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Abstract: At the Blankaart Water Production Center, a reservoir containing 3 million m3 of raw
surface water acts as a first biologic treatment step before further processing to drinking water. Over
the past decade, severe algal blooms have occurred in the reservoir, hampering the water production.
Therefore, strategies (e.g., the injection of algaecide) have been looked at to prevent these from
happening or try to control them. In this context, the HYperspectral Pointable System for Terrestrial
and Aquatic Radiometry (HYPSTAR), installed since early 2021, helps in monitoring the effectiveness
of these strategies. Indeed, the HYPSTAR provides, at a very high temporal resolution, bio-optical
parameters related to the water quality, i.e., Chlorophyll-a (Chla) concentrations and suspended
particulate matter (SPM). The present paper shows how the raw in situ hyperspectral data (a total of
8116 spectra recorded between 2021-02-03 and 2022-08-03, of which 2988 spectra passed the quality
check) are processed to find the water-leaving reflectance and how SPM and Chla are derived from it.
Based on a limited number of validation data, we also discuss the potential of retrieving phycocyanin
(an accessory pigment unique to freshwater cyanobacteria). The results show the benefits of the high
temporal resolution of the HYPSTAR to provide near real-time water quality indicators. The study
confirms that, in conjunction with a few water sampling data used for validation, the HYPSTAR can
be used as a quick and cost-effective method to detect and monitor phytoplankton blooms.

Keywords: earth observation; water quality; hyperspectral remote sensing; Belgium; Chlorophyll-a;
suspended matter; cyanobacteria; inland waters; sustainable management; drinking water

1. Introduction

The increasing occurrence of extreme summers, urban growth and socio-economical
pressure challenges the safe-guarding and availability of surface and ground water quality.
In 2021, the European Commission reported the need for actions to ensure the availability
and sustainable use of freshwater resources [1]. Hence, there is an urgent need in extensive
temporal and spatial water quality monitoring systems to provide scientific guidance for
water resources management. Traditionally, water quality monitoring relied on sampling
the water with a container and analyzing the water sample in the laboratory. However
these discrete in time and spatially coarse sampling methods provide insufficient frequency
and spatial coverage to capture fluctuations and trends in water quality or to investigate
the effectiveness of remediation programs [2]. In recent years, significant advances have
been made in online technologies to measure physical and chemical parameters using
autonomous monitoring systems [3,4]. A large number of online sensors exists, each
providing advantages and limitations.

Among the automated optical-based technologies, above-water visible and near-
infrared optical radiometers have already shown to be a cost-effective solution for monitor-
ing water quality and aquatic biogeochemical processes [5]. With adequate processing [6],
the measured reflected light is processed as the water-leaving reflectance, also referred
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to as the water color. Variations in spectral features seen in the water-leaving reflectance
(i.e., in magnitude and shape) thus reflects variations in the inorganic, organic, particulate
and dissolved materials present in the water, and, subsequently, provide insight into the
water quality. With the development of hyperspectral radiometry, even finer-scale spectral
features can now be detected [7,8], pushing the ability of optical sensors to address aquatic
biodiversity, such as phytoplankton composition and abundance [9–11]. Palmer et al. [12]
provide an overview of studies using hyperspectral data focusing on various inland water
characteristics ranging from Chlorophyll-a (Chla) concentrations and the presence of or-
ganic and inorganic material to water turbidity/transparency and the identification and
quantification of cyanobacteria blooms (e.g., [13–15]).

When mounted on automated pointing systems, above-water sensors provide wa-
ter reflectance data at high temporal resolution and with very low manpower require-
ments. The development of such systems was mostly driven for the validation of satellite
data [16–18]. However, with their very high temporal resolution data, autonomous systems
may also be used for effective water quality monitoring. Cullen et al. [19] showed how one
multispectral radiometer buoy could aid in monitoring and characterizing biological vari-
ability in surface waters over scales from minutes to months. Muller-Karger et al. [20] con-
firmed that long-term trends analysis requires measurements of short-term variability over
long periods of time. Similarly, Song et al. [21] showed the feasibility of using hyperspec-
tral remote sensing techniques as a rapid assessment tool for determining cyanobacterial
abundance in drinking water systems.

In this context, the HYperspectral Pointable System for Terrestrial and Aquatic Ra-
diometry (HYPSTAR) mounted on a pointable device, installed since early 2021, helps in
monitoring the water quality over the Water Production Center (WPC) at Blankaart. The
Blankaart WPC reservoir, located in Belgium 20 km from the Belgian coast (50.9888°N–
2.8352°W), holds 3 million m3 of water and acts as a first biologic treatment step before
downstream processing. The Blankaart WPC is one of the main sources of drinking water
for the coastal province of Belgium. During the last decade, the WPC has experienced
several algal blooms. Due to their difficult removal from the water (more chemicals such
as flocculants needed, clogged filters, etc.), algal blooms affect the production process of
drinking water and force the water managers to rely on non-optimal water production
planning. Knowing that Belgium is among the most water-scarce regions in Europe [1],
preventing such situations is essential to ensure a sustainable drinking water supply.

The aim of the present study is (1) to demonstrate the capabilities of the HYPSTAR
to provide reliable low-maintenance long-term reflectance measurements at very high
temporal resolution, and (2) to investigate how the operational use of these continuous
reflectance measurements may help in assessing the water quality. Here, we focus on two
major water quality indicators, Chla and suspended particulate matter (SPM). The Chla
concentrations provided by De Watergroep (i.e., water managers of the Blankaart WPC)
from water sampling points allows us to validate and further improve the algorithms. In ad-
dition, to demonstrate the ability of hyperspectral sensors to retrieve more advanced water
quality parameters, we investigated the potential of the HYPSTAR to detect phycocyanin,
PC, an accessory pigment unique to freshwater cyanobacteria. However, the retrieval of PC
is based on a limited number of match-ups between water sampling and HYPSTAR data
and is therefore presented here as a feasibility study. Two extra measurements taken at
Blankaart in 2019 and 2020 with the hyperspectral sensor PANTHYR [16] also complement
the study to increase the number of validation data.

