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Abstract: Feature matching between high-resolution satellite stereos plays an important role in
satellite image orientation. However, images of changed regions, weak-textured regions and occluded
regions may generate low-quality matches or even mismatches. Furthermore, matching throughout
the entire satellite images often has extremely high time cost. To compute good matching results
at low time cost, this paper proposes an image block selection method for high-resolution satellite
stereos, which processes feature matching in several optimal blocks instead of the entire images. The
core of the method is to formulate the block selection into the optimization of an energy function, and
a greedy strategy is designed to compute an approximate solution. The experimental comparisons on
various satellite stereos show that the proposed method could achieve similar matching accuracy and
much lower time cost when compared with some state-of-the-art satellite image matching methods.
Thus, the proposed method is a good compromise between matching accuracy and matching time,
which has great potential in large-scale satellite applications.

Keywords: feature matching; satellite stereo; matching block selection; matching optimization

1. Introduction

Feature matching is a preliminary step in satellite image orientation that aims to
find correspondences between satellite images [1]. The feature matching accuracy will
significantly influence the orientation results. Therefore, it is still one of the research
hotspots in both photogrammetry and computer vision communities [2].

Compared with feature matching in aerial or terrestrial scenarios, the feature matching
of satellite stereos meets several unique challenges, such as large image sizes [3], large weak-
textured regions [4], geometric distortions [5], cloud occlusions and seasonal changes [6].
The above challenges will greatly increase matching time complexity and influence the
final orientation results since the correspondences in these challenging regions are often
of low accuracy [7]. In order to achieve good matching results, current work either finds
correspondences throughout whole image pairs to guarantee enough good matches for
orientation or utilizes some constraints (e.g., pyramid strategy and epipolar strategy) for the
efficiency purpose [3]. Therefore, the feature matching of satellite stereos can be categorized
into: (1) robustness-first algorithms and (2) efficiency-first algorithms.

The robustness-first algorithms focus on improving the robustness and accuracy of
feature matching between satellite stereos, especially in geometric distortion, radiomet-
ric distortion and weak-textured scenarios. Traditional methods utilized some famous
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descriptors (e.g., SIFT [8], SURF [9], ORB [10], BRISK [11] and AKAZE [12]) in satellite
image matching, which is able to obtain robust matching results against Euclidean ge-
ometric distortions and local linear radiometric distortions [5,13–16]. However, these
traditional ones may meet challenges in the scenarios of more complex geometric and
radiometric distortions, which are common in off-track or multi-source satellite stereos. To
further improve the matching robustness of satellite stereos, some work either improves
the descriptors themselves by merging variant traditional features [17] and integrating
affine invariant features [18–20] and intensity invariant features [21,22] or imposes spatial
regularization constraints to reduce the matching ambiguity [7,23,24]. In recent years, a
convolutional neural network (CNN) has been utilized in feature matching, which is able
to extract more accurate and more robust deep features, especially in several challenging
scenarios [6,25–30]. However, to guarantee finding enough good matches, such methods
usually involve the entire images in feature matching, which greatly increases the time
complexity of feature matching.

The efficiency-first algorithms focus on improving the matching efficiency of satel-
lite stereos. Some work utilized epipolar lines and image pyramids to predict the po-
tential positions of correspondences, which greatly reduce the search space of feature
matching [3,4,31,32]. On the other hand, Ling et al. obtained matches from evenly dis-
tributed image blocks instead of the whole images, which is an alternative way to reduce
the matching time cost [33]. However, the above methods did not distinguish the ready-to-
match regions, and the regions in the challenging scenarios may bring obvious mismatches
in the next orientation process. Moreover, the image block-based matching algorithm
cannot be applied in the scenarios of large positioning errors (e.g., hundreds of pixels) of
satellite stereos, since large positioning errors may bring wrong image block pairs in stereos.

For the purpose of efficient and robust feature matching, this paper proposes an image-
matching block selection algorithm with the basic assumption that the matches of only a
few image blocks could achieve competitive orientation results with the ones of the entire
image stereos. The core of the proposed method is to formulate the image block selection
into the three-step optimization of a discrete energy function. Since the optimization is
an NP-hard problem, a greedy solution is utilized for an approximate optimal result. The
proposed method is able to avoid difficult matching regions (e.g., water, clouds) and select
optimal image blocks, thus resulting in high-quality matches for orientation. Furthermore,
the proposed method imposes block enlargement constraints in the optimization, which
can achieve robust matching results against the positioning errors of hundreds of meters.
The main contribution of the proposed method is to greatly reduce the matching time cost
of satellite stereos while maintaining robust matching results.

