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Abstract: Synthetic Aperture Radar (SAR) is the primary equipment used to detect oil slicks on the
ocean’s surface. On SAR images, oil spill regions, as well as other places impacted by atmospheric and
oceanic phenomena such as rain cells, upwellings, and internal waves, appear as dark spots. Dark spot
detection is typically the initial stage in the identification of oil spills. Because the identified dark spots
are oil slick candidates, the quality of dark spot segmentation will eventually impact the accuracy of
oil slick identification. Although certain sophisticated deep learning approaches employing pixels
as primary processing units work well in remote sensing image semantic segmentation, finding
some dark patches with weak boundaries and small regions from noisy SAR images remains a
significant difficulty. In light of the foregoing, this paper proposes a dark spot detection method
based on superpixels and deeper graph convolutional networks (SGDCNs), with superpixels serving
as processing units. The contours of dark spots can be better detected after superpixel segmentation,
and the noise in the SAR image can also be smoothed. Furthermore, features derived from superpixel
regions are more robust than those derived from fixed pixel neighborhoods. Using the support
vector machine recursive feature elimination (SVM-RFE) feature selection algorithm, we obtain an
excellent subset of superpixel features for segmentation to reduce the learning task difficulty. After
that, the SAR images are transformed into graphs with superpixels as nodes, which are fed into the
deeper graph convolutional neural network for node classification. SGDCN leverages a differentiable
aggregation function to aggregate the node and neighbor features to form more advanced features. To
validate our method, we manually annotated six typical large-scale SAR images covering the Baltic
Sea and constructed a dark spot detection dataset. The experimental results demonstrate that our
proposed SGDCN is robust and effective compared with several competitive baselines. This dataset
has been made publicly available along with this paper.

Keywords: SAR images; dark spot detection; deeper graph convolutional network; superpixels

1. Introduction

Among all the various kinds of marine pollution, oil pollution ranks first in terms of
frequency of occurrence, extent of distribution, and degree of harm [1]. The pollution of
offshore waters caused by oil spills continues to occupy the attention of researchers in many
countries [2]. In particular, developed countries are investing a great deal of money in
establishing oil spill monitoring systems to patrol, inspect, and manage offshore economic
zones and territorial waters [3,4]. Synthetic Aperture Radar (SAR), which has the ability to
penetrate clouds and fog and can work all day, is presently the most effective tool for oil
pollution detection [1,5]. As oil spills on the sea surface cause the attenuation of the Bragg
waves and reduce the roughness of the sea surface, the oil film generally appears as dark
spots on SAR images [6]. However, some atmospheric and oceanic phenomena, such as
upwelling, ocean internal waves, rain cells, and low winds, also appear as dark spots on
SAR images, which are called “lookalikes”, making it difficult to distinguish them from
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dark spots caused by oil spills [7]. The purpose of oil spills detection is to discriminate
between oily dark spots and lookalikes on SAR images. Typically, the traditional oil spill
detection process using SAR satellite images is divided into three stages: (1) dark spot
segmentation, (2) feature extraction, and (3) dark spot classification [7]. Dark spot detection
is the first and most important step for oil spill detection, aiming to accurately segment all
dark spots in SAR images, including real oil spills and lookalikes. The quality of feature
extraction and, ultimately, the accuracy of dark spot classification are both affected by dark
spot segmentation [8]. Any oil spills that are missed during the dark spot detection process
will never be retrieved in the subsequent two phases. As a result, dark spot segmentation
is critical for detecting oil spills.

There have been many studies pertaining to dark spot detection of oil spills using
SAR, from simple to complex, which can be divided into three categories: (1) threshold-
based approaches, (2) machine learning algorithms, and (3) deep learning algorithms.
Threshold-based techniques are distinguished by their simplicity and rapid computation
speed, and they typically need post-processing [9]. Since a single-scale threshold seg-
mentation technique did not perform well in segmenting both large and small regions,
Solberg et al. [10] proposed a multi-scale adaptive threshold segmentation method, which
first created an image pyramid and then applied a threshold segmentation algorithm to
each level of the pyramid to segment dark spots of different sizes. Shu et al. [7] developed
a spatial density threshold method for automated dark spot detection, which used the
kernel density to evaluate each potential background pixel after threshold segmentation
to obtain the true dark spot pixel. Chehresa et al. [9] used a three-step strategy to detect
dark spots that included image augmentation, Otsu thresholding, and post-processing.
Compared with threshold-based approaches, machine learning (ML) algorithms are more
popular in remote sensing image processing. Topouzelis et al. [11] proposed a simple
recurrent neural network that takes the pixel to be segmented and four adjacent pix-
els as network input, which showed better performance in detecting dark formations.
Taravat et al. [12] developed a new dark spot detection approach from the combination of a
Weibull multiplicative model and a pulse-coupled neural network, which proved to be fast,
robust, and effective. Lang et al. [13] designed three features suitable for dark spot segmen-
tation: gray-scale features, geometric features, and texture features, which were then fed
into a Multilayer Perceptron (MLP) for dark spot segmentation. With the development of
artificial intelligence, dark spot detection methods based on deep learning have emerged in
recent years. Xu et al. [14] presented a fully connected continuous conditional random field
with stochastic cliques for dark spot detection on SAR images and proved its robustness
against speckle noise. Guo et al. [15] suggested using the Segnet semantic segmentation
model to detect dark spots on SAR images, and experiments showed that it is more effective
than fully convolutional networks (FCN) [15,16] under fuzzy boundary and high noise
conditions. Yekeen et al. [17] used a Mask Region-based Convolutional Neural Network
(Mask R-CNN) [18] for oily instance segmentation and proved that it outperformed tra-
ditional machine learning models and semantic segment deep learning models. Based
on VGG-16 [19], Zeng and Wang [20] developed a relatively deep convolutional neural
network (DCNN) for oily dark spot detection, which outperformed traditional complex
ML classifiers. To solve the label imbalance problem, Basit et al. [21] introduced a new
loss function called “Gradient Profile” (GP) loss, which can significantly improve oily dark
spot detection performance. Recently, Zhu et al. [22] developed an oil spill contextual and
boundary-supervised detection network (CBD-Net) for detecting oily dark spots, which
can improve the internal consistency of dark spot regions by using one spatial and channel
squeeze excitation (scSE) block. In addition, they proposed a joint loss function for dealing
with the fuzzy boundary problem of dark patches in SAR images.