The Section 1 describes the HYPSTAR sensor and measured data as well as the
processing used to estimate water-leaving reflectance. The water sampling data used for
the validation of the Chla algorithms are described in Section 2.2. Section 2.3 describes
the algorithms used for the retrieval of the water quality products, i.e., Chla and SPM.
Improvements to those Chla algorithms are presented in Section 3.2. The retrieved long-
term Chla and SPM time series together with the water sampling data and some concurrent
satellite images are shown in Section 3.3. In Section 3.4, we investigate the potential to
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detect phycocyanin with the HYPSTAR data. Finally, in Section 4, we discuss the possible
improvements to further exploit the data and how the HYPSTAR water quality products
could be used for operational water quality assessment in conjunction with satellite images.

2. Materials and Methods
2.1. Above Water Reflectance Data
2.1.1. HYPSTAR

A Hyperspectral Pointable System for Terrestrial and Aquatic Radiometry, HYPSTAR
(www.HYPSTAR.eu, accessed on 14 October 2022), was installed at Blankaart WPC reservoir
in January 2021 and continuously measures (except during short periods of downtime for
maintenance) the upwelling and downwelling radiance and downwelling irradiance during
daylight (7 a.m. till 6 p.m. local time). The HYPSTAR installed at Blankaart (Figure 1)
measures the reflected light within the visible and near-infrared (VNIR) spectral range
(380–1020 nm) with a spectral sampling and resolution of 0.5 and 3 nm, respectively, and a
field of view of 2°. The HYPSTAR is mounted on a pan and tilt unit allowing commands
to be received from the host system and to return measurements according to the defined
measurement protocol (i.e., viewing geometries, number of scans, radiance or irradiance
measurements, etc.). The system also includes a GPS and embedded camera to visualize
the target and sky conditions for visual inspection. A true color Sentinel-2B image and
the panchromatic GEOEye image acquired over the reservoir show the octagonal shape of
the 800 m-diameter drinking water reservoir (see Figure 1). The reservoir has a concrete
wall of 400 m built from its north-east edge to its center. The HYPSTAR is deployed on this
wall, 30 m from the external border. The HYPSTAR has been developed in the frame of the
H2020 HYPERNETS project (www.hypernets.eu, accessed on 14 October 2022), and is part
of the HYPERNETS network [22].

Figure 1. View from the north-east edge of the concrete wall in the Blankaart drinking reservoir (left),
close-up on the HYPSTAR installed along the railing 30 m from the border edge (middle), and true
color Sentinel 2A image acquired on 2021-02-04 and processed with ACOLITE [23] with the Blankaart
reservoir in the center of the image (top right) and the panchromatic GEOEye image acquired on
2019-05-24 (bottom right). A red cross indicates the location of the sensor (50.9888°N–2.8352°W). The
blue semi-circle shows the orientation of the sensor during the day.

2.1.2. Acquisition Protocol and Data Processing

The above-water approach includes measurements from above-water radiometers
for Ld(λ, 180− θ, ∆φ, θ0), Lu(λ, 180− θ, ∆φ, θ0) and Ed(λ), the downwelling radiance, up-
welling radiance and downwelling irradiance, respectively. In the absence of sun glint,

www.HYPSTAR.eu
www.hypernets.eu


Remote Sens. 2022, 14, 5607 4 of 20

(near-) simultaneous Ld(λ, 180− θ, ∆φ, θ0) and Lu(λ, 180− θ, ∆φ, θ0) measurements allow
the evaluation of the water-leaving radiance, Lw(λ) as follows:

Lw(λ, 180− θ, ∆φ, θ0) = Lu(λ, 180− θ, ∆φ, θ0)− ρF(λ, θ, ∆φ, θ0, ws, E)Ld(λ, 180− θ, ∆φ, θ0) (1)

The term ρF is the air–water interface reflectance coefficient expressed as a function
of viewing geometry, i.e., θ, ∆φ, and sun zenith angle θ0, and environmental factors, E.
When the water surface is perfectly flat, ρF is the Fresnel reflectance and the environmental
factor E only depends on the relative refractive index of the air–water interface. When
the water is not perfectly flat, ρF needs to account for the geometric effects of the wave
facets created by the roughened water surface. Wave facets change the water surface
geometry and thus (1) the upwelling rays by changing the relative geometry between
the illumination and viewing direction, as well as (2) the contribution of the sky and sun
glint to Lu(λ, 180− θ, ∆φ, θ0). After normalization by Ed(λ), Lw(λ) becomes the remote
sensing reflectance, Rrs(λ) (expressed in sr−1), or, when multiplied by π, the water-leaving
reflectance, ρw(λ) (dimensionless). These are the standard input for most optical models
used to derive bio-geochemical products.

Numerous measurement protocols exist for the correction of the air–water interface
reflectance for above-water acquisitions (e.g., [6] and references therein). However, the
present study does not intend to provide an inter-comparison of these methods and follows,
therefore, the approach adopted by NASA [24] and IOCCG [25] for the measurement
protocol and data processing. Radiometer measurements are taken with the HYPSTAR in a
defined set of geometries called a sequence. Each geometry in a sequence is called a series,
composed of a set of repeated scans that are averaged. Thus, a single sequence results in
one measurement of water-leaving reflectance. A sequence was taken every 15 to 30 min
during daylight and contained the following series:

1. Three scans of Ed(λ, θ = 180◦, ∆φ = +/− 90◦);
2. Three scans of Ld(λ, θ = 140◦, ∆φ = +/− 90◦);
3. Six scans of Lu(λ, θ = 40◦, ∆φ = +/− 90◦);
4. Three scans of Ld(λ, θ = 140◦, ∆φ = +/− 90◦);
5. Three scans of Ed(λ, θ = 140◦, ∆φ = +/− 90◦).

