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Abstract: To address the problem caused by mixed pixels in MODIS images for high-resolution crop
mapping, this paper presents a novel spatial–temporal deep learning-based approach for sub-pixel
mapping (SPM) of different crop types within mixed pixels from MODIS images. High-resolution
cropland data layer (CDL) data were used as ground references. The contributions of this paper are
summarized as follows. First, we designed a novel spatial–temporal depth-wise residual network
(ST-DRes) model that can simultaneously address both spatial and temporal data in MODIS images
in efficient and effective manners for improving SPM accuracy. Second, we systematically compared
different ST-DRes architecture variations with fine-tuned parameters for identifying and utilizing
the best neural network architecture and hyperparameters. We also compared the proposed method
with several classical SPM methods and state-of-the-art (SOTA) deep learning approaches. Third, we
evaluated feature importance by comparing model performances with inputs of different satellite-
derived metrics and different combinations of reflectance bands in MODIS. Last, we conducted
spatial and temporal transfer experiments to evaluate model generalization abilities across different
regions and years. Our experiments show that the ST-DRes outperforms the other classical SPM
methods and SOTA backbone-based methods, particularly in fragmented categories, with the mean
intersection over union (mIoU) of 0.8639 and overall accuracy (OA) of 0.8894 in Sherman County.
Experiments in the datasets of transfer areas and transfer years also demonstrate better spatial–
temporal generalization capabilities of the proposed method.

Keywords: MODIS; crop classification; sub-pixel mapping; spatial–temporal feature learning;
deep learning; residual neural network; depth-wise convolutional neural network; pixel shuffle;
generalization capability

1. Introduction

Accurate information on crop types and their spatial distributions are essential for
various agricultural applications, including cropland dynamic monitoring [1], crop yield
estimation [2–4], disaster assessment and management [5,6], policy implementation [7–9],
and crop insurance [10,11]. Remotely sensed observations have been widely used for crop
mapping due to their extensive coverage with various spatial resolutions and scales [12,13].
Research indicates that coarse-resolution satellite images have great potential for crop map-
ping in large areas [14–16]. Compared with Landsat and Sentinel-2 images with relatively
high resolutions of 10 m to 30 m [17], moderate-resolution imaging spectroradiometer
(MODIS) images can better capture informative temporal patterns for better discriminating
crop types. MODIS data are also more appropriate for large-area mapping due to the larger
spatial coverage [18]. Therefore, MODIS has been widely used for crop mapping to support
various applications [8,19–22].

However, one critical shortage of MODIS for crop mapping is caused by the low
spatial resolution of MODIS, which leads to a large amount of “mixed” pixels in areas with
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small and diverse crop parcels. Most existing MODIS-based crop mapping approaches
have failed to address the mixed-pixel problem and have mainly focused on pixel-level
segmentation methods without considering the crop type heterogeneity within mixed
pixels [21–24]. The use of sub-pixel mapping (SPM) approaches for high-resolution crop
mapping from MODIS images is highly insufficient [25]. To alleviate the problem of mixed
pixels, instead of estimating the discrete class membership of mixed pixels, some researchers
have estimated the continuous fractional coverage of crops in mixed pixels using spectral
unmixing-based approaches. For example, the linear mixture model and neural networks
were investigated to obtain the crop area proportions in Belgium [26]. Moreover, the 8-day
composite MODIS product and agricultural statistics were used to generate sub-pixel crop-
type maps using random forest (RF) crop fractions in Heilongjiang Province [14]. However,
these unmixing-based approaches can only estimate the fractional existence of crop types
in mixed pixels, and cannot localize subpixels of certain crop types in mixed pixels to
improve the spatial resolution of derived crop maps. Some researchers directly obtained
the super-resolution (SR) map by SPM methods or interpolation methods to address the
mixed problem [27–29]. Atkinson [30] initially introduced SPM using spatial dependence
to retrieve the appropriate spatial location for soft classification. Subsequently, more SPM
methods have been proposed, i.e., each hybrid pixel is decomposed into several sub-pixels
according to the given scaling factor. For example, the SPM algorithm based on sub-pixel
spatial attraction models (SA-SMP) [31] and a simple pixel-swapping SPM method (PS-
SMP) [32] were researched for sub-pixel target mapping. In addition, the new sub-pixel
method based on radial basis function (RBF) interpolation was proposed for land SPM [33].
However, these SPM methods tend to be driven by other less relevant datasets, such as the
ImageNet dataset and CLIC dataset, or small image samples. Specifically, these studies
mainly focus on the exploration of methods, and the application is not comprehensive
enough. It is critical to develop an advanced machine-learning approach that is tailored
and designed to address the challenges in multi-temporal MODIS sub-pixel mapping with
strong fragmentary particle patterns.

Efficient sub-pixel crop mapping from MODIS images relies on efficient feature extrac-
tion approaches for addressing the crop signature ambiguity problem in realistic cultivated
land [1]. Spectral similarities among different crop types and dissimilarities within a
crop type pose critical challenges for distinguishing crop types [34]. In recent years, deep
learning (DL) has been widely used to learn discriminative features in the classification
of multispectral or hyperspectral images [7,35], including some SPM applications. For
instance, an efficient sub-pixel convolutional neural network (ESPCN) was proposed to
generate high-resolution maps [36], which learned an array of upscaling filters. It was
demonstrated that end-to-end neural network approaches can avoid complex feature engi-
neering, and automatically learning the robust and discriminative features from remote
sensing images [1,19,37–41].