Although the above methods employ different strategies to improve the performance
of dark spot detection, the results are unsatisfactory in some complex sea areas with high
noise and weak boundaries. Some researchers have demonstrated that superpixel segmen-
tation techniques may be used in conjunction with some convolutional neural networks
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(CNNs) to improve image segmentation performance [23,24]. With the advancement of
artificial intelligence technology in recent years [25], several researchers have begun to
design more general deep learning algorithms, such as graph neural networks (GNNs),
for processing non-Euclidean data [26,27]. Based on the above two techniques, this paper
proposes a dark spot segmentation method combining GNNs and superpixel segmentation,
which can improve the segmentation performance of dark spots with weak borders and
small regions. This method begins by decomposing SAR images into superpixel blocks,
which is employed as the fundamental processing units. Subsequently, the images are
transformed into graphs with superpixels as nodes, which are fed into a graph neural
network for node classification. This strategy can significantly reduce memory usage. After
superpixel segmentation, dark spot boundaries can be detected more easily in the image.
Simultaneously, superpixels can smooth out speckle noise in SAR images. Compared
with existing pixel-based CNN algorithms and machine learning approaches, our method
considerably improves dark spot segmentation performance. The details and experimental
results of our method are introduced later in this paper.

The contributions of this paper are as follows: (1) For the first time, the deeper graph
convolutional network is used for dark spot segmentation on SAR images. Compared with
the existing pixel-based dark spot segmentation methods, this method can better handle the
noise of SAR images and detect the boundaries of dark spots. The improved performance
of dark spot segmentation will be more helpful for subsequent oil spill detection. (2) This
work publishes a dark spot detection dataset to aid future dark spot detection research.

The remainder of this paper is structured as follows: Section 2 describes the study
region and data used in this paper. Section 3 introduces our proposed dark spot detection
method in detail, including images to graphs transformation, feature extraction, feature
selection, and a GNN. Section 4 presents the research results, and Section 5 discusses the
practicality of our proposed method and its limitations. Finally, Section 6 presents our
conclusions and future directions of work.

2. Data and Study Region

Six Advanced Synthetic Aperture Radar (ASAR) products from the Envisat satellite
were used to demonstrate the efficacy of the method proposed in this paper. The Envisat
ASAR was developed by the European Space Agency (ESA) and operated in the C band
in a wide variety of modes. The wide swath mode (WSM) in VV polarization that we
used in our method is a one-of-a-kind instrument for detecting oil slicks on the ocean
surface because it provides an excellent combination of wide coverage and radiometric
quality [28]. In this mode, the incident angle of the acquired images ranges from 15 to 45◦,
the resolution is 150 m, and the swath is 405 km [28]. Inevitably, there may also be some
brightness effects between subswaths of the image acquired in wide swath mode, which
may hinder the detection of oil slicks. To solve this problem, Najoui et al. [29] applied a
semi-linear model. As shown in Figure 1, the images we used cover most of the Baltic
Sea, which is an important waterway in Northern Europe. The marine environment and
coastal ecology of this ocean are constantly threatened by oil discharges from ships [30].
The SAR images used in this paper contain dark spots of various shapes and sizes, which
are manually marked to form a dataset for dark spot detection. This dataset has been
made publicly available alongside this paper (https://drive.google.com/drive/folders/12
UavrntkDSPrItISQ8iGefXn2gIZHxJ6?usp=sharing, accessed on 4 June 2021).

https://drive.google.com/drive/folders/12UavrntkDSPrItISQ8iGefXn2gIZHxJ6?usp=sharing
https://drive.google.com/drive/folders/12UavrntkDSPrItISQ8iGefXn2gIZHxJ6?usp=sharing
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used the sentinel application platform (SNAP), which is a common architecture for ESA 
Toolboxes, for preprocessing [31]. For speckle filtering, a 3 × 3 Lee filter was chosen. The 
Lee filter has proved to be a very successful filter in the image processing of oil spill de-
tection and has been used numerous times [32]. After preprocessing, SAR images are seg-
mented into superpixel blocks. Some researchers have indicated that the features calcu-
lated from superpixel regions are more robust than those from fixed pixel neighborhoods 
[33]. Furthermore, Konik and Bradtke [30] showed that smooth SAR images or gradient 
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Figure 1. Overview of the research area. Numbers 1 through 6 show the coverage of the images used;
and the artificially marked dark spots in image 1 are shown in the lower right corner.

3. Method

As illustrated in Figure 2, the dark spot detection method we propose consists of three
steps: (1) image to graph structure conversion, (2) feature extraction and selection, and
(3) graph node classification. The following sections go over the specifics of each step.
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transforming the image into a graph structure, (b) depicts feature extraction and selection, and
(c) depicts final graph node classification.

3.1. Conversion of the Image to Graph Structures

Before conversion, SAR images need to be preprocessed. Typically, this process in-
cludes radiometric calibration, reprojection, speckle filter, and masking out the land. We
used the sentinel application platform (SNAP), which is a common architecture for ESA
Toolboxes, for preprocessing [31]. For speckle filtering, a 3 × 3 Lee filter was chosen.
The Lee filter has proved to be a very successful filter in the image processing of oil spill
detection and has been used numerous times [32]. After preprocessing, SAR images are seg-
mented into superpixel blocks. Some researchers have indicated that the features calculated
from superpixel regions are more robust than those from fixed pixel neighborhoods [33].
Furthermore, Konik and Bradtke [30] showed that smooth SAR images or gradient images
with obvious boundaries can significantly increase the accuracy of determining the outlines
of dark spots. In this paper, we employ the Bayesian Adaptive Superpixel Segmentation



Remote Sens. 2022, 14, 5618 5 of 18

approach (BASS) for superpixel segmentation, which is the state-of-the-art method that
enables massive parallelization, and can be implemented on GPU [23]. After superpixel
segmentation, pixels are grouped into homogeneous regions, reducing the number of items
to be processed and thus significantly reducing the computational burden [34]. On the
other hand, the shape, size, and number of adjacent superpixels are also changed. To
process them efficiently, adjacent superpixels are connected, and images are transformed
into graph structures with superpixels as nodes. Figure 3 shows this conversion, which
follows this order: (1) each superpixel is treated as a node of the graph, and its center is
calculated; (2) the centers of adjacent superpixels are connected, and the entire image is
transformed into a single non-Euclidean structure graph; and (3) all nodes representing
the land area are removed from the graph, as are the edges connected to them. Following
conversion, each image is converted into a graph structure with at least one subgraph.
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3.2. Feature Extraction and Feature Selection

In previous studies, feature extraction was mostly utilized to extract the features
of dark spots in order to discriminate between oil slicks and lookalikes [32]. Several
features for dark spot classification have been proposed: Solberg et al. [35] extracted
12 characteristics, Vyas et al. [36] extracted 25, Chehresa et al. [9] extracted 74, and
Mera et al. [37] extracted 52. While the amount of features varied between investiga-
tions, they can all be classified into three types: geometrical features, physical features,
and textural features [37]. In order to improve the performance of dark spot detection,
in this paper we propose extracting the features on superpixels, specifically 52 features,
as proposed by Mera et al. [37]. However, the features related to the wind for oil spill
detection were eliminated as well as features that were difficult to calculate when some of
the superpixels only contained one pixel. Ultimately, we retained and linearly normalized
48 features before using them (Table 1). The explanation of these features is in the Supple-
mentary Material and the paper by Mera et al. [37]. To reduce the difficulty of learning
tasks, we performed feature selection after superpixel feature extraction. Feature selection
is a very important data processing procedure to alleviate the curse of dimensionality.
In this paper, we chose to utilize support vector machines recursive feature elimination
(SVM-RFE) for the feature selection of superpixels. SVM-RFE is an embedded feature
selection method [37]. It works by iteratively training an SVM classifier, ranking the scores
of each feature according to the weights of the SVM, removing the feature with the lowest
score, and finally selecting the features required.
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Table 1. Geometric, texture, and physical features computed for superpixels in this study.