2.1.3. Data Processing

Data are processed using the Hypernets Processor [22], which is fully accessible via
(https://github.com/HYPERNETS/hypernets_processor, accessed on 14 October 2022).
The first step in the processor is to check the quality of the raw radiance and irradiance data
and the blacks. Next, raw scans are corrected for darks and calibrated to irradiance and
radiance scans. For the computation of the water reflectance, the HYPERNETS processor in-
cludes the RHYMER component (i.e., “Reliable processing of HYperspectral MEasurement
of Radiance”). RHYMER provides all the required functions to process the above-water
measurements and is written as such that it can easily welcome any additional look-up
tables, processing functions, and/or quality flags. Before averaging per series, RHYMER
first assigns flags to each scan showing a temporal jump, with the previous and following
scan, of more than 25 at 550 nm. Next, RHYMER parses the cycle, i.e., it separates upwelling
and downwelling radiance, investigates if all required angles are present and if there are
coincident upwelling and downwelling radiance measurements for the retrieval of the
water-leaving radiance. Since the irradiance and radiance measurements have a slight shift
in wavelength, a spectral interpolation is first performed between radiance and irradiance
spectra. Next, Ed(λ) and Ld(λ) scans are averaged per series and temporally interpolated
to Lu(λ) scans. For the computation of the water-leaving reflectance, the reflectance factor
ρF is retrieved from the look-up table of [26] using as input the solar zenith angle, viewing
zenith angle, relative azimuth angle between sun and sensor, and the wind speed, at 10 m
above the sea surface.

https://github.com/HYPERNETS/hypernets_processor
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In the present study, wind speed is taken from a nearby station, i.e., the VLINDER
station located at Blankaart. The VLINDER data, (www.vlinder.ugent.be, accessed on
14 October 2022) [27], provide near-real-time weather data including temperature, rainfall,
wind speed, and wind direction.

To ensure quality reflectance data and discard any suspect spectra (e.g., noisy or non-
water spectra, high variation in illumination during the sequence, and/or inconsistency
between radiance and irradiance measurements during the sequence), three additional
quality checks are used. A spectrum is discarded if one of these conditions are met:

• Filter 1: the ratio of Lu(λ)/Ed(λ) between 800 and 950 nm is greater than 0.025 sr−1;
• Filter 2: the NIR similarity correction factor, ε(720, 780), exceeds a given threshold

(with ε(720, 780) defined by Equation (8) in [28]);
• Filter 3: negative reflectance values between 400 and 900 nm.

The first filter relies on the fact that the water radiance is expected to be very low in the
800–950 nm spectral range as most of the water absorbs in these wavelengths. As observed
by Groetsch et al. [29], applying filter 1 removes most of the spectra affected by foam-caps
or surface scum. We found that this empirical threshold also removed most of the suspect
spectra in our dataset without considering inaccuracies in the data processing.

The second filter was used to remove spectra for which we suspect erroneous process-
ing. According to Ruddick et al. [30], the shape of the NIR spectrum is mainly determined
by the pure water absorption and is thus invariant. Hence, for waters following this theory,
ε(720, 780) is the residual error when the data processing results in an inaccurate correction
for the presence of high sun glint. Despite the 90° relative azimuth between sun and sensor,
∆φ, during acquisition attempts to avoid sun glint, over wind-roughened surfaces, sun
glint may still be present in the field of view of the sensor. Therefore, spectra for which the
estimated ε(720, 780) exceeds a given threshold are considered as inaccurately processed
and removed for further data analysis. The threshold (see Section 3.1) of ε(720, 780) is
defined based on a visual inspection of the removed and remaining spectra.

The last filter removes the negative reflectance spectra. Negative reflectance often
results from an inaccurate removal of the air–water interface reflectance. The estimation
of ρF in Equation (1) is indeed often a source of error when, among other things, the
wave slope distribution at the surface is unknown and/or there are above-water optical
perturbations [6]. The filters suggested here present a good compromise between the
number of data to retain (i.e., allowing a high temporal resolution time series) and the
autonomous quality assessment of the data (i.e., essential for autonomous systems recording
very high amounts of data).

2.2. Validation of Data
2.2.1. Chla Concentrations

Surface water was sampled with a 5 L bucket on irregular days by the water managers
for monitoring the water quality. Although it was not meant to be used for the validation
of the water quality products from the HYPSTAR, it appeared to be very relevant as the
sampling was conducted from the same platform where the HYPSTAR was installed. After
sampling, Chla concentrations were determined with a spectrophotometric method, 10200
H [31].

In total, we found 43 Chla concentrations sampled during the time interval of the
HYPSTAR deployment (i.e., since January 2021).

2.2.2. Counting Procedure for Cyanobacteria and Diatoms

For the manual counting of the algae, the sampling protocol and preparation followed
the “Water Sampling, Measurement and Analysis Compendium (WAC)” from the Flemish
Government [32] and the European standard EN 15204 [33].

www.vlinder.ugent.be
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2.3. Algorithms for Water Quality Products
2.3.1. Chla

Both multispectral [14] and hyperspectral [34] red-edge approaches are tested and
compared with the water sampling retrieved Chla. The red-edge spectral region is well-
suited for detecting Chla in turbid and eutrophic waters thanks to the combination of the
high Chla absorption around 672 nm and its strong scattering around 705 nm [35]. Blue-
green band ratio algorithms and quasi-analytical algorithms, often referred to as QAA [36],
or the generalized inherent-optical-properties inversion [37] are less suited for these inland
waters because of the significant influence of the dissolved and particulate material in
blue and green bands. The quasi-analytical algorithms were generally developed for clear
waters to moderately turbid waters.

Among the wide variety of red-edge-based algorithms, the algorithm proposed by
Simis et al. [14] (referred to hereafter as the SIMIS algorithm) was selected because it is
very close to the semi-empirical algorithm introduced by Gons [38]. This algorithm is also
associated with a phycocyanin algorithm which is assessed here to monitor cyanobacteria
blooms. The algorithm suggested by Ruddick et al. [34], also referred to as the “Chlorophyll
a Retrieval using an Adaptive Two-band” algorithm (referred to hereafter as the CRAT
algorithm), has been selected to investigate the benefits of the hyperspectral resolution.
Although the CRAT algorithm is only based on two spectral bands, the spectral position
of the second band varies from one spectra to another and can only be determined from
hyperspectral data. Both algorithms assume (1) a constant back-scattering coefficient, bb, in
the red and NIR, (2) a negligible absorption from colored dissolved organic matter (CDOM)
and non-algal particles compared with water absorption (aw) at 672 nm, 704 nm and 750
nm and to Chla absorption at 672 nm, and (3) negligible absorption by phytoplankton at
704 nm and 750 nm.

