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Abstract: As an important ecological security barrier in northern China, the Inner Mongolia Au-
tonomous Region (hereinafter referred to as Inner Mongolia) is seriously affected by drought. It is
of great significance to characterize the spatial distribution of drought and identify the influencing
factors of drought. Due to complex interactions among drought driving factors, it is difficult to
quantify the contribution of each driving factor to drought using linear correlation analysis alone. In
this study, we used the Standardized Precipitation Evapotranspiration Index (SPEI) as a quantitative
indicator of drought to discuss the spatiotemporal variation of drought during growing seasons in
the Inner Mongolia from 2000 to 2018. We quantitatively characterized mode, scope, and intensity of
changes in SPEI caused by drought-influencing factors such as weather, water, topography, soil, and
human activities using the Geodetector and Geographically Weighted Regression (GWR) models.
We concluded that about 20.3% of the region showed a downward trend in SPEI, with the fastest
rate of decline in the central and western Inner Mongolia. Air temperature, precipitation, elevation,
and distance to rivers are the main controlling factors in drought change, and the factor interactions
showed nonlinear enhancement. The drought driving effect was obvious in Alxa League, Wuhai
City, Ulanqab City, and Baotou City. The results will help us to understand the effects of the driving
factors on drought and eventually help policymakers with water-resource management.

Keywords: growing season; driving factors of drought; Geodetector; GWR model; Inner Mongolia

1. Introduction

As one of the most serious meteorological and environmental disasters, drought can
severely impact the natural environment, crop production, social economy, and human
life, but its impact mode is not easy to be quantified [1]. The Sixth Assessment Report
(AR6) of the Intergovernmental Panel on Climate Change (IPCC) points out that in the past
30 years, the global average temperature has increased by 1.5 ◦C, extreme climate events
occur frequently, and the degree of drought will continue to increase in the future. Drought
impacts species and structure of vegetation. It is an important factor affecting vegetation
growth, vegetation restoration, and soil desertification [2–4]. Changes in hydrothermal
conditions can lead to biomass loss and ecosystem destruction. Therefore, investigating the
spatiotemporal variation of drought during the growing season (from April to September)
in Inner Mongolia, identifying causes of drought, and separating and quantifying relative
contributions of the controlling factors of drought are of practical significance for drought
remediation and ecosystem restoration.

Due to uncertainties in starting and ending times, spatial scale, time lag effects, and
other factors of drought events, researchers mainly monitor and analyze drought effects
through a series of drought indicators [1,5]. The Palmer Drought Severity Index (PDSI)
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is the most widely used water-balance-based meteorological drought index, which com-
prehensively considers water supply and demand. However, it has limitations in judging
short-term droughts [6]. The Standardized Precipitation Index (SPI) calculates the probabil-
ity of precipitation distribution; however, it is difficult to handle the task of meteorological
drought monitoring under the context of global change [7]. The Standardized Precipitation
Evapotranspiration Index (SPEI) leverages the advantages of PDSI and SPI [8,9]. It not only
considers the balance of water and energy, but also reflects the deficit and accumulation
process of surface water. Therefore, it is widely used in climate studies [7,10], agricul-
ture [11], hydrology [12,13], and so on. At the same time, SPEI can be calculated at multiple
time scales. SPEI-3, used to characterize drought in a seasonal scale, reflects short-term
regional meteorological drought. It has a direct correlation with grassland biomass and
vegetation growth [14,15], and is an important index of vegetation to study drought in a
growing season.

The China-Mongolia Arid and Semiarid Area (CMASA) is one of the eight major arid
regions in the world, and it is also an inland arid region with the highest latitude. Inner
Mongolia is located in the transition region between the arid and semi-arid areas in the
east of CMASA. Due to the perennial influence of the westerly wind system, atmospheric
circulation, and pressure field of Qinghai-Tibet Plateau, temperature rise in the west of Inner
Mongolia is significantly higher than that in the inland and surrounding areas of China, and
is particularly sensitive to climate change [16,17]. Inner Mongolia is China’s main grassland
for pasture and agriculture. It is an important ecological barrier to the North of China.
For a long time, Inner Mongolia has suffered from frequent regional and local droughts,
which have significantly impacted the local economy. The intensification of desertification
caused by droughts has become the primary ecological and environmental concern in Inner
Mongolia [18]. There are many research activities on long-term drought monitoring in
Inner Mongolia: An et al. [19] analyzed the spatiotemporal variation of droughts in Inner
Mongolia in the past 60 years; Pei et al. [20] compared the differences and applicability of SPI
and SPEI drought indexes at different time scales; Tong et al. [21] used linear regression and
wavelet analysis to identify drought changes and drought patterns; however, few studies
have quantitatively explained the causes of the droughts. In the past, drought analysis
and regional water resource planning were mainly based on linear correlation between
factors [22–24]. However, drought is a complex regionalization event. It is generally hard
to refine intensity and interaction among various factors in different regions using just the
traditional linear regression analysis [25,26]. At the same time, drought is closely related
to natural conditions, human activities, and their interactions. However, interactions
among these factors have not been well-investigated [27]. Different land cover types,
soil conditions, topography, and other factors may cause spatial differentiation of local
drought. Geodetector and GWR are statistical models considering spatial nonstationarity
and the modeling process is simple but intuitive. A combination of the two can accurately
describe the action, path, and intensity of the influencing factors and has a good application
prospect [28–30].