No Feature Code Category No Feature Code Category

1 Area A Geometrical 25 Var_area_superpixel Vas Textura

2 Perimeter P Geometrical 26 Mean Haralick H Textura

3 Perimeter to area ratio P/A Geometrical 27 Object mean Om Physical

4 Area to perimeter ratio A/P Geometrical 28 Object standard deviation Osd Physical

5 Elongation E Geometrical 29 Background mean Bm Physical

6 Major axis to perimeter ratio Maxx/P Geometrical 30 Background standard deviation Bsd Physical

7 Complexity1 Cp1 Geometrical 31 Mean of the contrast ratio Crm Physical

8 Complexity2 Cp2 Geometrical 32 Standard deviation of the
contrast ratio

Crsd Physical

9 Circularity C Geometrical 33 Object power to mean Opm Physical

10 Spreading S Geometrical 34 Background power to mean Bpm Physical

11 Superpixel width Sw Geometrical 35 Ratio of the power to
mean ratios

Opm/Bpm Physical

12 Curvature Cu Geometrical 36 Max contrast Cmax Physical

13 Hu moments Hu Geometrical 37 Mean contrast Cm Physical

14 Fluser and Suk moments Fs Geometrical 38 RISDI RISDI Physical

15 Thickness T Geometrical 39 RISDO RISDO Physical

16 Shape connectivity Shc Geometrical 40 IOR IOR Physical

17 Form factor Ff Geometrical 41 Gradient mean Gm Physical

18 Length to width ratio L/W Geometrical 42 Gradient standard deviation Gsd Physical

19 Shape index Si Geometrical 43 Max. gradient Gmax Physical

20 Narrowness N Geometrical 44 Object border gradient Obg Physical

21 Rectangular saturation Rs Geometrical 45 Surrounding Power-to-
mean ratio

Spm Physical

22 Marking ratio Mr Geometrical 46 RIIA RIIA Physical

23 Solidity Sd Geometrical 47 Elliptic Fourier Descriptors EFD Geometrical

24 Mean of the interior angles based
on bounding polygons

IABPm Geometrical 48 Standard deviation of the
interior angles based on

bounding polygons

IABPsd Geometrical

3.3. Deep Learning on Graphs

A graph convolutional network (GCN), a GNN version, is a promising deep learning
technology that has seen significant development in recent years. GCNs use message pass-
ing or, more specifically, certain neighborhood aggregation methods to extract high-level
features from a node and its neighbors for solving graph-related problems [38]. GCNs are
improving optimal results for a range of graph tasks, including node classification [39,40],
linking property prediction [41], and graph property prediction [42].

A graph G is usually defined as a tuple of two sets G = (V,E). V = {v1, v2, . . . vi, vi+1,
. . . vN} and E ⊆ V × V are the sets of vertices and edges, respectively. vi represents the i-th
node in the graph. If G is an undirected graph, the edge ei,j = (vi,vj) ∈ E indicates that the

node vi is connected to vj, otherwise, it means from node vi to vj. h(l)evu denotes edge features
of node v to u in layer (l). hv

(l) ∈ RF is node features of node v in layer (l).
Message passing by graph convolutional networks can be described as Formulas (1)–(3).

m(l)
vu = ρ(l)

(
h(l)v , h(l)u , h(l)evu

)
, u ∈ N(v) (1)

m(l)
v = ζ(l)

({
m(l)

vu

∣∣∣ u ∈ N(v)
})

(2)
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h(l+1)
v = φ(l)

(
h(l)v , m(l)

v

)
(3)

where ζ(l) is the message aggregation function, which is differentiable, permutation invari-
ant function, such as sum, mean, or max, N(v) represents the set of neighbor nodes of v,
m(l)

vu indicates an individual message for each neighbor u∈N(v), and φ(l) and ρ(l) denote
differentiable functions, such as multi-layer perceptrons (MLPs).

DeeperGCN [40], an effective GCN, was chosen in this paper for dark spot segmenta-
tion. Its’ message construction function ρ(l) and differentiable function φ(l) are as follows:

m(l)
vu = ρ(l)

(
h(l)v , h(l)u , h(l)evu

)
= ReLU

(
h(l)u + 1

(
h(l)evu

)
·h(l)evu

)
+ ε, u ∈ N(v) (4)

h(l+1)
v = φ(l)

(
h(l)v , m(l)

v

)
= MLP

(
h(l)v + s·‖h(l)v ‖2·m

(l)
v /‖m(l)

v ‖2

)
(5)

where ReLU(·) is the rectified linear unit and 1(·) is the indicator function, which is 1 when
the edge feature exists or otherwise 0. ε is the small constant and its value is 10-7, MLP(·) is a
multi-layer perceptron, and s is a learnable scaling factor. As shown in Equations (6) and (7),
DeeperGCN uses several differentiable generalized message aggregation functions ζ(l),
which unify the different message aggregation operations, such as Mean, Max, and Min.
The optimal aggregation function can be automatically selected in each layer of DeeperGCN
through training to aggregate the features of the superpixels and their neighbor nodes.

So f tMax _ Aggβ(·) = ∑u∈N(v)

(
exp(βmvu)/ ∑i∈N(v) exp(βmvu)

)
·mvu (6)

PowerMean_ Aggρ(·) =
(

1/|N(v)|·∑u∈N(v) mp
vu

)1/p
, p 6= 0 (7)

where β and p are the learnable variables. When β or p goes to −∞, So f tMax _ Aggβ(·)
and PowerMean_ Aggρ(·) can be instantiated as Min aggregators; when β or p goes to +∞,
they can be instantiated as Max aggregators; and when β goes to 0 or p goes to 1, they
can be instantiated as Mean aggregators. Furthermore, both of the above two aggregation
functions can be also instantiated as Sum aggregators by introducing a learnable variable y.
Their transformation process is depicted in Equations (9) and (10), respectively.

limβ→0So f tMax _ Aggβ(·)× |N(v)|y = Sum() (8)

limρ→1PowerMean_ Aggρ(·)× |N(v)|y = Sum() (9)

where |N(v)| is the degree of vertex v. Additionally, DeeperGCN also uses a pre-activation
variant of residual connection (Res+) [40] to help train the DeeperGCN architecture and
improve performance.

4. Results

In this section, we compare our method to existing dark spot segmentation methods
to validate its performance.

4.1. Implementation Details

The preprocessed images were cropped into 5030 samples with a size of 256 × 256 pixels.
According to the ratio of 6:2:2, 2898 samples were randomly selected for training, 1022 sam-
ples for verification, and the remaining 1019 samples were tested. The pixel ratio of dark
spots to the background in the training sample was approximately 1:9.