With the SIMIS algorithm, Chla concentrations are estimated from the Chla absorption
at 665 nm, aChl(665), as follows:

aChl(665) =
ρw(709)
ρw(665) (aw(709) + bb)− bb − aw(665)

γ
(2)

where γ is a factor applied to correct underestimation due to the hypothesis of negligible
CDOM and non-algal particulate absorption. Simis et al. [14] estimated γ to be equal to
0.68 for the Ijselmeer. However, because this parameter is very regional, it is set to 1 in
the present study, as suggested by Gons [38]. bb is calculated from ρw(779) as proposed
in Gons et al. [39] and the pure-water absorption coefficients, aw(λ), are retrieved from
Buiteveld et al. [40]. Chla absorption is then converted into Chla concentration using the
Chla-specific absorption coefficient, a∗ph(665):

ChlS
a =

aChl(665)
a∗ph(665)

(3)

a∗ph(λ) is the absorption coefficient of phytoplankton per unit of Chla concentration.
Simis et al. [14] suggests a constant a∗ph(665) equal to 0.0153 m2m/g for the IJselmeer.

With the CRAT algorithm, Chla is calculated differently for each spectrum as:

ChlC
a =

aw(λ2)− aw(λ1)

a ∗ ph(672)
(4)

where λ2 is selected individually in the 704–740 nm interval as the wavelength at which the
reflectance is equal to the reflectance at the red Chla absorption peak (i.e., ρw(λ2) = ρw(λ1)).
λ1 is equal to 672 nm [34].

Compared with the SIMIS algorithm (and similar algorithms, see references in [14]),
the CRAT is based on a subtraction which avoids the calculation of bb. In addition, residual
absorption from CDOM and non-algal particles are also partially corrected [34].
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a ∗ ph(λ) values are known to vary as a function of a variety of factors, such as
phytoplankton-specific pigment composition or the water trophic state [41]. As mentioned
by Bramich et al. [42], and references therein, the use of a varying a∗ph(λ) is therefore
expected to improve the Chla concentration estimates, in particular for the lowest and
highest concentrations. Therefore, Bricaud et al. [41] recommended using a power function
of the form:

a∗ph(λ) = AChl−B
a (5)

where A and B are wavelength-specific coefficients (A reflects a∗ph(λ) per Chla unit while
the B exponent reflects the deformations of a∗ph(λ) with an increase in Chla concentra-
tions). Locally tuned A and B coefficients have already been used by numerous studies
(e.g., [43,44]). We therefore also analyzed how using a varying a∗ph(λ) could improve
the accuracy of ChlS

a and ChlC
a by deriving a linear regression between the logarithm of

a∗ph(λ) and logarithm of Chla from the water sampling, ChlW
a . Hence, the slope of the

linear regression is equal to B in Equation (5) and the intercept to log(A).
Ultimately, we compared the accuracy of ChlS

a and ChlC
a with a constant a∗ph(λ) and

with a varying a∗ph(λ) (as in Equation (5)). To evaluate their performance, we used the
following metrics.

• The Root Mean Square Error (RMSE), which measures the scatter of the data from the
regression line (units in µg/L);

• The slope (S) and intercept (I) of the least squares regression to detect systematic
multiplicative or additive biases;

• The Mean Absolute Percentage Error (MAPE, unsigned and units in %) between the
HYPSTAR-retrieved Chla, ChlC

a or ChlS
a , and water-sampling-retrieved Chla and ChlW

a ,
for a total number of samples n. MAPE is calculated as follows:

MAPE = 100× 1
n

Σi=n
i=1
|ChlC,S

a − ChlW
a |

ChlW
a

(6)

• The BIAS, to assess the systematic errors in the algorithm outputs (units in µg/L),
calculated as follows:

BIAS =
1
n

Σi=n
i=1 (ChlC,S

a − ChlW
a ) (7)

2.3.2. SPM

For the computation of SPM, the algorithm from Nechad et al. [45] was used with the
measured water-leaving reflectance at 700 nm as follows:

SPM =
AN2010ρw(700)

1− ρw(700)
CN2010

(8)

where AN2010 and CN2010 are constant values (i.e., 445.11 and 1.13, respectively) taken from
Table 1 in [45]. This algorithm has already been used and validated by numerous studies
(e.g., [46,47]).

Table 1. Constant A and B values estimated in the present study with the SIMIS algorithm and found
in the literature [41,44] for λ equal 665 and 672 nm.

λ = 665 nm λ = 672 nm

A B A B

SIMIS 0.0537 −0.3897 – –
Paavel 0.0311 −0.2711 0.0339 −0.2488

Bricaud 0.0150 −0.1333 0.0197 −0.1530
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2.3.3. Cyanobacteria

Since the match-ups between water sampling points and HYPSTAR reflectance data
were not sufficient to properly validate or design a cyanobacteria algorithm (only two match-
ups), we limited our results to the evaluation of several indexes. We also complemented
the dataset with two extra PANTHYR measurements [16] taken at Blankaart during large
cyanobacteria blooms in 2019 and 2020.

Several indexes have been developed from cyanobacteria spectral specificities due to
PC absorption and cyanobacteria fluorescence anomalies. Using an analytical algorithm,
Simis et al. [14] proposed calculating the concentration in PC from its absorption at 620 nm
and after correction for water and Chla absorption (i.e., estimated with the SIMIS algorithm
in Section but using the 620 nm reflectance band). This first index, referred to as CI1, is
estimated as follows:

CI1 =

[
ρw(709)
ρw(620) (aw(709) + bb)

]
− bb − aw(620)

δ
− ε665−620 × aChl(665) (9)

with ε665−620 being the conversion factor from aChl(665) to aChl(620) (equal to 0.24, [14]),
and δ being the correction factor similar to γ in Equation (2). In the present study, δ is set to
1 for the same reasons as mentioned above.

