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Abstract: Change detection (CD) with heterogeneous images is currently attracting extensive atten-
tion in remote sensing. In order to make heterogeneous images comparable, the image transformation
methods transform one image into the domain of another image, which can simultaneously obtain
a forward difference map (FDM) and backward difference map (BDM). However, previous methods
only fuse the FDM and BDM in the post-processing stage, which cannot fundamentally improve
the performance of CD. In this paper, a change alignment-based change detection (CACD) framework
for unsupervised heterogeneous CD is proposed to deeply utilize the complementary information
of the FDM and BDM in the image transformation process, which enhances the effect of domain
transformation, thus improving CD performance. To reduce the dependence of the transformation
network on labeled samples, we propose a graph structure-based strategy of generating prior masks
to guide the network, which can reduce the influence of changing regions on the transformation
network in an unsupervised way. More importantly, based on the fact that the FDM and BDM are
representing the same change event, we perform change alignment during the image transformation,
which can enhance the image transformation effect and enable FDM and BDM to effectively indicate
the real change region. Comparative experiments are conducted with six state-of-the-art methods
on five heterogeneous CD datasets, showing that the proposed CACD achieves the best performance
with an average overall accuracy (OA) of 95.9% on different datasets and at least 6.8% improvement
in the kappa coefficient.

Keywords: change detection; heterogeneous image; unsupervised; change alignment; image
transformation; prior mask

1. Introduction
1.1. Background

The change detection (CD) technique of remote sensing images aims to detect changes
in ground objects between two or more images acquired at different times in the same
geographical area [1]. With the continuous improvement of spatial and temporal resolution
of remote sensing images, CD technology is continuously applied and promoted in various
fields, such as land cover, buildings, ecosystem services and natural disaster assessment [2].
(1) Land cover. Land cover change detection using remote sensing images is an important
application of Earth observation data because it provides insight into environmental health,
global warming, and urban management. Lv et al. [3] review the problem of land cover
change detection using remote sensing images in terms of algorithms, applications, etc.,
to promote a comprehensive understanding of land cover research with high-resolution
images. (2) Buildings are one of the most dynamic man-made structures. Building change
detection is important for urban development monitoring (e.g., building demolition and
construction) and disaster management (e.g., building damage caused by natural disasters).
Bai et al. [4] propose an end-to-end edge-guided recursive convolutional neural network
building change detection method. The main idea is to combine the distinguishing informa-
tion and edge structure prior information in a framework to improve the change detection
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results, especially to generate more accurate building boundaries. (3) Ecosystem services
link ecosystems to human well-being by considering nature as a resource that provides
a range of services (e.g., local climate regulation and water purification) [5]. (4) CD is an
urgent issue in natural disaster assessment. Fast and effective identification of the affected
area can better carry out rescue and damage assessment. Brunner et al. [6] use optical
image and SAR image to detect the affected area after the earthquake.

Most of the current CD techniques [7–9] are based on homogeneous data, which are
acquired by the same sensors, such as optical sensor or synthetic aperture radar (SAR)
sensor. Unfortunately, homogeneous images are not available the first time for some reason,
so we started to focus our attention on heterogeneous CD, i.e., using images from different
sensors. The CD by heterogeneous images has two advantages: (1) It improves the temporal
resolution by inserting heterogeneous image to satisfy the requirements of specific appli-
cations with strict constraints [10]. (2) Since it chooses the first available image to detect
the change instead of waiting for a homogeneous image that can be directly compared,
it reduces the response time for CD, which has significant application needs in the rescue
and evaluation of natural disasters such as floods and earthquakes [11,12]. Despite the
urgent demand for heterogeneous CD and its wide application prospect, the research on
it is in its infancy. There are still many unsolved problems and research difficulties. The
variability between heterogeneous remote sensing images is considerable, and the images
acquired by different sensors cannot be compared directly and need to be converted to
the same space for this purpose. This involves several difficulties as follows. (1) Assimi-
lation mapping is difficult. Heterogenous remote sensing images have different imaging
mechanisms, provide different descriptions of the same feature, and exhibit different char-
acteristics. Therefore, mapping heterogeneous images into the same space is a difficult
problem. (2) The effect of image noise. The inherent noise in the image (such as coherent
speckle noise in SAR images) can affect the accuracy of image classification and reduce the
quality of difference maps, and thus increase false and missed detections, resulting in the
degradation of CD performance. (3) Impact of high resolution. The task of heterogeneous
CD becomes more complex under high-resolution conditions. It also brings the increase
of image size, which makes the size of the solution problem the scale of the solution prob-
lem becomes larger, which puts higher requirements on the computational complexity
of the algorithm.

1.2. Related Work

The challenge of heterogeneous CD is that the images before and after the moment
are in different domains because different sensors have different imaging mechanisms,
it cannot detect changes with simple arithmetic operations as homogeneous images,
such as image difference [13] (usually for optical images) and image ratio [14]/log-ratio [15]
(usually for SAR images).

Many methods [16–18] have been developed to solve this challenge by transforming
the images into the same space, where the images can be compared directly. These methods
can be divided into the following three categories.

(1) Classification space-based methods. In this type of method, heterogeneous images
are transformed into a common image category space. They detect changes by comparing
the classification results of multi-temporal images. Among them, the most widely used
is the post-classification comparison algorithm (PCC) [19]. The accuracy of this method
depends heavily on the performance of image classification, and PCC is also affected by
error propagation or accumulation. To address this challenge, Wan et al. [20] recently
proposed a change detection method based on multitemporal segmentation and composite
classification (MS-CC). However, as demonstrated in the literature, the method is strongly
influenced by image segmentation, especially for SAR images, where accurate segmenta-
tion is difficult. The advantages of such methods are that they are intuitive and easy to
implement, and the type of methods is able to show what type of changes before and after
moments are better able to meet the needs. However, they generally have the following
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disadvantages: the CD accuracy is limited by the accuracy and precision of the classification,
and there is also the risk of accumulation of classification errors.

(2) Feature space-based methods. This category of methods [21–24] is constructed
by transforming heterogeneous images into the same feature space, which is constructed
manually or learned by deep network. The motivation for manually constructing features
is to find shared features and feature similarities of heterogeneous images. Sun et al. [25]
construct graph structure features for each patch based on non-local patch similarity, which
measures the degree of change by measuring the graph structure similarity between two
images before and after. Sun et al. [26] combine difference maps generation and the
computation of binary change maps for iteration to generate more robust graphs. When
the geographic type is complicated, the quality of the change map will be affected by the
difficulty of constructing a suitable feature space for mapping. As for the methods of
learning features through a deep network, which are used to extract high-dimensional
features for CD, Zhao et al. [27] propose a symmetric convolutional coupled network
(SCCN) that maps discriminative features of heterogeneous images to common feature
space. Lv et al. [28] embed the multiscale convolutional module into the U-Net backbone
network to extract features for covering ground targets of different sizes and shapes.
Chen et al. [29] propose a self-supervised method to extract good feature representation
from multi-view images by contrast learning, which can correctly align features learned
from images acquired at different times. Although network-based learning methods are
superior in detection accuracy, these methods suffer from two major drawbacks: the time-
consuming training process and the construction of training sets, which require manual
labeling of samples in a supervised network [24,30] or a complex selection process to choose
training samples in an unsupervised network [22].