In the superpixel segmentation, in order to reduce the computational burden, the
object of its processing was the cropped images. The number of initial superpixels in the
Bayesian Adaptive Superpixel Segmentation approach (BASS) [23] was set to be 3000 to
ensure that dark spots in the small areas could be divided into superpixel patches. The
maximum number of iterations was set to 250, and the remaining parameter settings were
the same as those in the previous study [23]. After feature extraction, a machine learning
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library (scikit-learn) in Python was used to implement the SVM-REF feature selection
algorithm with the default parameters.

For graph node classification, we implemented our DeeperGCN model based on
PyTorch Geometric and used the Adam optimizer with an initial learning rate of 0.001. The
hidden channel size was 128, the batch size was 16, and the number of GCN layers was 28.
The dropout was 0.2 for MLP. Both β and s were initialized to 1.0, while y was initialized
to 0.0. The message aggregation function was |N(v)|y·SoftMax_Aggβ(·).

4.2. Evaluation Metrics

Four indicators were used for quantitative evaluation: the detection probability (Pd),
false alarm probability (Pf) [13], F1 score [43], and the missing ratio of oil spill (Pm), which
are defined as

Pd = TP/(TP + FN)× 100% (10)

Pf = FP/(TP + FP)× 100% (11)

Pm = (MO)/(AO)× 100% (12)

Pre = TP/(TP + FP)× 100% (13)

F1 score = 2× Pd × Pre/(Pd + Pre)× 100% (14)

where TP (true positive) and TN (true negative) denote the number of pixels with correctly
predicted dark spots and seawater, respectively; FN (false negative) and FP (false positive)
refer to the number of pixels incorrectly predicted as seawater and dark spots, respectively;
Pre denotes dark spot segmentation precision; MO and AO are the number of pixels in
missing oil spill areas and in all oil spill areas, respectively.

4.3. Effect of Feature Selection

Following feature extraction, each superpixel is provided a vector of 137 feature
values corresponding to the feature space described in Section 3.2. Subsequently, we used
the SVM-RFE approach for feature selection. We divided the dataset into two subsets
at random, with the training subset including 60% of the samples and the test subset
containing the remaining 40%. SVM-RFE repeatedly trains an SVM classifier with the
whole set of features in the training subset and sorts the 137 feature values according to the
SVM weights. Subsequently, we experimented with different feature combinations for dark
spot detection on the test subset. As shown in Figure 4, using the top 30 feature values for
classification stabilized the F1 score of the SVM classifier, so the top 30 were chosen as an
excellent feature subset for dark spot detection. Table 2 shows the corresponding codes and
categories of this feature subset, which includes 13 physical features, 16 geometric features,
and 1 texture feature. In addition, seven of the top ten features are physical features, while
the other three are geometrical. The top five features are all physical features.
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Table 2. A subset of features obtained for dark spot segmentation using the SVM-RFE algorithm.

Rank Code Category Rank Code Category Rank Code Category

1 RIIA Physical 11 Fs4 Geometrical 21 Bsd Physical
2 Cm Physical 12 Cp1 Geometrical 22 IOR Physical
3 Obg Physical 13 Vas Textural 23 Bpm Physical
4 Gm Physical 14 A/P Geometrical 24 Bm Physical
5 RISDO Physical 15 Fs3 Geometrical 25 Cp2 Geometrical
6 A Geometrical 16 RISDI Physical 26 L/W Geometrical
7 P Geometrical 17 Spm Physical 27 E Geometrical
8 C Geometrical 18 Rs Geometrical 28 Si Geometrical
9 Om Physical 19 Sd Geometrical 29 P/A Geometrical

10 Osd Physical 20 Mr Geometrical 30 T Geometrical

To evaluate the validity of the proposed feature subset, we trained the DeeperGCN
classifier using the selected feature subset (the top 30 feature values) and all the features,
respectively, and then utilized the test dataset to compare the accuracy of the two trained
models. The comparison results are shown in Table 3. As can be seen, the trained model
with this subset of features performs much better, indicating that having more features for
dark spot segmentation is not necessarily better. In terms of percentage, we found that
physical and geometric features account for 43% and 53% of the number of features in the
feature subset, respectively, indicating that physical and geometric features play a major
role in the segmentation of dark spots, followed by texture features. The suggested feature
subset not only decreased the number of features to be computed and sped up the feature
extraction process, but it also improved dark spot detection performance. Our proposed
superpixel-based DeeperGCN model is abbreviated as SDGCN from here forward.

Table 3. Comparison of the top 30 feature values with all feature values.

Model Pd (100%) Pf (100%) F1 Sore (100%) Pm (100%)

SDGCN with the top
30 feature values 96.98 5.68 95.63 7.18

SDGCN with all feature values 95.74 6.68 94.52 8.73

4.4. Comparison with Several Competitive Baselines

In this section, our proposed method SDGCN is compared with other classic pixel-
based segmentation methods: (1) PROP [13], (2) Otsu+post-processing [9], and (3) CBD-
Net [22] as well as two classic CNN methods: (1) Unet [44], and (2) Segnet [15]. Here,
SDGCN adopts the top 30 feature values.

To assess the efficacy of the dark spot segmentation algorithm, we used four evaluation
metrics: detection probability, false alarm probability, F1 score, and the missing ratio of the
oil spill. Table 4 displays the quantitative evaluation results of several models, where the
best results are marked in bold. As demonstrated in Table 4, our SDGCN obtains the highest
scores in four evaluation metrics and outperforms other models significantly, verifying the
superiority of our proposed segmentation method. The corresponding dark spot detection
probability, false alarm probability, F1 score, and oil spill missing ratio are 96.98%, 5.68%,
95.63%, and 7.18%, respectively, indicating that 96.98% of dark spot pixels were successfully
segmented, 5.68% of background pixels were incorrectly segmented as dark spots, 7.18%
of oil slick pixels were missed, and the F1 score of dark spot detection accuracy reached
95.63%. It can be seen that converting an image into a graph structure with superpixels as
nodes for segmentation can indeed improve dark spot detection performance and reduce
the missed detection rate of oil spill patches.
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Table 4. Comparison between our proposed SDGCN algorithm and different dark spot segmenta-
tion methods.