However, these research studies were mainly conducted on high-resolution (e.g., GaoFen-2)
or medium-resolution (Landsat and Sentinel-2) images. MODIS-based methods for crop mapping
are mainly traditional statistical methods or machine learning methods [8,20–22,24,42–50], and
the use of DL methods is insufficiently studied [19]. Designing DL approaches for MODIS
SPM is especially important, not only because DL has demonstrated strong spectral feature
learning capability, but also because DL can efficiently capture the spatial correlation effect
in the image that is critical for SPM.

Exploring different vegetation indices (VIs) as classifier input for crop classification
is critical to evaluate and understand the importance of different input features [34,38].
With the development of satellite time series images, many studies have explored dif-
ferent VIs to monitor crop growing and produce crop-type maps [51,52]. Different VIs
show different crop phonological characters contained in multi-temporal remotely sensed
data, and provide valuable information on the seasonal development of crops [51,53].
Among many vegetation indices, the Normalized Vegetation Difference Index (NDVI)
is the most common for crop monitoring [19,21,22,51]. For example, ref. [34] selected
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high-confidence pixels in the cropland data layer (CDL) and corresponding 30-m 15-day
composited NDVI time series of different lengths as training samples to train the random
forest (RF) classification model. Moreover, the eight-day, 500 m MODIS NDVI products
were used to test the feasibility of crop unmixing in the U.S. Midwest [52]. In addition
to NDVI, the enhanced vegetation index (EVI), which uses blue, red, and near-infrared
reflectance from multi-temporal images, has proved more practical and less susceptible
than NDVI to biases resulting from cloud and haze contamination for monitoring crop
growth [39,43,45,47,54–56]. In addition to these vegetation indices, raw reflectance bands
are efficient features for crop mapping. Evaluating the importance of these VIs and re-
flectance bands in the MODIS SPM mask is an important task for knowing the roles of
different features in a DL-based MODIS SPM context.

This paper presents a spatial–temporal DL-based approach for crop SPM using MODIS
images. We used 250 m MODIS products and the 50 m resampling cropland data layer
(CDL) as input datasets and ground references, respectively. For a methods comparison, we
used half of the MODIS data in 2017 from Sherman County in Kansas, US, to train models
and applied these models to crop SPM for the other half dataset. Experiments on the data
in Thomas and Gray counties in 2017 and in Sherman, Thomas, and McPherson counties
in 2018 were conducted to validate the spatial and temporal generalization of different
models. We conducted these experiments on five major classes (i.e., corn, winter wheat,
sorghum, grass/pasture, fallow/idle cropland) in study areas. The contributions of this
paper are summarized as follows. (1) A MODIS SPM spatial–temporal depth-wise residual
network (ST-DRes) is designed to efficiently learn both spatial and temporal information
for enhancing the classification of sub-pixel images. (2) The proposed method is compared
with various classical SPM methods (PS-SPM, SA-SPM, RBF) and other state-of-the-art
(SOTA) methods (ESPCN, UNet, Swin Transformer, T-DRes (temporal only) and S-DRes
(spatial only)). These methods can be called SOTA methods in our research because few
of them have been used in crop SPM, while most applications use traditional or simple
machine learning methods [14,57,58]. (3) Model performance variations among different
data combinations of satellite-derived metrics and reflectance bands from MODIS images
for large-scale crop SPM were evaluated. (4) The spatial and temporal generalization
capabilities of different DL approaches are compared.

2. Materials
2.1. Study Areas

In this study, we selected four crop-dominant counties as our study areas in Kansas,
US: Sherman, Thomas, Gray, and McPherson, with areas of 2391 km2, 2784 km2, 2407 km2

and 2334 km2 (Figure 1). These study areas contain different main crops, and there are
certain distances (both longitude and latitude) that can reflect the influences of different
spatial complexities in the experiments [59]. We chose the five major crop classes: corn,
sorghum, winter wheat, fallow/idle cropland, and grass/pasture. Table 1 shows the area,
the number of pixels, and the proportion of each class in these areas in 2017. Other crop
types, such as soybeans, alfalfa, oats, etc., which account for a small proportion of these
two croplands, were not considered.
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Figure 1. Reference data in study areas of Sherman, Thomas, Gray, and McPherson in Kansas, US.

Table 1. Each class is expressed as an area (km2), the number of pixels, and the proportion in Sherman,
Thomas, Gray, and McPherson in 2017, respectively.

Statistics County Corn Sorghum Winter Wheat Fallow Grass

Pixel Count

Sherman 684,100 174,898 640,994 616,584 758,504
Thomas 566,438 175,689 544,659 491,250 1,119,019

McPherson 222,513 64,398 627,134 460 697,496
Gray 492,152 378,682 487,001 389,280 532,036

Area (km2)

Sherman 615.71 157.41 576.91 554.94 682.68
Thomas 509.81 158.13 490.21 442.14 1007.15

McPherson 200.27 57.96 564.44 0.41 627.77
Gray 442.95 340.83 438.32 350.36 478.85

Proportion

Sherman 22.51% 5.75% 21.09% 20.29% 24.96%
Thomas 36.18% 5.68% 18.31% 17.61% 15.88%

McPherson 8.58% 2.48% 24.19% 0.02% 26.90%
Gray 19.67% 15.14% 19.47% 15.56% 21.27%