(3) Image transformation-based methods. These methods [31–34] map heterogeneous
images to homogeneous images using image transformation and then compare them di-
rectly at the pixel level. Representatively, conditional Generation Adversarial Network
(cGAN) [35] is used to transform images from two different domains into a single do-
main and then compare them. Liu et al. [33] transform one image into the pixel space
of another image based on the Cyclic Consistency Networks (CycleGANs) to extract the
difference maps from homogeneous images by subtractive computation. The two methods
[33,35] have achieved good results. However, they do not reduce the effect of change
regions, which results in poor detection performance when there are many change re-
gions in the before and after-moment images. Meanwhile, they only perform forward
or backward transformations to obtain a forward difference map (FDM) or a backward
difference map (BDM), without utilizing the complementary information of FDM and
BDM. Luppino et al. [36] propose two transformation frameworks: X-Net and ACE-Net,
while combining affinity matrices and deep transformation frameworks to reduce the
influence of changing regions on the transformation network. It performs two-way im-
age transformation in an unsupervised way, which avoids costly human annotation and
utilizes two-way transformation information. In the literature [37], Luppino proposes
a code-aligned autoencoder-based approach (CAA) that combines the domain-specific
affinity matrix and auto-encoder to align the relevant pixels in the input image. The above
two methods [36,37] generate two-way affinity matrices with domain-specific information,
therefore the prior difference matrices generated by making differences to the two-way
affinity matrices cannot effectively reduce the influence of the change regions. Meanwhile,
they only fuse the FDM or BDM in the post-processing stage, which cannot fundamentally
improve the performance of CD. In summary, the heterogeneous CD methods based on the
image transformation have two problems: (1) The change regions have a negative impact
on network transformations, thus requiring supervised manual annotation or unsuper-
vised construction of pseudo-labels. The supervised approach requires high labor cost and
expert knowledge while heterogeneous CD tasks require the presence of real homogeneous
images to accurately annotate the changes. The unsupervised approach requires ensuring
that the construction is efficient and the resulting pseudo-label is sufficiently accurate.



Remote Sens. 2022, 14, 5622 4 of 25

(2) The one-way transformation only utilizes the information from FDM or BDM while the
two-way transformation fuses FDM and BDM in the post-processing stage, where FDM
and BDM are not fully utilized.

1.3. Motivation and Contribution

Recently, image transformation methods have received considerable attention in het-
erogeneous CD tasks which transform heterogeneous images into homogeneous images and
then detect changes. To address the above two problems in the image transformation-based,
i.e., (1) there are the negative impact of the change regions on the network transforma-
tion. (2) The complementary information of FDM and BDM is underutilized. A change
alignment-based change detection (CACD) framework for unsupervised heterogeneous
CD is proposed.

First, the image transformation is based on the fact that the content of the hetero-
geneous images is the same, only that the difference in imaging mechanism leads to the
different distribution of heterogeneous images. Therefore, image transformation normally
seeks content-consistent regions to solve the problem of the inconsistent distribution of
heterogeneous source images. However, for the heterogeneous CD technique based on
image transformation, there are change regions in the before and after-moment images.
The change regions have a negative impact on the network transformation, which causes
the transformed network to learn the wrong mapping, thus requiring the construction
of an unchanged sample set. For constructing the unchanged sample set supervised
methods require higher labor costs, unsupervised methods are considered. However, cur-
rent unsupervised methods to construct unchanged sample sets are not accurate enough.
For example, X-Net [36], ACE-Net [36], and CAA [37] reduce the negative impact of the
change regions on network transformation by the unsupervised generation of affinity
matrices. However, these methods do not consider that the affinity matrices are in differ-
ent domains [36,37], so the direct difference cannot effectively reduce the influence of the
change regions.

Therefore, the first innovation is that we propose a strategy to generate the prior masks
based on the graph structure to more effectively avoid the effect of the change regions on the
image transformation. Firstly, the iterative robust graph and Markovian co-segmentation
method (IRG-McS) [26] is chosen to generate the forward and backward difference matrices
because it constructs graph structures in different domains and then maps them to the
same domain for detection, which is able to indicate the change regions more robustly.
Since the forward and backward difference matrices generated by IRG-McS indicate the
change probability explicitly, we then generate the forward and backward prior masks
by hard segmentation to better reduce the impact of the change regions on the network
transformation. The forward and backward prior masks are computed in different domains,
which differ from each other. Finally, by guiding the backward transformation through the
forward prior mask and conversely the forward transformation through the backward prior
mask, we can better utilize the information of the forward and backward prior masks to
improve the image transformation performance. Meanwhile, IRG-McS generates the prior
masks faster than the X-Net, ACE-Net, and CAA. In addition, by combining IRG-McS with
image transformation, we can improve the quality of the final difference map compared to
the difference matrix obtained by IRG-McS. At the same time, it can visually understand
the changes better instead of just obtaining the final change map like IRG-McS.

Second, it is worth noting that the FDM and BDM should be the same as the real
change. Regarding such methods based on image transformation, the loss of original
image information is inevitable when image transformation is performed because of the
imaging mechanism and transformation algorithm. It leads to the difference between the
FDM, BDM, and real change. Some methods [33–35] only utilize an effective forward
transformation or backward transformation to detect changes, which do not utilize the
information of another transformation direction. At the same time, they need to choose an
effective transformation direction based on different datasets, with deficient adaptability.
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Therefore, in some papers [34,36–38], different fusion strategies are chosen to fuse the
FDM and BDM at the post-processing stage, and the complementary information of the
FDM and BDM is utilized to improve the quality of the final difference map. However,
the fusion at this stage probably makes the changes that could be detected correctly in the
FDM or BDM undetectable in the final difference map. More importantly, the fusion at the
post-processing stage cannot affect the performance of image transformation, which has
limited improvement on the final difference map.

Therefore, the second innovation is that we consider introducing the change alignment
process in the network training process to constrain the deep image transformation by
utilizing the complementary information in the FDM and BDM. Specifically, we first obtain
the FDM and BDM by making the difference between the transformed image and the
original image, respectively. Then, we calculate the change alignment objective function by
dotting the FDM and BDM based on the principle that the FDM and BDM indicate that
the change regions should be the same. Finally, the change alignment objective function is
combined with the weighted transformation objective function and the cyclic consistency
objective function to constrain the transformation network. Thus, the transformed image
can approximate the real image of the target domain, which can improve the quality of the
final binary change map.

In summary, the main contributions of this paper are as follows.

• We propose a change alignment-based change detection (CACD) framework for un-
supervised heterogeneous CD to deeply utilize the complementary information of the
FDM and BDM in the image transformation process.