Method Pd (100%) Pf (100%) F1 Score (100%) Pm (100%)

Otsu+post-processing [9] 71.74 12.78 78.73 26.35
PROP [13] 90.36 52.71 62.09 10.36

SegNet [15] 83.00 8.88 87.02 13.03
UNet [37] 83.20 6.69 87.96 9.68

CBD-Net [17] 91.99 10.70 90.62 25.30
Our SDGCN 96.98 5.68 95.63 7.18

Figure 5 depicts the results of dark spot segmentation in 12 representative SAR images
with different brightness levels. The first four images are rather dark in brightness, whereas
the middle four images are relatively bright, and the last four images contain the observed
oil slicks. As can be seen, the boundaries of the dark spots in images b, d, e, f, h, and i
are indistinct, while the borders of dark spots in other images are apparent. On images
with obvious dark spot borders, we can see that only the PROP technique shows poor
segmentation performance, with no significant difference between the other methods. The
reason is that the PROP technique employs just a few artificial features, and its segmentation
results are heavily influenced by speckle noise in SAR images. However, on images with
fuzzy dark areas, such as images d, e, and i, Otsu+post-processing, PROP, Segnet, and
U-Net all perform badly, with the first two models doing much worse than the latter two.
Many darker backgrounds were mislabeled as dark spots, and some lighter dark spots
were mislabeled as backgrounds as well. Furthermore, due to the influence of speckle noise
in SAR images, the boundaries of dark spots obtained by segmentation are also relatively
rough. Compared with other methods, CBD-Net and our SDGCN are less influenced by
speckle noise and can obtain relatively smooth dark spot boundaries. However, when the
area of dark spots is small, such as oil slicks in images k and l, CBD-Net may smooth them
out as noise, increasing the missing rate of oil spill patches, but our SDGCN approach can
detect this type of dark spot. Overall, our method can more accurately identify the contours
of dark spots in SAR images while reducing noise. Compared with the other models, the
results of SDGCN were the most similar to the truth labels, and the dark spots with blurred
edges were accurately segmented.
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Figure 5. A few examples of qualitative comparison results. a~l are the various SAR images
(256 × 256 pixels) that were used. The top panel shows the locations of images a~l, respectively.
Images a~h contain lookalikes of varying shapes and sizes, with images a~d being darker and images
e~h being brighter. The red regions in the SAR images a through h depict oil slicks of varied shapes
and sizes.

5. Discussion

In this section, we analyze and discuss the practicality and limitations of the SGDCN
approach using a larger dataset.

The new dataset contains 27 large-scale ENVISAT SAR images, each with at least
one oil patch in sites identified by the Baltic Marine Environment Protection Commission
(Helsinki Commission-HELCOM), for a total of approximately more than 100 oil patches. It
is difficult to say how many of these oil patches there are because some of them have been
shattered into small plaques by the waves. Furthermore, the shape, size, and character of
these oil patches are different owing to the influence of factors such as water temperature,
salinity, current speed, and the volume of oil discharged. Likewise, these datasets contain a
plethora of lookalikes of various shapes and sizes. We retrained the SDGCN model using
about 4500 images of 256 × 256 pixels, and then used the trained model to segment all the
dark spots on these 27 SAR images.
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According to our statistics, a total of 103 oil pieces were detected in 27 images. The
smallest oil spill patch detected was 0.2 km2, while the largest was 245 km2. We applied
the CMOD5 geophysical model function to derive the wind speeds of the sea surface
for oil spill analysis and discovered that the wind speed on the sea surface of all the oil
patches segmented ranged from 1 to 8 m/s. However, Garcia-Pineda et al. [45] determined
that the optimum wind speed range to study the surface of oil slicks in SAR images was
3.5~7.0 m/s. As can be seen, our SDGCN performs well in oily patch segmentation. In
Figure 6, we display some representative oil patches detected. Additional oil patches and
lookalikes that were segmented are available in the Supplementary Material. From Figure 6,
we can see that they vary in terms of size, shape, and brightness, and that almost all of them
were formed by illegal discharge from ships. Oil patches a, c, f, g, and k appear as dots with
small areas, oil patch m appears as a lump shape, and the remaining oil patches appear
as long strips. Furthermore, oil patches a, f, and k have fuzzy edges and are less clearly
distinguished from the background, but other oil patches have rather defined boundaries.
We can intuitively see that the segmentation results of our SDGCN model basically look
the same as the oil patches on the input image.
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Figure 7 shows the unsegmented oil patches in all the images. It can be seen that
only a small proportion of oil patches with weak borders and small areas shattered by
waves were missed. They appear to be extremely small and very similar to the surrounding
background. Obviously, their oil leakage is minimal. Furthermore, phenomena [46] such
as advection, diffusion, evaporation, emulsification, and so on may have significantly
altered their properties, causing them to appear similar to the oceanic background in the
image. As can be seen, our SDGCN is incapable of segmenting all oily dark spots of this
type accurately despite improving dark spot segmentation performance. Further study
is needed in the future to enhance the detection performance of dark patches with weak
borders and small areas.

Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 18 
 

 

 
Figure 7. Oil patches that were missed. The top panel shows the locations of all images. The red 
circles in the input images indicate the oil patches that were not successfully segmented. 

Table 5. Ocean and atmospheric characteristics of the lookalikes in Figure 8. 

Dark Spot Mean Wind 
(m/s) 

Mean Sea  
Water Velocity 

(m/s) 

Mean Convective Rain 
Rate  

(kg·m−2·s−1) 

The Temperature  
Difference between the  

Atmosphere and the Ocean 
(K) 

Mean Chlorophyll-a  
Concentration (mg/m3) 

a 0.195 0.088 0 0.635 2.128 
b 4.009 0.040 0 −0.704 17.400 
c 0.289 0.058 0 0.201 2.459 
d 4.750 0.083 0 3.655 0 
e 0.553 0.078 0 0.144 2.635 
f 4.012 0.206 0 −0.689 2.673 

In Figure 8, dark spots a, c, and e are the low wind areas where the wind speed was 
lower than 0.6 m/s. The low wind speed resulted in a smooth sea surface, so these areas 
appeared as dark spots on the images. Typically, low wind-caused dark spots compose 
the vast majority of lookalikes on the SAR images. The concentration of chlorophyll-a in 
the dark spot b area was 17.400 mg/m3, which is relatively high. This dark spot may have 
been caused by an abnormal chlorophyll-a concentration. The air–sea temperature differ-
ence in the dark spot d area was relatively large at 3.655k. This dark spot may have been 
caused by an upwelling, which brings the cold water from the lower layer to the upper 
layer. On radar imaging, the temperature drop is usually followed by a decrease in the 
roughness of the sea surface, which appears as a dark spot [29]. The dark spot f may have 
been caused by the sea currents, which can cause biogenic oil to accumulate in some re-
gions and change the roughness of the sea surface, making these areas appear as black 
spots on SAR images [29]. As far as the various causes and shapes of lookalikes, it can be 

Figure 7. Oil patches that were missed. The top panel shows the locations of all images. The red
circles in the input images indicate the oil patches that were not successfully segmented.

Aside from oil slicks, many meteorological or oceanic phenomena, such as upwelling,
rain cells, wind shadowing, ocean currents [29], and high chlorophyll-a concentration [47]
can also smooth the surface of the sea and produce weak backscatter, which appears as dark
spots on SAR images [7]. Typically, these non-oil dark spots account for the vast majority
of dark spots [8]. Figure 8 shows several examples of various lookalikes successfully seg-
mented. In addition, Table 5 depicts the characteristics of the atmosphere and ocean surface
of these lookalikes, including wind speed, ocean currents, chlorophyll-a concentration, and
temperature difference between the atmosphere and ocean. Except for the wind speed,
which we derived using the CMOD5 model, other meteorological and marine data were
provided by the European Center for Medium-Term Weather Forecast (ECMWF).
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Table 5. Ocean and atmospheric characteristics of the lookalikes in Figure 8.

