are less frequent in 2016 and 2017, and only three are detected in 2020.
From 2013 to 2015, only the Landsat-8 dataset is available, the number of observations
only represent a fraction of the later years, hence a much larger chance that whitings
remain unseen (Figure 5a). The use of this long-term dataset in line with the monitoring of
environmental parameters allows describing precisely the conditions in which whitings
(class 1 and 2) occur as described below.

Whitings of class 1 occur at high Rhone discharge (Figure 5b, average discharge of
about 320 m3 s−1, Table 2) when air and water surface temperatures are high (i.e., approx.
22 ◦C for air and 18 ◦C between 0 and 10 m for water, averaged over the observed whitings),
and the thermocline depth is ca. 10 m depth (Figure 5c–e). Wind speed is more variable
during the whiting days of class 1, with a mean value of 2.3 m s−1 and a standard deviation
of 1.2 m s−1 (Figure 5f). Whitings of class 2 occur in similar conditions, except for a lower
Rhone discharge (i.e., approximately 250 m3 s−1, Table 2). However, the limited number of
class 2 events (i.e., only seven days) does not allow for further analysis.

Table 2. Averaged environmental conditions during observed whiting days from 2013 to 2021 (>15 km2)
in Lake Geneva. The standard deviations for each condition are also specified. The number of whiting
days for each class is specified.

Parameter (Unit) Class 1 (Mean +/− Std.) Class 2 (Mean +/− Std.)

Rhone discharge (m3 s−1) 363.1 +/− 102.9 251.1 +/− 81.4

Air temperature (◦C) 21.5 +/− 3.0 22.3 +/− 3.8

Surface water temperature (◦C) 17.9 +/− 1.8 20.6 +/− 1.7

Wind speed (m s−1) 2.4 +/− 1.4 1.7 +/− 0.6

Thermocline depth (m) 11.1 +/− 0.6 11.0 +/− 0.0

Number of obs. days 106 7
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Figure 5. (a) Whitings area as seen by the three satellites that detected events > 15 km2. Landsat-8
images are shown in blue, Sentinel-2 in green, and Sentinel-3 in magenta. (b) Rhone River discharge,
(c) air temperature (monitored at noon), (d) surface water temperature (0–10 m depth), (e) thermocline
depth at the SHL2 monitoring point, and (f) wind speed. Shaded areas highlight the different seasons
(blue for winter, green for spring, yellow for summer, and brown for fall). The occurrence of class 1
(class 2) whiting days is shown in red (green) on (b–f).

5.2. Machine Learning and Statistical Approach
5.2.1. Drivers of Whitings Using Machine Learning

The detailed optimization results of the machine learning models are shown in Figure 6.
The detailed method is described in the Supplementary Material. Note that only class 1
whiting days are considered, class 2 whitings being too few to be significantly related to
the corresponding ground data.
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Figure 6. (a) Decision tree used to classify the class 1 whiting days between 2013 and 2021 based on
the surface water temperature (◦C, 0–10 m depth) and the Rhone discharge (m3 s−1). (b) Results of
the classification based on the DT shown in (a). Whitings and non-whitings events (from the training
set) are shown as blue and red dots, respectively. The whitings and non-whitings decision zones
predicted by the DT in (a) are the areas in blue and red, respectively. (c) RF’s important features.
(d) Same as (b) but using the RF algorithm with only the two most important features.

As seen in Section 4.2, the objective is to relate the occurrences of class 1 whitings
to the corresponding ground data through the best model by comparing a DT and an RF
algorithm. We first built a simple DT to determine the most important environmental factors
to classify whiting events. The results show that water temperature and Rhone discharge are
the two most discriminating factors for the occurrence of whitings between 2013 and 2021 (see
Figure 6a). Indeed, the two thresholds necessary to classify whitings are a minimum Rhone
discharge of 207 m3 s−1 and a minimum water temperature of 15 ◦C. Using these thresholds
allows for classifying the majority of the whitings (see the blue points in Figure 6b). This
DT has good performances (validation AUC = 0.86; validation accuracy = 74%), but can be
improved by using the cost complexity pruning method. The best DT (see the Supplementary
Material) has similar performances (validation AUC = 0.83; validation accuracy = 81%), but
still makes some classification errors by creating false positives (n = 55 in the training dataset;
n = 28 in the validation dataset).