• We propose a graph structure-based strategy of generating prior masks to guide the
network, which can reduce the influence of changing regions on the transformation
network in an unsupervised way.

• We perform change alignment during the image transformation, which can deeply
utilize the complementary information of the FDM and BDM.

• A series of experiments on five real heterogeneous CD datasets are performed in order
to evaluate the effectiveness and superiority of the proposed CACD.

1.4. Outline

The rest of this paper is organized as follows. Section 2 describes the methodology
and specific processes of the CACD framework. Section 3 describes the datasets used in
this paper as well as the network implementation details and the final experimental results.
Section 4 concludes this paper and then mentions future work.

2. Methodology

The heterogeneous images X ∈ RH×W×CX and Y ∈ RH×W×CY are obtained in the
same geographical area and are co-registered, where X is in the domain X at moment t1, Y
is in the domain Y at the moment t2, H and W are the height and width of the images, and
CX and CY are the number of channels of images X and Y, respectively.

Since the heterogeneous images X and Y are in different domains, it is not possi-
ble to make a direct comparison to obtain the change regions. Therefore, we perform
the pixel-wise transformation of the domain X to domain Y through the transforma-
tion network F(X) : X → Y , which is called forward transformation. On the contrary,
the domain Y to domain X transformation is performed through the transformation net-
work G(Y) : Y → X , which is called backward transformation.

However, regarding the CD task, there are change regions between the before and after
moment images, which negatively affect the F(X) and G(Y). Therefore, we first design
a strategy to generate the prior masks based on the traditional graph structure. Then we
utilize the prior masks to guide F(X) and G(Y) to avoid the negative influence of the change
regions. At the same time, the F(X) and G(Y) utilize the complementary information of
FDM and BDM more fully by the change alignment process. By forward transforming
the image X to obtain the transformed image Ŷ, we can then obtain the homogeneous
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image pairs Y and Ŷ in the Y domain. Conversely, we can obtain the homogeneous images
X and X̂ in the X domain. Finally, by differencing X and X̂ in the domain X and Y
and differencing Y and Ŷ in the domain Y , respectively, we can acquire BDM and FDM.
The FDM and BDM are fused to obtain the final fused difference map, and then the binary
change map is obtained by principal component analysis and k-Means (PCA-Kmeans)
clustering method [39].

The method proposed in this paper consists of the following two stages. (1) Transform
the image by deep transformation network. (2) Obtain the final difference map and binary
change map.

2.1. Transform the Image by Deep Transformation Network

The whole deep transformation network consists of two fully convolutional neural
networks (CNNs) F(X) and G(Y). The main purpose of the networks is to transform het-
erogeneous images into the same domains so that they can be compared pixel-wise directly.
Inspired by X-Net [36], we utilize CNNs to learn nonlinear transformation functions F(X)
and G(Y) for transformations between X and Y domains.

Ŷ = F(X) : X H×W×CX → YH×W×CY

X̂ = G(Y) : YH×W×CY → X H×W×CX
(1)

The specific transformation process of this network is illustrated in Figure 1,
where the solid lines represent the process of image transformation, and the dashed lines
in various colors represent the calculation of different objective functions. X is transformed
into the Y domain by the forward transformation function F(X) to obtain the transformed
image Ŷ. The transformed image Ŷ is subsequently transformed back to the X domain
by the backward transformation function G(Y) and then the cyclic image Ẋ is obtained.
Similarly, Y can be transformed to X domain by G(Y) to obtain the transformed image
X̂, and then the transformed image X̂ can be transformed back to Y domain by F(X) to
obtain the cyclic image Ẏ. The training optimization of the networks F(X) and G(Y) are
optimized by backpropagation minimizing the weighted transformation objective function
Ltran(υ), cyclic consistency objective function Lcyc(υ), and change alignment objective
function Lca(υ). By constraining the network transformation process through these ob-
jective functions, the image can be well transformed to the target domain. Meanwhile,
it can maintain the information of the source domain image, as well as reduce the comple-
mentary information of the FDM and BDM, thus improving the final CD effect.

Figure 1. Framework of the proposed CACD.

The following is a detailed description of each part of the network, respectively.
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2.1.1. Prior Mask Generation

In order to reduce the impact of changing regions on the training of F(X) and G(Y),
we design a strategy to generate the forward and backward prior masks based on the
IRG-McS [26].

IRG-McS utilizes the characteristic that heterogeneous images share the same structural
information of the same geographical object. Firstly, robust K-nearest neighbors graphs
are constructed to represent the structure of each image. Then the graph structures of
different domains are mapped to the same graph structure space using graph mapping.
The graph structures in the same space are compared to calculate the forward and backward
difference matrices. In this way, it avoids the confusion of heterogeneous data as in the
similar affinity matrix, and thus improves the quality of the difference matrices. The Markov
co-segmentation model has then been used to segment the forward and backward difference
matrices, which initially detect the changed regions. Once Markov co-segmentation detects
the changed regions, they are propagated back to the graph construction process to reduce
the effect of neighborhood point changes. This iterative framework generates more robust
prior forward and backward difference matrices by providing more robust graph structures.
The schematic diagram of IRG-McS is shown in Figure 2.

Figure 2. Schematic diagram of IRG-McS.

IRG-McS generates simple and efficient prior difference matrices, which are better than
the prior difference matrices in X-Net, ACE-Net, CAA, and other methods. We generate
the prior masks by hard segmentation of the different matrices, which can better reduce the
impact of the change regions on the transformation network. The details are as follows.
The corresponding backward thresholds δx and forward thresholds δy are obtained by
Otsu [40] segmentation for the prior backward difference matrix and forward difference
matrix. When the value of the corresponding pixel in the prior backward difference matrix is
larger than δx, assign the pixel the value 0. In contrast, when the value of the corresponding
pixel in the prior backward difference matrix is less than δx the pixel will be assigned
the value of 1. The backward mask Mb is obtained from the prior backward difference
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matrix by hard segmentation. The same operation is done for the prior forward difference
matrix to obtain the forward mask M f . The Mb and M f guide the image transformation to
minimize the negative impact of change regions which can improve CD performance.

However, IRG-McS still has the following three problems. First, the graph structure
constructed by IRG-MCS is not robust enough when the input of IRG-McS is a heterogenous
image of a complex scene. This will result in generated difference matrices that are not
robust enough. Meanwhile, the limitation of the segmentation algorithm will lead to false
positives (FP) and false negatives (FN) in the binary change map. Second, the process of
obtaining the difference matrices by IRG-McS is all linear operations, resulting in the poor
learning ability of IRG-McS. Therefore, IRG-McS is combined with the nonlinear transfor-
mation functions F(X) and G(Y) to improve the CD performance of IRG-McS. Third, it
is only able to obtain the final difference and binary change maps in IRG-McS, which is
sufficiently useful for the simple detection of changes. Nevertheless, it is not possible to
visually represent the changes between before and after moments of heterogeneous images.
With IRG-McS, it can only be known that changes have occurred, without being able to
visually see what type of change has occurred. The method based on deep transformation
networks is able to obtain before-and-after moment images of the same domain, which
allows us to visually indicate the type of change.