Dark
Spot

Mean Wind
(m/s)

Mean Sea
Water Velocity

(m/s)

Mean Convective
Rain Rate

(kg·m−2·s−1)

The Temperature
Difference between the

Atmosphere and the Ocean (K)

Mean Chlorophyll-a
Concentration (mg/m3)

a 0.195 0.088 0 0.635 2.128
b 4.009 0.040 0 −0.704 17.400
c 0.289 0.058 0 0.201 2.459
d 4.750 0.083 0 3.655 0
e 0.553 0.078 0 0.144 2.635
f 4.012 0.206 0 −0.689 2.673

In Figure 8, dark spots a, c, and e are the low wind areas where the wind speed was
lower than 0.6 m/s. The low wind speed resulted in a smooth sea surface, so these areas
appeared as dark spots on the images. Typically, low wind-caused dark spots compose
the vast majority of lookalikes on the SAR images. The concentration of chlorophyll-a
in the dark spot b area was 17.400 mg/m3, which is relatively high. This dark spot may
have been caused by an abnormal chlorophyll-a concentration. The air–sea temperature
difference in the dark spot d area was relatively large at 3.655 k. This dark spot may have
been caused by an upwelling, which brings the cold water from the lower layer to the
upper layer. On radar imaging, the temperature drop is usually followed by a decrease in
the roughness of the sea surface, which appears as a dark spot [29]. The dark spot f may
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have been caused by the sea currents, which can cause biogenic oil to accumulate in some
regions and change the roughness of the sea surface, making these areas appear as black
spots on SAR images [29]. As far as the various causes and shapes of lookalikes, it can be
seen that the segmentation results of the SDGCN model were basically the same as the dark
spots on the input image. The segmentation results of the model were nearly satisfactory.

Following the results of the preceding experiments, it is clear that our proposed
SDGCN model increases the performance of dark point segmentation. However, it has
some limitations. Specifically, it requires some complicated steps to implement, including
transforming images to graphs with superpixels as nodes, feature extraction and selection
of nodes, and graph node classification, all of which can affect the performance of dark spot
segmentation. In the first step, affected by the performance of the superpixel segmentation
algorithm, there are a few dark spots with small regions and weak bounds whose contours
are difficult to detect, resulting in missing detection. Furthermore, the SDGCN algorithm is
time-consuming, especially in superpixel segmentation and feature extraction. As a result,
higher performance superpixel segmentation algorithms must be developed in the future
to improve the accuracy of contour detection and reduce time consumption. Additionally,
we need to find features that are better suited for dark spot segmentation in order to
accelerate the feature extraction process. Dark spot detection is only the beginning of oil
spill detection. In the future, we plan to conduct follow-up research on oil spill detection,
such as dark spot feature extraction and dark spot classification. Moreover, we intend to
create a knowledge graph [48,49] to aid in the storage and query of oil spills.

6. Conclusions

In this paper, we propose an efficient dark spot segmentation method that can sig-
nificantly improve dark spot detection on a single-polarized SAR image. Our method
consists of three steps: (1) converting images to graphs with superpixels as nodes; (2) fea-
ture extraction and selection of superpixels; and (3) graph node classification. SAR image
superpixelation can aid in accurately detecting the contours of blurred dark spots while
smoothing out image noise. Following that, the image is transformed into a graph struc-
ture with superpixels as nodes and fed into a deep graph neural network for graph node
classification, which reduces the computational burden significantly. To improve classifi-
cation performance, we compute a vector of 137 feature values for each superpixel node
and use the SVM-RFE algorithm to select an excellent feature subset of 30 feature values.
The proposed feature subset not only accelerates the feature extraction process but also
improves the accuracy of the model. Among the selected features, the physical features
played a major role, followed by the geometric features and the textural features. The
experimental results show that our method outperforms pixel-based segmentation methods
and can segment the vast majority of dark spots, except for a few with smaller shapes and
brightness levels that are very close to the background. Due to the general characteristics
of the SDGCN model, it can be easily extended to address applications such as semantic
segmentation of optical remote sensing images [50,51]. In future work, we therefore intend
to explore that possibility. Moreover, we will continue the follow-up work on dark spot
detection. The dark spots segmented from the image will be used as entities to create a
knowledge graph [48] for oil spill detection. Then, we will explore knowledge inference
methods to identify oil slicks.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/rs14215618/s1, Figure S1: The successfully segmented
look-alikes; Figure S2: The successfully segmented oil patches. Dark spots in the red area are oil
patches; Figure S3: The successfully segmented oil patches. Dark spots in the red area are oil patches.

https://www.mdpi.com/article/10.3390/rs14215618/s1


Remote Sens. 2022, 14, 5618 16 of 18

Author Contributions: Conceptualization, X.L. (Xiaojian Liu); Data curation, X.L. (Xiaojian Liu);
Funding acquisition, Y.L. and X.L. (Xinyi Liu); Methodology, X.L. (Xiaojian Liu); Project administra-
tion, Y.L. and X.L. (Xinyi Liu); Visualization, X.L. (Xiaojian Liu); Writing—original draft, X.L. (Xiaojian
Liu); Writing—review and editing, Y.L., X.L. (Xinyi Liu) and H.Z. All authors have read and agreed
to the published version of the manuscript.

Funding: This work was funded by the National Natural Science Foundation of China under grant
41971284 and 42192581; the Fundamental Research Funds for the Central Universities under grant
2042022kf1201; Zhizhuo Research Fund on Spatial-Temporal Artificial Intelligence under grant
ZZJJ202210; the Special Fund of Hubei Luojia Laboratory under grant 220100032; The Special Fund
of Hubei Luojia Laboratory 220100032.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: All data in this study can be downloaded from the published link.