2. Methodology
2.1. Workflow

This paper aims to reduce matching time costs while keeping the matching accuracy
of satellite stereos at a sub-pixel level by selecting a few optimal image blocks for matching.
The basic idea is that evenly distributed, textured and photo-consistency blocks tend to
provide good matches for high-accuracy orientation. Therefore, this paper proposes an
optimal image block selection method with three-step optimizations, which selects optimal
image blocks step by step with the constraints of block textures, block distributions and
photo consistency between block pairs. In general, the input of the proposed method is
high-resolution (HR) satellite stereos with the corresponding geographic configuration
(i.e., rational polynomial coefficient (RPC) files); the workflow is shown in Figure 1. Before
block selection, both satellite stereos were rectified on a common height plane so that their
GSDs were unified and the rotation distortions could be eliminated, which could simplify
the next block selection process.
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This paper takes any one of satellite stereos as the basic image I1 and the other is
denoted as I2. Before optimization, both images were automatically zoomed out, and
the optimization process was conducted on the zoomed image for the computation ef-
ficiency purpose. In this paper, the zoomed-out ratio is set as 4 throughout the paper
for two reasons: (1) high-resolution satellite images already have sub-meter resolutions
(e.g., GSD: 0.5 m) so that the zoomed images with 4× ratio (e.g., GSD: 2.0 m) still have
enough texture information for the block selection; (2) the original image block size is set
as 2000 × 2000 pixels in this paper, and the larger ratios (>4) will lead to much smaller
zoomed sizes (<500 × 500 pixels), which is too small to select optimal blocks. In the first
step of the optimization, the overlap regions between the zoomed basic images I1 and I2
are divided into a series of nonoverlap fixed blocks, and several candidate optimal blocks
S1 =

{
b1

1, b1
2, . . .

}
are selected according to their textures and distributions (e.g., red rect-

angles in Figure 1a), where b1
I is the ith block in I1. Due to seasonal changes or cloud

occlusions, it is possible that the potential optimal blocks in I1 are not fit for I2. Therefore,
this paper further considers the texture information in I2, where the blocks in I2 are obtained
by forward–backward projections on a common height plane, as shown in Figure 1b. The
common height plane is acquired by averaging elevations of SRTM within the geographic
scope of satellite stereos. Only the blocks with rich textures in both images are selected,
e.g., the blue rectangles in Figure 1b. These selected blocks in the second optimization
step are termed S2 =

{
b′12

1 , b′12
1 , . . .

}
with b′12

1 being the ith block pair in both I1 and I2.
Due to the underlying positioning errors of satellite images, the projected blocks in I2 may
be inconsistent with the ones in I1. This paper therefore enlarges the projected blocks in
I2 to guarantee containing the consistent information with the blocks in I1, as shown in
Figure 1b. In the third optimization step in Figure 1c, this paper imposes photo-consistency
constraints between block pairs in S2 through feature matching techniques, and selects
optimal block pairs with good matches, e.g., the green rectangle in Figure 1c. Finally, the
sizes of the projected blocks in I2 are refined to guarantee that the block sizes in both I1 and
I2 are similar. These optimal blocks are then resampled in original GSD (ground sampling
distance) for feature matching and orientation.

The time complexity of the three-step optimizations is low, which only takes a few
seconds. Though feature matching is still used in the optimization to guarantee the photo-
consistency between block pairs, the number of these ready-to-match blocks is small after
the first and the second optimization. Moreover, the image pyramid strategy also greatly
reduces the time complexity. Therefore, the proposed method could achieve good matching
results at low time cost.

2.2. Formulation
2.2.1. Global Energy Function

Given a satellite stereo {I1, I2} and the corresponding zoomed-out stereo {Iz
1, Iz

2},
this paper formulates the image block selection problem as the minimization of an energy
function in Equation (1), which consists of cost term and regularization term with the
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former representing the probability of being selected for each block and the latter imposing
spatial distance constraints among blocks.

minE(L) = ∑N
b∈S C(b, lb)− P·∑N

b∈S ∑N−1
d∈S−b D(b, d) (1)

Here, E is the designed energy function, whose optimal solution is the selected blocks
for feature matching; L is the set of the selected blocks; N is the pre-defined block number
for selection; S is the set of candidate blocks, whose block number is normally larger than
N. The essence of Equation (1) is to select N blocks that minimize the energy function. In
general, N and S have different meanings in different steps of the optimization. In order
to distinguish different N and S in different steps, the subscripts are added as Ni and Si,
i = 1, 2, 3. In the first-step optimization, S1 represents the set of all blocks in Iz

1, and N1
represents the number of blocks for the optimal solution of the first step. In the second-step
optimization, its input block set S2 is exactly the solution of the first-step optimization;
therefore, the element number of S2 is N1. After the optimization, the optimal block number
N2 is reduced to N1/s with s being the number scaling factor. Similarly, the input block
S3 is exactly the solution of the former optimization, and the optimal block number N3 is
reduced to N2/s. The scaling factor s is related to the solution number during three-step
optimization. The larger scaling factor s will increase the time cost of block selection, while
the smaller one may ignore some good block pairs. Thus, the scaling factor should be
appropriately determined. The candidate block sets from the solution of the former-step
optimization may contain more inappropriate blocks than appropriate ones, especially in
some difficult matching scenarios (e.g., cloudy imagery). Thus, the solution number should
be smaller than half the size of the candidate block set, i.e., s > 2. On the other hand, the
time efficiency of the proposed method requires the smallest s. Thus, this paper set s = 3 by
considering the above two factors.