In conclusion, combining IRG-McS with the deep transformation network can improve
both the network transformation and the quality of the difference matrices. On the one
hand, it can well-reduce the negative effect of the change regions on the network training to
improve the quality of the final binary change map. On the other hand, the transformation
network enables us to visualize the changes in the same domain.

2.1.2. Forward and Backward Transformation

In order to make heterogeneous images comparable, we transform heterogeneous
images into homogeneous images through forward and backward transformation processes.
To ensure that F(X) and G(Y) can efficiently transform the heterogeneous images from the
source domain to the target domain, the forward and backward transformation processes
need to satisfy the following constraints.

Ŷ = F(X) ' Y
X̂ = G(Y) ' X

(2)

However, for the CD task, there are change regions in the before- and after-moment
images. If the change regions are involved in the forward and backward transforma-
tion process of the network, F(X) and G(Y) will learn a trivial solution that maps the
changed regions to unchanged regions at the same location in another domain. Therefore,
we combine the Mb and M f generated by IRG-McS with the constraints of (2) to produce
a weighted transformation objective function, which can reduce the negative impact of the
change regions by constraining F(X) and G(Y). In particular, F(X) and G(Y), respectively,
transform the image to the Y and X domains. The Mb and M f are constructed in X and Y
domains, respectively, which naturally differ and have the information of corresponding
domains. Through an opposite guidance process of Mb to guide G(Y) and M f to guide
F(X), which enables the network to learn more information about the changes.

When the heterogeneous image pairs X and Y are from different optical sensors (such
as X from Worldview2, Y from Pleiades), the distributions of X and Y are approximately
Gaussian [41], so the mean square error (MSE) formula is utilized to constrain the forward
and backward transformations as shown in (3). X, X̂, Y, Ŷ, Mb and M f are expanded into
one-dimensional vectors for the calculation.

Ltran(υ) = Ltranx(υ) + Ltrany(υ)

=
1

HW

HW

∑
i=1

M f
i

∥∥Xi − X̂i
∥∥2

2 +
1

HW

HW

∑
i=1

Mb
i
∥∥Yi − Ŷi

∥∥2
2

(3)
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where Xi, X̂i ∈ RCX×1 are the i-th pixels in X and X̂, respectively, Yi, Ŷi ∈ RCY×1 are the i-th
pixels in Y and Ŷ, respectively, Mb

i , M f
i ∈ R are the i-th pixels in Mb and M f , respectively,

i ∈ {1, ..., H ×W}, and ‖·‖2 represents the `2-norm.
However, when the heterogeneous image pairs X and Y are from optical and SAR

sensors, respectively (such as X from Landsat-8, and Y from Sentinel-1A), the effect of
multiplicative coherent speckle noise exists in Y. Therefore, the log-ratio operator [15]
is introduced in the Y domain to constrain the backward transformation as shown in (4).

Ltran(υ) = Ltranx(υ) + Ltrany(υ)

=
1

HW

HW

∑
i=1

M f
i

∥∥X− X̂i
∥∥2

2 +
1

HW

HW

∑
i=1

Mb
i
∥∥log(Yi)− log(Ŷi)

∥∥2
2

(4)

Equations (3) and (4) enable the image transformed from the source domain through
the target domain to maintain the same pixel values in the unchanged regions as the
pixel values of the image in the target domain at another moment. Meanwhile, MSE
is weighted by the Mb and M f , thus avoiding the effect of changing pixels on network
training. However, there may be false checks and missed checks in Mb and M f , so Mb

and M f are updated when the transformation network is trained to a certain number
of epochs. This iterative update process can avoid the transformation network to be
completely dependent on Mb and M f , thus improving the stability of the transformation
network. Overall, the weighted transformation objective function enables the transformed
image to approximate the image of the real target domain, which improves the quality
of the final binary change map.

2.1.3. Cyclic Consistency Transformation

The purpose of the forward and backward transformations is to constrain the distribu-
tion of the transformed image X̂ (Ŷ) to be identical to the target domain image X (Y) in the
unchanged region. However, it does not consider that the transformed image X̂ (Ŷ) has
to keep the same information as the source domain image Y (X). Therefore, we consider
introducing the cyclic consistency transformation process in CycleGAN [42]. Both forward
and backward cyclic transformations are performed to ensure that the transformed images
X̂ and Ŷ maintain the information of their respective source domain, as shown in (5).

Ẋ = G(Ŷ) = G(F(X)) ' X
Ẏ = F(X̂) = F(G(Y)) ' Y

(5)

Similar to the analysis of the specific formula for the weighted transformation objective
function, the cyclic consistency the objective function is also divided into two cases. When
X and Y are from different optical sensors, the specific calculation is shown in (6). X, Ẋ, Y,
and Ẏ are also expanded into one-dimensional vectors for the calculation.

Lcyc(υ) = Lcycx(υ) + Lcycy(υ)

=
1

HW

HW

∑
i=1

∥∥Xi − Ẋi
∥∥2

2 +
1

HW

HW

∑
i=1

∥∥Yi − Ẏi
∥∥2

2

(6)

where Ẋi ∈ RCX×1 and Ẏi ∈ RCY×1 are the i-th pixels in Ẋ and Ẏ, respectively, i ∈
{1, ..., H ×W}.

However, when X and Y are from optical and SAR sensors, respectively, the cyclic
consistency objective function is calculated as shown in (7).

Lcyc(υ) = Lcycx(υ) + Lcycy(υ)

=
1

HW

HW

∑
i=1

∥∥Xi − Ẋi
∥∥2

2 +
1

HW

HW

∑
i=1

∥∥log(Yi)− log(Ẏi)
∥∥2

2

(7)
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The cyclic transformation objective function can constrain X̂ and Ŷ to transform back
to the source domain after transforming to the target domain. It ensures that X̂ and Ŷ have
the identical distribution of the target domain and the identical information of the source
domain image.

2.1.4. Change Alignment Process

Ltran(υ) and Lcyc(υ) can ensure to some extent that the network transformation ob-
tains the accurate transformed images X̂ and Ŷ. Then, we can obtain the BDM (Λb ∈ RH×W)
and FDM (Λ f ∈ RH×W) as follows.