Acknowledgments: The authors are very grateful to Guohao Li, Roy Uziel and David Mera for
code support and the ESA and the Baltic Marine Environment Protection Commission (Helsinki
Commission—HELCOM) for data support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cheng, L.; Li, Y.; Zhang, X.; Xie, M. An Analysis of the Optimal Features for Sentinel-1 Oil Spill Datasets Based on an Improved

J–M/K-Means Algorithm. Remote Sens. 2022, 14, 4290. [CrossRef]
2. Rousso, R.; Katz, N.; Sharon, G.; Glizerin, Y.; Kosman, E.; Shuster, A. Automatic Recognition of Oil Spills Using Neural Networks

and Classic Image Processing. Water 2022, 14, 1127. [CrossRef]
3. Feng, J.; Chen, H.; Bi, F.; Li, J.; Wei, H. Detection of oil spills in a complex scene of SAR imagery. Sci. China Technol. Sci. 2014, 57,

2204–2209. [CrossRef]
4. Solberg, A.H.S. Remote Sensing of Ocean Oil-Spill Pollution. Proc. IEEE 2012, 100, 2931–2945. [CrossRef]
5. Chen, L.; Ni, J.; Luo, Y.; He, Q.; Lu, X. Sparse SAR Imaging Method for Ground Moving Target via GMTSI-Net. Remote Sens. 2022,

14, 4404. [CrossRef]
6. Li, Y.; Li, J. Oil spill detection from SAR intensity imagery using a marked point process. Remote Sens. Environ. 2010, 114,

1590–1601. [CrossRef]
7. Shu, Y.; Li, J.; Yousif, H.; Gomes, G. Dark-spot detection from SAR intensity imagery with spatial density thresholding for oil-spill

monitoring. Remote Sens. Environ. 2010, 114, 2026–2035. [CrossRef]
8. Topouzelis, K.N. Oil Spill Detection by SAR Images: Dark Formation Detection, Feature Extraction and Classification Algorithms.

Sensors 2008, 8, 6642–6659. [CrossRef]
9. Chehresa, S.; Amirkhani, A.; Rezairad, G.-A.; Mosavi, M.R. Optimum Features Selection for oil Spill Detection in SAR Image.

J. Indian Soc. Remote Sens. 2016, 44, 775–787. [CrossRef]
10. Solberg, A.H.S.; Brekke, C.; Husoy, P.O. Oil Spill Detection in Radarsat and Envisat SAR Images. IEEE Trans. Geosci. Remote Sens.

2007, 45, 746–755. [CrossRef]
11. Topouzelis, K.; Karathanassi, V.; Pavlakis, P.; Rokos, D. Dark formation detection using recurrent neural networks and SAR

data. In Proceedings of the Image and Signal Processing for Remote Sensing XII, Stockholm, Sweden, 11–14 September 2006;
pp. 324–330. [CrossRef]

12. Taravat, A.; Latini, D.; Del Frate, F. Fully Automatic Dark-Spot Detection From SAR Imagery With the Combination of Nonadap-
tive Weibull Multiplicative Model and Pulse-Coupled Neural Networks. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2427–2435.
[CrossRef]

13. Lang, H.; Zhang, X.; Xi, Y.; Zhang, X.; Li, W. Dark-spot segmentation for oil spill detection based on multifeature fusion
classification in single-pol synthetic aperture radar imagery. J. Appl. Remote Sens. 2017, 11, 15006. [CrossRef]

14. Xu, L.; Shafiee, M.J.; Wong, A.; Clausi, D.A. Fully Connected Continuous Conditional Random Field With Stochastic Cliques for
Dark-Spot Detection In SAR Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2882–2890. [CrossRef]

15. Guo, H.; Wei, G.; An, J. Dark Spot Detection in SAR Images of Oil Spill Using Segnet. Appl. Sci. 2018, 8, 2670. [CrossRef]
16. Cantorna, D.; Dafonte, C.; Iglesias, A.; Arcay, B. Oil spill segmentation in SAR images using convolutional neural networks. A

comparative analysis with clustering and logistic regression algorithms. Appl. Soft Comput. 2019, 84, 105716. [CrossRef]
17. Yekeen, S.T.; Balogun, A.L. Automated Marine Oil Spill Detection Using Deep Learning Instance Segmentation Model. Int. Arch.

Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 43, 1271–1276. [CrossRef]
18. Dollár, K.H.G.G.P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Venice,

Italy, 22–29 October 2017; pp. 2961–2969.
19. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.

http://doi.org/10.3390/rs14174290
http://doi.org/10.3390/w14071127
http://doi.org/10.1007/s11431-014-5643-9
http://doi.org/10.1109/JPROC.2012.2196250
http://doi.org/10.3390/rs14174404
http://doi.org/10.1016/j.rse.2010.02.013
http://doi.org/10.1016/j.rse.2010.04.009
http://doi.org/10.3390/s8106642
http://doi.org/10.1007/s12524-016-0553-x
http://doi.org/10.1109/TGRS.2006.887019
http://doi.org/10.1117/12.687852
http://doi.org/10.1109/TGRS.2013.2261076
http://doi.org/10.1117/1.JRS.11.015006
http://doi.org/10.1109/JSTARS.2016.2531985
http://doi.org/10.3390/app8122670
http://doi.org/10.1016/j.asoc.2019.105716
http://doi.org/10.5194/isprs-archives-XLIII-B3-2020-1271-2020


Remote Sens. 2022, 14, 5618 17 of 18

20. Zeng, K.; Wang, Y. A Deep Convolutional Neural Network for Oil Spill Detection from Spaceborne SAR Images. Remote Sens.
2020, 12, 1015. [CrossRef]

21. Basit, A.; Siddique, M.A.; Bhatti, M.K.; Sarfraz, M.S. Comparison of CNNs and Vision Transformers-Based Hybrid Models Using
Gradient Profile Loss for Classification of Oil Spills in SAR Images. Remote Sens. 2022, 14, 2085. [CrossRef]

22. Zhu, Q.; Zhang, Y.; Li, Z.; Yan, X.; Guan, Q.; Zhong, Y.; Zhang, L.; Li, D. Oil Spill Contextual and Boundary-Supervised Detection
Network Based on Marine SAR Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5213910. [CrossRef]

23. Uziel, R.; Ronen, M.; Freifeld, O. Bayesian Adaptive Superpixel Segmentation. In Proceedings of the 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019; pp. 8469–8478.

24. Zhang, J.; Feng, H.; Luo, Q.; Li, Y.; Zhang, Y.; Li, J.; Zeng, Z. Oil Spill Detection with Dual-Polarimetric Sentinel-1 SAR Using
Superpixel-Level Image Stretching and Deep Convolutional Neural Network. Remote Sens. 2022, 14, 3900. [CrossRef]

25. Li, Y.; Chen, W.; Huang, X.; Gao, Z.; Li, S.; He, T.; Zhang, Y. MFVNet: Deep Adaptive Fusion Network with Multiple Field-of-Views
for Remote Sensing Image Semantic Segmentation. Sci. China Inform. Sci. 2022. [CrossRef]

26. Li, G.; Muller, M.; Thabet, A.; Ghanem, B. DeepGCNs: Can GCNs Go As Deep As CNNs? In Proceedings of the 2019 IEEE/CVF
International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019; pp. 9266–9275.

27. Liu, M.; Gao, H.; Ji, S. Towards Deeper Graph Neural Networks. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, Virtual, 6–10 July 2020; pp. 338–348.