The first term of Equation (1) serves as the cost term, which quantitatively evaluates
the texture information and photo consistency information of image blocks and sums these
evaluation results limited by the predefined block number. The lower cost means the higher
probability of being selected. In the first term, b is any one block in S and C(b, lb) is the cost
of b at label lb. In the optimization of Equation (1), each block only has binary labels. For
example, label 1 means “selected blocks” and label 0 means “not selected blocks”. Since
each step of the optimizations considers different cost constraints (e.g., textures in Iz

1 for the
first-step optimization, textures in both Iz

1 and Iz
2 for the second-step optimization and the

photo-consistency information for the third-step optimization), the cost terms in each step
have different mathematical formulations, which will be introduced in Section 2.2.2.

The second term of Equation (1) serves as the regularization term, which tries to make
the selected blocks stay away from each other for the purpose of evenly distributed matches.
In the second term, P is a penalty coefficient, which is used to balance the impact of the
regularization term on the block selection results. The optimal value of P will be analyzed
in the experimental part. b, d are any two blocks in S and D(b, d) measures the center
distances between b and d. Detailed descriptions about the regularization term will be
introduced in Section 2.2.3.

2.2.2. Cost Term

To achieve a good compromise between matching accuracy and time cost, the pro-
posed method optimizes the block selection results step by step. Each step has different
formulations of the cost term. In the first-step optimization, the cost term only consid-
ers texture information in Iz

1 so that several textured blocks could be efficiently selected
from hundreds of candidate blocks. In this paper, intensity gradients are used to evaluate
textures due to its low time cost. The cost term of the first-step optimization is therefore
represented as:

C1(b, lb) =
{
−∑p∈b G(p) i f lb = 1

0 i f lb = 0
(2)
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where C1 is the cost term in the first-step optimization and p is a pixel which is located in
the block b. G(p) is the intensity gradient of p, which is computed by the Sobel operator in
this paper. When the block is selected (i.e., lb = 1), the cost term is the summation of G(p);
otherwise, it is zero.

Due to seasonal changes and cloud occlusions, the textured block in Iz
1 may not be

suitable for Iz
2. Thus, the cost term of the second-step optimization considers the texture

information not only in Iz
1, but also in Iz

2. In the second-step optimization, only the selected
blocks from the former step are considered in the texture evaluation, which is helpful in
reducing the time cost. The formulation of the cost term in the second-step optimization is
as follows:

C2(b, lb) =
{
−∑p∈b1

G1(p)−∑p∈b2
G2(p) i f lb = 1

0 i f lb = 0
(3)

where C2 is the cost term in the second-step optimization; b = {b1, b2} is a block pair
with b1 being a block in Iz

1 and b2 being a block in Iz
2; G1 is the intensity gradient in Iz

1; G2
represents the intensity gradient in Iz

2. Considering the positioning errors of high-resolution
satellite images, this paper sets the sizes of b2 being three times larger than the ones of b1,
which is able to improve the robustness of the texture evaluations in Iz

2.
To ensure that the block pairs are fit for matching, this paper imposes photo-consistency

constraints in the third-step optimization through feature matching techniques. Though
some feature matching algorithms are complex, the limited block number from the former
step will greatly reduce the matching time cost. In the third-step optimization, this paper
formulates the photo-consistency constraints as the number of matches, as follows:

C3(b, lb) =
{
−Num(b1, b2) i f lb = 1

0 i f lb = 0
(4)

where C3 is the cost term in the third-step optimization and Num is a function of counting
the matches between the block pair {b1, b2}. In the experimental part, SIFT descriptors are
used in the feature matching. C3 means that the blocks with more matches have higher
probabilities of being selected.

To balance the amount of each cost term, this paper additionally normalizes the
cost term by dividing it by the absolution of the minimum cost term, as follows. After
the normalization, the penalty coefficient P in Equation (1) can be fixed throughout the
three-step optimizations.

Ck(b, lb) = Ck(b, lb)/|min{Ck(b, lb)}| (5)

Here, Ck is the normalized cost term in the kth optimization and min{Ck(b, lb)}means
the minimum cost among the set of {Ck(b, lb)}.

2.2.3. Regularization Term

The evenly distributed matches tend to generate high-accuracy orientation results.
Therefore, this paper defines the regularization term to separate the image blocks so that
the matches from these selected blocks are evenly distributed. The regularization term is
formulated as the center distances between image blocks (as shown in Equation (6)), which
encourages the selected blocks to stay away from each other.

D(b, d) =
√
(xb − xd)

2 + (yb − yd)
2 (6)

Here, (xb, yb) and (xd, yd) are the center coordinates of the block b and d.
To balance the amount of the cost terms and the regularization terms, this paper also

normalizes the regularization term by dividing it by the diagonal length of the image,
which is able to reduce the regularization term to the range [0, 1].
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2.3. Solution

The optimization of the global energy function in Equation (1) is an NP-hard problem.
For the purpose of efficient matching, this paper proposes a greedy solution, which is able to
obtain an approximate optimal result at low time cost. The greedy solution is divided into
stepwise iterations. In each iteration, the greedy solution always selects one local optimal
result; thus, the iteration times depends on the predefined number of optimal blocks.