2.2. Remote Sensing Data

We used 250 m MODIS surface reflectance products in the sinusoidal projection. Time
series of a collection of six data streams from Terra (MOD13Q1) satellite instruments for
the CONUS are downloaded from the Level-1 and Atmosphere Archive & Distribution
System Distributed Active Archive Center (LAADS-DAAC) in the period 1 January 2017 to
31 December 2017 for training and 1 January 2018 to 31 December 2018 for testing [8,19,60].
Each year has 23 images (days 1–363, at 16-day intervals). The MODIS images are re-
projected to the Albers conical equal area projection to match the label data. In addition,
the combinations of four optical bands (BRNM) including blue, red, near-infrared, and
mid-infrared, and two additional vegetation indices (NDVI and EVI) at each observation
date are used as the input variables for the classification models. Figure 2 shows the NDVI
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curves of different crops in Sherman County and Thomas County, in which 60 pixels were
selected for each crop as reference examples.
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(a) Sherman-2017 (b) Thomas-2017 (c) Sherman-2018 (d) Thomas-2018

Figure 2. MODIS NDVI time series. Different colored lines represent the NDVI curves of different
selected pixels in each subfigure. (a) NDVI time series of five crop classes at 60 pixels in Sherman
County in 2017; (b) NDVI time series of five crops at 60 pixels in Thomas County in 2017; (c) NDVI
time series of five crops at 60 pixels in Sherman County in 2018; (d) NDVI time series of five crops at 60
pixels in the Thomas County in 2018. Although these pixels were extracted from relatively pure pixels
in the study areas, the time series curves still demonstrate the strong growth pattern variabilities
in all crop types, especially in winter wheat. Moreover, the growth trends of different regions and
different years for the same crop also have inevitable differences. The corn and soybean, which are
both summer crops, have confusing phenological periods. These inner-class variabilities, inter-class
similarities, and spatial/temporal discrepancies impose big challenges on crop type separation and
spatial and temporal generalization capabilities of classifiers.

2.3. Cropland Layer Dataset

The cropland data layer (CDL) product is a georeferenced raster-formatted dataset
with the crop-specific land cover map at 30–56 m resolution since 2008, produced by the
United States Department of Agriculture (USDA) National Agricultural Statistics Service
in the Albers Equal Area Conic projection, which provides more than 100 land covers and
crop type categories. We download CDL products from the CropScape website portal
(https://nassgeodata.gmu.edu/CropScape/) used as the ground truth for SPM [12,52].
The classification accuracy of the major crop-specific land cover categories is generally 85%
to 95%.

Several research studies have used CDL as the crop type reference data for crop
classification [8,21,34,61]. For instance, Song et al. [41] used the CDL to compute the
average soybean and corn cultivation intensity from 2012 to 2016. Moreover, CDL maps for
Kansas available for 2006–2014 were used in early-season large-area mapping of winter

https://nassgeodata.gmu.edu/CropScape/
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crops [21]. In this article, we selected five crop classes while other crops and non-crop
covers were masked out from the label map [5].

3. Method and Experiments
3.1. Methodology

The MODIS multi-temporal image was denoted by X = {xi|i ∈ N}, where the ith
pixel is denoted by xi. Suppose a coarse pixel xi can be divided into r× r subpixels, with r
being the upscaling factor. Then, the coarse resolution MODIS image X corresponds with
a fine-resolution label map Y = {yj|j ∈ N × r2}, where yj is the label of subpixels. The
goal of crop SPM is to estimate Y given X, which can be achieved by solving a maximum a
posterior (MAP) problem.

Ŷ = max
Y

P(Y|X, Θ) (1)

where P(Y|X, Θ) is the posterior probability of Y given X, and Θ is the model parameters.
In this paper, P(Y|X, Θ) is implemented by the proposed ST-DRes model, which can

effectively extract the discriminative spatial–temporal information from MODIS images
by combining the advantages of some advanced neural network architectures, i.e., full
convolutional network (FCN) [62], MobileNet [63], and ResNet [64].

P(Y|X, Θ) = So f tMax(Upsample(Conv3×3(SpatRes(Conv1×1

(TempRes(Conv1×1(X)))))
(2)

where SpatRes and TempRes are implemented respectively by spatial and temporal residual
modules, ConvM×M is the convolution layer with kernel size being M. The Upsample
denotes a layer with spatial interpolation operation to upscale from the size of X to the size
of Y. The So f tmax layer outputs soft class labels, which is also the posterior probability
of Y.

The overall architecture of ST-DRes is expressed as shown in the top section of Figure 3,
which is framed in a green dashed box. The red dotted box of Figure 3 shows SpatRes and
TempRes blocks using depth-wise convolution and point-wise convolution respectively,
so that the number of parameters in the network is greatly reduced and the network is
more compact.

The modules SpatRes and TempRes are used to learn efficient spatial–temporal features
in X, based on which the Upsample (pixelshuffle) layer is added to obtain high-resolution
label maps. There are two options available in the Upsample layer, i.e., spatial interpolation
layer and pixelshuffle layer, both of which can improve the feature resolution.

Figure 3. The framework of the ST-DRes model. As shown in the figure, the framework involves
three parts. The top section (in the green dashed box) is the overall architecture of ST-DRes, while the
red dashed box shows SpatRes and TempRes blocks using depth-wise convolution and point-wise
convolution, respectively. The black dashed box gives the full names of some layers, which are
denoted by acronyms in the figure.
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3.2. Experiment Settings

Several classical SPM methods, i.e., PS-SPM, SA-SPM, and RBF algorithms, and several
SOTA DL approaches, i.e., ESPCN [36], UNet [65], and Swin Transformer [66] models were
adopted to compare with the proposed method. Since UNet and Swin Transformer methods
are not originally designed for SPM, to enable comparison with our approach, we improve
the two methods by adding an upsampling layer with the bilinear operation before the
softmax layer. ESPCN mainly consists of convolution layers as the backbone unit. Moreover,
the UNet structure contains four basic blocks, i.e., four compression (encoding) parts and
four expansion (decoding) parts. Swin Transformer uses self-attention-based architecture,
which has an excellent performance in many mainstream image processing tasks. In
addition, variants of the proposed model, spatial DRes (S-DRes), and temporal DRes (T-
DRes) are compared to do ablation studies of the proposed approach to demonstrate the
improvement and benefits of using both spatial and temporal modules.