28. European Space Agency. ASAR Product Handbook; ESA: Paris, France, 2007; pp. 94–97.
29. Najoui, Z.; Riazanoff, S.; Deffontaines, B.; Xavier, J.-P. A Statistical Approach to Preprocess and Enhance C-Band SAR Images in

Order to Detect Automatically Marine Oil Slicks. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2554–2564. [CrossRef]
30. Konik, M.; Bradtke, K. Object-oriented approach to oil spill detection using ENVISAT ASAR images. ISPRS J. Photogramm. Remote

Sens. 2016, 118, 37–52. [CrossRef]
31. Misra, A.; Balaji, R. Simple Approaches to Oil Spill Detection Using Sentinel Application Platform (SNAP)-Ocean Application

Tools and Texture Analysis: A Comparative Study. J. Indian Soc. Remote Sens. 2017, 45, 1065–1075. [CrossRef]
32. Genovez, P.; Ebecken, N.; Freitas, C.; Bentz, C.; Freitas, R. Intelligent hybrid system for dark spot detection using SAR data. Expert

Syst. Appl. 2017, 81, 384–397. [CrossRef]
33. Habart, D.; Borovec, J.; Švihlík, J.; Kybic, J. Supervised and unsupervised segmentation using superpixels, model estimation, and

graph cut. J. Electron. Imaging 2017, 26, 061610. [CrossRef]
34. Giraud, R.; Ta, V.-T.; Papadakis, N. Robust superpixels using color and contour features along linear path. Comput. Vis. Image

Underst. 2018, 170, 1–13. [CrossRef]
35. Solberg, S.; Brekke, C.; Husoy, O. Algorithms for Oil Spill Detection in Radarsat and ENVISAT SAR Images. In Proceedings of the

IGARSS 2004, 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2007;
pp. 4909–4912.

36. Vyas, K.; Shah, P.; Patel, U.; Zaveri, T.; Kumar, R. Oil Spill Detection from SAR Image Data for Remote Monitoring of Marine
Pollution Using Light Weight ImageJ Implementation. In Proceedings of the 2015 5th Nirma University International Conference
on Engineering (NUiCONE), Ahmedabad, India, 26–28 November 2015; pp. 1–6. [CrossRef]

37. Mera, D.; Bolon-Canedo, V.; Cotos, J.; Alonso-Betanzos, A. On the use of feature selection to improve the detection of sea oil spills
in SAR images. Comput. Geosci. 2017, 100, 166–178. [CrossRef]

38. Rong, Y.; Huang, W.; Xu, T.; Huang, J. DropEdge: Towards Deep Graph Convolutional Networks on Node Classification. In
Proceedings of the International Conference on Learning Representations (ICLR), Virtual, 26 April–1 May 2020.

39. Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. In Proceedings of the International
Conference on Learning Representations (ICLR), Toulon, France, 24–26 April 2017.

40. Li, G.; Xiong, C.; Thabet, A.; Ghanem, B. Deepergcn: All you need to train deeper gcns. arXiv 2020, arXiv:2006.07739.
41. Zhang, M.; Chen, Y. Link prediction based on graph neural networks. In Advances in Neural Information Processing Systems; Curran

Associates Inc.: Montréal, QC, Canada, 2018; pp. 5171–5181.
42. Lee, J.; Lee, I.; Kang, J.J.A. Self-Attention Graph Pooling. In Proceedings of the 36th International Conference on Machine

Learning, Long Beach, CA, USA, 9–15 June 2019.
43. Javan, F.D.; Samadzadegan, F.; Gholamshahi, M.; Mahini, F.A. A Modified YOLOv4 Deep Learning Network for Vision-Based

UAV Recognition. Drones 2022, 6, 160. [CrossRef]
44. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the

18th International Conference, Medical Image Computing and Computer-Assisted Intervention, MICCAI 2015, Munich, Germany,
5–9 October 2015; pp. 234–241.

45. Garcia-Pineda, O.; Zimmer, B.; Howard, M.; Pichel, W.G.; Li, X.; MacDonald, I.R. Using SAR images to delineate ocean oil slicks
with a texture-classifying neural network algorithm (TCNNA). Can. J. Remote Sens. 2009, 35, 411–421. [CrossRef]

46. Berry, A.; Dabrowski, T.; Lyons, K. The oil spill model OILTRANS and its application to the Celtic Sea. Mar. Pollut. Bull. 2012, 64,
2489–2501. [CrossRef] [PubMed]

47. Alpers, W.; Holt, B.; Zeng, K. Oil spill detection by imaging radars: Challenges and pitfalls. Remote Sens. Environ. 2017, 201,
133–147. [CrossRef]

48. Hao, X.; Ji, Z.; Li, X.; Yin, L.; Liu, L.; Sun, M.; Liu, Q.; Yang, R. Construction and Application of a Knowledge Graph. Remote Sens.
2021, 13, 2511. [CrossRef]

http://doi.org/10.3390/rs12061015
http://doi.org/10.3390/rs14092085
http://doi.org/10.1109/TGRS.2021.3115492
http://doi.org/10.3390/rs14163900
http://doi.org/10.1007/s11432-022-3599-y
http://doi.org/10.1109/TGRS.2017.2760516
http://doi.org/10.1016/j.isprsjprs.2016.04.006
http://doi.org/10.1007/s12524-016-0658-2
http://doi.org/10.1016/j.eswa.2017.03.037
http://doi.org/10.1117/1.jei.26.6.061610
http://doi.org/10.1016/j.cviu.2018.01.006
http://doi.org/10.1109/nuicone.2015.7449646
http://doi.org/10.1016/j.cageo.2016.12.013
http://doi.org/10.3390/drones6070160
http://doi.org/10.5589/m09-035
http://doi.org/10.1016/j.marpolbul.2012.07.036
http://www.ncbi.nlm.nih.gov/pubmed/22901703
http://doi.org/10.1016/j.rse.2017.09.002
http://doi.org/10.3390/rs13132511


Remote Sens. 2022, 14, 5618 18 of 18

49. Li, Y.; Kong, D.; Zhang, Y.; Tan, Y.; Chen, L. Robust deep alignment network with remote sensing knowledge graph for zero-shot
and generalized zero-shot remote sensing image scene classification. ISPRS J. Photogramm. Remote Sens. 2021, 179, 145–158.
[CrossRef]

50. Pu, W.; Wang, Z.; Liu, D.; Zhang, Q. Optical Remote Sensing Image Cloud Detection with Self-Attention and Spatial Pyramid
Pooling Fusion. Remote Sens. 2022, 14, 4312. [CrossRef]

51. Liu, B.; Hu, J.; Bi, X.; Li, W.; Gao, X. PGNet: Positioning Guidance Network for Semantic Segmentation of Very-High-Resolution
Remote Sensing Images. Remote Sens. 2022, 14, 4219. [CrossRef]

http://doi.org/10.1016/j.isprsjprs.2021.08.001
http://doi.org/10.3390/rs14174312
http://doi.org/10.3390/rs14174219

	Introduction 
	Data and Study Region 
	Method 
	Conversion of the Image to Graph Structures 
	Feature Extraction and Feature Selection 
	Deep Learning on Graphs 

	Results 
	Implementation Details 
	Evaluation Metrics 
	Effect of Feature Selection 
	Comparison with Several Competitive Baselines 

	Discussion 
	Conclusions 
	References