Given the current block set Scurrent = {bi} and the optimal block set Sselect = ∅, the
task of the greedy solution is to select the optimal blocks from Scurrent and add these optimal
blocks into Sselect. Each step of the optimization has a different block set, which is termed as
St

current and St
select with t being the step ID of the optimization. In the first-step optimization,

S1
current is the set containing all image blocks in Iz

1, and in the next-step optimization, St
current

is defined as the optimal results St−1
select of the former-step optimization. In this paper, the

element number of St
select is three times larger than that of St+1

select. In the experimental part,
the optimal element number of S3

select will be analyzed and discussed.
All steps of the optimization share the same greedy strategies which iteratively select

local optimal results. At the beginning of the iteration, the regularization term is set as
zero due to the empty St

select. Thus, the local optimal solution at the beginning is obtained
by selecting the block with the minimum cost, e.g., the green rectangle in Figure 2a. The
optimal block of the beginning iteration b1 is added into St

select with St
select = {b1}. In the

next iteration, the distances between the remaining blocks in St
current and the ones in St

select
are formulated as regularization terms, as shown in Figure 2b, where the red rectangles
represent blocks in St

current, and the green one is the block in St
select. The current local optimal

result is obtained by selecting the block with the minimum summation of the cost term and
the regularization term. The greedy solution is iterated until the number of the selected
blocks reaches the pre-defined value.
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In general, the proposed greedy solution can be formulated as follows:

bi =

{
argminb∈Scurrent {C(b, lb)} i f i = 1

argminb∈Scurrent

{
C(b, lb)− P·∑d∈SSelect

D(b, d)
}

i f i > 1
(7)

where bi is the local optimal solution in the ith iteration; b is an image block in the set
Scurrent; d is a block in the set Sselect. The greedy solution in Equation (7) iteratively selects
optimal blocks until the element number of Sselect reaches the predefined value.

2.4. Post-Processing

After the three-step optimization, several optimal blocks in both stereo images are
selected. However, considering positioning errors, the block sizes in Iz

2 are much larger
than the ones in Iz

1, thus only a small region in the blocks of Iz
2 is available for matching.

In order to further improve the matching efficiency, this paper searches for such available
regions through post processing and defines them as the optimal blocks in Iz

2, as shown in
Figure 3. The blue circles represent the matches between block pairs after the three-step
optimization. To accurately locate the available regions in Iz

2, a block (red rectangle) with
the same size of the one in Iz

1 moves at a fixed pace in both row and column directions.
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During this movement, the number of matches within the moving block is counted, and
the block with the maximum matches is selected as the optimal block in Iz

2. Finally, both
optimal blocks in Iz

1 and Iz
2 are zoomed to the original sizes for feature matching. In all

experimental comparisons, the moving pace is set as 10 pixels.

Figure 3. Post processing.

3. Study Areas and Data

The proposed method was tested on high-resolution satellite stereos including a
WorldView-3 satellite dataset with a GSD of 0.3 m and one pair of Gaofen-7 satellites with a
GSD of 0.7 m. The WorldView-3 satellite data were off-track stereos, as shown in Figure 4a–c.
The first one was near Jacksonville with the imaging time being November 2015 and May 2015,
respectively; the second one was near Omaha with the imaging time being September 2015
and October 2015, respectively; the third one was near Buenos Aires with the imaging time be-
ing March 2015, June 2015, September 2015 and October 2015, respectively. Both WorldView-3
stereos were provided by the intelligence advanced research projects activity (IARPA) and
DigitalGlobe [34–36]. On the other hand, the Gaofen-7 stereo was the in-track one near Tibet
with the imaging time being March 2021. These satellite stereos would meet challenges in
matching with the first one in Figure 4a having large areas of seawater, the second one in
Figure 4b having significantly changed farmlands, the third one in Figure 4c having serious
radiometric distortions and the last one in Figure 4d having large areas of snow.
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To evaluate the feature matching accuracy of the proposed method, this paper manu-
ally selected 12 matching points as checking points for the satellite data in Figure 4a,b,d
and 9 matching points for the ones in (c), which are illustrated as yellow circles in Figure 4.
In experimental comparisons, four metrics were used to comprehensively evaluate the
performances of the proposed method, including: (1) matching time Atime; (2) inlier number
Anum; (3) inlier percentage Aper; (4) orientation accuracy Aorientation. The matching time
metric Atime measures the time cost of the whole matching processing, including the block
selection process and the feature matching process, which can evaluate the efficiency of
different matching algorithms. The inlier number metric Anum finds inliers from the feature
matching results by computing their distances to the corresponding epipolar lines. Matches
with the epipolar distance shorter than three pixels are selected as inliers. To ensure the
geometric accuracy of the epipolar lines, this paper first used the checking points in orien-
tation, and then computed epipolar lines through the true orientation results. The inlier
percentage metric Aper computes the percentage of the inliers in the whole matching results,
which indicates the robustness of the feature descriptors. The orientation accuracy metric
Aorientation is the average distances of all checking points to the epipolar lines which are
derived from the orientation results of all matches. Aorientation indicates the actual perfor-
mances of all matches in the later orientation process. The formulation of the four metrics
is shown in Equation (8). Moreover, considering mismatches, the orientation process in this
paper utilized the iteration method with variable weights [33], which is able to increase the
weights of inliers and decrease the weights of mismatches in the adjustment.