The learning rate is set to 0.0001 and the Adam optimizer is used in all experiments.
The model trains a total of 1000 epochs. The multi-temporal MODIS image is divided
into small multi-temporal blocks of size 64 by 64 for training and testing. Moreover,
experiments are carried out on the workstation with an NVIDIA GeForce RTX 2080 Ti GPU
in the PyTorch toolbox.

3.3. Model Validation

For model comparison experiments, we focused on Sherman County in 2017, in which
50% of the data is used for training and the rest for testing. We compute the accuracy and
F1 score of each class, overall accuracy (OA), mean intersection over union (mIoU) and
Kappa coefficient of the test set to evaluate the performance of all classifiers.

In the other three experiments, which explore the effects of different upsampling
layers, different vegetation indices as input data, and different combinations of spatial and
temporal modules of the model for SPM, we calculate not only the test accuracy but also
the prediction accuracy in using all data of Sherman County.

For the model generalization comparison experiments, we fix 90% of the Sherman
County data in 2017 as training samples, the remaining 10% as validation samples, and the
transfer data as the testing samples. For example, the Thomas data in 2017 were used as
the testing data set in the spatial generalization experiment, and the Sherman data in 2018
were used as the testing data set in the temporal generalization experiment. Because OA
can similarly reflect the experimental results about the Kappa coefficient, we do not make
redundant evaluations here.

4. Results
4.1. Methods Comparison

The results and predicted sub-pixel maps of the Sherman in 2017 achieved by different
methods are demonstrated in Table 2 and Figure 4, respectively. We convert the SPM results
into the RGB color display, which is the same as the CDL image in order to visualize the
prediction more intuitively. Specifically, the proposed ST-DRes model has the highest OA
(88.94%) among all traditional SPM methods and different backbone-based DL models. The
mIoU (0.8639) is much higher than other classifiers (PS-SMP: 0.2765, RBF: 0.2714, SA-SMP:
0.2957, ESPCN: 0.7292, UNet: 0.7701, Swin Transformer: 0.8369). Figure 4 shows the whole
SPM results and a small part of the maps (320× 320) for more detailed analysis. The
ST-DRes method achieves good classification results, while there are many misclassification
pixels in traditional SPM methods, and ESPCN and UNet networks produce excessively
smooth maps.



Remote Sens. 2022, 14, 5605 8 of 18

Table 2. The accuracy, F1 score of each class, OA, mIoU, and Kappa coefficients of the test sets of
different methods (the highest accuracy in each column is in bold).

Method
Corn Sorghum Winter Wheat Fallow Grass

OA mIoU Kappa
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

PS-SMP 0.6052 0.4828 0.1762 0.0995 0.3024 0.3765 0.3925 0.4066 0.2348 0.2934 0.3650 0.2765 0.3362
RBF 0.2676 0.3267 0.0310 0.0287 0.5368 0.3876 0.4275 0.4547 0.3753 0.4309 0.3766 0.2714 0.3401

SA-SMP 0.6576 0.5248 0.1670 0.0943 0.3194 0.3976 0.4359 0.4513 0.2450 0.3062 0.3924 0.2957 0.3649
ESPCN 0.8315 0.7759 0.3726 0.4413 0.7821 0.7727 0.7483 0.7657 0.8467 0.8625 0.7827 0.7292 0.7588
UNet 0.8273 0.8042 0.5458 0.5884 0.8191 0.7914 0.7692 0.7782 0.8598 0.8820 0.8070 0.7701 0.7942

Swin Transformer 0.9045 0.8660 0.5776 0.6775 0.8543 0.8552 0.8531 0.8498 0.9139 0.9231 0.8680 0.8369 0.8443
ST-DRes 0.9185 0.8867 0.6405 0.7357 0.8946 0.8802 0.8659 0.8744 0.9267 0.9346 0.8894 0.8639 0.8684

(a) PS-SPM (b) RBF (c) SA-SMP (d) ESPCN

(e) UNet (f) Swin Transformer (g) ST-DRes (h) Label

(i) PS-SPM (j) RBF (k) SA-SMP (l) ESPCN

(m) UNet (n) Swin Transformer (o) ST-DRes (p) Label

Figure 4. Predicted sub-pixel maps of different methods in Sherman Country in 2017 achieved by
different methods. (a–g) show predictions for the entire Sherman County by different methods
and (h) is the label map, (i–o) show SPM results for a small example area in Sherman County, and
(p) is the corresponding label. Obviously, there are many misclassification pixels in the traditional
SPM methods, and ESPCN and UNet networks produce excessively smooth maps. Moreover, the
ST-DRes method achieves a good classification result, while Swin Transformer also shows a good
result, inferior to ST-DRes only in some details and small classes, such as sorghum.
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4.2. Upsampling Methods

This section focuses on validating the effectiveness of different upsample approaches,
i.e., the pixelshuffle layer, and different spatial interpolation layers (architectures in Figure 5).
We set the upscaling scale r as 5 in all experiments. Four interpolation methods lead to very
different SPM performances. Then, the final softmax layer calculates the likelihood of each
class. In Table 3, the pixelshuffle method has the highest test accuracy (87.84%) among all
upsampling methods. As can be observed from Figure 6, the nearest and area upsampling
layers show the zigzag SPM maps, while bilinear, bicubic, and pixelshuffle layers display
more fine-grained parcels and boundary details. In particular, pixelshuffle is closer to the
ground truth on the fragmentary and small crop categories.