Λb
i =

1
CX

∥∥Xi − X̂i
∥∥2

2

Λ f
i =

1
CY

∥∥Yi − Ŷi
∥∥2

2

(8)

where Λb
i , Λ f

i ∈ R are the i-th elements in the Λb and Λ f , respectively, i ∈ {1, ..., H ×W}.
However, there are two factors that limit the ability to indicate the area of change

simply on the basis of Λb and Λ f . First, the network is limited by the quality of the
prior masks as well as the learning ability, which leads to the difference between Ŷ (X̂)
and the true representation of X in the Y domain (the true representation of Y in the X
domain), thus Λb and Λ f are not the same as the true change. Second, Λb and Λ f are,
respectively, calculated in the X domain and Y domain, which both carry domain-specific
information. According to the above two factors, the previous methods fuse the Λb and
Λ f with complementary information to obtain the fused difference map after the network
training is completed. This fusion strategy only improves the quality of the final change
map to some degree, but it cannot fundamentally affect the image transformation effect
to improve the CD performance. Therefore, we design a change alignment process in the
network transformation to fuse Λb and Λ f . It enhances the effect of image transformation
and thus fundamentally improves the quality of the final binary change map.

The change alignment process is achieved by optimizing the change alignment objec-
tive function, which is implemented as follows. Λb and Λ f are multiplied pixel by pixel, and
then averaged and inverted to obtain the final change alignment objective function value, as
shown in (9). Λb and Λ f are also expanded into one-dimensional vectors for the calculation.

Lca(υ) = −
1

HW

HW

∑
i=1

(Λb
i ·Λ

f
i ) (9)

Lca(υ) will enable the Λb and Λ f to indicate the same region of change, as shown
in Figure 3.

Figure 3. Alignment of difference maps. (a) Λb without the change alignment process. (b) Λ f without
the change alignment process. (c) Λb with the change alignment process. (d) Λ f with the change
alignment process.

Figure 3 illustrates the hypothetical case with and without the change alignment
process. There are differences between Λb and Λ f when the transformation network
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has no change alignment process. After the change alignment process is introduced in
the transformation network, Λb and Λ f trend towards the same. However, if there are
false positive regions in the change map obtained by Λb and Λ f , the network simply by
the Lca(υ) constraint will make the false positive regions more certain to be detected as
change regions, which results in degraded CD performance. Therefore, we constrain the
transformation network jointly by Lcyc(υ), Ltran(υ) and Lca(υ), as shown in (10).

L(υ) =ωcycLcyc(υ) + ωtranLtran(υ) + ωcaLca(υ)

=ωcyc

(
1

HW

HW

∑
i=1

∥∥Xi − G(Ŷi)
∥∥2

2 +
1

HW

HW

∑
i=1

∥∥Yi − F(X̂i)
∥∥2

2

)

+ ωtran

(
1

HW

HW

∑
i=1

Mb
i
∥∥Xi − X̂i

∥∥2
2 +

1
HW

HW

∑
i=1

M f
i

∥∥Yi − Ŷi
∥∥2

2

)

−ωca

(
1

HW

HW

∑
i=1

(
1

CX

∥∥Xi − X̂i
∥∥2

2 ·
1

CY

∥∥Yi − Ŷi
∥∥2

2

))
(10)

where ωcyc, ωtran and ωca are the weights of each objective function, which are used
to balance the influence of each objective function on the network training.

The training process optimizes the network by minimizing the full objective function
L(υ) with the network parameters υ as independent variables. Two reasons why the L(υ)
joint constraint network can facilitate the positive impact of Lca(υ) on transformation are
explained as follows. On the one hand, Ltran(υ) and Lca(υ) have an adversarial process
in the unchanged region in Mb and M f . Ltran(υ) reduces the value of the elements in Λb

and Λ f to limit the effect of Lca(υ) on unchanged regions, while Lca(υ) enables the network
to detect missed changes in Mb and M f by increasing both the value of the elements in
Λb and Λ f . On the other hand, Lcyc(υ) constrains the network forward and backward
transformation effects by the cyclic transformation process on all regions, which makes the
Lca(υ) does not affect the transformation effect unrestrictedly. The constraints on Lca(υ)
by Ltran(υ) and Lcyc(υ) enable Lca(υ) to utilize the information of Λb and Λ f to positively
improve the network transformation effect.

2.2. Obtain the Final Difference Map and Binary Change Map

After the training of the network is completed, X and Y are input into the network
to obtain the desired Ŷ and X̂. Then the final Λb and Λ f can be obtained in the X and
Y domains, respectively. Although the change alignment can utilize the complementary
information of Λb and Λ f in the network transformation process, there is still domain-
specific information in the final Λb and Λ f . Therefore, we simply fuse the Λb and Λ f

after the network training to obtain the fused difference map (Λ f inal ∈ RH×W), which can
improve the CD performance.

Λ f inal = (Λb/ max(Λb) + Λ f / max(Λ f ))/2 (11)

where max(·) stands for taking the maximum value in the difference map. The quality
of Λ f inal will be reduced because of the outliers in Λb and Λ f , which affect their normaliza-
tion. For this reason, it is generally important to crop the pixels whose pixel values exceed
three standard deviations from the mean in Λb and Λ f , respectively.

Once the Λ f inal is obtained, the CD task can be modeled as a binary classification
problem. It aims to obtain the changed and unchanged pixels from the final difference
map, which is indicated by 1 for changed pixels and 0 for unchanged pixels. In this paper,
the PCA-Kmeans [39] method is chosen to obtain the final binary change map. Firstly,
we construct the feature vector space of Λ f inal by PCA. The Kmeans algorithm with k = 2
is then used to cluster the feature vector space into two clusters that correspond to changed
and unchanged. Finally, the binary change map is generated by assigning each pixel
of Λ f inal to one of the two clusters.
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3. Experimental Results

This section initially introduces five real datasets commonly used in heterogeneous
CD task. Then the experiment setup is specified. It is followed by showing the experimental
results of CACD and state-of-the-art comparison methods on these datasets to illustrate
the effectiveness and superiority of CACD. Finally, an ablation study on different datasets
is conducted to evaluate the effectiveness of the different modules of CACD.

3.1. Datasets

1. California dataset: This dataset shows the disaster in Sacramento, Yuba, and Sutter
counties in California before and after the flooding. The image before the disaster is shown
in Figure 4a, which is an optical image obtained by Landsat-8 in January 2017. The image
after the disaster is shown in Figure 4b, which is a polarized SAR image obtained by
Sentinel-1A in February 2017. The image size and spatial resolution are 3500× 2000 and
15 m, respectively. Figure 4c indicates the ground truth change of these two images [31].

Figure 4. California dataset. (a) Landsat-8 optical image. (b) Sentinel-1A SAR image. (c) Ground-truth.

2. Shuguang dataset: It consists of SAR image and optical image, as shown
in Figure 5a,b, respectively. The two images were acquired in Shuguang village, Dongy-
ing, China, with a spatial resolution of 8 meters and a dimensional size of 593 × 921.
The SAR image was taken in June 2008 by Radarsat-2, while the optical image was taken
in September 2012 by Google Earth. Figure 5c represents the ground truth change of these
two images.

Figure 5. Shuguang dataset. (a) Radarsat-2 SAR image. (b) Google Earth optical image. (c) Ground-
truth.

