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Abstract: Swidden agriculture or shifting cultivation is still being widely practiced in tropical
developing countries and Laos has spared no effort to eradicate it since the mid-1990s. So far, the
development of swidden agriculture in this land-locked mountainous country during the 2000–2020
bi-decade remains poorly examined. Moderate-resolution Imaging Spectroradiometer (MODIS)
time-series products have shown potential in monitoring vegetative status; however, only extremely
limited cases of remote sensing of swidden agriculture landscapes have been reported. Taking
northern Laos as a study area and using 2001–2020 MODIS vegetation indices products, the Savitzky–
Golay filter, the Mann–Kendall trend test and a threshold method were employed to delineate and
monitor annual patterns and dynamics of swidden agriculture landscape at the village level. The
results showed that: MODIS Normalized Difference Vegetation Index (NDVI) time series perform
better in delineating the temporal development of swidden agriculture. The swidden agriculture
landscape has shown a general descending trend in the past decades, especially in the 2010s, with
an annual average of 14.70 × 104 ha. The total number of swidden-practicing villages (or districts)
also displayed a declining trend and there were 957 villages or 91 districts practicing it continuously
between 2001 and 2020. An average of 32 villages per year or two districts per decade highlights the
difficulty in ending swidden agriculture in Laos, although the government of Laos has established a
number of policies for the eradication of swidden agriculture by 2020. This study provides a necessary
methodological reference for monitoring a two-decade evolution and transformation of swidden
agriculture in the tropics.

Keywords: swidden agriculture landscape; MODIS NDVI time series; the Savitzky-Golay filter;
shifting cultivation eradication policy; Laos

1. Introduction

As traditional land use in the tropical mountainous region, swidden agriculture
or shifting cultivation has been widely practiced but with endless controversy on its
sustainability for ages [1–3]. Description and field studies of this farming system can
be traced back to the 18th century [4], including the earlier monographs of Skånska Resa
(viz., Scanian Travels) of Carl Linnaeus in 1751 and The Malay Archipelago of Alfred Wallace
in 1869. After two centuries, the FAO [5] for the first time appealed to end swidden
agriculture. The 1992 United Nations Conference on Environment and Development
(UNCED) further contributed to top-level designs for stopping swidden agriculture [6,7].
Then, the Alternatives to Slash-and-Burn (ASB) Partnership launched by the United Nations
Development Programme (UNDP) in 1994 aimed to eradicate tropical swidden agriculture
in a practical way [7,8]. However, the regaining of academic attention is related to the
Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Reports [9] and
sustainable development [10]. The watershed year could be the year 2008 when the
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UN Collaborative Programme on Reducing Emissions from Deforestation and Forest
Degradation (REDD) in developing countries was launched and the ASB Partnership also
evolved into the “Partnership of the Tropical Forest Margins” [7,11]. Highly connected
with international forest initiatives, swidden agriculture has become the focus of debates
on climate change and biodiversity [12,13]. Coincidentally, the 2007–2008 global financial
crisis and subsequent broader economic downturn have brought severe consequences to
those who live in or are on the verge of extreme poverty in the developing tropics [14]. In
addition, swidden agriculture in transition also associates with poverty, hunger, and disease
of the 2030 Sustainable Development Goals [15] and tropical biodiversity conservation [16].
Because of long-term neglect, the contribution of swidden agriculture to carbon emissions
and its role in poverty alleviation and food security are still partially examined [17,18]. The
deep and fundamental factor is the lack of regularly updated datasets due to the tardy
progress in developing universal remote sensing algorithms [3].

Remote sensing could be an effective tool to detect swidden agriculture, while multiple-
sourced and long-term satellite archives are indispensable for examining its dynamics [2,19].
Ever since the two iconic special issues on swidden agriculture by Human Ecology [20,21],
the development of modified algorithms and generation of updated datasets at finer
resolutions still progress slowly [13]. It is generally believed that this research status has a
connection with the facts that tropical swidden plots are extensively fragmented (about
one hectare), randomly scattered, and spatially independent in the hills and mountains
(>200 m above sea level (masl)). They also, together with natural or secondary forests,
form complex, dynamic, and diverse forest-swidden-fallow landscapes [22]. Presently, the
development of novel algorithms as well as their monitoring and projection are the key
aspects of swidden agriculture evolution and transformation [13,23]. Recently, a systematic
review showed that Landsat family sensor images are the main data source for the remote
sensing of swidden agriculture, accounting for over 60% of the 89 peer-reviewed journal
articles [24]. In addition, unmanned aerial vehicles (UAVs [25]) and advanced satellite
sensors (e.g., Sentinel-2 [13]) show greater potential than Landsat in delineating swiddens
and fallows, but they cannot support historical evolution data backtracking. In contrast,
MODIS Terra/Aqua has advantages over Landsat sensors including denser composite
coverage and better spectral sensitivity [2,26]. In particular, the daily and near-daily
revisits statistically increase the probability of clear or less cloud-contaminated ground
observations. The value of MODIS time-series products for monitoring vegetation has been
firmly established [27–30]; however, up to now, only an extremely limited number of cases
for monitoring swidden agriculture at the landscape scale have been reported [22,31,32].
Although the retirement of Terra and Aqua is approaching, exploring the feasibility of
two-decade MODIS vegetation indices for delineating swidden agriculture landscapes is
still instructive and inspiring.

The Lao People’s Democratic Republic (Lao PDR or Laos), perhaps one of the most
active countries aiming at eradicating swidden agriculture, is most frequently selected for
developing algorithms for mapping swidden agriculture [24]. The topography of Laos is
largely mountainous, especially in the north where hill and mountain landscapes widely
extend, with the exception of the plains in Vientiane. Therefore, taken northern Laos
(north of Borikhamxay Province) as a study area, using the 2001–2020 MODIS time-series
(a total of 920) vegetation indices products, including the Normalized Difference Vegetation
Index (NDVI), Enhanced Vegetation Index (EVI), and others, the Savitzky–Golay filter, the
Mann–Kendall trend test, and a threshold method were employed to eliminate noise to
exclude other factors from interfering the monitoring of vegetation change dynamics, select
ground truth samples and delineate spatial and temporal patterns and dynamics of swidden
agriculture landscape, followed by examining transformation trends at village scale. This
study provides a methodological reference for monitoring a two-decade evolution and
transformation of swidden agriculture in the tropics.
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2. Study Area

Northern Laos covers eleven provinces (including Bokeo, Borikhamxay, Huaphanh,
Luangnamtha, Luangprabang, Oudomxay, Phongsaly, Vientiane, Xayaboury, Xaysom-
boon and Xiengkhuang) and one prefecture (Vientiane, Figure 1), with the land area
(15.46 × 104 km2) accounting for 65.30% in the Lao PDR [33]. The largest and smallest
provincial units are Vientiane (18,526 km2) and Vientiane Capital (3920 km2). The topogra-
phy is largely hilly (200–500 masl, 18.84%) and rugged mountainous (>500 masl, 75.49%),
with elevations above 200 masl reaching nearly 95%, typically characterized by steep terrain
and narrow river valleys. The average is 769 masl and the area below 1500 masl holds
97.58%. The Annamese Range runs along the Laos-Vietnam border, while the Mekong River
forms part of the border between Laos and Myanmar or Thailand. It has a tropical monsoon
climate with a long dry season from November to April of next year. The annual average
temperature is 25 ◦C [34], with about 34.3 ◦C in April (warmest) and 28.4 ◦C in January
(coldest). Annual precipitation is 2000 mm with 90% in the rainy season. The vegetation
mainly includes tropical montane forests, tropical monsoon forests, and deciduous forests.
According to the global Sentinel-2 10 m Land Use/Land Cover (LULC) Timeseries, trees
and rangeland accounted for 81.91% and 12.09%, respectively, in northern Laos in 2020 [35].
Swidden agriculture, uncontrolled fires, commercial and illegal logging, and fuelwood
collection are threats to the forest [22].
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Figure 1. Maps showing the provinces, topography and footprints of Landsat and MODIS scenes of
northern Laos.

Laos is the least populated and least densely populated country in Southeast Asia.
Northern Laos has a small population of 4.25 billion (or 58.73%) and a population density
of about 28 persons/km2 (less than the national level 31) in 2020. According to the 2020
statistics, over 60% of the Lao population distributes in rural areas, and the agricultural
gross domestic product accounts for 16.51% [33]. The hilly and mountainous environments,
distinct dry seasons, large proportion of ethnic groups (e.g., the Hmong and Khmu), and
low agricultural potential facilitate the continuous development of swidden agriculture [31].
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Shifting cultivators usually cut and slash primary or secondary vegetation and burn com-
pletely in the sunny noontime during the peak of the dry season, resulting in many small
and scattered patches distinct from the forest in the hilly and/or mountainous environment.
The year-by-year rotational slash-burn, cultivation, and fallow create complex landscapes
among the forest, swidden, and fallow. In the mid-1990s, the Government of the Lao
PDR began to set consecutive goals of eradicating swidden agriculture by 2000 [36], later
2010 [37], and 2020 [38]. Over the past decades, market integration and the development
of non-agricultural sectors have seen swidden agriculture largely replaced by commercial
production (including banana, maize, and rubber) [39].

3. Materials and Methods
3.1. MODIS Vegetation Indices Products and Preprocessing

To delineate monthly to annual development of swidden agriculture landscape
(Figure 2), the 2001–2020 MODIS NDVI (MOD13Q1 V006, 16d and 250 m) and sur-
face reflectance products (MOD09A1 V006, 8d and 500m) over northern Laos (h27v07
and h27v06) were freely gathered from the National Aeronautics and Space Administra-
tion (NASA) Alaska Satellite Facility (ASF) Distributed Active Archive Center (DAAC,
https://ladsweb.modaps.eosdis.nasa.gov/search/, accessed on 15 July 2021). Among
them, MOD09A1 data products have data missing on day of year (DOY) 169 in 2001 and
Near Infrared (NIR) anomalies on DOY 001 and 017 in 2007. The MODIS Reprojection
Tool is applied to composite MOD09A1 and MOD13Q1 with the same projected coordi-
nate system (UTM48N). MOD09A1 is preprocessed into 16d in line with MOD13Q1 to
depict the temporal development of varied stages (e.g., slashing and burning) of swidden
agriculture [40]. Then, the surface reflectance of Blue (459~479 nm), Red (620~670 nm),
NIR 1 (841~876 nm), NIR 2 (1230~1250 nm), Shortwave Infrared (SWIR) 1 (1628~1652 nm),
and SWIR-2 (2105~2155 nm) bands were used to calculate NDVI [41], EVI [42], Land Sur-
face Water Index (LSWI [43]), and Normalized Burn Ratio (NBR [44]). The equations for
calculating vegetation indices were listed below:

NDVI =
ρNIR1 − ρRed
ρNIR1 + ρRed

(1)

EVI = 2.5× ρNIR1 − ρRed
ρNIR1 + 6× ρRed − 7.5× ρBlue + 1

(2)

LSWI =
ρNIR2 − ρSWIR1

ρNIR2 + ρSWIR1
(3)

NBR =
ρNIR2 − ρSWIR2

ρNIR2 + ρSWIR2
(4)

where ρBlue, ρRed, ρNIR1, ρNIR2, ρSWIR1, and ρSWIR2 refer to the surface reflectance of the
Blue, Red, NIR1, NIR2, SWIR1, and SWIR2 bands. The values of the four vegetation indices
range from +1.0 to −1.0.

Firstly, time-series NDVI, EVI, and other indices were consistently harmonized to
delineate seasonal and phenological vegetation development using the Savitzky–Golay
filter method. The filtering method performs well in smoothing out noise due to cloud
contamination or atmospheric variability and reflecting long-term changes and/or local
abrupt variations [27]. Secondly, the Mann–Kendall (MK) trend test was used to screen out
potentially qualified samples (pixels) via the evaluation of the changing trend of vegetation
indices at the 95% significance level [45]. Then, the samples of swidden agriculture land-
scapes were further selected based on their spectral characteristics during the dry season.
The threshold values are determined based on the statistics of the selected pixels of freshly
opened swiddens during the critical period before and after slash and burn. Finally, the
threshold method was applied for the detection of the annual distribution of the swidden
agriculture landscape between 2001 and 2020.

https://ladsweb.modaps.eosdis.nasa.gov/search/
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Figure 2. The workflow for mapping swidden agriculture landscape (SAL) using time-series MODIS
vegetation indices in northern Laos.

3.2. Landsat-8 Surface Reflectance and Sampling Selection

Landsat family sensors’ 30 m imagery is often applied as ground truth data for vali-
dating classification results derived from MOIDS time-series vegetation indices [31,46,47].
The justification is mainly because Landsat imagery has already been proven useful for
mapping swidden agriculture [24]. When we carried out a sample selection of newly
opened swiddens, only those with larger patches were considered, albeit the difference
between MODIS and Landsat imagery regarding the pixel size. Meanwhile, there have been
challenged to collecting ground truth samples in situ in the past twenty years. Similarly,
the accessibility of users to historical finer and long-term satellite imagery via Google Earth
is limited. Then, Landsat imagery can be a good choice for sample selection.

In this study, the level-2 surface reflectance products of Landsat scenes over northern
Laos (Figure 1) were gathered from the United States Geological Survey (USGS) Earth
Resources Observation and Science (EROS) Center Science Processing Architecture (ESPA)
on Demand Interface (https://espa.cr.usgs.gov/index/, accessed on 13 October 2021)

https://espa.cr.usgs.gov/index/
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for the selection of validation samples. The images consist of two parts. Part one is
the usage of imagery across northern Laos acquired in the same year (2013), including
path/row 130/046 (April 6), 129/045 (September 11), and 128/047 (October 6), with the
cloud coverage (CC) of 6.04%, 7.12%, and 13.51%, respectively. The three scenes cover
the northernmost, westernmost, and southeastern parts of the study area, which fully
considers the latitudinal and longitudinal landscape differences. Part two is the usage of
images of path/row 129/046 acquired on 3 May 2003 (CC = 13%), 29 March 2008 (CC = 7%),
25 April 2012 (CC = 2%), 28 April 2016 (CC = 4.59%), and 9 May 2020 (CC = 14.97%), which
give full consideration to annual variation. It should be noted that the extent of 129/046 is
only a path/row located within entire Laos. Then, cloud-free pixels displaying the features
of being cleared (e.g., slashing, drying, and burning), cropping (including harvesting), and
fallowing on the natural color composites (SWIR-NIR-Red) were carefully compared and
selected based on our earlier fieldwork in Mainland Southeast Asia [13].

3.3. Sentinel-2 10 m Land Use and Land Cover Products

The datasets of 2017–2021 Sentinel-2 10 m LULC Timeseries in the format of GeoTIFF
are freely available to the scientific community via Environmental Systems Research Institute
(ESRI) (https://www.arcgis.com/apps/instant/media/index.html?appid=fc92d38533d440
078f17678ebc20e8e2, (accessed on 15 November 2021)). The five-year datasets comprise
water, trees, grass, flooded vegetation, crops, rangeland, built area, bare ground, snow/ice
and clouds. Annual LULC products have an average accuracy of 85~89% [35]. The type of
trees covers any significant clustering of tall (~4.572 m or higher) dense vegetation including
industrial tree plantations. The built area consists of man-made structures including paved
roads and railways and other large homogenous impervious surfaces. Moreover, water refers
to rivers, ponds, lakes, oceans, and flooded salt plains. The 2017–2021 maximum distribution
map of waterbodies was utilized as an auxiliary mask to eliminate the target pixels showing
abrupt changes due to the expansion or reduction of the water surface. The area statistics
of trees and rangeland were also used in the study area. In addition, the 5338 village-level
shapefile data were gathered from the Ministry of Agriculture and Forestry (MAF).

3.4. Samples Selection of Swidden Agriculture Landscape Using the Mann-Kendall Trend Test

(1) Curves construction and harmonization of time-series vegetation indices
MODIS time-series vegetation indices (e.g., NDVI, EVI, LSWI, and NBR) curves during

2001–2020 were established using the layer stacking tool via ENVI 5.3. Then, the Savitzky–Golay
filter, as a convolutional smoothing method using the least-squares-fit to calculate derivatives
of the time-series dataset, was applied to smooth out noise. We generated improved time
series of vegetation indices for swidden agriculture landscapes as the filter eliminates abnormal
values due to abrupt changes and/or cloud contamination. Abrupt changes might be caused
by the slash and burn of secondary and/or primary forests or the rapid rise or fall of the water
surface of rivers and/or lakes. The equation is given below [22,27].

Y∗j =
∑i=m

i=−m CiYj+i

N
(5)

where Y and Y* represent the original and estimated values, j represents the jth data in
the time series to be modeled, Ci represents the filtering coefficient of the ith data, and N
represents a rectangular window (4 × 4) of a fixed moving window.

(2) Sample selection based on the Mann–Kendall trend test
Target pixels of swidden agriculture landscapes were defined according to their tem-

poral dynamics, especially in the duration between February and April due to slash and
burn. Based on the fact that swidden agriculture is featured by rotational cycles of pre-slash,
slashing, drying, and burning of vegetation, the pixels of swidden agriculture landscape
undergo abrupt decrement in vegetation indices during the dry season [45]. The Mann–
Kendall trend tests were consistently carried out via MATLAB 2018a. The formulas of the

https://www.arcgis.com/apps/instant/media/index.html?appid=fc92d38533d440078f17678ebc20e8e2
https://www.arcgis.com/apps/instant/media/index.html?appid=fc92d38533d440078f17678ebc20e8e2
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Mann–Kendall trend test are listed below [48]. First, the statistics (S) of the Mann–Kendal
trend test are computed as follows.

S =
n−1

∑
i−1

n

∑
j=i+1

sgn(xj − xi), sgn
(
xj − xi

)
=


+1, xj − xi > 0
0, xj − xi = 0
−1, xj − xi < 0

(6)

VAR(S) = (n(n− 1)(2n + 5)−
m

∑
i=1

ti(ti − 1)(2ti + 5))/18 (7)

where n represents the number of the time series, xi and xj denotes the value at timings i
and j. Both negative and positive S indicate that there is a decreasing or increasing trend.
m is the number of tied groups, and ti is the number of observations in the ith (tied) group.

Next, S is tested by Z.

Z =


S−1√
VAR(S)

, S > 0

0, S = 0
S+1√
VAR(S)

, S < 0
(8)

If Z is greater than the critical value (1.96) of a standard normal distribution at the
significance level (95%), it indicates a statistically significant positive or negative trend in
the data series. Here, only the pixels (samples) showing an abrupt decline in the vegetation
indices time series are kept. It should be noted that these samples were characterized by
two or more slash-burns during the recent two decades. Finally, we selected 50 of the target
pixels that are evenly distributed in northern Laos to delineate the temporal variations
in MODIS time series (e.g., NDVI and EVI) of swidden agriculture, especially during the
dry season (Figure 3). Comparisons show that NDVI and EVI perform much better than
those of NBR, LSWI, SWIR1 and NIR2 in describing the temporal changes of slash and
burn based on the selected pixels of swidden agriculture. Similarly, the threshold ranges of
NDVI and EVI were further determined.
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4. Results and Analysis
4.1. Threshold Ranges of Vegetation Indices for Detecting Swidden Agriculture Landscape

As swidden agriculture shows drastic temporal variations in spectral features, thresh-
old ranges of NDVI/EVI for detecting swidden agriculture landscape between February
and April were determined with the selected 50 pixels during 2004–2010 (Figure 3). A
16d interval might cause maximum MODIS NDVI and/or EVI beyond one month, which
brings about obvious variations during slash and burn. Here, NDVI and EVI were statis-
tically calculated in consecutive two months based on the abrupt changes in vegetation
indices, e.g., February–March, March–April, and April–May. The rule of a sharp decrease
in NDVI and EVI during the period of slash and burn or before cultivating crops is often
applied to detect newly opened swiddens in that very year [40]. Next, threshold ranges
of MODIS NDVI and EVI between February and May 2001–2020, in particular those in
March–April and April–May, were consistently determined. Concerning the issues of span-
ning two consecutive months due to 16d interval of MODIS composites (e.g., the product
of DOY 113) and temporal variations in vegetation growth, statistics (e.g., the averages)
of minimum values of NDVI and EVI after the abrupt change in either March–April or
April–May were calculated to determine the threshold ranges for identifying swidden
agriculture landscape. To ensure the stability of threshold ranges, five-year, ten-year, and
twenty-year averages of NDVI and EVI during the periods of March–April and April–May
were calculated accordingly (Table 1 and Figure 4). Lastly, the threshold ranges of NDVI
and EVI of swiddens are 0.47 (±0.02) and 0.35 (±0.02) in March–April and 0.36 (±0.03)
and 0.29 (±0.02) in April–May, respectively. The pixels with NDVI and/or EVI less than
or equal to the aforementioned threshold ranges were labeled as a swidden agriculture
landscape in 2001–2020. MODIS NDVI and EVI are able to detect the growth status and
vegetation coverage of regional vegetation, and EVI is more capable of correcting and
eliminating the effects of soil background and aerosols. However, the NDVI values are
always larger than those of EVI in the same time period mainly due to the variations in
fractional vegetation cover [49].

Table 1. Threshold ranges of NDVI and EVI of swidden agriculture during the dry seasons of
2001–2020.

2001–2010 2011–2020 2001–2020
March–April April–May March–April April–May March–April April–May

EVI 0.3668 0.3055 0.3718 0.2709 0.3676 0.2892
NDVI 0.4558 0.3629 0.4940 0.3307 0.4683 0.3469

According to the availability of cloud-free or low-cloud-content Landsat imagery, then
the resultant MODIS-derived maps of the swidden agriculture landscape in 2003, 2008,
2012, 2013, 2016, and 2020 were selected for accuracy assessment via a confusion matrix.
With the Landsat-based samples of swiddens including newly burned plots and cultivated
fields, Table 2 shows the evaluation results via a confusion matrix. In contrast, NDVI-based
mapping of the swidden agriculture landscape has a larger average overall classification
accuracy of 79% and an average Kappa coefficient is 0.59, showing moderate to substantial
reliability. Given the coarse spatial resolution of MODIS data products, the evaluation
results are practicable at regional to global scales. In addition, considering the spatial
heterogeneity, temporal complexity, and landscape diversity of swidden agriculture [24],
the NDVI-based threshold method has greater potential in monitoring swidden agriculture
at the landscape scale for the entire study period.
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Table 2. Validation results of swidden agriculture landscape (SAL) via confusion matrix based on
Landsat imagery.

Landsat Path/Row and Classes
NDVI-Based Mapping of SAL EVI-Based Mapping of SAL

Swidden Non-Swidden Total Swidden Non-Swidden Total

130/046
(2013)

Swidden 123 0 123 66 0 66
Non-swidden 90 223 313 147 223 370

Total 213 223 436 213 223 436
Overall accuracy 79.36% 66.28%

Kappa 0.58 0.31

128/047
(2013)

Swidden 114 0 114 108 0 108
Non-swidden 70 188 258 76 188 264

Total 184 188 372 184 188 372
Overall accuracy 81.18% 79.57%

Kappa 0.62 0.59

129/045
(2013)

Swidden 78 0 78 50 0 50
Non-swidden 48 108 156 76 108 184

Total 126 108 234 126 108 234
Overall accuracy 79.49% 67.52%

Kappa 0.60 0.38

129/046
(2003)

Swidden 159 1 160 148 1 149
Non-swidden 104 249 353 115 249 364

Total 263 250 513 263 250 513
Overall accuracy 79.53% 77.39%

Kappa 0.59 0.55

129/046
(2008)

Swidden 200 1 201 154 0 154
Non-swidden 133 320 453 179 321 500

Total 333 321 654 333 321 654
Overall accuracy 79.51% 72.63%

Kappa 0.59 0.46
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Table 2. Cont.

Landsat Path/Row and Classes
NDVI-Based Mapping of SAL EVI-Based Mapping of SAL

Swidden Non-Swidden Total Swidden Non-Swidden Total

129/046
(2012)

Swidden 245 1 246 144 0 144
Non-swidden 185 423 608 286 424 710

Total 430 424 854 430 424 854
Overall accuracy 78.22% 66.51%

Kappa 0.57 0.33

129/046
(2016)

Swidden 174 0 174 66 0 66
Non-swidden 124 299 423 232 299 531

Total 298 299 597 298 299 597
Overall accuracy 79.23% 61.14%

Kappa 0.58 0.22

129/046
(2020)

Swidden 99 0 99 37 1 38
Non-swidden 69 153 222 131 152 283

Total 168 153 321 168 153 321
Overall accuracy 78.50% 58.88%

Kappa 0.58 0.21

4.2. Annual Changes in Swidden Agriculture Landscape in Northern Laos

With the 2001–2020 MODIS NDVI time series, annual maps of the swidden agriculture
landscape were consistently extracted and statistically calculated via the ArcGIS 10.6 platform.
The spatial pattern of the swidden agriculture landscape was significantly more prevalent
in the southeast than that in the northwest. The annual average area was 14.70 × 104 ha in
northern Laos. In particular, Huaphanh Province had the highest area percentage of swidden
agriculture landscape (13.94%). This was followed by those in Borikhamxay Province (12.78%),
Phongsaly Province (11.90%), and Luangprabang Province (10.62%). By contrast, Vientiane
Capital had the lowest percentage (1.14%). Numerically, the swidden agriculture landscape
showed a general decline trend during the last two decades, with a nearly 13.80% reduction in
the second decade. Five-year averages also showed that a continuous increase was observed
during 2001–2015 and a sharp decrease in the last one (Figure 5).

Annual variations in the swidden agriculture landscape were huge in northern Laos
(Figure 6a) and among provincial units (Figure 6b–d). Firstly, it declined sharply from
22.87 × 104 ha in 2001 to 10.55 × 104 ha in 2005 in the entire study area, with a reduction of
over 53.87%. The noticeable reduction in 2005 may be related to the National Growth and
Poverty Reduction Strategy launched in the previous year, which attempts to make efforts
to stabilize swidden agriculture across the country. Secondly, swidden agriculture exhibited
a tendency to increase and then decrease every other year between 2005 and 2009, with the
maximum (21.25× 104 ha) in 2008 during half of the 2000s. It should be noted that swidden
agriculture exhibited a sharp fall in 2010 while the distribution area shrank to its weakest
level in the 2010s. For example, the 2010 area of the swidden agriculture landscape declined
by over 54% compared with that in 2008. We thus cautiously believe that the general
decreasing trend in the development of the swidden agriculture landscape was closely
connected with the policies of eradicating swidden agriculture proposed in the Eighth
Party Conference by 2010. Although this national goal had not yet been fully accomplished
within the prescribed time limit, several villages had successfully facilitated the stop or
transformation of swidden agriculture. However, the decline in swidden agriculture ended
with a rebound growth next year mostly due to the discontinuity of governmental policy.
For example, the endeavor of stabilizing swidden agriculture was not emphasized much
in Lao official documents in 2011. In addition, the decline of rubber latex prices may also
be an important factor as the smallholders of rubber plantations are more dependent on
swidden agriculture. More specifically, there was a steady development of the swidden
agriculture landscape in the first half of the 2010s. With the goal postponed by 2020, a
generally consistent declining trend in the swidden agriculture landscape was seen since
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2016, with the exception of 2017. Regarding the contributors to the decrease in the years
2016–2020, this is an important issue that needs to be carefully examined in the near future
with multi-sourced input data such as household interviews and the policies of shifting
cultivation eradication in northern Laos. Currently, we cautiously believe that the dominant
factor could be the top-down eradication policies of the central government in Laos.
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4.3. Village-Level Changes in Swidden Agriculture Landscape in Northern Laos

Swidden agriculture landscape was detected in all provinces of northern Laos over
the last two decades, which still highlights the universality and necessity of this tradi-
tional farming (Figure 7). Huaphanh, Borikhamxay, Phongsaly, Luangprabang, Xaysom-
boon, Xiengkhuang, and Xayaboury opened swiddens with an annual average of over
1.00 × 104 ha and Huaphanh had the largest (2.00 × 104 ha). In contrast, the quantity in
the other four provinces was below the average level and Vientiane Capital had the least
(0.17 × 104 ha). Similarly, the twelve provincial units all displayed varying degrees of
decreasing trends in the swidden agriculture landscape. The annual fluctuation of the
swidden agriculture landscape was huge in all provinces (especially Huaphanh) with the
exception of Vientiane Capital before 2017. Then, this farming was kept at a low level. An-
nual areas of the swidden agriculture landscape showed similar changing patterns among
Luangnamtha, Bokeo, Oudomxay and Xayaboury. For example, swidden agriculture had
obviously declined since 2008.
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Similar zonal statistics calculation shows that a swidden agriculture landscape was
detected in all districts (99) of northern Laos. However, 91 of them always kept this farming.
Among them, Phonhong District in Vientiane Province reported 13 times the practicing
of swidden agriculture in twenty years. Besides, the area of swidden agriculture in the
Xamneua District of Huaphanh Province decreased the most, or 5.66 ×103 ha, followed
by 4.54 × 103 ha in the Kasy District of Vientiane Province. It should be noted that the
swidden agriculture landscape in the Hinherb District (Vientiane Province), Ngeun District
(Xayaboury Province), Khounkham District (Borikhamxay Province), Phonhong District
(Vientiane Province) ended in 2018. Compared with the number of swidden districts in
2001, there was a reduction of 3% in 2002, 3% in 2010, and 8% in 2019. In other words, only
two districts stopping swidden agriculture in each decade highlight the difficulty in ending
swidden agriculture in Laos.

The number of villages that were detected with the emergence of swidden agricul-
ture decreased in the last two decades (Figure 8), from 1637 in the 2000s to 1432 in the
2010s. However, swidden agriculture was continuously practiced in a total of 957 vil-
lages, or nearly accounting for 39.05% of the total. These villages had a total area of
14.56 × 104 ha in 2001 and 5.94 × 104 ha in 2020, showing a notable decreasing trend
(59.21%). Among them, the area used for swidden agriculture of the village Xieng Nuea,
Phongsaly Province dropped by 0.19 × 104 ha, and nearly 54.50% in the last twenty
years. Second, nearly 51.41% of the villages had an area reduction of over 50% during
2001–2020. Among them, 66 villages (including Korhai of Borikhamxay Province, or 6.90%)
declined by over 90%, and about 492 villages (including Namleom of Huaphanh Province,
or 51.41%) had more than half of decreased area of swidden agriculture in the period. About
210 villages (including Viengsamai of Luangprabang Province, or 22%) decreased by
10–50%, followed by 241 (including Pamaekkouy of Luangnamtha Province, or 25.18%) vil-
lages less than 10%. Finally, swidden agriculture showed an increasing trend in 14 villages,
including Phonhxai of Huaphanh Province, Maknaotai of Vientiane Capital, Huoisieth of
Borikhamxay Province, Houayhip of Luangprabang Province, Xongtai of Luangprabang
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Province, and Phava of Huaphanh Province. Although the increase in swidden agriculture
plays an insignificant role in affecting the general trend of decline, the underlying factors
behind are not clear and need to be pressingly investigated.
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Further statistical analyses were added based on the time nodes of key policies on the
eradication of swidden agriculture during 2001–2020 (Table 3). Firstly, with the launch of
the National Poverty Eradication Programme (NPEP) in 2003 and the National Growth and
Poverty Eradication Strategy in 2004 by the Lao PDR, the number of villages practicing
swidden agriculture in 2005 declined by 1101 compared with that in 2001, with the corre-
sponding area of 12.35 × 104 ha. These villages are mainly concentrated in Luangprabang
Province (205 villages or 18.6% including Navat), Phongsaly Province (153 villages or 13.8%
including Narm Hounh), Huaphanh Province (150 villages or 13.6% including Huana),
Oudomxay Province (141 villages or 12.8% including Mukton), Xiengkhuang Province
(124 villages or 11.2% including Korsanh), and Xayaboury Province (116 villages or 10.50%
including Khueng). Secondly, to meet the goal of entirely eliminating swidden agriculture
in the Eighth Conference of the Lao People’s Revolutionary Party by 2010, 1174 villages
in total discontinued swidden agriculture that year. However, 735 out of the 1174 villages
re-practiced swidden agriculture in 2011, with a rehabilitation rate of 62.61%. Finally,
statistics show that 1455 villages or about 59.30% of the villages in northern Laos no longer
practiced swidden agriculture in 2020. Meanwhile, swidden agriculture was stopped in
1318 villages out of 1455 or 90.58% of them between 2018 and 2020. It again shows that the
Lao government’s policies are crucial for the elimination of swidden agriculture.

Table 3. Statistics of villages and districts which stop or restart swidden agriculture related to the
arrangement of the national policy of eradicating shifting cultivation in Laos during 2001–2020.

2005 2010 2018–2020 Swidden Agriculture
Restart in 2011

Count Percent/% Count Percent/% Count Percent/% Count Percent/%

Villages 1350 55.08 1174 47.90 1318 53.77 735 62.61
Districts 2 2.02 3 3.03 4 4.04 3 100.00

Annual variations in the number of villages practicing swidden agriculture in north-
ern Laos were also noticeable during 2001–2020. Compared with that in 2001, swidden-
practicing villages fell by nearly 45% in 2005, 48% in 2010, and 59% in 2020. Within
1455 villages, the most reduction of swidden agriculture landscape was seen in 2020. In
other words, the quantity of swidden-practicing villages decreased, with an average of
32 each year. Among them, larger reductions were seen in 2002, 2010, and 2018, accounting
for 38%, 27%, and 38%, respectively, compared with those of the previous year. Because of
annual fluctuation, there were also increments in swidden-practicing villages in 2006, 2011
and 2017 compared with those of the prior year, namely 19% (or 259), 54% (or 691), and
46% (or 555), respectively. About 1084 villages (43.69%) in northern Laos stopped swidden
agriculture over 10 times during 2001–2020, followed by 300 villages (12.09%) five to ten
times, and 110 villages (4.43%) with less than five (Table 4).

Table 4. Statistics of districts and villages stopping swidden agriculture.

0 1–5 Years 5–10 Years 10–20 Years
Count Percent/% Count Percent/% Count Percent/% Count Percent/%

Villages 957 38.57 110 4.43 300 12.09 1084 43.69
Districts 91 91.92 3 3.03 5 5.05 0 100

5. Discussion
5.1. Potential and Limitations of MODIS Vegetation Indices in Mapping Swidden
Agriculture Landscape

Swidden agriculture landscape covers the full process ranging from slash-burn, cultiva-
tion, and fallow [2], which comprises complex land cover mosaics featured by agricultural
production and forest recovery [50]. This study highlights the potential of MODIS NDVI
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time-series products in mapping the swidden agriculture landscape in northern Laos. It is
also based on the spectral changes in the period of slash and burn during the dry season.
However, the coarse spatial resolution may limit the effectiveness of mapping the exact
boundary of slashed and burned pixels of swidden agriculture [31,51]. In addition, the
aerosol effects have an impact on the performance of vegetation indices in tropical moun-
tainous settings where there is a high aerosol load. The better stability of MODIS NDVI over
EVI ensure that NDVI-derived results on swidden agriculture landscape perform better
in northern Laos [52]. Our study shows the promising potential of MODIS time-series
vegetation indices in monitoring the landscape changes in swidden agriculture within the
tropics in the early two decades of this century. However, it requires that more ground
samples be extensively gathered via varied spatiotemporal resolution remotely sensed data
to improve the algorithms across the tropical regions.

Next, the threshold method is straightforward but is highly dependent on local
conditions [51,53]. As swidden agriculture shows great diversity across the tropics [54],
there are huge variations in the fuel load among different plots and phenology of slash and
burn due to inter-annual climate change [55]. Although the determination of threshold
ranges is simple and feasible, the value ranges should be seriously defined in other regions.
Since the fact that swidden agriculture is always opened in the secondary and/or primary
forest, value ranges of varied vegetation indices between pre-slash and burn also fluctuate.
We appeal more attention could be paid to define the development of commonly used
vegetation indices using various satellite imagery. In addition, the accurate evaluation of
MODIS classification results at 250 m or 500 m resolutions is usually challenged. This is
also true for the monitoring of swidden agriculture because of the lack of cadastral and
statistical information [21,56]. Landsat and other medium-resolution images are always
employed for validating the accuracy of MODIS-extracted results. It should be noted that
there are temporal differences between MODIS annual results and single-date ground truth
based on Landsat images. Moreover, the mixed pixel effects of MODIS results on swidden
agriculture also challenge the accuracy of Landsat-derived ground truth data.

5.2. Enhancing Remote Sensing of Swidden Agriculture in Transition in the Tropics

Swidden agriculture is continuously practiced in the tropics [13], despite intervention
from all sides via policy-making, alternative development, and the introduction of other
land use techniques [57,58]. Under the context of climate change, swidden agriculture is no
longer merely a traditional food production system for remote uplanders or a unique cultural
identity of local ethnic groups. The carbon emissions or budget in tropical forest changes due
to slash-burns and fallow calls for in-depth analyses of tropical swidden agriculture. This
is also true for the improvement of shifting cultivators’ livelihoods to meet the Sustainable
Development Goals (SDGs). Swidden agriculture in transition has thus gained increasing
concerns from scientific community and decision-makers. It is not hard to understand
that the dynamics of swidden agriculture clearly reflect the social and political shifts in
perspective towards this traditional practice [59]. More multidisciplinary studies are expected
to figure out the spatial and temporal dynamics and their effects and mechanisms of swidden
agriculture in transition. Among them, remote sensing of swidden agriculture is the first and
key step to generate fundamental thematic datasets in recent decades.

Taking Laos, for example, swidden agriculture is highly concerning because of its
forest-dominant land cover especially in its northern part under the context of the imple-
mentation of the United Nations Collaborative Programme on Reducing Emissions from
Deforestation and Forest Degradation in Developing Countries (UN-REDD Programme). It
makes the country a valuable partner for developed nations looking for less expensive solu-
tions to cut carbon dioxide emissions. To maximize the value of the secondary or primary
forests, the Lao Government has put up a variety of regulations and policies to stabilize or
end swidden agriculture over the past decades. This research remains a methodological test
study aiming at probing into the potential of MODIS data products in mapping swidden
agriculture landscapes in the tropics. Moreover, it shows a generally decreasing trend of
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swidden agriculture. However, more details about the changing swidden agriculture in the
tropical highlands remain understudied. For instance, what are the differences in landscape
patterns of swidden agriculture in transition across the tropics in the past decades? Under
the constraints of man-land relations caused by population growth and land use policies,
what are the changing characteristics of swidden and/or fallow patches? Additionally, how
does the fallow period change? These pixel- to patch-level examinations of swidden agri-
culture in transition may not be accomplished using moderate to coarse satellite imagery,
either Landsat or MODIS. Presently, Sentinel-2 A/B launched in 2015/2017 can be a robust
and consistent data option for finer mapping of swidden agriculture [24]. However, to our
best knowledge, no Sentinel-2-based analysis on an algorithm developing for monitoring
tropical-swidden agriculture has been reported.

6. Conclusions

Can MODIS vegetation indices be applied to detect swidden agriculture? How did
swidden agriculture develop in the past two decades under the national policies of eradi-
cation in northern Laos? To answer the questions, MODIS vegetation indices time-series
data during 2001–2020 were gathered to generate annual maps of swidden agriculture
landscape with threshold method and then applied to examine the spatial and temporal dy-
namics, in particular at the village-level and annual scale. The main conclusions are: Firstly,
MODIS NDVI/EVI time series hold the potential in delineating the temporal development
of the entire process of slash and burn in northern Laos. However, the NDVI time series
performs better in detecting and mapping the swidden agriculture landscapes. Secondly,
annual variations in the swidden agriculture landscape were huge in northern Laos, with
an annual average of 14.70 × 104 ha. However, it showed a declining trend during the last
two decades, in particular, in the second half of the 2010s. Thirdly, swidden agriculture
had been continuously practiced in 957 villages, or 91 districts during the last two decades,
especially in villages in the northwest. The total number of swidden-practicing villages
(or districts) showed a declining trend. The average of 32 villages per year or two districts
per decade highlights the difficulty in ending swidden agriculture in Laos, although the
government of the Lao PDR has established a number of policies for the eradication of
swidden agriculture by 2020.
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