Atime = Tblock + Tmatch
Anum = NUM(m|m ∈ M ∩ Epicheck(m) < 3)

Aper = Anum/NUM(m
∣∣m ∈ M)

Aorientation = AVG(Epimatch(cp) | cp ∈ CP)

(8)

Here, Tblock is the time cost of the block selection optimization; Tmatch is the time
cost of feature matching in the original GSD; M is the set of all matches; m is a match
in M; Epicheck(m) is the distance of m to the epipolar line which is computed from the
orientation results of checking points; NUM is a function to count the number of points
that satisfy a certain condition; CP is the set of checking points; cp is any one checking
point in CP; Epimatch(cp) is the distance of cp to the epipolar line which is computed from
the orientation results of matches in M; AVG is a function to average the elements that
satisfy a certain condition.

In all experiments, the distance ratio criteria were used before obtaining the final
matching results, which firstly found distances between feature points and their candidate
matching points in the feature space, and then measured the ratio between the minimum
distance and the second minimum distance. The matches with a distance ratio less than 0.4
were eliminated, and the remaining high-confidence matches were used in the experimental
accuracy evaluations.

4. Results

This paper utilized the proposed method to select optimal blocks, and then applied
SIFT to find matches in these blocks. Since the performances of the proposed method are
related to the optimal block number and the penalty coefficient in Equation (1), this paper
first analyzed the above two parameters of the proposed method on the Jacksonville data
in Section 4.1. The best values of the two parameters were then fixed in all the following
experiments. Section 4.2 shows the ability of the positioning error correction of the proposed
method, which was tested on Omaha data by manually adding various systematic errors
into the corresponding RPC parameters. Section 4.3 compared the proposed method with
other state-of-the-art methods in the metrics of Atime, Anum, Aper and Aorientation. The
compared methods include: (1) SIFT matching with fixed image blocks (SFB) [33]; (2) SIFT
matching with all image blocks (SAB) [5]; (3) heterologous images matching (HIM) [20]
which considers the anisotropic weighted moment and absolute phase orientation in feature
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descriptors. Finally, the proposed method was further tested on more satellite stereos of
Buenos Aires data, which aimed at finding the limitation of the proposed method. In all
experiments, the SIFT matching in SFB, SAB and the proposed method were conducted on
the same compute configuration with a single core of Intel i9-12900HX, while the proposed
block selection optimization used full cores of Intel i9-12900HX. On the other hand, HIM is
applied with a single core of AMD 5900HX. The reference clock frequencies of i9-12900HX
and 5900HX are similar with the frequency of i9-12900HX being 3.60 GHz and 5900HX
being 3.30 GHz. Thus, the small compute configuration differences did not impact the
conclusion of the time efficiency comparisons. In the experiments of Sections 4.1–4.3, the
SIFT descriptor was applied after the block selection of the proposed method, and the
original block sizes were set as 2000× 2000 pixels. However, in order to verify that the block
selection results were also fit for other feature descriptors, this paper applied SuperPoint
descriptors in Section 4.3 and set the original block sizes as 1500 × 1500 pixels, which is
recommended in [25,37].

4.1. Analysis on Optimal Parameters of the Proposed Method

The performances of the proposed method are related to two parameters: optimal block
number Nopt and penalty coefficient of the regularization term P. The former influences
the matching time as well as the orientation accuracy. Higher Nopt will guarantee the
orientation accuracy but increase matching time; otherwise, lower Nopt will reduce the
matching time while potentially decreasing the orientation accuracy. On the other hand,
the penalty coefficient P influences the balances between the block texture information
and the block spatial distributions. Lower P will increase the texture richness of the blocks
but cannot ensure their even distribution. Higher P will enhance the even distributions of
blocks while potentially decreasing the texture information in the blocks. Therefore, both
Nopt and P should be analyzed for the best performances of the proposed method.

Jacksonville data with image sizes as 43,032 × 32,805 pixels in Figure 4a were used in
the analysis about the optimal value of Nopt and P. This paper firstly set the block number
as six and computed the optimal value of P by gradually increasing the values of P from
0 to 2.5 and then evaluating the performances of the proposed method with the various
P in the metrics of Anum and Aorientation. The evaluation result is shown in Figure 5. The
horizontal axis represents the various values of P from 0 to 2.5. The vertical axes represent
the evaluation results in Anum and Aorientation, respectively. The figures in the bottom of
Figure 5 show the spatial distributions of the optimal blocks of the proposed method with
a given value of P.
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The trend of Anum in Figure 5 shows that the number of inliers decreases with the
increasing P. This is because the increasing P will reduce the weight of the cost term in
the optimization and generate blocks with less texture information, thus resulting in fewer
matching points. However, the orientation accuracy Aorientation has a trend of being higher
with the increasing P, though the inlier number decreases. This is because the larger P
brings more evenly distributed matching points, as shown in the bottom figures of Figure 5.
When P = 0, most blocks concentrate on the left tops of Jacksonville data, which are the
most textured regions in Jacksonville. With the increasing P, the image blocks are more
evenly distributed. In all the cases of P, the corresponding image blocks always avoid
seawater regions, thus providing more robust matches.

In Figure 5, the trend of inlier number Anum becomes convergent when P = 1.5, and
the highest orientation accuracy is found at P = 1.5. Therefore, this paper sets P = 1.5 in
all the following experiments.

In the analysis of Nopt, this paper varied the value of Nopt from 1 to 10 and evaluated
the matching results in the metrics of Atime, Anum and Aorientation, as shown in Figure 6.
The horizontal axis represents the various values of Nopt from 1 to 10. The vertical axes
represent the evaluation results in Atime, Anum and Aorientation, respectively. The figures in
the bottom of Figure 6 show the spatial distributions of the optimal blocks of the proposed
method with a given value of Nopt.
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Figure 6 shows the trends of Atime, Anum and Aorientation with various Nopt. In the
sub-figure of Atime, the total matching time is increasing with the increase of the block
number Nopt, since more blocks means more feature matching computations. The black
digits mean the entire time cost (block optimization time + feature matching time), and
the red digits mean the block optimization time of the proposed method. The difference
between the minimum and the maximum optimization time is only 4.2 s, which shows
that the optimization time of the proposed method is rarely affected by the block number.
Furthermore, for the matching in the stereo with the size as 43,032 × 32,805 pixels, the
maximum matching time is only 90.3 s at Nopt = 10, which shows the potential ability of
the proposed method in the efficient matching.

In Figure 6, the sub-figure of Anum shows that the inlier number is increasing with
the increasing block number. However, the corresponding orientation accuracy Aorientation
did not have the same trend with Anum, which shows that more matches cannot guarantee
more accurate orientation results. The trend Aorientation tends to be convergent when
Nopt ≥ 5, and it has the top third orientation accuracy at Nopt = 6, 7 and 10. Since the
time cost of Nopt = 6 is less than other two cases, this paper sets Nopt = 6 in all the
following experiments.
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In general, this paper sets P = 1.5 and Nopt = 6 in all the following experiments,
which is considered a good compromise between time cost and orientation accuracy. It
should be noted that good satellite stereos with rich texture information could provide
more optimal blocks, which will result in more matches. Nevertheless, the core idea of
the proposed method is that a few high-quality, evenly distributed matches are enough to
support high-accuracy orientation results at low time cost. Thus, this paper only selects
several optimal blocks instead of all good blocks in matching. The block number Nopt is
fixed in all the following experiments, no matter how rich the texture information is that
the stereos have.

4.2. Analysis on Positioning Error Correction of the Proposed Method

The block selection results are dependent on the positioning accuracy of the satellite
stereos since the blocks in Iz

2 are obtained by forward–backward projections of the blocks in
Iz

1. Large positioning errors may lead to wrong blocks in Iz
2, which are not consistent with

the ones in Iz
1. To reduce the influence of the positioning errors, this paper enlarges the

block sizes in Iz
2 during the optimization so that enough consistent image information could

be contained. To test the validation of the proposed method against the positioning errors,
this paper tested the matching results of the proposed method on Omaha data with image
sizes as 43,210 × 50,471 pixels. Various positioning errors from 0 m to 1000 m were added
into the RPC of Omaha data, and the corresponding matching results were evaluated in
the metrics of Anum and Aper, as shown in Figure 7.
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The sub-figure of Anum shows that the inlier number is similar when the positioning
errors are smaller than 600 m, which verifies the ability of the proposed method against the
positioning errors. The proposed method set image block size as 2000 × 2000 pixels. The
block sizes in I2 are three times larger than the ones in I1 during the three-step optimization.
Thus, the proposed method can theoretically correct positioning errors of 2000 pixels. Since
the GSD of Omaha data is 0.3 m, the lossless positioning error correction of the proposed
method on Omaha data is at most 600 m. However, when the positioning errors are larger
than 600 m, the inlier number is significantly decreasing, since the block pairs in the stereo
only have small overlaps. These extremely large positioning errors (>600 m) can be further
corrected by further expanding the block sizes in I2. However, the expanding operation
will increase the time cost, and it is rare to find stereos with positioning errors larger than
600 m. Therefore, this paper still set the block enlargement ratio to three times during the
three-step optimization. In the other sub-figure, Aper has no obvious differences in all cases
of positioning errors with the maximum percentage being 98.95% and the minimum one
being 97.14%, due to the robustness of SIFT descriptors.

To comprehensively verify the ability of the positioning error correction of the pro-
posed method, this paper selected any one of the optimal blocks in I1 and visually illustrated
the corresponding blocks in I2 with/without positioning error corrections separately. The
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visual comparisons are shown in Figure 8. The first row in Figure 8 is the image block in I1,
which is the reference block for the visual comparisons. The third to sixth rows represent
the corresponding image blocks in I2 with various positioning errors. When the positioning
error is zero, both scenarios with and without corrections could achieve consistent blocks
with the reference block. However, with the increase of positioning errors, the blocks with-
out corrections only had smaller overlaps with the reference block. When the positioning
errors were larger than 600 m, the blocks without corrections had no overlap with the
reference one, thus generating no matches. On the other hand, the proposed method could
keep the consistent blocks with the reference one when the positioning errors are smaller
than 600 m. Even in the worst case (error = 1000 m), the proposed method still finds partial
overlap between the blocks of the stereo, which shows that the proposed method has a
strong ability against the positioning errors.
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4.3. Comparison of Experimental Results

To verify the validation of the proposed method, this paper further compared the pro-
posed method with other developed ones, including: (1) SFB [33]; (2) SAB [5];
(3) HIM [20]. This paper tested these methods on Omaha data with image sizes set
to 43,210 × 50,471 pixels and Tibet data with image sizes set to 42,676 × 41,249 pixels,
and evaluated their matching results in the metrics of Atime, Anum, Aper and Aorientation, as
shown in Figure 9a,b. Both SAB and HIM involved the entire stereos in matching with
a large number of matches. The comparisons with them aim to check whether a smaller
number of evenly distributed matches from the optimal blocks could achieve competitive
orientation results.
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The sub-figure of Atime in Figure 9 shows that the matching time of SFB and the
proposed method is much less than that of SAB and HIM, since both SFB and the pro-
posed method selected only a few blocks for matching. SAB and HIM methods found
matches throughout the entire images, thus resulting in high time cost. The time cost of
the proposed method is slightly higher than SFB due to the optimization process of the
proposed method. In general, the proposed method can achieve low time cost around
75 s in large satellite stereos, which is at least 22 times and 58 times faster than SAB and
HIM methods, respectively. Contrary to Atime, both SAB and HIM could obtain many
more matches than SFB and the proposed method, since both methods found matches
throughout the entire images instead of a few blocks. The HIM method found the most
matches due to its robustness descriptors against geometric and radiometric distortions.
Though the block number of SFB and the proposed method is the same, the proposed
method found many more matches than SFB due to its block selection optimizations. The
third row of Figure 9 shows the inlier percentages of each method, where SFB, SAB and the
proposed method have similar inlier percentages, since all these methods adopted SIFT
descriptors in matching. HIM methods had the lowest inlier percentages, while its large
number of matches can still guarantee the robustness of the next orientation process.

In the sub-figure of Aorientation, SFB achieved the lowest orientation accuracy since
the matches in the fixed blocks may be of low quality, as shown in Figure 10a. The first
row in Figure 10a shows the matching blocks of SFB, which simply selected blocks at fixed
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intervals. However, these blocks may fall in changed regions (e.g., the block in the top left of
Omaha data in (a) and weak-textured regions (e.g., the blocks in the top right of Omaha data
in (a)), thus providing low-quality matches or even mismatches. Therefore, SFB achieved
the lowest orientation accuracy. The proposed method obtained the average accuracy of
0.545 pixels on Omaha data and Tibet data, which is slightly higher than SAB with an
average accuracy of 0.605 pixels. Considering the inlier number of SAB is much higher
than the proposed method, the comparison results show that the orientation accuracy is
not totally dependent on the inlier number. The proposed method selected optimal image
blocks with even spatial distributions and rich texture information (as shown in Figure 10b),
where good-quality inliers can be matched for accurate orientation at low time cost. Finally,
HIM achieved the highest orientation accuracy with an average of 0.50 pixels, while its
time cost is much higher than the proposed method.
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Though the inlier number of the proposed method is much less than SAB and HIM, it
could achieve an average of 62 times faster time efficiency while keeping similar matching
accuracy, which shows that a few evenly distributed, good matches are enough to support
high-accuracy orientation results. In general, the proposed method is a good, compromised
solution between matching accuracy and matching time, which can compute accurate
matching results at low time cost.

In order to find the limitations of the proposed method, this paper further tested the
proposed method on the Buenos Aires dataset, which consists of four overlapping images
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and therefore generates six pairs of satellite stereos. This paper still utilized SIFT to select
photo-consistency blocks during the optimization of block selection. However, after the
block selection, SuperPoint descriptors were utilized within the optimal blocks for feature
matching, which aims at testing the transferability of the proposed method. In general,
this paper compared the proposed method with SFB in the metrics of Anum and Aorientation,
and recorded the time cost of block selection for each pair, as shown in Figure 11a,b. The
horizontal axis shows the stereo pair ID in the format of i-j with i, j being the image ID in
the Buenos Aires dataset.

Remote Sens. 2022, 14, x FOR PEER REVIEW 16 of 19 
 

 

  
(a) (b) 

Figure 11. Comparisons with Buenos Aires dataset. (a) Comparisons in 𝐴 . (b) Comparisons in 𝐴 . 