The second index, referred to as CI2, is the band ratio between ρw(600) and ρw(700)
as suggested by Mishra et al. [15]:

CI2 =
ρw(700)
ρw(600)

(10)

These bands were chosen for their low variability (minimum reflectance at 700 nm)
and for the absence of influence of Chla absorption at 600 nm while phycocyanin is still
absorbing. Hence, the higher the index, the higher the probability of cyanobacteria presence.

The third index, referred to as CI3, is proposed by Wynne et al. [48] and is similar
to a fluorescence line height equation with a focus on the spectral shape around 681 nm.
According to the authors, a deficit of fluorescence at 681 nm is expected in the presence
of cyanobacteria compared with other phytoplankton groups. A negative value for CI3
is expected in the presence of cyanobacteria whereas a positive value is expected in the
absence of cyanobacteria.

CI3 = ρw(681)− ρw(665)− [ρw(709)− ρw(665)][
681− 665
709− 665

] (11)

3. Results
3.1. Water-Leaving Reflectance

The dataset consists of 8116 spectra measured in the period 2021-01-27 to 2022-08-03
(Figure 2). A first quality check is performed to filter out the suspect data (see filter 1 in
Section 2.1.2), reducing the number of valid data to 7933. Data with ε(720, 780) greater
than 0.005 (filter 2) are then removed, leaving 6535 spectra. The threshold of 0.005 is large
enough to retain the optically complex waters and severe enough to remove non-water or
glint-affected spectra. Finally, all spectra showing (non-physical) negative values between
400 and 900 nm are removed, leaving 2988 individual measurements in the dataset, ranging
from 2021-02-03 to 2022-08-03. More data are removed during the winter (high wind,
rain, low illumination, changing weather, etc.) with the number of sequences retained
in December, January and February being 38, 74 and 89, respectively. In the summer
(June, July and August) the number of sequences varies between 622 and 307 sequences
per month.
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Figure 2. Number of valid sequences taken each day (“All sequences”), and the remaining sequences
after removing the spectra that do not satisfy the following filters: (1) Filter 1: Lu(λ)/Ed(λ) between
800 and 950 nm > 0.025 sr−1; (2) Filter 2: ε(720, 780) > 0.005; and (3) Filter 3: removing negative
reflectance data in the 400–900 nm range. Note that instrument was in maintenance and recalibration
in February–April 2022.

Figure 3 shows the daily mean reflectance of all the retained sequences over the
different seasons. As expected, all spectra show typical spectral shapes for inland waters,
i.e., low reflectances in the blue compared with reflectances in the green and red spectral
range [49]. The magnitude of the reflectance value is higher in the winter season compared
with the rest of the year. This is especially visible for the 500–600 nm range and results
from higher particle concentrations in the winter months or the resuspension of sediments
in the reservoir due to high winds. Several distinguishing finer spectral features are also
observed. First, the so called red-edge reflectance (i.e., ∼680–750 nm) is visible, essentially
in spring and summer. This increase in reflectance can be associated with increasing Chla
concentrations [50]. Likewise, a clear U-shape is present for many spectra in the 650–710 nm
range in spring and summer, but less in winter and autumn. This U-shaped feature is a
typical indication of high particle scattering bounded by high pigment absorption ([49],
and references therein). These spectra are expected to present high Chla concentrations and
the possible presence of cyanobacteria [48,51].

3.2. Chla Retrieval

Out of the 43 water sampling points taken between 2021-01-27 and 2022-08-03, 27 ChlW
a

concentrations were taken during a HYPSTAR reflectance spectrum (i.e., passing the quality
check mentioned above) (see Figure 4). Concentrations range from 1.5 µg/L to 39.4 µg/L.
As mentioned, a U-shaped spectra around 650–670 nm is clearly visible for the higher Chla
concentrations, typical for high phytoplankton absorption. Note, however, that absorption
at 670–675 nm is not only related to Chla but may also be related to suspended particulate
absorption [34]. Similarly, higher Chla concentrations tend to show an increase in the
reflectance peak around 710–720 nm and 555 nm.

Figure 5 shows the accuracy of the retrieved Chla concentrations using the CRAT and
SIMIS algorithms, respectively. Note that the CRAT algorithm using the wavelength range
704–740 nm is not expected to perform well for Chla values outside the ∼10–100 µg/L
range, as reported by Ruddick et al. [34]. Therefore, statistics are limited here for Chla con-
centration within this range, reducing the number of match-ups between water sampling
and HYPSTAR data to 11.
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Figure 3. Reflectance spectra measured at Blankaart and averaged per day (to maximize visibility,
each day has a different color) for the winter (December, January and February) (a), spring (March,
April and May) (b), summer (June, July and August) (c), and autumn (September, October and
November) (d).

Figure 4. Water reflectance spectra taken with the HYPSTAR and coincident Chla concentrations
from the water sampling measurements.
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An a∗ph(672) of 0.0177 ± 0.00151 m2mg−1 is found to be the most appropriate for the
CRAT algorithm. An a∗ph(665) of 0.01995± 0.00165 m2mg−1 performs better for the SIMIS
algorithm. These values are in line with what is found in the literature (i.e., [34] found an
a∗ph(672) of 0.0205 m2mg−1 for the IJssel lagoon with the CRAT algorithm, and [14] an
a∗ph(665) between 0.0153 and 0.0203 m2mg−1 for different lakes with the SIMIS algorithm).