To go further, we compare the results obtained from the DT with those of the RF. The
construction and optimization of the RF (see Supplementary Material) lead to the best RF
composed of approximately twenty trees, with a training accuracy of ~1 (i.e., approx. 100%
of whiting and non-whiting events in the training data have been correctly classified) and
a validation AUC of 0.90. Besides, the model provides the most important indicators for
the classification of whitings, namely Rhone discharge and water temperature (Figure 6c).
Using these two predictors and the decision boundaries, the classification results are shown
in Figure 6d. The main advantage of this model is the consequent reduction of the number
of false positives (n = 0 in the training dataset; n = 4 in the validation dataset) using a
finer classification. This final RF is able to classify the whiting occurrences as a function of
environmental conditions and to identify the most important factors controlling whiting
triggering. This optimized RF is then used to reconstruct the past ‘unseen’ whiting days,
based on the ground data monitored between 1958 and 2021 (see below).
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5.2.2. Reconstruction of Past Unseen Whitings

Daily class 1 whiting presence–absence is reconstructed from the RF algorithm over
the 1958–2021 time period (Figure 7a). This reconstruction provides a first assessment of
past evolution of whiting days based on the use of available ground data. The total number
of whitings (class 1, expressed as days per year) is highly variable over the years (annual
average of n = 18 days of whiting per year). Values range from years with very few or no
whiting days (n < 3; 1964, 1974, 1976, 1997) to years with frequent whiting days (n > 35; 1958,
1963, 1966, 1982, 1994, 2001) (Figure 7a). Neither the Mann-Kendall test (pM-K = 0.117) nor
the BEAST decomposition (low probability of changing points) detect any clear temporal
trend in the annual whiting occurrence between 1958 and 2021, reconstructed by the RF
algorithm (Figure 7b). There is yet a shift in the whiting phenology. The number of spring
whiting increases from 1958 to 2021 (pM-K = 0.011; Figure 7c). The BEAST decomposition
detected a changing point in 2000 (maximum probability in changing points). It corresponds
to an increase in spring whiting occurrence (+1 day on average since 2000).
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Figure 7. (a) Reconstruction of past ‘unseen’ whiting days from 1958 to 2021 (Class 1 only, >15 km2,
expressed as days of whiting per year) based on the RF algorithm. Whitings are separated following
the season of occurrence (green: spring, yellow: summer, brown: fall). (b) BEAST decomposition of
the time series of all whitings, with the trend indicated in black and the standard deviation in grey.
The probability of finding a changing point in the trend is shown in red. (c) same as (b) but for spring
whiting days only. The p-values of the Mann–Kendall tests are specified on (b,c).
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5.2.3. Factors Controlling Occurrences of Whitings from 1958 to 2021

Here we attempt to determine the relationship between the temporal variability of
class 1 whiting occurrences in Lake Geneva and climatic indices to assess the influence
of climate activity on whitings’ phenology. The interannual and seasonal variabilities of
whiting days reconstructed from the RF algorithm are tested against the climate indices
that affect central Europe and Switzerland.

The inter-annual variability of the total and spring numbers of whitings (expressed
as anomalies in days per year) is shown in Figure 8. A comparison is made between the
whiting anomalies per year, using the RF algorithm predictions, and the climatic indices
most known to influence the Swiss and European climates. The anomalies in the total
number of whiting days per year can be partly explained by the climatic index WeMOI
(Figure 8a; r = 0.36, p-value of 0.004). Moreover, the anomalies of spring whiting days
are related to the AMO index (Figure 8b; r = 0.33, p-value of 0.007). The other climate
indices (such as NAO and ONI) do not seem to correlate significantly with the interannual
changes in the total, nor spring, numbers of whiting days. Over the period represented
(1958–2021), positive WeMOI values tend to increase the total number of whiting days per
year. On the contrary, negative WeMOI values tend to reduce the total number of whiting
days per year. A similar observation can be made with the AMO index, which tends to
increase the number of spring whitings while positive. The period when spring whitings
are minimal (between 1967 and 2000) corresponds mainly to negative AMO values. These
observations show that the occurrence of whitings in Lake Geneva (i.e., annual counts)
and their phenology are partially linked to climatic variability, i.e., the Mediterranean and
Atlantic climatic activities respectively.
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6. Discussion

The objective of this study is to measure the spatial extent and temporal occurrences
of whiting days (i.e., massive clouds of suspended CaCO3 particles induced by intense
calcite precipitation) in Lake Geneva using Landsat-8, Sentinel-2, and Sentinel-3 satellite
data between 2013 and 2021. An RF algorithm then demonstrates the link between these
occurrences and the meteorological, lake physical, and riverine conditions. The latter is
finally used to reconstruct the past occurrences between 1958 and 2021 based on the main
identified controlling factors of whitings. Below, we first discuss the complementarity of
the satellites and the robustness of the index used. Then, we detail the results obtained
regarding spatial and temporal observations and discuss the reconstruction of past whiting
days in light of the climatic indices influencing the central part of Europe.