Figure 5. The optional upsampling architectures at the end of the network.

(a) nearest 81.08% (b) area 81.45% (c) bilinear 86.83%

(d) bicubic 86.44% (e) pixelshuffle 87.84% (f) 50 m LABEL

Figure 6. The subfigures (a–e) represent the sub-pixel mapping of five different upsampling methods
(nearest, area, bilinear, bicubic and pixelshuffle) implemented on a small portion of the Sherman
dataset, including the test accuracy they achieved. And (f) is the corresponding label. It shows that
the pixelshuffle layer is more capable of generating sub-pixel maps even in fragmentary parcels and
limited crop categories.
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Table 3. The train accuracy, train mIoU, test accuracy, test mIoU, predict accuracy, and predict mIoU
of the dataset from four kinds of spatial interpolation methods and pixelshuffle layer at the end of
the network (the highest accuracy in each column is in bold format.

Upsample Train Acc Train mIoU Test Acc Test mIoU Predict Acc Predict mIoU

nearest 0.8411 0.8295 0.8108 0.7726 0.7999 0.7550
area 0.8421 0.8310 0.8145 0.7772 0.8033 0.7570

bilinear 0.9323 0.9231 0.8683 0.8345 0.8521 0.8122
bicubic 0.9272 0.9184 0.8644 0.8319 0.8459 0.8062

pixelshuffle 0.9566 0.9508 0.8784 0.8498 0.8671 0.8337

4.3. Evaluation of Spatial and Temporal Modules

We compare the proposed approach ST-DRes with two variants S-DRes and T-DRes by
just using spatial and temporal information. As shown in Table 4, the ST-DRes architecture
produces improved results compared to S-DRes and T-DRes, with a significantly higher
test accuracy at 88.94%, with the best S-DRes at 87.79%, and the best T-DRes at 82.70%.
It demonstrates that using both temporal and spatial data in MODIS can lead to more
desirable results. In Figure 7, ST-DRes outperforms both spatial-only and temporal-only
models, especially in the highlighted red box area in Figure 7.

Table 4. Experimental results of the test dataset from the different temporal channels (N1), the number
of temporal blocks (B1), spatial channel (N2), and the number of temporal blocks (B2) from the model
architecture (Figure 3). T-DRes indicates that the model uses only temporal blocks. S-DRes indicates
that the model uses only spatial blocks. ST-DRes indicates that the model uses both temporal and
spatial blocks.

Method S Channel S Block Train Acc Train mIoU Test Acc Test mIoU

S-DRes 512 1 0.8876 0.8748 0.8471 0.8153
S-DRes 512 2 0.9287 0.9191 0.8642 0.8336
S-DRes 512 3 0.9440 0.9357 0.8667 0.8361
S-DRes 512 4 0.9531 0.9464 0.8670 0.8382
S-DRes 512 5 0.9558 0.9497 0.8663 0.8352
S-DRes 512 6 0.9574 0.9513 0.8630 0.8326

S-DRes 64 4 0.8725 0.8593 0.8327 0.7954
S-DRes 128 4 0.8978 0.8858 0.8420 0.8080
S-DRes 256 4 0.9271 0.9165 0.8565 0.8234
S-DRes 512 4 0.9531 0.9464 0.8670 0.8382
S-DRes 1024 4 0.9765 0.9734 0.8779 0.8494

Method T Channel T Block Train Acc Train mIoU Test Acc Test mIoU

T-DRes 512 1 0.7819 0.7553 0.7640 0.7217
T-DRes 512 2 0.8319 0.8156 0.7852 0.7479
T-DRes 512 3 0.8858 0.8702 0.8084 0.7723
T-DRes 512 4 0.8997 0.8857 0.8154 0.7804
T-DRes 512 5 0.9229 0.9103 0.8263 0.7917
T-DRes 512 6 0.9129 0.8999 0.8196 0.7860

T-DRes 64 5 0.8307 0.8172 0.7808 0.7404
T-DRes 128 5 0.8843 0.8701 0.8013 0.7659
T-DRes 256 5 0.9325 0.9205 0.8270 0.7938
T-DRes 512 5 0.9229 0.9103 0.8263 0.7917
T-DRes 1024 5 0.7642 0.7428 0.7550 0.7092

Method S Channel S Block T Channel T Block Test Acc Test mIoU

ST-DRes 1024 4 256 5 0.8894 0.8639
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(a) S-DRes-1 (b) S-DRes-2 (c) S-DRes-3 (d) S-DRes-4

(e) T-DRes-1 (f) T-DRes-2 (g) T-DRes-3 (h) T-DRes-4

(i) ST-DRes-1 (j) ST-DRes-2 (k) ST-DRes-3 (l) ST-DRes-4

(m) LABEL-1 (n) LABEL-2 (o) LABEL-3 (p) LABEL-4

Figure 7. Four small sub-pixel example maps (64× 64) in the Sherman dataset are displayed by
using different temporal and spatial information. (a,e,i) represent the results generated by the
three methods (S-DRes,T-DRes, ST-DRes) on example map-1, while (m) is the corresponding label.
Similarly, (b,f,j) represent the results generated by the three methods on example map-2, while (n) is
the corresponding label; (c,g,k) represent the results generated by the three methods on example map-
3, while (o) is the corresponding label; (d,h,l) represent the results generated by the three methods
on example map-4, while (p) is the corresponding label. It shows that T-DRes is more capable of
generating sub-pixel maps that are closest to the ground truth than S-DRes architecture. ST-DRes
outperformed the other two models, which is especially noticeable in the highlighted red box area.