The RMSEs are 8.20 µg/L and 5.61 µg/L for the CRAT and SIMIS algorithm, respec-
tively. For the CRAT algorithm, we observe a MAPE of 28.5 % and a BIAS of 1.27 µg/L. For
the SIMIS algorithm, MAPE and BIAS are 75.6% and 0.16 µg/L, respectively. Both algo-
rithms tend to overestimate the lower Chla concentrations and underestimate the higher
concentrations. The minimum Chla concentration retrieved with the CRAT algorithm is
12.14 µg/L (Figure 5). Using an a∗ph(672) of 0.0177 m2mg−1 and with λ1 equal to 672 nm
and λ2 in the 704–740 nm wavelength range, the retrieval range of the CRAT algorithm is
between 12.14 µg/L and 119.56 µg/L Chla (i.e., between [aw(704)− aw(672)]/0.0177 and
[aw(740)− aw(672)]/0.0177 with aw(λ) equals 0.415, 0.6303 and 2.5319 m−1, at 672, 704
and 740 nm, respectively).

Figure 5. Comparison between Chla products from the water sampling (ChlW
a ) and when computed

with the SIMIS algorithm (ChlS
a , red dots) and CRAT algorithm (ChlC

a , blue dots) using a fixed
a∗ph(λ) (a) and variable a∗ph(λ) (b), as shown in Figure 6. Plain lines are the regression lines for
each algorithm (red and blue plain lines for the SIMIS and CRAT algorithm, respectively) with I and
S being the intercept and slope, respectively. Statistics are computed on 11 points for CRAT and
27 points for SIMIS. Dashed blue line is the 1:1 line.

The value of a∗ph(λ) decreases from 0.08 to 0.006 m2/mg at the red Chla absorption
peak (i.e., 665 nm, Figure 6a). At 672 nm, a∗ph(λ) ranges from approximately 0.04 to
0.006 m2/mg. Note that the high a∗ph(λ) values should not be considered as these corre-
spond to Chla concentrations below the retrieval range (i.e., see points before gray dashed
line in Figure 6b). Table 1 provides the values for A and B in Equation (5) when retrieved
with the SIMIS algorithm. For comparison, A and B values reported by Bricaud et al. [41]
and Paavel et al. [44] are also added. Since the number of match-ups with Chla concentra-
tions above 8 µg/L is limited (i.e., 11 out of 27), we used the A and B values from Paavel
et al. [44] for the CRAT algorithm. These constant values for A and B were estimated with
155 water samples taken in different lakes (including cyanobacteria-dominated lakes) for
Chla concentrations ranging from 3 to 315 µg/L [44]. Overall, this relationship fits well
with our data for Chla concentrations above 10 µg/L (see Figure 6b).

For the SIMIS algorithm, the performance of the algorithm increases when using a
variable a∗ph(λ) (Figure 5). MAPE and BIAS decrease to 55.51 % and 1.04 µg/L, respec-
tively. For the CRAT algorithm, the MAPE and RMSE increase, but the regression line is
closer to the 1:1 line (slope and intercept approaches 1 and 0, respectively).
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Figure 6. Dependence of a∗ph(665) (a) and a∗ph(672) (b) on Chla concentrations from the water
sampling (ChlW

a ) for the SIMIS and the CRAT algorithm, respectively. Equations found by [41,44] are
also added (see color legend). Horizontal gray lines show the fixed a∗ph(λ). Dashed vertical gray
line shows the limit at 8 µg/L for the application of the CRAT algorithm (b).

3.3. Chla and SPM Time Series

The HYPSTAR-retrieved ChlS
a and ChlC

a follow closely the water sampling ChlW
a

concentrations (Figure 7), although ChlS
a and ChlC

a show higher peaks in Chla concentrations
relative to the water sampling data. These peaks may be explained by (1) the high temporal
resolution of the HYPSTAR data depicting Chla variations that are omitted by the water
sampling data, (2) failure of the quality check of the reflectance data to remove some
non-valid or suspect reflectance spectra, and/or (3) the erroneous estimation of a∗ph(λ)
at high Chla concentrations. As mentioned in Section 3.1 and illustrated in Figure 3, we
indeed observe overall lower Chla concentrations in autumn (although some high Chla
values are seen early September) and relatively higher values in the spring and summer.
Note that during the spring and summer months, measures are taken to prevent algal
blooms (i.e., the injection of algaecide) within the reservoir. This could explain why the
Chla concentrations are limited, in particular in the summer of 2021, and why in some cases
sudden drops in Chla concentrations are observed (e.g., in July 2022).

Figure 7. Time series of HYPSTAR-retrieved Chla concentrations using CRAT and SIMIS algorithms
(blue and red dots, respectively), and Chla concentrations measured from the water sampling points
(black) between January 2021 and August 2022. Orange vertical bars point to specific dates discussed
in the text and reported in Table 2, i.e., 2021-03-06, 2022-02-07, 2022-01-10, and 2022-07-17.

Figure 8 shows the Chla values over a shorter time period and the corresponding
reflectance spectra for the given Chla values. A peak in Chla concentration was observed
around 2021-04-30 (Figure 8a). Afterwards, the Chla concentration slowly decreased until
2021-05-05 and remained low until the end of May. In early June, the Chla concentration
increased again up to∼40 µg/L. Spectra associated with higher Chla values (i.e., 2021-05-03
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and 2021-06-02) can clearly be distinguished by their pronounced reflectance peaks at
700 nm and deep U-shaped features between 640 and 700 nm (Figure 8b). Differences in
spectral shapes between 2021-05-03 and 2021-06-02 may be related to the higher abundance
of diatoms on 2021-05-03 (i.e., 29.8 mm3/L compared with 7.8 mm3/L on 2021-06-02). On
2021-05-03, we also observe two absorption features around 490 nm and 620 nm typical
for Chlc and the possible presence of PC. However, according to the water sampling data,
there was no presence of cyanobacteria at that time.

Figure 8. Zoom of Figure 7 between 2021-04-23 and 2021-06-12 (a) and reflectance spectra with
corresponding Chla concentrations retrieved with the water sampling points (b).

SPM values range from 0 to 30 g/m3 with some peaks reaching 60 g/m3 (Figure 9).
There were no coincident data with the water sampling points for SPM. However, for both
peaks in SPM, i.e., around 2022-01-09 and 2022-02-07, a Landsat-9 OLI and Sentinel 2B-MSI
image confirmed the relatively high plume of sediments along the southern side of the wall
(see Figure 10).The timing of these sediment plumes also corresponded to storm events
(see high gustwind in Figure 9). Storm events may induce high sediment concentrations
in the water that is pumped into the reservoir, and/or the resuspension of the sediments
present in the bottom of the water reservoir. The latter explanation may be more valid since
during heavy storms, and especially during flooding, the intake of water into the reservoir
is stopped.

Relatively high values of reflectance, in particular in the red and NIR spectral range,
are observed for those two dates (Figure 10). SPM values retrieved from the reflectance
spectra taken the same day (i.e., 2022-02-07) or the day before (i.e., 2022-01-10) are also
relatively high, with concentrations of 27.59 and 33.07 g/m3. For comparison, two spectra
corresponding to high Chla values (see Figure 7) and low SPM values (see Figure 9), i.e.,
2021-03-06 and 2022-07-17, are also shown (Figure 10). Table 2 reports, for these four dates,
the number of sequences per day (after quality check), the estimated SPM values, and the
retrieved ChlS

a and ChlC
a concentrations.

Table 2. Mean and standard deviation of SPM and Chla concentrations retrieved with the CRAT and
SIMIS algorithm on different dates (see orange bars in Figures 7 and 9, and associated reflectance
spectra in Figure 10).

Date Numb. Seq. SPM (g/m3) ChlC
a (µg/L) ChlS

a (µg/L)

2021-03-06 5 8.78 ± 0.07 86.88 ± 3.47 60.60 ± 1.85
2022-02-07 18 27.59 ± 2.92 – 0.14 ± 0.12
2022-01-10 2 33.07 ± 4.74 – 2.52 ± 0.13
2022-07-17 13 7.75 ± 0.57 207.25 ± 5.5 142.94 ± 11.71
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Figure 9. Time series of SPM (g/m3) retrieved with HYPSTAR using the algorithm of Nechad et al.
(2010) with the 700 nm band, and gustwind (m/s) (retrieved from the VLINDER station at Blankaart)
from January 2021 to August 2022.

Figure 10. Spectra for the different dates given with the orange vertical bars in Figures 7 and 9 and
Landsat-9 OLI RGB image and Sentinel-2B MSI RGB image processed with ACOLITE [23] taken on
2022-01-09 and 2022-02-07, respectively.

3.4. Cyanobacteria Detection: A Feasibility Study

To evaluate the different PC indexes, extra hyperspectral remote sensing data, acquired
by a PANTHYR sensor [16], were also analyzed as they provided some concomitant
water reflectance spectra during large cyanobacteria bloom events. Indeed, in 2021–2022,
Blankaart reservoir experienced only small cyanobacteria bloom events with a maximum
of 5 µg/L observed from water samples on 2021-09-06 and 2021-09-21. Figure 11 displays
water reflectance spectra and the second derivative from a diatom bloom (2021-05-02) and
from cyanobacteria blooms (2019-08-01, 2020-06-15 and 2021-09-06, see also Table 3). From
these spectra, the different indexes are calculated.

CI1, as suggested by [14], shows increasing values when the concentration of cyanobac-
teria increases. In particular, when cyanobaceria concentration increases from 0 to 4.70 µg/L,
CI increases from 22.15 to 37.95, suggesting that CI1 is able to detect small increases in
cyanobacteria concentration. However, in the absence of cyanobacteria, it is higher than 0,
which suggests an offset problem. This erroneous offset may be explained by the need for
accurate local parameterization [52].

The second index, CI2, uses the band ratio between water reflectance at 600 nm and
700 nm [15]. Figure 11 confirms the interest of the 600 nm spectral band as the second
derivative is positive in the presence of cyanobacteria and negative otherwise. In fact, a
positive second derivative means that the curve is convex, which is consistent with the PC
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pigment absorption. As for CI1, one can notice that CI1 increases with the concentration of
cyanobacteria.

Figure 11. Average reflectance spectra for a diatom bloom (2021-05-02) and from cyanobacteria
blooms (2019-08-01, 2020-06-15 and 2021-09-05) (left) and second derivatives for each spectra (right).
Gray vertical lines at 600 and 620 nm and shaded areas between 665 and 709 nm show the wavelengths
of interest.

The third index, CI3, is expected to have a negative value in the presence of cyanobac-
teria and a positive value otherwise [48]. Our results show that CI3 is not able to detect
cyanobacteria blooms with a concentration of 4.7 mgm−3, as CI3 is null in these cases,
whereas it is slightly negative when no cyanobacteria are observed. However, for higher
concentrations of cyanobacteria, CI3 is significantly lower, suggesting that this index can
only be used to detect important changes in cyanobacteria concentrations. As the spectral
region (i.e., 665–709 nm) is also highly impacted by Chla absorption, it is possible that
variability in Chla concentration also affects CI3.

Table 3. Phytoplankton parameters measured in the Blankaart reservoir at the same date as water
reflectance spectra displayed in Figure 9 and cyanobacteria indexes (CI) calculated from the water
reflectance. See text for details about the different CI.