6.1. Remote Sensing of Whitings in Lake Geneva

Satellite observations are increasingly used to characterize biogeochemical processes
in inland waters [48–50]. We chose to combine Sentinel-2 and Landsat-8 datasets with
Sentinel-3 to describe whitings in Lake Geneva. The different spatial (i.e., 30 m or 300 m)
and temporal (i.e., 1 day or approx. 15 days) resolutions enable a relatively good monitoring
of the aspect of Lake Geneva over the period 2013–2021. We observe different responses on
the Landsat-8, Sentinel-2, and Sentinel-3 data due to various product sources and processes.
The inter-calibration carried out in this work expresses the satellite responses in term of
AreaBGR in the same range, which is needed for the time series coherence (Figure 2).

We use the AreaBGR index to detect whiting days in Lake Geneva. Indeed, intense
events of CaCO3 precipitation lead to an increase in the water reflectance, mainly in the
green band, resulting in a turquoise watercolor. This result contrasts sharply with the
lake’s color without precipitation, which appears dark in the visible spectrum [20]. This
index responds positively to various suspended particles (sediments and phytoplankton
species) that influence the visible spectrum by backscattering sunlight (see Section 4.1).
Among these suspended particles, distinguishing the sedimentary contributions from the
Rhône (i.e., inputs that reach the surface when the lake is unstratified) and resuspension
by near-shore waves, from the precipitation of CaCO3 particles during whitings can be
challenging. The use of specific filters, determined from geochemical knowledge about
the whiting process, enables building a conservative database retaining only whiting days.
Although empirical, these filters could be further tested on different peri-alpine lakes to
build a process chain for validating the AreaBGR index as a proxy of whitings.

Besides, we do not use specific filters related to the presence of phytoplankton in
the lake. Indeed, some biological blooms can potentially influence the reflectance used
to calculate AreaBGR, without inducing whiting events. However, their abundance in
Lake Geneva is never high enough to reach the AreaBGR threshold and we did not find an
example of this contamination in our database in line with the study of [11]. The ongoing
development of remote sensing monitoring of primary production and phytoplankton
species is crucial to better characterize the possible contamination of the AreaBGR index
from organic sources.

6.2. Spatial and Temporal Occurrences of Whitings in Lake Geneva

The majority of whitings in Lake Geneva tends to occur during early summer while
fewer events occurred later during the season (Figure 4). These two types are associated to
different spatial patterns. Thus, the determinism of these two classes can be related and
explained by diverse environmental drivers, notably identified through machine learning
techniques for the majority of them (class 1 whitings), and are probably triggered by
different mechanisms of nucleation. Indeed, the spatial extent of the majority of whiting
days tends to be related to the Rhône inflow (>95%, see Figure 4b). The turbidity inputs
of the Rhône can trigger the nucleation of CaCO3 particles during high discharge when
the lake is stratified, and the surface water temperature is high. This result is in line with
the previous works of [11,17]. Authors highlighted the role of the interflow in triggering
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whiting events when the spread of fine sediments along the whole lake is driven by local
hydrodynamics during the high physical stability of the water column [29,51]. Detrital
CaCO3 particles eroded from the watershed could also participate in whitings detection
close to the river mouth [17], increasing the reflectance of surface waters and the AreaBGR
mean and extreme values (see Figure 4e).

However, fewer class 2 whiting events are detected in the central part of the lake
(i.e., approx. 5% in the period 2013–2021), later during the season. The lack of in situ
measurements during those whitings and the few events observed do not allow a more
refined characterization. They can probably be related to episodes of important primary
production, i.e., phytoplankton bloom in early August 2017 [52], and a massive, transient
Uroglena sp. bloom in September 2021 [53]. The influence of primary production in
triggering whiting events is still under debate and can be considered in several ways.
Primary production tends to increase pH and favor calcite supersaturation and potential
precipitation. However, the nucleation of calcite particles during precipitation can occur
on small picoplankton cells [54] but also on algal-derived exopolymeric substances (EPS)
or other suitable heteronuclei (bacteria). Moreover, as discussed before, high levels of
chlorophyll a during phytoplankton blooms can also influence the AreaBGR index and
potentially bias the corresponding whiting detection. Coupling in situ measurements of
primary production and characterization of phytoplankton species in line with CaCO3
measurements could provide crucial information on the biologically-induced precipitation
of calcite. A future study should also compare a lake under the influence of a glacial river,
i.e., subject to turbid inputs (such as Lake Geneva), to a lake without glacial inputs but
where whiting events are observed (Lake Neuchâtel). The study of the difference in spatial
and temporal occurrences could reveal different roles of organic and inorganic processes in
the triggering of whiting events.