4.4. Vegetation Index Selection

We evaluated the importance of different combinations of satellite-derived metrics and
reflectance bands for crop SPM. We compare the use of NDVI, EVI, and BRNM as inputs for
the proposed methods (results in Table 5). The results show that EVI and BRNM perform
similarly to NDVI, while the accuracy of BRNM is slightly better. All test accuracies can
achieve 0.87∼0.88, demonstrating the proposed DL approach can extract discriminative
features from all input data combinations.
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Table 5. The results of different satellite-derived metrics and combinations of reflectance bands for
crops SPM.

Input Train Acc Train mIoU Test Acc Test mIoU Predict Acc Predict mIoU

NDVI 0.9840 0.9817 0.8893 0.8638 0.8790 0.8524
EVI 0.9753 0.9808 0.8744 0.8552 0.8630 0.8436

BRNM 0.9885 0.9826 0.8842 0.8582 0.8806 0.8522

4.5. Generalizability Analysis

The Thomas-2017 and Gray-2017 sections in Table 6 show the accuracy, F1 score of
each class, OA, and mean mIoU of the test sets of different methods in spatial general-
ization experiments across different regions, while the Sherman-2018, Thomas-2018, and
McPherson-2018 sections in Table 6 show corresponding results in temporal generalization
experiments across different years.

Table 6. The accuracy, F1 score of each class, mIoU, OA, and mean mIoU of the test sets of different
methods (the highest accuracy in each column is in bold). The table is divided into five sections.
The “Thomas-2017” and “Gray-2017” sections represent the results of training in Sherman County
in 2017 and testing in Thomas County and Gray County in 2017, respectively. The “Sherman-2018”,
“Thomas-2018”, and “McPherson-2018” sections represent the results of training in Sherman County
in 2017 and testing in Sherman County, Thomas County, and McPherson County in 2018, respectively.

Thomas-2017

Method
Corn Sorghum Winter Wheat Fallow Grass

OA mIoUAcc F1 Acc F1 Acc F1 Acc F1 Acc F1

ESPCN 0.7741 0.7594 0.2841 0.3194 0.6706 0.6589 0.6001 0.6498 0.7453 0.6952 0.6924 0.6165
UNet 0.6310 0.7112 0.4338 0.3767 0.6794 0.6401 0.7532 0.6606 0.7195 0.7119 0.6669 0.6201

Swin Transformer 0.7561 0.7608 0.3663 0.4015 0.6662 0.6490 0.6502 0.6607 0.7460 0.7179 0.6992 0.6380
ST-DRes 0.7831 0.7727 0.3286 0.3986 0.6597 0.6577 0.6569 0.6640 0.7588 0.7251 0.7096 0.6436

Gray-2017

Method
Corn Sorghum Winter Wheat Fallow Grass

OA mIoUAcc F1 Acc F1 Acc F1 Acc F1 Acc F1

ESPCN 0.5014 0.4166 0.1593 0.2259 0.5859 0.5611 0.5055 0.4926 0.6461 0.6050 0.5132 0.4602
UNet 0.4752 0.3934 0.2111 0.2886 0.5686 0.5411 0.5703 0.4922 0.6179 0.5939 0.4949 0.4618

Swin Transformer 0.5828 0.4795 0.2211 0.2955 0.5684 0.5387 0.5422 0.4830 0.5707 0.6188 0.5251 0.4831
ST-DRes 0.5462 0.4856 0.2329 0.3177 0.6050 0.5479 0.5396 0.4990 0.6173 0.6363 0.5418 0.4973

Sherman-2018

Method
Corn Sorghum Winter Wheat Fallow Grass

OA mIoUAcc F1 Acc F1 Acc F1 Acc F1 Acc F1

ESPCN 0.6743 0.6597 0.0399 0.0643 0.5045 0.6264 0.6891 0.7139 0.8566 0.6530 0.6589 0.5435
UNet 0.6783 0.6926 0.2997 0.2928 0.7052 0.6951 0.7879 0.6766 0.6379 0.6875 0.6831 0.6089

Swin Transformer 0.6382 0.6669 0.0700 0.1133 0.6711 0.5730 0.8051 0.6176 0.3826 0.4978 0.6001 0.4937
ST-DRes 0.6685 0.6891 0.0518 0.0802 0.6621 0.6962 0.6564 0.6425 0.8393 0.7182 0.6862 0.5653

Thomas-2018

Method
Corn Sorghum Winter Wheat Fallow Grass

OA mIoUAcc F1 Acc F1 Acc F1 Acc F1 Acc F1

ESPCN 0.7857 0.7116 0.0377 0.0534 0.4248 0.5425 0.5264 0.5664 0.6813 0.5438 0.6131 0.4835
UNet 0.5608 0.6473 0.3409 0.2987 0.6318 0.6058 0.7388 0.5422 0.4359 0.4438 0.5664 0.5076

Swin Transformer 0.7617 0.7158 0.0262 0.0446 0.4640 0.5127 0.7898 0.4960 0.2017 0.3101 0.5686 0.4159
ST-DRes 0.7561 0.7214 0.0306 0.0498 0.5583 0.6221 0.4690 0.5063 0.7271 0.5866 0.6335 0.4972
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Table 6. Cont.