In this study, the seasonal SPEI-3 index (SPEI for short) was calculated based on the
data at the meteorological stations in Inner Mongolia; the spatiotemporal variation trend
of SPEI in the growing season from 2000 to 2018 was obtained using univariate linear
trend analysis. The main controlling factors of drought change were identified through
Geodetector. The GWR model was used to quantitatively evaluate the effect of various
driving factors on SPEI change during the growing season, and to explain the interaction
between the main controlling factors for spatial heterogeneity.

2. Materials and Methods
2.1. Study Area

Inner Mongolia is located in the northern border of China, spanning three major
regions of northwest, north, and northeast, spreading along a long and narrow belt. The
region covers a total area of about 1.183 million km2 that accounts for about 12.1% of
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China’s total area. The region is rich in resources, with grasslands, forests, and arable land
per capita ranking first in China. The Greater Khingan Range runs through the east of
the study area in the north-south orientation. The Yin Mountains extend east-west in the
south. Large deserts such as the Badain Jaran Desert, Tengger Desert, and Mu Us Desert
are located in the west. The study area has an average altitude of about 1000 m. The climate
in the region varies from arid-semiarid monsoon climate to humid-semi humid climate.
It is often affected by cyclones on the Mongolian Plateau with strong wind in spring and
by Lake Baikal, the world’s largest freshwater lake by volume containing 22–23% of the
world’s fresh surface water. The climate is often controlled by prevailing westerlies belts or
subtropical high-pressure belts, with high temperature and little rain in summer. Annual
rainfall showed a decreasing trend from east to west and from north to south [22,31].

2.2. Data Sources and Preprocessing
2.2.1. Meteorological Data

Daily mean air temperature, monthly cumulative precipitation, daily mean wind
speed, and daily mean sunshine duration at 110 meteorological stations (Figure 1a) in and
around Inner Mongolia from 2000 to 2018 were selected as meteorological data, which
were provided by the China Meteorological Data Service Centre (http://data.cma.cn/).
A homogeneity test of the meteorological data was carried out to fill in unavailable data.
A statistical analysis on the mean air temperature (◦C), accumulated precipitation (mm),
mean wind speed (m·s−1), and mean sunshine duration (h) at stations was performed for
the growing seasons from 2001 to 2018. Spatial resolution for ordinary Kriging interpolation
was set to 1 km × 1 km; the geographic reference was set as WGS84/UTM zone 48◦N.
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Figure 1. (a) The Digital Elevation Model (DEM) and meteorological station distribution, and
(b) the vegetation types in Inner Mongolia (A—Hulunbuir, B—Hinggan League, C—Xilingol League,
D—Chifeng, E—Tongliao, F—Ulangab League, G—Baotou, H—Hohhot, I—Bayannur League,
J—Erdos, K—Wuhai, L—Alxa League).

2.2.2. DEM Data

DEM (Digital Elevation Model) was the Shuttle Radar Topography Mission (SRTM)
data with a resolution of 90 m downloaded from the United States Geological Survey (USGS)
data portal (http://earthexplorer.usgs.gov). After preprocessing, such as mosaicking and
void-filling, the accuracy of the input topographic data had a standard error of 1 m. The
DEM data were resampled to 1 km × 1 km and slope and aspect were then derived from
the DEM data.

http://data.cma.cn/
http://earthexplorer.usgs.gov
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2.2.3. Other Data Sets

Population density data was from the population dataset produced by the Landscan
Global team (https://landscan.ornl.gov/), with a spatial resolution of 0.01◦ × 0.01◦ (about
1 km). The data were produced according to the community standard of global popula-
tion distribution data constructed from multivariable geographic dasymetric modeling
and remote sensing image analysis [32]. Land use conversion type can effectively reflect
intensity of human activities [33]. It is also an important surface condition for drought
research. The land cover data in 2000 and 2018 were from the Resource and Environment
Science Data Center of Chinese Academy of Sciences (http://www.resdc.cn). The data set
was obtained by visual interpretation of Landsat TM/ETM+ images for different periods
and was widely used [25]. Land cover was classified into six basic categories: cultivated
land, forest, grassland, water area, construction land, and unused land. A land use con-
version map from 2000 to 2018 was generated. Soil sediment contents were from the
1:1 million soil type map and the soil profile data was obtained from the second soil survey
(http://www.resdc.cn). Soil texture was classified according to the content of sand, silt, and
clay. The content of particles in different soils was shown as a percentage. Spatial data of
main rivers and county stations were derived from the 1:4 million vector database provided
by the National Geographic Center of China (http://ngcc.sbsm.gov.cn). Distance to Rivers
(DTR) and Distance to Cities (DTC) were obtained through buffer zone analysis, and the
spatial resolution was set to 1 km × 1 km. The 1:1 million vegetation type data released by
the Resource and Environment Science Data Center of the Chinese Academy of Sciences
(http://www.resdc.cn) were used. The vegetation in Inner Mongolia was reclassified into
8 classes: coniferous forest, broad-leaved forest, shrub, grassland, meadow, swamp, desert,
and cultivated vegetation.