6.3. The Long-Term Evolution of Whitings in Lake Geneva

We reconstruct the class 1 whiting occurrences, as days per year, between 1958 and
2021, based on the RF algorithm (Figure 7). The number of reconstructed whiting days per
year is very variable, with no noticeable trend in its long-term evolution. However, the
interannual variability can be partly related to the WeMOi (Figure 8a). This index is causally
related to precipitation in northern Italy, which could be at the origin of environmental
conditions in Switzerland, especially in precipitation changes over years that could affect
Rhone River discharge and related turbid inputs to Lake Geneva. Mediterranean climatic
activity thus seems to play a role in changes in the total number of whiting events per year.
When the WeMOi is high, whiting days related to Rhone River inputs (i.e., the 95% of total
events in our case) are more frequent.

In addition, we observe a seasonal trend with the increase of early whitings since 2000
(Figure 7c). This change coincides with a change in climate regime due to the AMO (Figure 8b).
Indeed, the positive values of the index since 2000 and the observed upward trend show
the general increase in temperatures measured in Europe [55]. The latter changes the Swiss
climate, and the physical conditions of the lake, especially the temperature and stratification
of the surface water that warmed and stratified earlier in the year. The conditions necessary
for the onset of whitings in Lake Geneva are therefore met earlier in the year, in terms of
Rhone River inputs, water temperature, and water column stratification.

Although our study significantly quantified the inter-annual variability in the total
number of whiting events and the trend in their phenology (p-values < 0.01), correlation
coefficients of only 0.36 and 0.33, respectively, have been obtained (Figure 8). Other envi-
ronmental, region-specific factors probably actively participate in the inter-annual change
in whiting occurrences. Among them, the increase in alkalinity and Ca2+ concentration
of the Rhône over last decades [56], as well as changes in discharge and sediment load
related to human activities [57], could be the origin of an additional variability that cannot
be quantified from climatic indices.
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To go further, future changes in Mediterranean and Atlantic activities related to global
warming could influence environmental conditions in Switzerland. The trend in the number
of whiting days per year depends on the Rhône discharge, impacted mainly by precipitation,
snow, and ice melt. Based on the work of [58], the annual Rhône discharge could remain
stable in the future (2020–2100), leading to a total number of whitings that does not follow
a specific trend, but from whose annual changes are in line with the WeMOi. However, the
contribution of the Rhône discharge could highly change with an increase in rainfall, related
to a decrease in the snow and ice melt induced by earlier warmer temperatures. This could
cause a change in the peak discharge of the Rhône with maximal discharges met earlier
in the year. On the other hand, higher water temperatures may positively act on calcite
supersaturation (due to its retrograde solubility). The periods of calcite supersaturation
and lake stratification may start earlier and last longer. All this may change the relative
influence of the environmental drivers identified in this work, with a change in whiting
phenology and abundances of class 1 vs. class 2 whitings in Lake Geneva, in line with
changes in AMO.

This shift in whiting phenology could have several consequences on the functioning
of the lake ecosystem. First, as whitings increase lake surface turbidity, light-dependent
processes such as spring phytoplankton blooms could be altered. Earlier whitings could
decrease the intensity of light received during these crucial bloom periods [19,22]. In
addition, the carbon transfer to the benthic layer in the form of calcite actively participates
in nutrient cycling. It appears crucial to estimate the impact that climate change may have
on the future evolution of the frequency of whitings. The role of these events in the annual
CaCO3 precipitation and its transfer to the benthic ecosystem and the burial of carbon
remains to be determined.

7. Conclusions

Building upon machine learning techniques and temporal series analyses, this work
leverages the temporal extent of existing remote sensing datasets to provide a first assess-
ment of the long-term spatiotemporal variability of whiting occurrences in Lake Geneva.
We show that the by-far dominant Rhone-driven whiting events in the northeastern part of
the lake occur in repeatable environmental conditions of both the inflowing river and the
lake so that a random forest algorithm could predict the occurrence and timing of whiting
events from the lake and Rhône long-term monitoring data retrospectively. The analysis
of the reconstructed daily time series of whiting days over 1958–2021 revealed no specific
trend in the number of whiting days per year, but rather a large inter-annual variability
that was instead partially linked to the Mediterranean activity (WeMOi). The phenology of
whitings has yet shifted, especially since the year 2000, with more frequent early spring
events correlated to an increase of the AMO index. These results show the influence of the
Mediterranean and Atlantic activities on the occurrences of whitings in Lake Geneva.
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