McPherson-2018

Method
Corn Sorghum Winter Wheat Fallow Grass

OA mIoUAcc F1 Acc F1 Acc F1 Acc F1 Acc F1

ESPCN 0.3833 0.3389 0.2338 0.2186 0.1765 0.2802 0.1752 0.0006 0.6803 0.6172 0.4631 0.2911
UNet 0.4248 0.2942 0.0000 0.0000 0.5355 0.6220 0.1910 0.0007 0.6415 0.6372 0.5610 0.3108

Swin Transformer 0.0937 0.1604 0.4518 0.3625 0.8594 0.7004 0.0125 0.0040 0.4192 0.4688 0.6271 0.3392
ST-DRes 0.1473 0.2323 0.3217 0.3364 0.8341 0.7409 0.0111 0.0055 0.6071 0.5901 0.6872 0.3810

4.5.1. Spatial Generalizability

Overall, the spatial generalization results of the proposed method ST-DRes are better
than the other methods, achieving the best OA (0.7096) and the best mIoU (0.6436) in nearby
Thomas County, and the best OA of 0.5418 and the best mIoU (0.4973) in Gray County,
when the MODIS NDVI data of Sherman County of the same year are used as training
data (from the Table 6 “Thomas-2017” and “Gray-2017”). The results also reflect that the
more distant the study area is predicted by the trained model, the worse the generalization
ability of the model, and other methods have shown similar trends, which are illustrated in
both the OA and CAs.

To compare and analyze the predicted SPM results of different models, intuitively, we
select a small part of each transfer area to visualize, as shown in Figure 8. The selected
small regions are mainly concentrated in the inner area of these counties, and the size is
all 320× 320, which includes the main crops we choose as far as possible. We can see that
the proposed ST-DRes has better performances in details and boundaries from Figure 8,
which is the same as the accuracy results in Table 6. The SPM maps on ESPCN and UNet
show overly smooth parcels and many misclassified classes, especially in the predicted
map of ESPCN.

4.5.2. Temporal Generalizability

The bottom three parts of Table 6 and the right three columns of Figure 8 show the
accuracy results and SPM maps for the three testing sub-regions in 2018 (Sherman, Thomas,
and McPherson, respectively). The ST-DRes model also shows the optimal performance
(OA is 0.6862, 0.6335, and 0.6872 in three regions, respectively). The “Thomas-2018” part
of Table 6 shows that the better accuracies of UNet for small classes, such as sorghum
(ESPCN: 0.0377; UNet:0.3409; Swin Transformer: 0.0262; ST-DRes: 0.0306), but it can be
seen from Figure 8 that there are most spatial misclassifications on corn and soybeans, and
the relatively high accuracy of sorghum is also due to the fact that UNet assigns other
classes into the sorghum class. Thus, class accuracies such as this are not representative.
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Figure 8. SPM results of small examples (320× 320) in different spatial and temporal generalization
experiments of different methods are displayed. The rows of “(a) Thomas-2017” and “(b) Gray-2017”
represent the results of training in Sherman County in 2017 and testing in Thomas County and
Gray County in 2017, respectively. The rows of “(c) Sherman-2018”, “(d) Thomas-2018”, and “(e)
McPherson-2018” represent the results of training in Sherman County in 2017 and testing in Sherman
County, Thomas Count, and McPherson County in 2018, respectively.
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5. Discussion
5.1. SPM Methods Analysis

According to the results in Table 2 and Figure 4, the traditional SPM methods (PA-SPM,
RBF and SA-SPM) are not effective in the application of large-scale crop SPM. Most of
them assign soft classes for sub-pixels within the pixel based on the polygons or class
proportions [31–33]. These methods only consider spatial information, and it is difficult
for SPM in complex crop research because of the differences between inner-classes and
the similarities of inter-classes. Moreover, these traditional SPM methods can be defined
as unsupervised mapping. They only use spatial correlation to obtain soft labels, while
DL models (ESPCN, UNet, Swin Transformer, and ST-DRes) need training data to train
the models so that DL models can understand the data more efficiently. It is unfair to
compare the simple SPM algorithms with DL models briefly. DL models are more effective
for large-area crop SPMs with a small number of training samples, and they can learn more
implicit features rather than the shallow features in the data. Although the recent Swin
Transformer model serves as a general-purpose backbone for computer vision, it does not
seem to be the best for the crop time series sub-pixel classification experiment.

5.2. Time Series Analysis

In order to better understand the changes in the characteristics of crop growth, we
analyzed the time series curves. Figure 2 shows that although these points are extracted
from relatively purer pixels in the study areas, the time series curves still demonstrate crop
signature variabilities, especially for winter wheat. Corn and soybean have a confusing
phenological period [15,34,67], which are both harvested in October. These inner-class vari-
abilities, inter-class similarities, and spatial/temporal discrepancies impose big challenges
on crop type separation and the spatial and temporal generalization capability of classifiers.

In addition, the results in Table 5 show that different data inputs have slight differences
in the experimental results. The purpose of evaluating input features is not only to explore
the best feature for crop SPM applications but also to provide a reference for feature
selection for crop SPM using MODIS time series images.

5.3. Uncertainty of Model Generalization Ability

Although the generalization experiments in different study areas and different years
show good potential for identifying the crop sub-pixel classes in Table 6 and Figure 8,
there is still much misclassification due to the differences in crop phenology and crop
calendar [34]. The temporal transfer experiments, which are different from the spatial
transfer experiments, show more uncertainties. For example, the generalization result (OA
of ST-DRes is 0.5418) in Gray County, which is further from the training Sherman County,
is worse than the generalization result (OA of ST-DRes is 0.7096) of neighboring Thomas
County, which is consistent with the larger spatial complexity in more distant areas [59].
However, in the temporal transfer experiments between the years, there is more uncertainty.
Therefore, although the ST-DRes model shows great potential in SPM application, the
generalization ability is still limited. The SPM results depend not only on the solution of the
image but also on the temporal and spatial complexity of regions [59]. We cannot directly
transfer the general model to other diverse data, and it needs to refer to more auxiliary data
and consider the different characteristics of agricultural regions, such as climate conditions
and crop planting heterogeneity.