2.3. Methods
2.3.1. Calculation of the Standard Precipitation Evapotranspiration Index (SPEI)

The difference between precipitation and potential evapotranspiration (PET), PD, is a
key parameter for SPEI calculation. PET was calculated using the Thornthwaite method
because fewer meteorological elements are required [9], as follows:

PDi = Pi − PETi (1)

PET = 16.0×
(

10Ti
H

)A
(2)

A = 6.75× 10−7H3−7.71× 10−5H2+1.79× 10−2H+0.492 (3)

where Pi is the monthly precipitation of the i-th month, PETi the monthly evapotranspira-
tion, A a constant, and H the annual heat index. The log-logistic function based on three
parameters (α, β, γ) was used to perform the normal fitting to the time series of PDi and
compute the probability distribution function F(x). The log-logistic probability distribution
function is given as below:

F(x) = [1 + (
α

x− γ
)

β
]
−1

(4)

where α is the scale parameter, β the shape parameter, and γ the position parameter; all are
obtained by the linear-moment method.

The probability distribution function was standardized to obtain the cumulative
probability Q (Equation (5)):

Q = 1− F(x) (5)

and the SPEI value was then calculated as:

SPEI =

 w− a0+a1w+a2w2

1+d1w+d2w2+d3w3 , w =
√
−2 ln(Q)(Q ≤ 0.5)

−(w− a0+a1w+a2w2

1+d1w+d2w2+d3w3 ), w =
√
−2 ln(1−Q)(Q ≥ 0.5)

(6)

https://landscan.ornl.gov/
http://www.resdc.cn
http://www.resdc.cn
http://ngcc.sbsm.gov.cn
http://www.resdc.cn
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where the constants a0 = 2.515517, a1 = 0.802853, a2 = 0.010328, d1 = 1.432788, d2 = 0.189269,
and d3 = 0.001308. The degree of drought (Table 1) was classified according to the local
climate conditions [21,34].

Table 1. Drought classification based on SPEI.

SPEI Value Drought

>1 Severe wet
(0.5, 1] Moderate wet
(0, 0.5] Light wet

(−0.5, 0] Light drought
(−1, −0.5] Moderate drought

<−1 Severe drought

2.3.2. Trend Analysis

The univariate linear regression equation (Equation (7)) was used for trend analysis to
calculate the variation trend of SPEI during the growing seasons from 2000 to 2018:

θslope =

n×
n
∑

i=1
(i× SPEIi)−

n
∑

i=1
i

n
∑

i=1
SPEIi

n×
n
∑

i=1
i2 − (

n
∑

i=2
i)

2 (7)

where n (n = 19) is the length of time series and θslope is the slope in the linear regression
equation. θslope > 0 indicates that the drought trend is reduced; otherwise, the drought
is aggravated. The variation trend of SPEI was divided into five levels based on the
standard deviation (STD), i.e., significant degradation (θslope < −STD), slight degradation
(−STD < θslope < −0.5STD), substantially unchanged (−0.5STD < θslope < 0.5STD), slight
improvement (0.5STD < θslope < STD), and significant improvement (θslope > STD).

2.3.3. Geodetector

Geodetector is a spatial statistical model based on spatial autocorrelation theory to
reveal the spatial differentiation of geographic elements and their driving factors [30]. We
mainly used the factor detector, ecological detector, and interactive detector within the
model. The factor detector quantifies the contribution of influencing factors to dependent
variables, and it is calculated as follows:

q= 1− SSW
SST

(8)

SSW =
l

∑
h=1

Nhσh
2, SST = Nσ2 (9)

where SSW is the sum of factor variances over all layers and SST is the total sum of variance,
where h = 1, . . . l is the number of strata of the dependent variable or independent variable;
Nh and N are the number of units in class h and the whole region, respectively; and σh

2

and σ2 are the variances of the dependent variable for the units in class h and the whole
region, respectively. The larger the q-value is, the stronger the explanatory power of the
factor to the drought phenomenon. The effective range of q is [0, 1].

The ecological detector uses an F test to measure the significant difference of the
impact of different influencing factors on the spatial distribution of drought. The F value is
determined as follows:

F =
Nn=1(Nn=2 − 1)σ2

n−1

Nn=2(Nn=1 − 1)σ2
n−2

(10)
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where Nn=1 and Nn=2 refer to the sample size of two random factors, and F reflects the
significance level.

The interaction detector was used to identify whether two driving factors, x1 and x2,
increase or decrease the explanatory power of the drought index SPEI when they work
together (Table 2).

Table 2. Independent variable interaction type.

Judgement Condition Interaction

q(x1 ∩ x2) < Min(q(x1), q(x2)) Non-linearly weaken
Min(q(x1), q(x2)) < q(x1 ∩ x2) < Max(q(x1), q(x2)) Non-linearly weaken by one factor

q(x1 ∩ x2) > Max(q(x1), q(x2)) Mutually enhanced
q(x1 ∩ x2) = q(x1) + q(x2) Independent effect
q(x1 ∩ x2) > q(x1) + q(x2) Non-linearly enhanced

In addition to the influences of meteorological variables, droughts are also affected
by other factors including geographic location, topography, soil, land cover type, human
activities, etc. Land cover type affects runoff, infiltration, and evapotranspiration of surface
water through water absorption [35]. We selected 12 potential drought driving factors
as follows: Mean Air Temperature (MAT), Mean Precipitation (MP), Mean Wind Speed
(MWS), and Mean Sunshine Duration (MSD) during the growing season, representing the
meteorological conditions; Percent of Sand (POS) in soil, representing soil texture; elevation,
slope, and slope aspect, representing topographic conditions; Distance to rivers (DTR),
representing potential water availability; Distance to Prefecture Cities (DTC), Land-Use and
Land-Cover Change (LUCC), and Average of population Density (AOPD), representing
human factors that can transform and regulate the local environment [36]. These factors
are easy to be quantified [25,37,38]. Since Geodetector can only handle discrete variables,
the 12 variables need to be discretized individually. The LUCC factors were divided into
36 grades according to the land use type conversion maps from 2000 to 2018, the slope
and aspect were divided into 9 grades, and each of the other 10 factors was divided into
6 grades by the Jenks Natural Breaks Classification Method (Figure 2).