Date Sensor Diatoms (µg/L) Cyano (µg/L) Chla µg/L) CI1 CI2 CI3

2019-08-01 PANTHYR 0 41.58 328.6 426.41 2.073 −0.020
2020-06-15 PANTHYR 0 11.80 32.5 82.57 1.046 −0.007
2021-05-02 HYPSTAR 29.18 0 39.4 22.15 0.777 −0.001
2021-09-05 HYPSTAR 0 4.7 24.2 37.95 0.86 0.00

4. Discussion
4.1. Further Improving HYPSTAR Derived Water Quality Products

The results above confirm that the HYPSTAR system provides valuable data at very
high temporal resolution with low manpower requirements. Currently, the data are pro-
cessed automatically and shared with the water managers for monitoring trends of Chla
in the water reservoir and to investigate the effectiveness of the strategies to control algal
blooms. Hence, the HYPSTAR can be used as a quick and cost-effective method to monitor
water quality and detect algal blooms, provided that an initial phase of quality check is
performed followed by a tuning and validation of the water quality algorithms. However,
further improvement in the data processing may aid in reducing the inaccuracies in water
quality products, and increase the number of data. For instance, improving the correction
for the air–water interface reflectance will reduce the number of spectra removed by the
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quality checks (e.g., negative reflectance). The present study relies on external wind speed
reflectance data to correct the upwelling radiance for air–water interface reflectance and
retrieves the air–water interface reflectance factor, ρF in Equation (1), based on the look-up
tables of [26]. However, radiative transfer simulations were made by [26] with simulated
sea surfaces, where the wave slope statistics match those of the Cox–Munk model [53]
based on an input wind speed. These wave models assume a fully developed wind wave
sea, where the wave field is in equilibrium with the local wind. This assumption is often not
valid, especially for fetch-limited conditions typical of inland waters. In addition, the 400 m
long wall within the reservoir significantly affects the wind at the water surface. Hence,
the VLINDER wind speed may differ from the wind speed that should be considered
to obtain the proper wave slope statistics at the surface. To increase the accuracy of the
reflectance data, the HYPSTAR should be placed further away from the wall (i.e., increase
the distance between the wall and the field-of-view of the sensor), and the processing could
be improved by testing other methods to correct for the air–water interface reflectance (e.g.,
see [6] and references therein).

The results show that the retrieved Chla concentrations closely follow the water
sampling data. However, more coincident HYPSTAR and water sampling data are required
to further validate the algorithms and cover a larger range of Chla concentrations. Indeed
most values for the validation of the algorithms are below 15µg/L, which is not considered
to be harmful for the drinking water production. In addition, as mentioned earlier, the
CRAT algorithm with λ2 retrieved in the 704–740 nm spectral range is not expect to
perform well outside the ∼12–120 µg/L. Hence, a proper validation of the CRAT algorithm
requires additional data in this concentration range. For higher concentrations of Chla (i.e.,
>100 µg/L), we could also test the same algorithm but using λ2 >= 825 nm, as suggested
by Ruddick et al. [34].

The rapid testing of different cyanobacteria indexes confirms that the data from au-
tonomous hyperspectral radiometers have the potential to monitor the real-time presence/
absence of cyanobacteria. However, a larger dataset of coincident water sampling and
radiometric data is required to further validate these algorithms and possibly quantify the
cyanobacteria biomass. Indeed, in our dataset only very moderated cyanobacteria blooms
were recorded during the HYPSTAR deployment, while strong cyanobacteria bloom events
were recorded during the PANTHYR deployment. However, the number of valid matchups
between in situ samples and radiometric data was low (i.e., 4). The results only allow
us to analyze certain spectra and test some algorithms without being able to provide a
proper calibration. Nevertheless, the results tend to confirm the feasibility of monitoring
cyanobacteria bloom with both HYPSTAR and PANTHYR. Since water sampling and
HYPSTAR are still ongoing, the number of match-ups is expected to increase and new
algorithms may be developed in the future using the very high spectral resolution of the
HYPSTAR. Indeed, by focusing on very small regions of the spectra, we could limit the
impact of non-specific pigments (e.g., using the spectral position of the second-derivative
minimum or maximum [54]).

4.2. Early Warnings and Spatial Monitoring

With its very high temporal resolution, the autonomous hyperspectral radiometers
may be used to obtain first warnings and, when required, to take actions before bloom.
In addition to the water quality products mentioned here, i.e., Chla and SPM, radiance
and irradiance data may therefore also be used to approximate environmental conditions
known to influence the development of algal blooms. For instance, downwelling irradiance
measurements can be used as a proxy for air temperature and sun illumination. Upwelling
radiance measurements taken within the principal plane may also be used to estimate the
wind speed at the air–water surface [55], and, subsequently, serve to investigate the degree
of water column stratification.
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While the HYPSTAR depicts very small water quality variations over time, it is limited
by the first optical depth and does not provide a synoptic view of the entire reservoir.
Therefore, Chla concentrations may be underestimated when blooms occur deeper in the
water column, and complementary online in-water monitoring systems may be useful.
Monitoring the spatial variability of the water quality products is also essential for effective
water management, e.g., to ensure the better efficiency of strategies and control algal
growth by acting over given sites within the reservoir. The Landsat-9 and Sentinel-2B
images shown in Figure 10 confirm this need by showing how significantly the water
properties may vary spatially over the reservoir. To exploit satellite images over the
reservoir, common atmospheric correction algorithms for high spatial resolution images,
such as ACOLITE [23], need to be improved. Indeed, due to the relatively small extent of
the water reservoir, the satellite also records the light that has been reflected or emitted
from adjacent vegetation pixels and scattered by the atmosphere within the field of view of
the sensor [56]. Hence, atmospheric correction should also correct for the adjacency effect.
The HYPSTAR measurements therefore represent very valuable validation data.

5. Conclusions

This study shows the feasibility of using hyperspectral remote sensing techniques as a
rapid assessment tool for monitoring water quality. The results illustrate the benefits of
hyperspectral data with very high temporal resolution. Compared with the water sampling
points, the autonomous measurements were able to depict small temporal variations
in Chla concentrations and SPM over long periods of time and required very limited
manpower. Hyperspectral sensors also aid in retrieving more advanced water quality
parameters relying on very fine spectral features (e.g., for the detection of cyanobacteria).
The HYPSTAR data should be further complemented with satellite images to provide a
synoptic view of the reservoir, both spatially and temporally. Meanwhile, these data will
also be valuable to validate the performance of the atmospheric correction algorithms over
inland waters (in particular, the algorithms for the correction of adjacency effects). While
timely and accurate water quality estimates are required to catch the heterogeneous and
ephemeral nature of algae blooms, our results show that hyperspectral remote sensing
sensors such as HYPSTAR may be confidently used to obtain first warnings and, when
required, to take actions before bloom—ultimately, helping the management of drinking
and recreational reservoirs with prime water quality data.
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