6. Conclusions

In this study, MODIS time series data were used to identify sub-pixel crop types using
a new DL SPM model, i.e., ST-DRes. Different numerical measures (i.e., class accuracy, F1
score, OA, mIoU, and Kappa coefficient) showed that the proposed ST-DRes method can
outperform the traditional SPM algorithms and SOTA DL approaches, demonstrating that
the proposed architecture can efficiently learn spatial–temporal discriminative information
for enhancing crop SPM from MODIS images. Specifically, we achieved the following
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conclusions. First, the ST-DRes method achieved the best performance for the crop SPM
application, even when the training samples are small. Second, compared with different
spatial interpolation upsampling layers, using the pixelshuffle layer can better improve
feature resolution. Third, different combinations of reflection bands and VIs as model
inputs achieved similar crop SPM performances, demonstrating that the proposed model
is relatively insensitive to feature inputs and has excellent feature learning abilities from
different input data. Fourth, the proposed method showed good generalization than other
methods, but there were still some uncertainties in transfer experiments. These results
indicate that the proposed method can realize crop SPM well in practical applications, and
can provide effective decision support for yield prediction and agricultural management
using the remote sensing images of coarse resolution in the future. Our future work will
concentrate on investigating the efficient techniques of SPM for transfer learning and the
application of other SOTA DL methods for crop mapping.

Author Contributions: Conceptualization, Y.W. and L.X.; data collection and data processing, Y.W.
and R.Z.; methodology, Y.F.; formal analysis, Y.F.; experiments, Y.W. and W.Z.; writing—original draft
preparation, Y.W.; writing—review and editing, Y.W. and L.X.; visualization, Y.W.; supervision, J.P.;
All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the National Natural Science Foundation of China under Grant
42074004 and the Ministry of Natural Resources of the People’s Republic of China under Grant
0733-20180876/1.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors would like to thank the reviewers and associate editor for their
valuable comments and suggestions to improve the quality of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, D.; Pan, Y.; Zhang, J.; Hu, T.; Zhao, J.; Li, N.; Chen, Q. A generalized approach based on convolutional neural networks

for large area cropland mapping at very high resolution. Remote Sens. Environ. 2020, 247, 111912. [CrossRef]
2. Arvor, D.; Jonathan, M.; Meirelles, M.S.P.; Dubreuil, V.; Durieux, L. Classification of MODIS EVI time series for crop mapping in

the state of Mato Grosso, Brazil. Int. J. Remote Sens. 2011, 32, 7847–7871. [CrossRef]
3. Kussul, N.; Skakun, S.; Shelestov, A.; Lavreniuk, M.; Yailymov, B.; Kussul, O. Regional scale crop mapping using multi-temporal

satellite imagery. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 40, 45. [CrossRef]
4. Immitzer, M.; Vuolo, F.; Atzberger, C. First experience with Sentinel-2 data for crop and tree species classifications in central

Europe. Remote Sens. 2016, 8, 166. [CrossRef]
5. Konduri, V.S.; Kumar, J.; Hargrove, W.W.; Hoffman, F.M.; Ganguly, A.R. Mapping crops within the growing season across the

United States. Remote Sens. Environ. 2020, 251, 112048. [CrossRef]
6. Waldner, F.; Fritz, S.; Di Gregorio, A.; Defourny, P. Mapping priorities to focus cropland mapping activities: Fitness assessment of

existing global, regional and national cropland maps. Remote Sens. 2015, 7, 7959–7986. [CrossRef]
7. Li, J.; Shen, Y.; Yang, C. An Adversarial Generative Network for Crop Classification from Remote Sensing Timeseries Images.

Remote Sens. 2021, 13, 65. [CrossRef]
8. Yang, Y.; Tao, B.; Ren, W.; Zourarakis, D.P.; Masri, B.E.; Sun, Z.; Tian, Q. An improved approach considering intraclass variability

for mapping winter wheat using multitemporal MODIS EVI images. Remote Sens. 2019, 11, 1191. [CrossRef]
9. Lobell, D.B. The use of satellite data for crop yield gap analysis. Field Crop. Res. 2013, 143, 56–64. [CrossRef]
10. Hamidi, M.; Safari, A.; Homayouni, S. An auto-encoder based classifier for crop mapping from multitemporal multispectral

imagery. Int. J. Remote Sens. 2021, 42, 986–1016. [CrossRef]
11. Whelen, T.; Siqueira, P. Use of time-series L-band UAVSAR data for the classification of agricultural fields in the San Joaquin

Valley. Remote Sens. Environ. 2017, 193, 216–224. [CrossRef]
12. Xu, J.; Zhu, Y.; Zhong, R.; Lin, Z.; Xu, J.; Jiang, H.; Huang, J.; Li, H.; Lin, T. DeepCropMapping: A multi-temporal deep learning

approach with improved spatial generalizability for dynamic corn and soybean mapping. Remote Sens. Environ. 2020, 247, 111946.
[CrossRef]

13. Azzari, G.; Lobell, D. Landsat-based classification in the cloud: An opportunity for a paradigm shift in land cover monitoring.
Remote Sens. Environ. 2017, 202, 64–74. [CrossRef]

14. Hu, