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Abstract: The vegetation cover of the Ouémé Delta constitutes a biodiversity hotspot for the wetlands
in southern Benin. However, the overexploitation of natural resources in addition to the intensification
of agricultural practices led to the degradation of the natural ecosystems in this region. The present
work aims to reconstruct, using remote sensing, the spatial dynamics of land use in the Ouémé Delta
in order to assess the recent changes and predict the trends in its vegetation cover. The methodology
was based on remote sensing and GIS techniques. Altogether, this process helped us carry out the
classification of Landsat images for a period of 30 years (stating year 1990, 2005, and 2020) via the
Envi software. The spatial statistics resulting from this processing were combined using ArcGIS
software to establish the transition matrices in order to monitor the conversion rates of the land
cover classes obtained. Then, the prediction of the plant landscape by the year 2035 was performed
using the “Land Change Modeler” extension available under IDRISI. The results showed seven (07)
classes of occupation and land use. There were agglomerations, mosaics of fields and fallow land,
water bodies, dense forests, gallery forests, swamp forests, and shrubby wooded savannahs. The
observation of the vegetation cover over the period of 15 years from 1990 to 2005 showed a decrease
from 71.55% to 63.42% in the surface area of the Ouémé Delta. A similar trend was noticed from 2005
to 2020 when it reached 55.19%, entailing a loss of 16.37% of the surface area of natural habitats in
30 years. The two drivers of such changes are the fertility of alluvial soils for agriculture along and
urbanization. The predictive modeling developed for 2035 reveals a slight increase in the area of
dense forests and shrubby wooded savannas, contrary to the lack of significant decrease in the area of
gallery forests and swamp forests. This is key information that is expected to be useful to both policy
and decision makers involved in the sustainable management and conservation of natural resources
in the study area.

Keywords: conservation; spatial dynamics; Ouémé Delta; vegetation cover

1. Introduction

In Benin, Ouémé is the longest river, and its delta extends to nearly 90 km with a fairly
large flood zone of more than 9000 km2 [1]. This delta zone is located on sedimentary soil
loaded with alluvium, which is transported from upstream of the river, and hosts a diversity
of plant communities [2]. These are dense forests and gallery forests, swamp forests, and
other plant formations that represent various wetland ecosystems [3]. Regarding the
topography of the region, there are low slopes offering large areas that favor agriculture
because of the soil fertility [1,4]. This potential fertility attracts people who not only
overexploit forest resources including the non-timber forest products but also intensify
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the use of fertile soils for farming in order to supply the growing demand for food and
other basic products [5]. Moreover, the Ouémé Delta supports several socio-economic
activities, including fishing, livestock breeding and grazing, trade, and transportation
by local communities [2]. Consequently, an increasing demographic pressure, fishing
techniques, and agricultural practices, which are associated with climatic hazards, cause
many environmental problems including pollution and ecosystem degradation [6]. In
addition, the river Delta, as the natural receptacle of the river, accumulates all the wastes
from the exploitation and management activities of its watershed [7]. This leads to the
pollution of water and the degradation of soil [8], the environment, and natural formations,
thus precipitating land use changes and the loss of biodiversity [9,10]. Such a loss will
affect humans since local populations in Benin are known to collect both woody and
herbaceous species from their natural environment for the treatment of various health
conditions [11–13]. These issues raise questions about the sustainability of natural resource
management as well as the conservation systems and the availability of present and future
services that partly depend on plant communities [14].

There is evidence for a diversity of investigations on vegetation changes across the
globe [15,16], but the novelty and originality of the present study is that it focuses on the
delta of the longest river of Benin Republic, which has never been researched before with
respect to its vegetation cover. Indeed, quantifying how vegetation changes over years
is very critical to Earth systems. In fact, plants play a key role in the global water [17]
and carbon cycles [16], which could affect the Earth’s climate. It is important to monitor
the plant cover in order to reflect on the mechanisms of its management to ensure the
balance between land use and the availability of ecosystem services [18]. This can be
carried out through the collection of field data for the establishment of basic indicators
with which to assess land use [19]. However, unfortunately, the exploitation of quantitative
and qualitative field data is very costly and sometimes impossible when study areas are
difficult to access. These data are sometimes unavailable in the existing databases when
assessing past levels of land occupation and use [20]. Nowadays, however, there are
spatial approaches, including earth observation by satellite remote sensing and geographic
information sciences, that help overcome these data collection difficulties [21,22]. These
disciplines use modern techniques for collecting and processing spatial data with relatively
satisfactory precision [23]. For example, they enable the reconstruction of spaces from
satellite images and the study of their dynamics with various levels of detail [24,25]. They
also offer the possibility of analyzing, modeling, and mapping the phenomena studied [26].
Despite these scientific advances, very few studies have focused on earth observation in
the Ouémé Delta, and, more specifically, on its vegetation cover [27]. The few studies
available on land use in this sensitive geographical zone provide little information on the
past dynamics of plant formations as a support for spatial reconstruction and predictive
landscape analysis [28–30]. Using satellite image analysis for vegetation and land cover
assessment, Nababa et al. [31] documented the cover dynamics and mangrove degradation
in the Niger Delta region. This helped them predict the land cover of the study area in
the coming years. Elsewhere and more recently, Venter et al. [32] made a comparison of
dynamic world, world cover, and Esti land cover based on image analysis and ascertained
aggregate changes in the ecosystem. Similarly, in Nigeria, Uchegbulam et al. [33] extracted
statistics that showed that cultivation, built-up area, exposed soil, secondary regrowth, and
water bodies increased between 2002 and 2014. In line with such studies and to fill the gap in
the scientific knowledge on the Ouémé Delta region, the present research was undertaken,
which focuses on assessing the spatial dynamics and predictive analysis of the plant
landscape. Thus, it can serve as a scientific basis for both policy writers and decision makers
at various levels, particularly those involved in the development of municipalities sharing
the Ouémé Delta, for the conservation of biodiversity and sustainable water management.
In other words, although various studies have been undertaken worldwide using the
same method, the great importance of the present study is the fact that it focuses on a
humid ecosystem that has not been studied before despite the daily exploitation of such
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a ecosystem meaning human pressure. Moreover, the scientific validation of this study
shown through the methodology described below proves that it is worth disseminating the
outputs. The predictive analysis is not only innovative since it leads to scientific opinions
on the future of vegetation, but it is also greatly expected to be valued by political leaders
and other stakeholders involved in ecosystem management in Benin Republic in the present
context of climate change and biodiversity loss.

2. Materials and Methods
2.1. Study Area

The Ouémé Delta is located in southeast of Benin between latitudes 6◦25’N and 7◦20’N
and longitudes 2◦15’E and 2◦35’E (Figure 1). The delta covers an area of approximately
9000 km2 [1], which expands according to the seasons and other climatic events. In the
framework of this study, and although the flood area varies according to the season, we
located the limits with the dwellers’ assistance. Calculations gave a flood area around
10,230 km2.
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Figure 1. Geographical location of the Ouémé Delta.

The soil of the Ouémé Delta is soft, sedimentary ground with little accentuated relief,
which favors the spreading and the wandering of waters, erosion, and alluvial soil deposits
that extend over 90 km to its outlet in the lake and lagoon areas (Lake Nokoué and lagoon of
Porto-Novo), which are separated from the Atlantic Ocean by a coastal strip [1]. The Delta
belongs to the Guineo-Congolian phytochorological region, with an annual rainfall ranging
from 900 to 1300 mm, two rainy seasons, and two dry seasons [34]. The hydrographic
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system of the Ouémé Delta is made up of a confluence formed with the Zou in the north
from which it has established a floodplain. Downstream of this confluence, the river runs
along exposed land to the east, leaving only the floodplains to the west. The Sô River, which
stems from Lake Hlan, flows parallel to the Ouémé to Lake Nokoué. This space is shared by
the municipalities of Abomey-Calavi, Cotonou, Sèmè-Podji, Porto-Novo, Bonou, Adjohoun,
Dangbo, Aguégués, Sô-Ava, Zogbodomè, Toffo, and Zè, whose estimated population is
1,571,290 inhabitants [35]. The vegetation consists of swamp forests, dense and gallery
forests, tree and shrub savannahs, and agroecosystems [36]. The main activities generating
income in the study area are agriculture, fishing, animal husbandry, hunting, logging, wood
and plant collection, sand extraction, and the processing of agricultural products [2]. The
absence of regulation in such activities represents the most important cause of degradation
of the Ouémé Delta ecosystem.

2.2. Data and Methods Used to Assess the Dynamics of Vegetation Cover in the Ouémé Delta

The study of the dynamics of the vegetation cover in the Ouémé Delta was carried
out by combining several data sources. Thus, the topographic maps of southern Benin
on the scale of 1/200,000 were explored to geolocate the frame of reference and identify
the environmental drivers in the study area. Then, the Landsat satellite images available
via open access were examined to select the scenes 191–56 and 192–55 over three periods,
namely, 1990 (TM), 2005 (ETM+), and 2020 (OLI), in order to extract the land use classes and
areas. These images were chosen according to the dry season period to limit phenological
contrasts [37,38]. There is a need to highlight that using spectral variables of remote-sensing
data, particularly medium spatial resolution imagery, has a long history [39], and studies
based on medium-resolution images should not be seen as less important since their outputs
serve various comparative studies. In addition to these imagery data, field surveys were
carried out for sampling and validation of the mapping procedure.

The processing of the satellite images was performed in several steps, including a
pre-processing, which took into account the assembly of the scenes covering the limits
of the Ouémé Delta in the form of a mosaic. Since the study area covers two scenes of
Landsat imagery, it was necessary to construct a mosaic. Thus, in order to maintain uniform
illumination conditions on the scenes assembled before interpretation, an enhancement
was made [40]. A photo-interpretation was undertaken after the preprocessing in order
to determine the land use classes by creating digital layers of control points on the image.
Then, colored compositions in true colors were computed by combining the appropriate
bands based on the type of image. The colored composition in true colors was chosen to
make the images realistic because of the strong knowledge of the study environment. At
this step, the radiometric values of the pixels eased the identification of the land cover
classes, confirmed by the digital layer of control points recorded in the field. The supervised
classification of the image followed this step, performed with the use of the Maximum
Likelihood algorithm, which is based on the principle of calculating the probability of a
pixel belonging to a given class. A total of seven land cover classes were discriminated
with reference to the land cover classification from the national forest inventory [36]. For
each of these classes, training plots were delimited according to the size of the classes,
with a random distribution throughout the study area. Then, a ground-truth mission was
established from a sampling of 30 points per class for the validation of the classification.
A confusion matrix was generated to assess the quality of the classification regarding
its overall accuracy and according to Kappa statistics. Specifically, Kappa values are
categorized into four groups: less than 0.40, which is a weak agreement; from 0.41 to 0.60,
meaning moderate agreement; between 0.61 and 0.80, representing substantial agreement;
and greater than 0.80, meaning strong agreement [28]. The Kappa coefficient is also widely
used for the validation of image processing [41]. In other words, the family of Kappa
indices of agreement are used to compare a map’s observed classification accuracy relative
to the expected accuracy of baseline maps that can have two types of randomness (random
distribution of the quantity of each category and random spatial allocation of the categories),
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and the use of the Kappa indices has become common practice in remote sensing and other
fields [42]. Image processing was performed using Envi software package 5.3. Finally, the
data from the digital processing were vectorized and exported to Arcmap package 10.7
to be integrated into the Geographical Information System (GIS), where the plant cover
and the other land use units were mapped. The extraction of the appropriate areas then
followed.

2.3. Analysis of the Dynamics of the Vegetation Cover in the Ouémé Delta from 1990 to 2020

The evolution of the plant cover in the Ouémé Delta was described by comparing the
areas of the types of plant formations identified and discriminated for each of the satellite
images for the period of 30 years from 1990 to 2005 and 2005 to 2020. The changes in
areas observed regarding the vegetation and other land cover units have been highlighted
by the transition matrix, which translates the forms of conversion that each land cover
class has undergone between two dates. The transition matrix consists of x rows and y
columns, in which the transformations are from rows to columns. The number x of rows
of the matrix indicates the number of classes present at date t1, while the number y of
columns of the matrix indicates the number of classes converted at date t2. As for the
diagonal, it provides information on the area classes that have remained unchanged over
time. The different matrices were obtained from the overlapping of the maps of 1990–2005,
2005–2020, and then 1990–2020. Finally, a comparison was made between the average areas
of the landscape classes and the number of corresponding polygons to assess the process of
change in the vegetation cover during the observation period.

To better ascertain the causes of the spatial dynamics of vegetation cover in the Ouémé
Delta from 1990 to 2020, explanatory variables were used [43,44]. These variables are of two
types: static variables, which are stable over time, and dynamic variables, which change
over time. The static and dynamic variables often used are distances to roads, waterways,
slopes and altitudes, type of soil, population density, road density, and building density [45].
In the framework of this study, the type of soil was considered as a static variable to explain
the accessibility and expansion of agricultural land, while the densification of the road
network from topographic backgrounds between 1993 and 2018 was the dynamic variable
that served to show the effect of the proximity of large agglomerations on the perimeter of
the Ouémé Delta [46]. The soils were used as parameters because Badin et al. (1955) [47]
proved that the soils of the lower Ouémé valley are humid and have good chemical and
biological fertility. Regarding the road network, its consideration was due to the fact that
its densification is a consequence of urbanization [48]. It promotes the opening up of
production areas while strengthening economic exchanges.

2.4. Prediction of Future Changes in Vegetation Cover in the Ouémé Delta by 2035

The analysis of future changes in vegetation cover in the Ouémé Delta was based
on predictive modelling. Several models exist for that purpose, among which the “Land
Change Modeler” (LCM) model, which is available through the IDRISI software package
17.0, was tested for the study of changes in land occupation or use [49]. In the context of
the present study, the scenario predicted for 2035 constitutes the stability of the areas of
vegetation cover or, in the best case, their increase. Thus, the model was first calibrated
from previous cartographic data (1990 and 2005) in order to simulate land use in the Ouémé
Delta in 2020. Furthermore, the calibration helped improve the concordance of the outputs
of the model with the data for adjustments on the parameters considered in the model [50].
The outputs of this simulation were compared to the mapping of land cover observed in
the same year and obtained from the supervised classification. Then, the surface areas of
the simulated land cover classes were compared with those observed from a chi-square (χ2)
test at 0.05 level of significance to assess the similarity with the classification results of the
2020 reference map [42]. The strong correlation between the surface areas of the simulated
and observed land cover classes was the only condition that made it possible to validate
the model and compute the simulation for 2035.
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The modeling process was divided into four modules which were used for the quanti-
tative estimation of transitions, probabilities, distribution of changes, and reproduction of
landscape characteristics. Thus, initially, the reference maps (2005 and 2020) were imported
into the IDRISI software to determine the probabilities of change in the land cover classes in
2035. After this step, the number of land use classes of the reference maps has been clarified
to facilitate their automatic comparison and to determine the probable transitions. Then,
the integration of the explanatory variables was performed on the basis of the available
data. These are soil types and distances to roads and built-up areas that are among the
determining factors of the anthropization of the delta [51]. Finally, thanks to the linking
and combination of explanatory factors and changes that have occurred between the two
reference maps (2005–2020), the model produces, via a statistical method, probability maps
of potential changes projected over the next fifteen years. These probability maps were
generated by the neural network by combining a transition map with the explanatory vari-
ables of these changes [52]. The areas considered by each type of transition are quantified
by examining whether or not they belong to the same class on the two reference dates; then,
the changes are localized in order to generate a predictive land cover map. This step was
carried out by using a cellular automaton that simulates the previously identified changes
and allocates them in space.