3. Sardinia dataset: This dataset shows the changes before and after the lake flooding
in Sardinia, Italy. Figure 6a shows an image in the near-infrared band acquired by the
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Landsat-5 satellite in September 1995. The optical image of Figure 6b was acquired by
Google Earth at the same location in July 1996. They both have the same 30 m spatial
resolution and 300× 412 size. The real change situation on the ground is shown in Figure 6c.

Figure 6. Sardinia dataset. (a) Landsat-5 near-infrared image. (b) Google Earth optical image.
(c) Ground-truth.

4. Toulouse dataset: This dataset shows the progress of road construction work
in Toulouse, France, between May 2012 and July 2013. It consists of two optical im-
ages acquired by Pleiades (Figure 7a) and WorldView2 (Figure 7b). The basic truth
in Figure 7c describes this change. The image size and spatial resolution are 2000× 2000
and 0.5 m, respectively.

Figure 7. Toulouse dataset. (a) Pleiades optical image. (b) WorldView2 optical image. (c) Ground-truth.

5. Gloucester dataset: This dataset shows the changes before and after the lake flooding
in Gloucester, England. The ERS image was captured in October 1999 as shown in Figure 8a.
The SPOT image composed of three spectral bands, as shown in Figure 8b, was obtained
at the same location in 2000. They both have the same 25 m spatial resolution and 990× 554
size. The real change situation on the ground is shown in Figure 8c.
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Figure 8. Gloucester dataset (a) ERS image. (b) SPOT image. (c) Ground-truth.

3.2. Experimental Setup

The experimental configuration is based on NVIDIA 1050Ti GPU, which is used
on windows system, and the experiments are implemented by Tensorflow 1.8.0 framework
under python language.

In this paper, the network framework is based on X-Net [36], which consists of two
CNNs F(X) and G(Y) composed of four fully convolutional layers. The two CNNs F(X)
and G(Y) have the same structure, but do not share parameters. The number of convolution
kernels from the first to the last layer is 100, 50, and 20, and the channel number of the target
domain image, where the convolution kernel size is 3× 3. The LeakyRelu function [43]
is chosen for the activation function of the initial three layers, while the slope of the
negative independent variable is set to β = 0.3. The activation function of the last layer is
chosen as hyperbolic tangent function because the input images are normalized to [−1, 1].
The dropout layer is inserted after each convolutional layer, and the 20% dropout rate is set
in the training phase to drop the neurons to prevent over-fitting [44].

The backward propagation process chooses the Adam optimizer [45] to optimize the
network by minimizing the objective function at a learning rate of 10−5. The weights
of the three objective functions are set to ωcyc = 2, ωtran = 3 and ωca is determined
based on different datasets. The number of training epochs of the network is set to 160,
and each epoch contains 10 batches, which are composed of 10 patches of size 100× 100.
When the network iterates to 60 and 120 epochs, X and Y are input to the network to obtain
the transformed Ŷ and X̂. Then Λb and Λ f are calculated and Mb and M f are obtained by
hard segmentation of the Otsu threshold. It updates prior Mb and M f obtained by IRG-McS
in order to reduce the effect of changing regions on network training more effectively.

In this paper, state-of-the-art unsupervised CD methods are chosen as the compar-
ison experiment. That is, ACE-Net [36], X-Net [36], cGAN [35], SCCN [27], CAA [37]
and IRG-McS [26] comparison methods, which are detailed in the introduction section.
In order to effectively evaluate the superiority of the proposed method CACD, overall
accuracy (OA), F1 score, Kappa coefficient (Kc) [46], and the area under the curve (AUC)
are selected for the comprehensive evaluation in this paper.

3.3. Results

In this section, the proposed CACD and the comparison methods ACE-Net, X-Net,
cGAN, SCCN, CAA and IRG-McS are illustrated for image transformation results
on different datasets and their evaluation criteria results. In order to reveal the compara-
bility of the results, the binary change maps of the above methods are obtained by PCA-
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Kmeans method. IRG-McS is not based on image transformation, thus making the compari-
son of its evaluation criteria merely to evaluate the effectiveness of the network in enhancing
the prior M f and Mb.

3.3.1. Quantitative Evaluation

Tables 1–5 show the evaluation criteria, AUC, OA, Kc, and F1, for the proposed
and compared methods on the California, Shuguang, Sardinia, Toulouse and Gloucester
datasets, respectively. From Tables 1–5, it can be seen that the proposed CACD achieves
the best results for different datasets, and the average of the evaluation criteria obtained
for different datasets obtains AUC, OA, Kc, and F1 of 96.2%, 95.9%, 77.0%, and 79.2%,
respectively. It improves the average evaluation criteria AUC, OA, Kc, and F1 by 2.0%,
1.25%, 6.8%, and 6.2%, respectively, over the second-best method (X-Net) on different
datasets. This demonstrates the superiority of the proposed CACD with great improve-
ment over the method with the same network framework. It benefits from the robust
prior M f and Mb generated by using IRG-McS to guide the network for training, avoid-
ing the influence of changing regions on the deep transformation network. Moreover,
it benefits from the change alignment process in the image transformation, which reduces
the difference between the Λ f and Λb by constraining them during the network training.
Thus, the quality of the Λ f inal is improved and ultimately the performance of CD is im-
proved. The proposed CACD improves the average evaluation criteria AUC, OA, Kc, and
F1 on different datasets by 2.95%, 1.1%, 12.7%, and 11.4%, respectively, over the IRG-McS
method that generates the forward and backward difference matrices. It can be seen that
combining the prior difference matrices with the transformation network can improve the
quality of the prior difference matrices, which improves the performance of CD.

Table 1. Quantitative evaluation on the California dataset.

AUC OA Kc F1

ACE-Net 0.898 0.937 0.507 0.541
X-Net 0.901 0.941 0.513 0.545
cGAN 0.855 0.928 0.404 0.443
SCCN 0.928 0.910 0.466 0.510
CAA 0.891 0.940 0.576 0.609

IRG-McS 0.895 0.932 0.478 0.514
CACD(US) 0.912 0.953 0.566 0.590

Table 2. Quantitative evaluation on the Shuguang dataset.

AUC OA Kc F1

ACE-Net 0.964 0.981 0.788 0.798
X-Net 0.975 0.980 0.783 0.793
cGAN 0.912 0.934 0.482 0.514
SCCN 0.884 0.908 0.344 0.386
CAA 0.962 0.974 0.749 0.763

IRG-McS 0.980 0.964 0.668 0.686
CACD(US) 0.976 0.983 0.813 0.821
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Table 3. Quantitative evaluation on the Sardinia dataset.

AUC OA Kc F1

ACE-Net 0.953 0.964 0.718 0.737
X-Net 0.943 0.972 0.764 0.778
cGAN 0.939 0.967 0.726 0.743
SCCN 0.920 0.899 0.478 0.523
CAA 0.933 0.951 0.642 0.667

IRG-McS 0.899 0.933 0.565 0.599
CACD(US) 0.954 0.977 0.800 0.812

Table 4. Quantitative evaluation on the Toulouse dataset.