2.3.4. The GWR Model

The GWR model is an extension of the ordinary linear regression analysis method [39],
which can effectively estimate the data with spatial autocorrelation and reflect the spa-
tial heterogeneity of parameters in different regions. The multi-variate linear regression
equation is given by:

yi = β0(ui, vi) +
n

∑
j=1

β j(ui, vi)xij + εi (11)

where β0 represents the intercept; (ui, vi) represent the coordinates of the i-th sampling point;
βj (ui, vi) the j-th regression parameter on the i-th sampling point, which has geographic
significance; xi1, xi2, xi3,· · · , xin are n regression variables at this point; and ε represents
random error. Finally, the revised Akaike Information Criterion (AIC) was compared with
the ordinary least squares (OLS) results. AIC is defined as:

AIC = −2InL(êL, y) + 2c (12)

where y represents the sample set of the fitting value of the dependent variable SPEI, L(êL, y)
is the likelihood function, êL is the maximum likelihood estimate of eL, and c is the number
of unknown parameters. The smaller the AIC is, the higher the fitting degree will be.
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Figure 2. Factor grading (MAT(a), MP (b), MWS (c), MSD (d), DTR (e), DTC (f), Elevation (g),
Aspect (h), Slope (i), AOPD (j), POS (k), LUCC (l) (CPL: CropLand; F: Frost; CRL: Crass Land;
W: Water Area; COL: Construction Land; UL: Unused Land)).

3. Results and Analysis
3.1. Spatiotemporal Variation Characteristics of SPEI

The result of SPEI interpolation cross-validation shows a Pearson correlation coefficient
of r = 0.85 and root-mean-square error RMSE = 1.15, indicating that the SPEI interpolation
result has high accuracy. The statistical results of SPEI in the study area over the years
show that (Table 3) the average annual SPEI of the growing season in Inner Mongolia from
2000 to 2018 is −0.03, representing a mild drought. The area in mild drought during the
growing season reached 532,600 km2, accounting for 52.39% of the total study area. The
area in mild drought was the largest in 2000, accounting for 99.60% of the total, followed
by 2001 and 2017, and that in 2012 was the smallest, accounting for only 6.01% of the total.
Among the various types of droughts, the average annual area of mild drought accounted
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for about 74.34%, the highest proportion. The largest areas of moderate drought and severe
drought occurred in 2000 and 2005, accounting for 73.10% and 36.17%, respectively.

Table 3. Change of drought area and proportion of various types of drought area in the study area
from 2000 to 2018.

Year
Drought Area

(Ten Thousand
Km2)

Percentage
of Study

Area

Percentage
of Light
Drought

Percentage
of Moderate

Drought

Percentage
of Severe
Drought

SPEI

2000 101.25 99.6% 23.28% 73.10% 3.62% −0.62
2001 96.49 94.98% 20.44% 68.36% 11.21% −0.68
2002 55.60 54.79% 73.00% 20.60% 6.39% −0.01
2003 7.74 7.62% 100% 0 0 0.66
2004 51.40 50.59% 60.17% 39.82% 0.02% 0.03
2005 69.74 68.65% 33.45% 30.38% 36.17% −0.43
2006 65.55 64.52% 98.63% 1.37% 0 −0.06
2007 84.12 82.80% 25.98% 40.67% 33.35% −0.59
2008 16.74 16.48% 96.58% 3.42% 0 0.29
2009 73.59 72.43% 35.96% 53.26% 10.78% −0.39
2010 66.59 65.54% 99.68% 0.32% 0 −0.03
2011 62.57 61.59% 69.74% 30.26% 0 −0.16
2012 6.11 6.01% 90.94% 9.06% 0 0.77
2013 29.32 28.86% 52.46% 26.51% 21.03% 0.51
2014 11.19 11.02% 100% 0 0 0.36
2015 17.87 17.59% 99.99% 0.01% 0 0.37
2016 34.37 33.80% 100% 0 0 0.19
2017 88.27 86.88% 28.08% 49.06% 22.86% −0.61
2018 73.46 72.31% 68.36% 31.64% 0 −0.21

Annual
average 53.26 52.39% 74.34% 18.89% 6.7% 0.03

The study area has high elevation in the west and low in the east (Figure 1a), and high
in the south and low in the north. The spatial distribution of SPEI shows an increasing
pattern from west to east with a rate of change of 0.008/degree and an increase of 0.01/de-
gree from south to north (Figure 3). SPEI is highly sensitive to elevation gradients. Areas
with high SPEI were mainly distributed in the 40~52◦N area below 800 m in elevation,
including Hinggan League, Hulunbuir City, Bairin Left Banner of Chifeng City, and other
areas (Figure 1b); low SPEI appeared in areas with elevation between 1100 m~1400 m, in
longitude between 105~115◦E, and latitude between 40~45◦N, mainly including Bayannur
City, Baotou City, Ulanqab City, and West Ujimqin Banner of Xilingol League. In the Banner
area, land covers are mainly grasslands, meadows, and deserts (Figure 1b).
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Trend analysis results show that (Figure 4a) there are significant differences in SPEI
changes between the east and west of the study area. SPEI decreased with time signif-
icantly at a rate of −0.40~−0.25·(10a−1) in the west including Alxa Left Banner in Alxa
League, Dorbod Banner in Ulanqab City, Darhan Muminggan United Banner in Baotou
City, and Wuhai City, while SPEI increased significantly with time at a rate of change of
0.25~0.75·(10a−1) in Hulunbuir City, Hinggan League, Tongliao City, and the eastern part
of Xilingol League. On the whole, the area with elevated SPEI was about 819,190 km2,
accounting for 79.70% of the study area. The land cover in the study area was relatively
high in grassland, desert, and cultivated vegetation, reaching 43.68%, 11.94%, and 11.07%,
respectively. The area of marsh was the smallest, accounting for only 3.69%. There are
significant differences in the spatial distribution of vegetation (Figure 4b). The results of the
SPEI variation trend in different land cover types showed that the area with a significantly
higher SPEI (SPEI > STD) accounted for about 44.10% of the study area. The increasing
trends of SPEI in swamp, coniferous forest, and broad-leaved forest were the most obvi-
ous, accounting for more than 85%. These land covers were located in a high-latitude,
low-altitude forest area. The area has a large amount of precipitation, abundant water
resource, and a low probability of drought. About 93.12% of the area where SPEI dropped
significantly was located in the desert, accounting for about 61.53% of the total desert area.
In the past 20 years, the mean annual precipitation in the desert areas of Inner Mongolia was
less than 150 mm. Under the high-temperature and high-evaporation climatic conditions,
water loss became severe and terrestrial carbon productivity was restricted, leading to an
increased risk of drought [40].
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3.2. Identification of Main Control Factors

The factor detection and ecological detection show that (Table 4) precipitation was
the most explanatory factor (q = 0.73). From the q-values (Table 4), we can see the top four
impact factors in decreasing order were MP > Elevation > MAT > DTR, and all passed the
significance test (p < 0.05). Slope, aspect, LUCC, AOPD, and DTC have lower explanatory
power for drought.
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Table 4. q statistics and ecological detector.

Factor Tag p Value q-Value Rank

MAT X1 0.05 0.43 3
MP X2 0.05 0.73 1

MWS X3 0.05 0.13
MSD X4 0.05 0.22
DTR X5 0.05 0.42 4
DTC X6 0.05 0.03

Elevation X7 0.05 0.53 2
Aspect X8 >0.1 0.01
Slope X9 0.05 0.11

AOPD X10 >0.1 0.06
POS X11 0.05 0.23

LUCC X12 0.05 0.26

SPEI rates of change (θslope) versus factor level for various factors were shown in
Figure 5. We can see that θslope shows a decreasing trend (Figure 5a), with increasing factor
level for factors MAT (X1), MSD (X4), DTR (X5), and elevation (X7). The elevation factor
has the greatest influence on θslope when the factor level is low (≤2), while factors MAT
and MSD have a larger impact at a high factor level (>4). The elevation increases from
the first level (100~500 m) to the fifth level (1500~3500 m), and the θslope decreases from
0.58·(10 yr−1) to −0.02·(10 yr−1). Compared with other factors, the influence of DTR on
θslope is approximately linear, and θslope drops to the lowest value (0.08·(10 yr−1)) in the
DTR interval of 90~321.6 km. On the contrary, θslope shows an increasing trend (Figure 5c)
with the increasing factor level of MP (X2), MWS (X3), and Slope (X9). Precipitation
has the greatest impact on θslope. The amount of precipitation increases from level 1
(61.2~108.2 mm) to level 5 (262.6~305.8 mm), and θslope rises from −0.075·(10 yr−1) to
0.53·(10 yr−1). The relationship between θslope and any of the following factors, DTC (X6),
aspect (X8), AOPD (X10), and POS (X11), does not show a significant linear trend (Figure 5b).
When POS is at the second level (38~47%), θslope reaches a peak value. This may imply that
appropriate amount of sand is conducive to the respiration of plant roots, retaining soil
moisture, and transportation of nutrients. However, a percentage of sand that is too high
can easily cause surface degradation, soil moisture loss, and soil erosion. DTC, aspect, and
AOPD have much smaller variation ranges of θslope, which indicates that these factors have
little influence on the change of SPEI rate. SPEI over most land cover types (X12) increased
from 2000 to 2018, and SPEI decreased over only two land covers, in which cases water
area was converted to construction area and unused land (Figure 5d). The θslope of the two
land covers was −0.09·(10 yr−1) and −0.03·(10 yr−1), accounting for 0.1% and 11.5% of the
study area, respectively. Among all land conversion types, the SPEI of unaltered forest land
increased at the fastest rate 0.51·(10 yr−1).

Overall, the factors with strong explanatory power in the factor detector have a larger
fluctuation range of θslope. The θslope values of factors such as MP, elevation, MAT, and DTR
are in four ranges of −0.07~0.55, −0.02~0.58, −0.04~0.53, and −0.09~0.44·(10 yr−1), respec-
tively. The change range of SPEI rate influenced by natural factors, such as meteorology
and topography in the study area, was larger than that influenced by human factors.

The ranking of the influence by interacting pair of factors was given in Table 5. Only
the precipitation ∩ DTC (X2 ∩ X7) and wind speed ∩ elevation (X1 ∩ X2) pairs of the
first 15 interacting pairs showed nonlinear enhancement; the others were dual-factor
enhancement. Among them, the influence by the interaction between precipitation and
elevation is the strongest, with a q-value of 0.870, followed by that between temperature and
precipitation; the interaction between wind speed and elevation has the lowest explanatory
power, with a q-value of 0.686. As expected, precipitation is an important source of
water and a crucial driving factor in the process of drought changes. The difference in
precipitation between the east and west of Inner Mongolia contributes mainly to the spatial
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differentiation of drought condition. Elevation also has a strong explanatory power for
drought. It is an important topographical factor for driving drought in Inner Mongolia, and
it is also an important factor in combining other factors to form a drought spatial pattern.
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Table 5. Influence of the interacting pairs of factors.

q = A ∩ B Results Comparison Interaction Type Rank

X1∩X2 = 0.852 X1 + X2 > Max(X1, X2) Double-factor Enhance 2
X1∩X7 = 0.753 X1 + X7 > Max(X1, X7) Double-factor Enhance 8
X2∩X3 = 0.846 X2 + X3 > Max(X2, X3) Double-factor Enhance 3
X2∩X4 = 0.836 X2 + X4 > Max(X2, X4) Double-factor Enhance 4
X2∩X5 = 0.742 X2 + X5 > Max(X2, X5) Double-factor Enhance 11
X2∩X6 = 0.770 X2 + X6 < X2∩X6 Nonlinear Enhance 5
X2∩X7 = 0.870 X2 + X7 > Max(X2, X7) Double-factor Enhance 1
X2∩X9 = 0.745 X2 + X9 > Max(X2, X9) Double-factor Enhance 10
X2∩X10 = 0.756 X2 + X10 > Max(X2, X10) Double-factor Enhance 7
X2∩X11 = 0.751 X2 + X11 > Max(X2, X11) Double-factor Enhance 9
X2∩X12 = 0.762 X2 + X12 > Max(X2, X12) Double-factor Enhance 6
X3∩X7 = 0.686 X3 + X7 < X3∩X7 Nonlinear Enhance 15
X4∩X7 = 0.737 X4 + X7 > Max(X4, X7) Double-factor Enhance 12
X5∩X7 = 0.695 X5 + X7 > Max(X5, X7) Double-factor Enhance 14
X7∩X10 = 0.703 X7 + X10 > Max(X7, X10) Double-factor Enhance 13

Note: Only the first 15 combinations are ranked.

3.3. Spatial Difference of Main Control Factors

The GWR model was used to perform spatial regression analysis on the four main
controlling factors, i.e., MAT, MP, Elevation, and DTR, and local adjusted R2 and Akaike
Information Criterion (AIC) as the evaluation indexes of the model fitting. Results show
that the adjusted R2 of the GWR model is 0.88, and the AIC value is −540.58. The action
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direction of the factor is reflected by the sign of the coefficient of the fitting equation. A
negative coefficient in an area and the absolute value of the coefficient indicate that the area
is drought-stricken and the strength of the driving effect, respectively.

The effects of the two meteorological factors, i.e., temperature and precipitation, have
significant spatial differences. The overall fluctuation ranges of the two are relatively large,
and the regression coefficient intervals are (−1.20, 0.60) and (−1.4, 0.55), respectively. The
area in drought driven by temperature accounted for about 70.2%, of which the areas
with strong temperature driving (−0.6~−1.20) were mainly located in Alxa Left Banner
of Alxa League, Wuhai City, Hanggin Banner and Otog Banner of Ordos City, Urad Rear
Banner of Bayannur City, and parts of Xilingol League (Figure 6a). Due to the large
temperature difference between the east and west of the study area (up to 12.7 ◦C), the
surface vegetation in the western hot area had strong transpiration and respiration, and the
dry matter consumption and soil water loss were larger, which further expanded the arid
area [41,42]. The difference of the driving results between precipitation and temperature
factors is mainly in the semi-arid grasslands (Figure 6b), such as Xilinhot City, West
Ujimqin Banner and East Ujimqin Banner in Xilingol League. The average precipitation
in the growing season in this region was greater than 150 mm, which was enough for the
growth of vegetation such as grassland, shrubs, and other vegetation [43].
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The influence of elevation mainly reflects the effect of the terrain. The GWR regression
coefficient interval is (−1.25, 1.2), with the Great Khingan Range-Yin Mountains-Helan
Mountains range as the boundary, and the SPEI driving coefficients on both sides are
obviously different (Figure 6c). The central and western regions of Inner Mongolia (Alxa
Left Banner, Dalate Banner, Zhungeer Banner, etc.) dominated by the Mongolian Plateau
are generally higher than 1000 m in elevation, which has a significant effect on drought.
The average GWR coefficient is−0.75. The eastern foothills of the Great Khingan Range-Yin
Mountains and the southern foothills of Helan Mountains have lower average elevations,
ranging from 100 to 500 m, and the average GWR coefficient is 0.5. The DTR factor
reflects the water conservation within the basin, and the range of coefficient is the smallest
(−0.17, 0.12). Due to low water conservation in Alxa League, Wuhai City, Ordos City, and
Erguna in Hulunbuir City, the impact by DTR is shown in Figure 6d: the drought mitigation
area driven by DTR is mainly located at the tributary of the Yellow River in Ordos City
in the southwest of Inner Mongolia, Tabu River in Ulanqab City, and Dahei River (River
inflow area), and the areas where Liaohe River, Songhua River, Nenjiang River, and other
rivers adjacent to the Northeast Plain flow through.

4. Discussion
4.1. Driving Analysis of Drought in the Inner Mongolia

Drought is mainly caused by the imbalance of regional precipitation and evapotranspi-
ration. We found that the change rate of SPEI during the growing season in Inner Mongolia
from 2000 to 2018 ranged from −0.4 to 0.75·(10 yr−1), and the area with decreasing SPEI
accounted for 20.3% of the total area. The areas where the SPEI increased significantly
(θslope is between 0.25 and 0.75·(10 yr−1)) are mainly located in Hulunbuir City, Hinggan
League, and Tongliao City. The distribution characteristics of SPEI shown in this study are
similar to the results of previous drought monitoring based on long-term series [19,20]. The
differences are mainly manifested in the areas such as Hinggan League and Tongliao City,
where drought changes increased significantly. Around 2000, the SPEI time series of the
Mongolian Plateau showed a significant turning point from increasing to decreasing [34,44].
The results of the Geodetector modeling showed that the SPEI change was driven by four
main controlling factors: air temperature, precipitation, DTR, and elevation (Table 4) during
the growing season in the study area. Precipitation is a direct factor in drought (q = 0.73).
Relevant studies have shown that in arid and semi-arid areas, vegetation growth and
ecosystem health status depend directly on atmospheric precipitation [45]. The interaction
detection results show that the joint effect of precipitation and elevation has the most
explanatory power (q = 0.87). Conclusions about attribution analysis of drought agreed
with a previous study [36]. However, we considered the special climatic background of
Inner Mongolia in this study of meteorological drought. The impact of elevation reflects the
influence of topography on mass and energy transportation and distribution of temperature
and water availability that affect regional ecosystems through altering vegetation species
and distribution and the formation and evolution of regional climate [46]. According to the
drought trend (Figure 4a) and the spatial distribution of the regression coefficient of SPEI
with GWR model factors (Figure 6), it was found that significantly reduced SPEI at a rate of
−0.40~−0.25·(10 yr−1) occurred in Alxa Left Banner in Alxa League, Dorbod Banner chain
Ulanqab City, Darhan Muminggan United Banner in Baotou City, and Wuhai City in the
western part of the study area. The drought in Alxa League and Wuhai City was caused by
a synergy of hot air temperature, lack of precipitation, high elevation, and high DTR, while
the drought in Ulanqab City and Baotou City was mainly caused by hot air temperature,
lack of precipitation, and high elevation.

4.2. Variation of Explanatory Power of Factors in Different Elevations

Due to the large and high terrain environment of the Qinghai-Tibet Plateau in the
region of the China-Mongolia Arid and Semiarid Area (CMASA), the lack of water vapor
transported over the central and western Inner Mongolia has resulted in scarce precip-
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itation [47]. The central and western part of the study area is dominated by plateaus
and mountains. Due to the barrier and uplifting effects of the Great Khingan Range-Yin
Mountains-Helan Mountains on water vapor, the eastern and southern piedmont of the
mountains are the East Asian monsoon zone (elevation is about 150~500 m) and the west
piedmont of the mountains is the non-monsoon zone (the elevation is generally higher than
1000 m).

As an important terrain factor, elevation has a significant impact on the spatial corre-
lation of factors. We found an interesting pattern to speculate the relative importance of
environmental and anthropogenic factors in our study area by elevation gradients. As the
statistical results of q-values of various factors in different elevation intervals (Figure 7a), in
the 100–500 m elevation interval, the average precipitation (X1) in the growing season is
261.5 mm, and the q-value is the smallest. When the precipitation reaches a certain level,
the impact of precipitation on SPEI decreases [48]. For the forest area, the ecological water
storage is sufficient and the correlation between SPEI and sunshine duration (X4) is stronger.
In the elevation range of 800~1000 m, the q-values of factors such as air temperature (X1),
precipitation (X2), sunshine duration (X4), slope (X9), POS (X11), and LUCC (X12) increased
significantly, indicating that the change in SPEI was mainly affected by natural factors
and some human activities. When the elevation increases to 1000~1300 m, the q-values
of POS (X11) and LUCC (X12) reach the maximum of 0.38 and 0.42, respectively, and the
q-values of other factors show a downward trend. In the area above 1300 m in elevation,
the explanatory power of all factors decreases significantly with increasing elevation.
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2000/2018 
Unit: km2 Croplands Forests Grasslands Water  

Areas 
Construction 

Lands 
Unused 
Lands 

Croplands 14,143.289 
(3.5) 

948.394  
(0.2) 

7180.634  
(1.8)  

464.368 
(0.1) 
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Figure 7. The change in q statistics of influencing factors on SPEI along the gradient of Elevation (a)
and R2 statistics of prefecture cities (b).