There is a need to highlight that although the Land Change Modeler has some limita-
tions, it remains a strong scientific tool that is highly used to simulate the changes in land
cover. For instance, Leta et al. (2021) [42] applied it to assess the spatiotemporal dynamics
of upper Nil basin by analyzing Landsat images. Moreover, Anand and Oinam (2020) [53]
predicted the land cover of Manipur River basin (around 5063 km2) based on the same
method. In a rapidly urbanizing south China, Hasan et al. (2020) [48] recently applied the
same method to assess the land use change for the years 2005, 2010, and 2017. In addition
to the studies reported above, many years ago, Václavík and Rogan (2009) [54] applied the
Land Change Modeler to assess the land cover change in a study area of 5012 km2, which is
significantly less than the surface of Ouémé River Delta. All these studies confirm that the
model is deeply applicable to our research. In other words, these studies show the scientific
validation of our method despite relatively small surface.

3. Results
3.1. Mapping of the Dynamics of the Vegetation Cover in the Ouémé Delta from 1990 and 2020

The mapping of the vegetation cover dynamics in the Ouémé Delta carried out from
the supervised classification of Landsat images from the years 1990, 2005, and 2020 revealed
that the kappa values and the global precision, i.e., the overall image classification accuracy,
were 0.84 and 88.95%, respectively, for 1990 (Table 1). These kappa statistics and the
classification accuracy derived from the generated confusion matrices. Similarly, these
values were 0.86 and 89.82% for 2005, while the image processing of 2020 exhibited 0.86
for the kappa index and a slightly more improved value of 90.17% for the overall accuracy.
These statistics confirmed that the quality of the classification was ideal for the three years
of observation.

Table 1. Statistical validation of image-processing results.

Parameters 1990 2005 2020

Kappa Index 0.84 0.86 0.86

Overall accuracy (%) 88.95 89.82 90.17

Decision Ideal Ideal Ideal

This first finding allows for the mapping of the dynamics of the vegetation cover in
the Ouémé Delta (Figure 2). This map highlights seven (07) distinct classes of occupation
and land use such as agglomerations; mosaics of fields, fallow land, and water bodies;
and natural vegetation types comprising dense forests, gallery forests, swamp forests, and
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shrubby wooded savannahs. The analysis of the different maps indicates a morphological
change in all land cover units over the observation period. With regard to the plant cover, it
occupied a large part of the surface area of the Deltaic zone in 1990 but has been infiltrated
by fields and fallow land, represented by spots whose size increased considerably between
2005 and 2020.
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In fact, statistics from the different analyses (Figure 3) indicate that in 1990, dense
forests covered the largest area and extended over 33,768.9 ha, representing 33.1% of the
total delta area. They were followed by the swamp forests with 29,291.2 ha (28.63%) and
the waterbody that covered 51,584.2 ha (23.64%). The other classes of land cover in the
same year were shrubby wooded savannas with 9017.08 ha (8.81%), mosaics of fields and
fallows with 4395.84 ha (4.3%), gallery forests with 1116.12 ha (1.09%), and settlements
with 537.5 ha (0.53%). In terms of spatial dynamics, all natural formations have regressed
over the observation period. Thus, dense forests decreased to 29.39% in 2005, and then
to 26.15% in 2020. Regarding the swamp forests, they decreased to 25.94% in 2005 and
21.36% in 2020. Tree and shrub savannahs decreased to 7.72% in 2005 and 7.01% in 2020.
Similarly, gallery forests decreased to 0.69% in 2005, and then to 0.67% in 2020. The greatest
losses were recorded for swamp forests (7.27%) and dense forests (6.86%). On the other
hand, the water body remained almost stable, while the areas of mosaics of field and fallow
lands together and agglomerations increased by 7.59% and 1.12%, respectively, in 2005,
and then by 8.56% and 1.42% in 2020. We note from this description that the vegetation
cover represented 71.55% of the surface area of the Ouémé Delta in 1990, while it decreased
to 63.42% in 2005 and 55.19% in 2020, representing a loss of 16.37% of the area of natural
formations over a period of 30 years.
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3.2. Analysis of the Transformations of the Vegetation Cover in the Ouémé Delta from 1990 to 2020

The spatial transformations that the types of natural formations have undergone in the
Ouémé River Delta and the proportions of areas that have remained stable are described
in this section. Thus, the statistics from the transition tables for the entire observation
period (1990–2020) revealed that the areas of all land cover classes changed over time,
with an average conversion rate of 7.96% per class. During this period, the cumulative
gains and losses of land cover units (Table 2) revealed a 20.08% increase against a 35.68%
loss, while 44.22% of the areas remained stable. However, this overall trend varied over
time. Moreover, between 1990 and 2005, the cumulative gains and losses of the statistics
highlighted in Table 3 exhibited an average spatial conversion rate of 2.98%, resulting from
6.47% progression and 14.40% regression, which is indicative of a high degree of stability
of the areas of approximately 79.12%. On the other hand, during the period from 2005
to 2020, significant spatial changes were noticed in the landscape, with a 30.65% loss and
23.84% gain in area against 45.50% stability (Table 4). The average spatial conversion rate
of 7.78% proves the rapid transition in the vegetation landscape of the Ouémé Delta. We
also noted that the mosaics of fields and fallows have clearly increased in area in contrast
to plant formations. Specifically, the vegetation cover decreased fairly between 1990 and
2005, before declining between 2005 and 2020.

Table 2. Transition matrix of land cover units (%) between 1990 and 2020.

1990–2020 AG FF W DF GF SF SS Total (2020)

AG 0.19 0.07 0.01 0.09 0.01 0.13 0.01 0.53

FF 0.02 1.61 0.10 1.19 0.02 0.89 049 4.33

W 0.18 0.16 21.19 0.47 0.02 1.47 0.06 23.56

DF 0.12 7.43 0.66 12.40 0.35 9.64 2.54 33.14

GF 0.01 0.36 0.22 0.22 0.09 0.16 0.04 1.09

SF 0.52 8.43 0.94 8.99 0.13 7.14 2.30 28.46

SS 0.06 2.42 016 2.93 0.03 1.70 1.60 8.90

Total (1990) 1.09 20.48 23.29 26.29 0.66 21.14 7.05 100.00
AG: Agglomeration; FF: Fields and fallows; W: Water; DF: Dense forest; GF: Gallery forest; SF: Swamp forest; SS:
Shrubby tree savannah.
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Table 3. Transition matrix of land occupation units (%) between 1990 and 2005.

1990–2005 AG FF W DF GF SF SS Total (2005)

AG 0.47 0.00 0.00 0.00 0.00 0.06 0.00 0.53

FF 0.00 3.78 0.00 0.00 0.05 0.08 0.42 4.33

W 0.00 0.02 23.45 0.00 0.02 0.08 0.00 23.57

DF 0.00 3.69 0.10 25.34 0.08 3.90 0.04 33.15

GF 0.01 0.10 0.02 0.01 0.41 0.47 0.06 1.09

SF 0.07 4.13 0.39 3.06 0.05 19.52 1.20 28.42

SS 0.14 0.14 0.00 1.09 0.07 1.32 6.15 8.91

Total (1990) 0.69 11.85 23.96 29.50 0.69 25.44 7.87 100.00
AG: Agglomeration; FF: Fields and fallows; W: Water; DF: Dense forest; GF: Gallery forest; SF: Swamp forest; SS:
Shrubby tree savannah.

Table 4. Transition matrix of landscape units (%) between 2005 and 2020.

2005–2020 AG FF W DF GF SF SS Total (2020)

AG 0.22 0.10 0.01 0.10 0.02 0.22 0.02 0.69

FF 0.11 3.80 0.28 3.97 0.06 2.42 1.21 11.85

W 0.20 0.22 21.36 0.64 0.02 1.47 0.05 23.96

DF 0.06 6.39 0.19 11.44 0.24 9.09 2.10 29.50

GF 0.01 0.14 0.13 0.15 0.08 0.14 0.03 0.69

SF 0.43 7.27 1.15 8.11 0.22 6.61 1.65 25.44

SS 0.07 2.54 0.18 1.89 0.01 1.20 1.99 7.87

Total (2005) 1.09 20.46 23.30 26.29 0.66 21.14 7.05 100.00
AG: Agglomeration; FF: Fields and fallows; W: Water; DF: Dense forest; GF: Gallery forest; SF: Swamp forest; SS:
Shrubby tree savannah.

Concerning the mode of conversion of the plant cover, the analysis of the evolution
of the average area of the classes and the number of polygons per class according to the
observation periods are shown in Table 5. Specifically, the average area and the number
of polygons per class does not vary in the same way over the period. From 1990 to 2005,
while these two variables increased for the agglomerations and the mosaics of fields and
fallow land, then for the shrubby tree savannahs, they exhibited different trends in the other
types of land cover, which is indicative of fragmentations as small areas are glued together
to show a low average area. Similarly, between 2005 and 2020, agglomerations, mosaics
of fields and fallow land, dense forests, swamp forests, and shrubby wooded savannahs
showed an increasing number of polygons while their average surface area decreased.
Specifically, the mode of conversion of natural formations (Figure 4) shows that between
2005 and 2020 there was a decline in the average area of dense forests, swamp forests, and
tree-shrub savannahs as their number of polygons increased. The considerable increase
in polygons at the level of dense forests is the consequence of the strong anthropization
observed between 2005 and 2020 in the environment, which created many openings in
the closed formations. This indicates that the spatial dynamics are characterized by the
fragmentation of these three vegetation types over the past fifteen years.
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Table 5. Evolution of the average area and the number of polygons according to the observation
periods.