AUC OA Kc F1

ACE-Net 0.802 0.882 0.477 0.540
X-Net 0.830 0.869 0.486 0.563
cGAN 0.752 0.864 0.320 0.379
SCCN 0.759 0.846 0.422 0.514
CAA 0.829 0.877 0.449 0.513

IRG-McS 0.893 0.903 0.575 0.628
CACD(US) 0.906 0.914 0.647 0.696

Table 5. Quantitative evaluation on the Gloucester dataset.

AUC OA Kc F1

ACE-Net 0.975 0.956 0.789 0.812
X-Net 0.972 0.954 0.767 0.791
cGAN 0.979 0.950 0.756 0.774
SCCN 0.988 0.960 0.810 0.834
CAA 0.976 0.948 0.774 0.805

IRG-McS 0.948 0.942 0.714 0.749
CACD(US) 0.987 0.963 0.834 0.854

3.3.2. Qualitative Evaluation

The following illustrates the visualization of the image transformation effect and the
difference map and binary change map of the proposed method and the five methods of
ACE-Net, X-Net, cGAN, SCCN, and CAA on five heterogeneous CD datasets. The results of
image transformation on the California, Shuguang, Italy, Toulouse and Gloucester datasets
are illustrated in Figures 9–13. IRG-McS is not shown here because the method is not
performed based on image transformation.
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Figure 9. California dataset. (a1) Input image X. (a2) Input image Y. (a3) Prior difference matrix
generated by IRG-McS. (a4) Real mask. (b–g) represent the results of ACE-Net, X-Net, cGAN, SCCN,
CAA and CACD (US) methods, respectively. (b1,c1,f1,g1) transformed image X̂. (d1) transformed
Y domain image Ŷ. (e1) code image ZX . (b2,c2,f2,g2) transformed image Ŷ. (d2) approximate Y
domain image Ỹ. (e2) code image ZY . (b3,c3,d3,e3,f3,g3) final difference map. (b4,c4,d4,e4,f4,g4)
confusion map, where white: true positives (TP), black: true negatives (TN), green: false positives
(FP), red: false negatives (FN).
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Figure 10. Shuguang dataset. (a1) Input image X. (a2) Input image Y. (a3) Prior difference matrix
generated by IRG-McS. (a4) Real mask. (b–g) represent the results of ACE-Net, X-Net, cGAN, SCCN,
CAA and CACD (US) methods, respectively. (b1,c1,f1,g1) transformed image X̂. (d1) transformed
Y domain image Ŷ. (e1) code image ZX . (b2,c2,f2,g2) transformed image Ŷ. (d2) approximate Y
domain image Ỹ. (e2) code image ZY . (b3,c3,d3,e3,f3,g3) final difference map. (b4,c4,d4,e4,f4,g4)
confusion map, where white: true positives (TP), black: true negatives (TN), green: false positives
(FP), red: false negatives (FN).

Figure 11. Sardinia dataset. (a1) Input image X. (a2) Input image Y. (a3) Prior difference matrix
generated by IRG-McS. (a4) Real mask. (b–g) represent the results of ACE-Net, X-Net, cGAN, SCCN,
CAA and CACD (US) methods, respectively. (b1,c1,f1,g1) transformed image X̂. (d1) transformed
Y domain image Ŷ. (e1) code image ZX . (b2,c2,f2,g2) transformed image Ŷ. (d2) approximate Y
domain image Ỹ. (e2) code image ZY . (b3,c3,d3,e3,f3,g3) final difference map. (b4,c4,d4,e4,f4,g4)
confusion map, where white: true positives (TP), black: true negatives (TN), green: false positives
(FP), red: false negatives (FN).

The superior performance of the proposed method in this paper on all five datasets
can be seen from the result. Firstly, it can be observed from the image transformation
results that the transformed image obtained by the proposed CACD is closer to the real
image in the target domain. It maintains both the texture as well as the information
of the source domain and has similar statistical properties as the target domain. Thus,
the transformed image can be compared directly with the image of the target domain.
Then, from the difference map and binary change map results, it can be seen that the results
obtained from the proposed CACD are more closely matched to the real change region.
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The regions of FN and FP are relatively small compared to other methods.
The affinity matrices in X-Net, ACE-Net, and CAA do not provide a good indication
of the changed and unchanged regions. It causes the change regions to negatively affect
the training of the deep transformation network, which can damage the effectiveness of the
network transformation and the quality of the final change map. There are two reasons
for the superior performance of the proposed CACD. (1) A more robust IRG-McS method
for generating a difference matrix is chosen to replace the affinity matrix, which generates
prior masks that are better for reducing the influence of the change region on the deep
transformation network. (2) By introducing the change alignment process in the network
training process, the Λb and Λ f are constrained in a way that the two-way difference map
approximates the real change condition, which is used to improve the quality of the final
change map.

Figure 12. Toulouse dataset. (a1) Input image X. (a2) Input image Y. (a3) Prior difference matrix
generated by IRG-McS. (a4) Real mask. (b–g) represent the results of ACE-Net, X-Net, cGAN, SCCN,
CAA and CACD (US) methods, respectively. (b1,c1,f1,g1) transformed imageX̂. (d1) transformed
Y domain image Ŷ. (e1) code image ZX . (b2,c2,f2,g2) transformed image Ŷ. (d2) approximate Y
domain image Ỹ. (e2) code image ZY . (b3,c3,d3,e3,f3,g3) final difference map. (b4,c4,d4,e4,f4,g4)
confusion map, where white: true positives (TP), black: true negatives (TN), green: false positives
(FP), red: false negatives (FN).
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Figure 13. Gloucester dataset. (a1) Input image X. (a2) Input image Y. (a3) Prior difference matrix
generated by IRG-McS. (a4) Real mask. (b–g) represent the results of ACE-Net, X-Net, cGAN, SCCN,
CAA and CACD (US) methods, respectively. (b1,c1,f1,g1) transformed image X̂. (d1) transformed
Y domain image Ŷ. (e1) code image ZX . (b2,c2,f2,g2) transformed image Ŷ. (d2) approximate Y
domain image Ỹ. (e2) code image ZY . (b3,c3,d3,e3,f3,g3) final difference map. (b4,c4,d4,e4,f4,g4)
confusion map, where white: true positives (TP), black: true negatives (TN), green: false positives
(FP), red: false negatives (FN).

3.4. Discussion
3.4.1. Ablation Study

To verify the validity of the change alignment process and the robust prior masks,
an ablation study is performed on four datasets correspondingly to evaluate the contri-
bution of each component to the performance. The following experiments are conducted
under different network configurations.

(1). Proposed: CACD.
(2). No change alignment process.
(3). No prior masks: by randomly initializing a difference map.
(4). Neither change alignment process nor the prior masks.

It can be seen from Table 6 that for the Toulouse dataset, the change alignment process
is very effective. By comparing configuration (1) and configuration (2), we find that
configuration (1) improved 4.2%, 2.5%, 8%, and 6.6% in the evaluation criteria AUC, OA,
Kc, and F1, respectively, which is a great improvement.
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Table 6. Ablation study on the Toulouse dataset.