It is worth mentioning that the conversion of land use types is an important influencing
factor reflecting human activities, as well as an important explanatory factor for drought
changes (Table 3). Between 2000 and 2018, in the 800~1300 m elevation interval, SPEI was
significantly enhanced by the land use conversion. According to statistics, the land use
types that account for the largest area in this elevation interval are unaltered woodland
and unaltered grassland (Table 6), which account for 48.3% and 15.5% of the total area of
the region, respectively. The growth rates of SPEI are 0.52·(10 yr−1) and 0.018·(10 yr−1),
respectively, indicating that the series of ecological restoration projects such as “closing hills
for afforestation and reforestation, retiring grazing and raising grass” implemented by the
Chinese government in Inner Mongolia since 2000 have played an important role [49]. In
addition, in the conversion of land use from unused land to grassland and from farmland
to grassland, SPEI increased by 0.24 and 0.58, respectively, which alleviated the drought
conditions in the area to a large extent (Figure 5d). The SPEI of the unchanged farmland
increased by 0.57, and the SPEI growth rate was 0.019·(10 yr−1). This may be related to
improvement in irrigation. Modern irrigation technology has improved the utilization
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rate of water resources and increased the field water holding capacity [50]. At the same
time, grassland degradation caused by overgrazing and long-term abandonment of land
aggravated the degree of drought [51,52]. For example, the grassland in the 800~1300 m
elevation range was converted to unused land; as a result, the SPEI decreased by 0.42, while
the SPEI of unaltered unused land decreased by 0.21.

Table 6. The area of specific land use conversion in 800~1300 m.

2000/2018
Unit: Km2 Croplands Forests Grasslands Water

Areas
Construction

Lands
Unused
Lands

Croplands 14,143.289
(3.5)

948.394
(0.2)

7180.634
(1.8)

464.368
(0.1)

1530.627
(0.4)

1758.953
(0.4)

Forests 1357.162
(0.3)

61,982.534
(15.5)

17,312.724
(4.3) 0 0 811.536

(0.2)

Grasslands 5566.708
(1.4)

5677.182
(1.4)

193,072.543
(48.3)

1278.544
(0.3)

735.711
(0.2)

13,980.681
(3.5)

Water areas 477.401
(0.1) 0 952.564

(0.2)
2410.992

(0.6) 0 986.008
(0.2)

Construction
lands

1372.649
(0.3)

159.97
(0.1)

1920.498
(0.5) 0 1092.653

(0.3)
492.902

(0.1)
Unused

lands
626.973

(0.2)
3200.702

(0.8)
14,295.369

(3.6)
871.862

(0.2)
117.173

(0.1)
43,698.632

(10.9)
Note: The numbers in parentheses are the percentage of specific land use conversion to the total area (%).

4.3. Advantages and Limitations of GWR

The adjusted R2 value from the GWR model is 0.88, and the AIC value is −540.58.
Compared with the OLS model (R2 = 0.54, AIC = −504.22), the AIC value is reduced by
36.36 and the degree of fit is higher, but there are regional differences. The regional statistics
of R2 shows that (Figure 7b) the largest value occurred in Wuhai City, Inner Mongolia (K)
R2 = 0.96, followed by Hohhot City (H) R2 = 0.92, and the two prefecture-level cities with
the smallest R2 were Hinggan League (B) and Bayan. In Bayannur City (I), R2 is 0.64 and
0.67, respectively. The difference in the accuracy of regional fitting may be related to the
influence of elevation changes on the distribution of other factors in the large east-west
span of the study area. Areas with small R2 (A, B, I) have an average elevation of less than
800 m, and the average single factor q-value is 0.17. The average elevation of Wuhai City
(K) and Hohhot City (H) are 1193 m and 1379 m, respectively, and the average q-value is
0.32 and 0.28, respectively. On the other hand, the area of each city is quite different, so
is the statistical sample size, and the collinearity of the factors within the region may be
another reason for the low fit in Hinggan League (B) and Bayannur City (I) [11,53,54].

4.4. Future Directions

Compared with traditional statistical models, we quantified the non-linear responses
of independent variables and their interactions to SPEI change, without input of complex
parameters. Further research may include: (1) using long-term SPEI data and more accurate
PET calculation methods, such as the Penman and Hargreaves–Samani formula to produce
more generalizable drought-driven results; (2) refining the spatial scale both horizontally
and vertically, especially in eastern Inner Mongolia and western Mongolia, to generate
results at higher resolutions.

5. Conclusions

Based on the multi-source data at the 110 meteorological stations, DEM, and veg-
etation types in Inner Mongolia and its surrounding areas, this study investigated the
spatiotemporal variation of SPEI during the growing season in Inner Mongolia from 2000
to 2018. Through the introduction of time rate of change in SPEI, we used Geodetector
and GWR models to screen the main controlling factors and then effectively quantified
the impact of the factors on drought changes and the results are of great significance for
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drought-driven research. We made the following conclusions. (1) The SPEI in the growing
season from 2000 to 2018 in Inner Mongolia showed a spatial variation pattern from dry
west to wet east. The area with light drought accounts for the largest proportion in the
whole region. (2) The inter-annual variation of SPEI shows an upward trend and the area
of elevated SPEI accounted for 79.70% of the study area. These results indicate that the
drought condition became alleviated with time during the growing season in Inner Mongo-
lia. (3) The drought changes in Inner Mongolia were generally controlled by natural factors,
with nonlinear interaction between factors enhancing drought impact. The aggravated
drought in the central and western regions of the study area, such as Alxa League, Ulanqab
City, Baotou City, and Wuhai City, were mainly driven by a synergy of hot air temperature,
scarce precipitation, and high elevation, with significant impact from soil and LUCC at an
elevation of 800~1300 m. The results from this study should be helpful for decision-making
and management of regional water resources.
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