Types of
Land
Cover

1990 2005 2020

Number of Average Number of Average Number of Average
Polygons Area (ha) Polygons Area (ha) Polygons Area (ha)

AG 196 2.74 251 2.82 134 8.53

FF 540 8.14 1112 10.93 2338 8.95

W 245 98.65 237 103.56 137 173.57

DF 532 63.47 113 265.68 1417 18.87

GF 123 9.07 165 4.26 140 4.88

SF 1661 17.63 1664 15.78 2904 7.52

SS 496 18.17 326 24.20 939 7.63
AG: Agglomeration; FF: Fields and fallows; W: Water; DF: Dense forest; GF: Gallery forest; SF: Swamp forest; SS:
Shrubby tree savannah.
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3.3. Drivers of the Dynamics of the Vegetation Cover in the Ouémé Delta

Several factors shape the plant dynamics in the Ouémé River Delta, of which the prox-
imity of roads and the type of soil seem to play a potential role. These factors induced the
expansion of socio-economic activities. In other words, urban development and agriculture
were identified as the main factors causing the anthropization of the natural formations
throughout the Ouémé Delta. Furthermore, the road network around the Ouémé Delta in
1993 was 1,119.13 km long, which increased to 2,055.76 km in 2018, representing an 83.66%
increase in a period of 25 years. This indicates a densification of the roads, especially the
secondary roads that provide access to the fertile lands in the delta and connect the farming
lands (Figure 5). Similarly, the overlapping of the soil type and land use maps shows
hydromorphic soils on alluvial and pseudo-gley material with a large area and 94.87%
of habitats consisting of wooded-shrub savannahs and 94.92% consisting of mosaics of
fields and fallows in 2020. The analysis also indicates that it is on these two types of soil
that the intensity of the changes was noticeable from 1990 to 2020. The proximity of the
roads and the type of soil are, therefore, key factors determining the spatial dynamics of
the vegetation cover in the Ouémé Delta during the recent 30 years.
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3.4. Predictive Mapping of Vegetation Cover in the Ouémé Delta by 2035

Prior to the predictive mapping, a simulation was computed for the 2020 land cover in
order to compare it to the processed image of the same year. The accuracy of this test served
as a basis for the validation of the model used and to predict the land cover in the year 2035.
Thus, Figure 6 shows a map comparing the land cover resulting from image processing of
2020 and a simulation applied from the previous images (1990 and 2005). According to the
transition matrices in Tables 2 and 3, the vegetation cover was well-maintained between
1990 and 2005 before degrading considerably between 2005 and 2020. Regarding the 2020
simulation developed from images from 1990 and 2020, it was normal to notice this trend of
maintaining dense forests in the simulation. This justifies the difference observed between
classification and simulation, showing mosaic of fields and fallows with aggregation of
their classes. However, the areas of these two analyses (Table 6) were quite similar, even
if the highest dissimilarity was 3.16%, which was the case for fields and fallows. The Chi
Square test performed—due to the relatively low number of land use units (7)—to assess
the similarity between the image processing and modeling of the vegetation cover in 2020
reveals a high degree of significance (p < 0.0001). This served to validate the model and
justify its use for the prediction of the vegetation cover in 2035.
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Table 6. Comparative statistics of areas for model validation.

Type of Land
Cover

Classified Area 2020 Simulated Area 2020 Difference
(%)ha % ha %

AG 1143.42 1.12 712.09 0.70 0.42

FF 20,923.70 20.45 17,691.90 17.30 3.16

W 23,777.00 23.24 24,677.50 24.13 −0.89

DF 26,748.10 26.15 27,377.40 26.77 −0.62

GF 684.44 0.67 651.95 0.64 0.03

SF 21,851.50 21.36 23,230.60 22.71 −1.35

SS 7172.67 7.01 7959.39 7.78 −0.77
AG: Agglomeration; FF: Fields and fallows; W: Water; DF: Dense forest; GF: Gallery forest; SF: Swamp forest; SS:
Shrubby tree savannah.

Based on this test of the model, the simulation of the landscape in the Ouémé Delta by
2035 predicts the maintenance of the seven land cover classes (Figure 7). Thus, the model
indicates a decrease in the area of gallery forests by 0.08% and that of swamp forests by
0.53%. As for dense forests and shrubby savannahs, an increase in their areas of 0.26%
and 0.05%, respectively, is predicted. Meanwhile, dense forests, swamp forests, mosaics of
fields and fallows, and the water body. Each of these classes will have an area estimated
at more than 20% of the Delta’s area. In addition, all the natural formations will extend
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to approximately 55% of the total area of the Delta (Figure 8). The small variation in
area predicted for 2035 indicates the possible stability of the vegetation cover since the
probabilities of change associated with all classes were less than 0.5. These were 0.38 for
dense forests, 0.12 for gallery forests, and 0.25 for swamp forests and shrubby wooded
savannas (Table 7).
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Figure 8. Simulated areas of land use units in the Ouémé Delta in 2035. AG: Agglomeration; FF:
Fields and fallows; W: Water; DF: Dense forest; GF: Gallery forest; SF: Swamp forest; SS: Shrubby tree
savannah.



Remote Sens. 2022, 14, 6165 14 of 19

Table 7. Probability of changes from one class to another.

Land Cover AG FF W DF GF SF SS

AG 0.31 0.12 0.02 0.13 0.02 0.32 0.05

FF 0.00 0.31 0.02 0.33 0.00 0.19 0.10

W 0.00 0.00 0.89 0.02 0.00 0.06 0.00

DF 0.00 0.21 0.00 0.38 0.00 0.30 0.07

GF 0.00 0.20 0.19 0.23 0.12 0.19 0.04

SF 0.01 0.28 0.04 0.32 0.00 0.25 0.06

SS 0.00 0.32 0.02 0.23 0.00 0.15 0.25
AG: Agglomeration; FF: Fields and fallows; W: Water; DF: Dense forest; GF: Gallery forest; SF: Swamp forest; SS:
Shrubby tree savannah.

4. Discussion
4.1. Spatial Configuration of the Vegetation Cover in the Ouémé Delta from 1990 and 2020

It is important to highlight that the availability of satellite images was important for
the present study. However, the assessment of the accuracy of the processing of these
images was also fundamental for the validation of the mapping procedure. The kappa
index and the overall precision used to meet this requirement are recommended decision
parameters in all studies using spatial remote-sensing data [55]. Thus, the high values that
emerge from these two parameters after image processing come from a certain number
of prerequisites, including the quality of the images and the high level of light contrast
obtained in image parameterization [42]. In addition, knowledge of the study area and
the relatively small number of land cover classes have facilitated the achievement of good
performance in the overall accuracy of image classification [56].

Although seven classes of land use have been identified in the Ouémé Delta (agglom-
erations, fields and fallow land, bodies of water, dense forests, gallery forests, swamp
forests, and shrubby tree savannah), it is possible to increase the number of land cover
classes to provide more details on the landscape sub-entities. For example, for future stud-
ies, scientists can identify mangroves, plantations, and bare soil, All of them sub-entities
proposed in certain land cover typology studies in West African wetlands [27,57]. However,
this entails risks of class confusion that can weaken the accuracy of mapping [28]. These
risks are inherent at the low resolution of the images used (28.5 m), which constitutes a
spatial detail-level constraint in remote sensing [58]. However, the description of land
cover obtained in this study relates to that used by Houeto et al. [59] and Brun et al. [29] in
the Ramsar 1018 wetland, where the Ouémé Delta is included. The vegetation cover thus
described, comprising dense forests, gallery forests, swamp forests, and shrubby wooded
savannahs, is characteristic of wetlands [60], which dominated the landscape of the Delta
in 1990. This vegetation cover in the Delta declined until the year 2020. This represents
a loss of vegetation cover and, therefore, biological diversity in the Delta over a period
of 30 years, which was influenced by fragmentation and mutations. These factors have
been mentioned as causes of loss of vegetation cover in other studies [30,61]. All dense
forests, swamp forests, and shrubby wooded savannahs have undergone these changes,
which are induced by the high demand for agricultural land [62]. This is a spatial hazard
corresponding to the anthropization of natural formations described by Abdus et al. [63].
Moreover, a similar observation was made in several studies on land use, which confirmed
the regression of vegetation cover into farms and fallows [29,64,65].

4.2. Analysis of the Causes and Manifestations of the Vegetation Cover Dynamics in the Ouémé
Delta

The degradation of the vegetation landscape in the wetlands south of the Sahara
is often caused by the anthropization process generated by urbanization and economic
activities [66]. As the Ouémé Delta is an area of sediment accumulation, it is coveted for its
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fertile land, forest resources, and the fish wealth of its water bodies [67]. It thus generates
many socio-economic activities that maintain life in the neighboring village communi-
ties [68]. Unfortunately, these activities are not controlled, leading to the overexploitation
of natural resources, including plant cover [69]. This explains the increasing pressure on
plant formations that fragment or turn into fields and fallow land [10]. Among the factors
that better explain these changes, the proximity of the roads and the soil type have proven
to be decisive with respect to the information collected in the field. Moreover, the mapping
and superposition of these variables confirmed their level of influence on the localization of
landscape changes. The region’s hydromorphic soils on alluvial and pseudo-gley material
occupy a large area and constitute the support of the wooded shrub savannahs. These
fertile soils, which are increasingly in demand by populations for agriculture, explain the
fragmentation and replacement of plant formations by agriculture [61]. At the same time,
the road network developing around the delta facilitates the density of production activi-
ties and the exploitation of in situ resources [68]. Added to this is the rapid demographic
growth in the communities bordering the delta, which are among the most populated in
Benin [35]. This leads to pressure on resources; the expansion of agglomerations, fields, and
fallow land; and the loss of plant formations [70]. In other words, this pressure is generated
by increasing urbanization in the region through the development of income-generating
activity areas, the emergence of agricultural product markets, and their connections [71,72].
Thus, there is a need to increase awareness among the inhabitants regarding the sustainable
management of the delta’s resources. Elsewhere, the drivers of land cover change in Central
and Eastern Europe were reported to be a decreased need for intensive agriculture, the shift
to the ecological management of forested areas, and increasing urbanization [66]. While
assessing the land use and land cover of the Marikina sub-watershed in the Philippines,
Abino et al. [73] reported significant changes indicated by the increase in agricultural area,
whereas forests and grasslands remained unchanged.

4.3. Predictive Mapping of the Vegetation Cover in the Ouémé Delta

The successful management of space requires the development of a management plan
based on territorial forecasting [62]. Predictive mapping offers the possibility of considering
probable land uses in the future in order to plan for resource sustainability [69,74]. Such an
approach has been implemented in the Ouémé Delta for the reconstitution of land cover
between 1990, 2005, and 2020, in order to predict that of 2035. The LCM model used for
this purpose was seen as statistically effective [16]. It is important to highlight that the
application of the LCM model does not necessary require the use of linear or non-linear
analysis depending on the number of land use units obtained.

This test was necessary to better calibrate the model so as to obtain a future projection
as close as possible to reality [25,66], and the reliability of the land cover prediction in the
present study lies in the level of satisfaction of the comparison of the simulation with the
classification of 2020. Thus, the land cover obtained for 2035 indicates that vegetation will
cover approximately 55% of the total area of the delta, similar to 2020. This indicates the
probable stability of the vegetation cover in the future. However, gallery forests and swamp
forests will continue to lose their area, but at a very slow rate of decline and with the
stability of their vegetation. This scenario will only be possible when population growth is
controlled [29] along with the intensity of socioeconomic activities [75]; such assumptions
require a fairly rigorous and skillfully designed strategic policy. Similarly, it would be
necessary to apply sustainable resource management measures in the study area [76], as
non-timber forest products collected from the wild by local populations [77] and even
herbaceous species exploited for medicinal purposes require sustainable management and
the application of conservation tools [13].

Our study is the first to be undertaken on the Ouémé River Delta, even though the area
has always been highly exploited for various purposes. It is supposed to motivate many
other studies on this ecosystem as reported throughout the paper. We are confident that the
use of these medium-resolution Landsat satellite images offers the advantage of letting any
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scientist interested by such studies check and verify our results and learn more about the
application of the Land Change Modeler. These are medium-resolution images that provide
essential information on the land use change in the region. This publication will further
motivate high-resolution image studies so that a comparison can be performed to ascertain
likely differences. In fact, Xu et al. [78] stated the great significance of using remote-sensing
data to understand the interactive coupling mechanism between urbanization and eco-
environmental quality so as to achieve the goal of urban sustainable development; thus, the
outputs of the present research are innovative since they will also contribute to sustainable
development goals. Studies of vegetation cover, land use change, and the predictive
analysis of vegetation serve to determine the areas that are in need of the definition
of suitable mitigation measures and strategies towards the sustainable management of
wetlands [73]. Regarding all these examples, predictive studies on vegetation constitute a
potential decision tool.

5. Conclusions

This research reveals that the vegetation cover in the Ouémé Delta is made up of
dense forests, gallery forests, swamp forests, and wooded and shrubby savannahs. These
ecosystems, which were dominant in 1990, have regressed spatially and over time under
the influence of anthropogenic pressure. The modes of class conversion were dominated by
fragmentation, which was especially accentuated between 2005 and 2020. The main cause of
this process was the demographic growth around the Delta, which led to the development
of extensive agriculture, thus precipitating the loss of vegetation cover in favor of mosaics
of fields and fallow land. Faced with this situation, a territorial forecast developed through
a simulation of the future dynamics of land use in the study area revealed a decrease in the
rate of progression of the mosaics of fields and fallow land and the probable stability of the
region’s vegetation cover. This future trend remains a simulation and will only be realistic
if natural resource conservation efforts are made by stakeholders. In this context, this study
can serve as pioneer research and can motivate many other investigations, which will
result in the wider characterization of the potential regarding biodiversity and ecological
connectivity in the Ouémé Delta from the perspective of sustainable exploitation. Further
studies in the Delta can focus on the following topics:

1. The phytosociological study of the various plant formations;
2. Developing an inventory of the woody species of the various plant formations and

the dendrometric characteristics of the main species;
3. Constructing an inventory of fertility indicator species along the Ouémé Delta;
4. The investigation of medicinal and food species that are protected in agricultural

lands;
5. Developing a database on the ecosystem services provided by the Ouémé River Delta.

With regard to the last point, the authors suggest investigating the ethnomedicinal
and food uses of the plants collected from the plant formations of the delta as well as the
medicinal and food uses of snails, mushrooms, and other non-timber forest products in
the delta. Awareness projects on the importance of conserving natural ecosystems and,
therefore, biological diversity are required for the inhabitants of the Ouémé Delta.
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