The digits above the orange line in Figure 11a show the time cost of the block selec-
tion of the proposed method. Since the original block sizes and the block numbers are the 
same for SFB and the proposed method, the time cost differences between the two meth-
ods mainly focused on the block selection process. The proposed method needs to take 
extra time in the optimal block selection, which causes higher time cost than SFB. Figure 
11a shows that the time cost of the optimal block selection did not change much for dif-
ferent stereo pairs. The average time cost is only 30.373 s, which is acceptable when com-
pared with the time cost of feature matching. 

Figure 11a shows that the inlier number of the proposed method is always higher 
than the ones of SFB. Both methods utilized SuperPoint to find matches within image 
blocks. During the optimization of the block selection, the proposed method considers 
texture information constraints and prefers selecting textured blocks. Thus, the proposed 
method could obtain 2.13 times more inliers than SFB. On the other hand, Figure 11b 
shows that the orientation accuracy of the proposed method is higher than SFB in most 
cases with an average accuracy improvement of 28.27%, which shows that the block se-
lection results help to provide more high-quality matches. However, the orientation accu-
racy of the proposed method is lower than SFB in Pair 2–4 due to the inability of the photo-
consistency block selection of the proposed method. This paper adopted the SIFT de-
scriptor in the photo-consistency block selection, though the SIFT matching results may 
not be reliable, especially in some challenging scenarios. For example, there are serious 
seasonal changes and radiometric distortions between Pair 2–4, as shown in Figure 12; the 
SIFT descriptors only found 16 matches from the stereo pair, in which case the photo-
consistency constraint is unreliable and therefore disturbs the final block selection results. 
Adopting more reliable feature descriptors is helpful in improving the block selection re-
sults. In general, the proposed method performed well in both time efficiency and orien-
tation accuracy. 

  
Figure 12. An example image tile in Pair 2–4. 
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The digits above the orange line in Figure 11a show the time cost of the block selection
of the proposed method. Since the original block sizes and the block numbers are the same
for SFB and the proposed method, the time cost differences between the two methods
mainly focused on the block selection process. The proposed method needs to take extra
time in the optimal block selection, which causes higher time cost than SFB. Figure 11a
shows that the time cost of the optimal block selection did not change much for different
stereo pairs. The average time cost is only 30.373 s, which is acceptable when compared
with the time cost of feature matching.

Figure 11a shows that the inlier number of the proposed method is always higher than
the ones of SFB. Both methods utilized SuperPoint to find matches within image blocks.
During the optimization of the block selection, the proposed method considers texture
information constraints and prefers selecting textured blocks. Thus, the proposed method
could obtain 2.13 times more inliers than SFB. On the other hand, Figure 11b shows that
the orientation accuracy of the proposed method is higher than SFB in most cases with
an average accuracy improvement of 28.27%, which shows that the block selection results
help to provide more high-quality matches. However, the orientation accuracy of the
proposed method is lower than SFB in Pair 2–4 due to the inability of the photo-consistency
block selection of the proposed method. This paper adopted the SIFT descriptor in the
photo-consistency block selection, though the SIFT matching results may not be reliable,
especially in some challenging scenarios. For example, there are serious seasonal changes
and radiometric distortions between Pair 2–4, as shown in Figure 12; the SIFT descriptors
only found 16 matches from the stereo pair, in which case the photo-consistency constraint
is unreliable and therefore disturbs the final block selection results. Adopting more reliable
feature descriptors is helpful in improving the block selection results. In general, the
proposed method performed well in both time efficiency and orientation accuracy.
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Figure 12. An example image tile in Pair 2–4.

5. Conclusions

This paper proposed a novel matching method for high-resolution satellite stereos
by selecting optimal image blocks and formulating the block selection as a three-step
optimization of an energy function. A greedy strategy is designed to obtain an approximate
solution at low time cost. The main contributions of the proposed method include: (1) the
proposed method only selects optimal image blocks for matching, which could greatly
reduce the matching time cost while keep competitive matching accuracy with the entire-
image-based matching algorithms; (2) the proposed method could generate robust matching
results against large positioning errors of satellite stereos. Since the proposed method only
involves block selections, it can combine various matching descriptors in addition to SIFT.
Experiments on high-resolution satellite datasets (including two pairs of WorldView-3
satellites and one pair of Gaofen-7 satellites) show that the proposed method has strong
matching abilities for satellite stereos against the positioning errors at most 1 km. When
compared with other developed matching methods, the proposed method could achieve
the best compromise between the matching time cost and the orientation accuracy. In both
the WorldView-3 dataset and the Gaofen-7 dataset, the proposed method could achieve
the average time cost of 75.20 s, which is almost 62 times faster than those entire-image-
based matching methods (e.g., SAB and HIM) while retaining similar matching accuracy.
Though the time cost of the proposed method is about 30–40 s higher than SFB, its matching
accuracy is higher than SFB by 28.27%. Thus, the proposed method is able to greatly reduce
the matching time cost while retaining high matching accuracy. However, the proposed
method is only fit for stereo feature matching instead of the multi-view cases. In future
work, the block selection method in multi-view cases will be further developed.
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