AUC OA Kc F1

(1) 0.906 0.914 0.646 0.696
(2) 0.864 0.889 0.567 0.630
(3) 0.899 0.903 0.621 0.676
(4) 0.839 0.871 0.499 0.575

However, when comparing configuration (1) and configuration (3), it is found that
the improvement of configuration (1) over configuration (3) for the evaluation criteria is
only 0.7%, 1.4%, 2.6%, and 2%, respectively, which is not a very obvious improvement.
Because during the network iteration, the prior masks are iteratively updated at a specific
number of epochs to improve the quality of the prior masks, the prior masks generated
by randomization are not very good at the beginning of network training to mitigate the
effect of changing regions on network training. Nevertheless, after the network has been
iterated for a certain number of epochs, it is able to give a good indication of the change
regions. Thus, the performance of CD can be improved by updating the prior masks.
When the quality of the prior masks obtained from the iterative update of the network and
the quality of the prior masks obtained from IRG-McS are similar, and the quality of the
final change map obtained is not far from each other.

The next comparison is between configuration (2) and configuration (4), with neither
change alignment process. Generating the prior masks by IRG-McS to guide the network
training improved 2.5%, 1.8%, 6.8%, and 5.5% over the randomly generated difference
matrix to guide the network training on the evaluation criteria, respectively. It illustrates
that guiding network training by a randomly generated difference matrix without the
change alignment process cannot overcome the limits of the transformation network. It can
be seen that the more robust prior masks are effective for the training of the network.

Comparing configurations (3) and (4), both are trained by the randomly generated
prior difference matrix guiding the network. The improvement in the change map obtained
for the configuration with change alignment process constrained network training over
the configuration without change alignment process is 6%, 3.2%, 12.2%, and 12.1% on the
evaluation criteria, respectively. The superiority of the change alignment process can be
seen from the fact that it is equally effective in obtaining good change maps even when
the prior masks are randomly generated.

The results in Tables 7–9 for the California, Shuguang, and Sardinia datasets, respec-
tively, also reflect the results obtained from the above analysis. In summary, the results
of the ablation study on four different datasets show the effectiveness of the robust prior
masks and change alignment process in the CACD method, especially the superiority
of the change-alignment process. Without the robust prior masks, the same good perfor-
mance can be obtained by introducing the change alignment process and updating the
prior masks by network iteration.

Table 7. Ablation study on the California dataset.

AUC OA Kc F1

(1) 0.912 0.953 0.566 0.590
(2) 0.909 0.945 0.536 0.565
(3) 0.902 0.954 0.556 0.581
(4) 0.903 0.935 0.496 0.531
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Table 8. Ablation study on the Shuguang dataset.

AUC OA Kc F1

(1) 0.976 0.983 0.813 0.821
(2) 0.976 0.981 0.789 0.799
(3) 0.956 0.984 0.812 0.821
(4) 0.971 0.979 0.767 0.778

Table 9. Ablation study on the Sardinia dataset.

AUC OA Kc F1

(1) 0.954 0.977 0.800 0.812
(2) 0.955 0.975 0.785 0.799
(3) 0.952 0.976 0.794 0.807
(4) 0.947 0.974 0.775 0.788

3.4.2. Parameter Analysis

The effectiveness of the change alignment process can be seen from the results of the
ablation experiments. The change alignment process is carried out by the joint constraint
of Lca(υ), Ltran(υ) and Lcyc(υ) on the network. The joint constraint then has a problem
of balancing the effect of different objective functions on the network, so we assign differ-
ent weight values to different objective functions to balance their effect on the network.
To better understand the role of the change alignment process, we adjust the weight parame-
ter ωca of Lca(υ) on different datasets to observe the experimental results.
The experimental results are shown in Figure 14.

Figure 14. Influences of parameter ωca on the CACD performance.

Figure 14 shows the influence of ωca from 2−3 to 23 on Kappa coefficient, and the lines
in different colors correspond to the five used datasets, respectively. It can be seen from
the Figure 13 that, when different weights are set for Lca(υ), there is a large difference in
the change detection performance for different weights. When the value of ωca increases
gradually from small to large, the performance of change detection becomes gradually
better. This is because at this stage Lca(υ) plays an active role in network transformation,
and thus Lca(υ) enables fewer false negatives in the final change map. After the Kappa
coefficient reaches its peak, the performance of change detection decreases sharply as
the value of ωca increases. This is because the constraints of Ltran(υ) and Lcyc(υ) in the
network are not enough to balance the effect of Lca(υ) in the network at this time, which
can lead to an increase in the number of false positives detected and thus reduce the change
detection performance.
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3.4.3. Time Efficiency Analysis

Time efficiency is also an important aspect of the algorithm. For unsupervised change
detection methods, they require a separate processing time for different data. Therefore,
we calculate the running time on different data sets for CACD and some other comparison
methods. The experimental results are shown in Table 10.

Table 10. Time efficiency analysis on the five datasets.

California Shuguang Sardinia Toulouse Gloucester

ACE-Net 1536.37 s 1735.79 s 895.47 s 1105.06 s 1829.34 s
X-Net 1114.42 s 1306.92 s 484.34 s 684.46 s 1347.13 s
cGAN 963.52 s 990.79 s 446.15 s 933.75 s 1029.38 s
SCCN 325.18 s 386.43 s 140.32 s 229.90 s 416.52 s
CAA 1684.52 s 1812.07 s 1053.89 s 1287.36 s 1897.90 s

IRG-McS 9.37 s 9.52 s 8.03 s 8.56 s 9.64 s
CACD(US) 398.73 s 406.64 s 389.53 s 393.03 s 413.42 s

It can be seen from Table 10 that the traditional IRG-McS algorithm has the shortest
running time. This is because IRG-McS is based on linear operations with lower time
complexity compared to the deep learning methods. Our proposed CACD method is based
on the X-Net framework, but the running time of CACD is substantially reduced compared
to X-Net. This is because we choose a more efficient strategy than the affinity matrix
in X-Net to reduce the influence of the change regions.

4. Conclusions

In this paper, we propose a CD framework for heterogeneous images based on change
alignment. Firstly, the proposed CACD method generates the prior masks based on the
graph structure to unsupervised guide the transformation network training, which reduces
the negative impact of changing regions. Then, the change alignment process is introduced
during the network training. It is the first time that the transformation network exploits
the complementary information of FDM and BDM, which can influence the transforma-
tion effect and thus radically improve the quality of the final difference map. Finally,
the change map is obtained by the PCA-Kmeans clustering method for the images trans-
formed into homogeneous sources. The experimental results show that the proposed
CACD outperforms other state-of-the-art methods in terms of performance. In future work,
we will consider domain alignment to fuse FDM and BDM and thus make better use of the
complementary information between them to improve the CD performance.
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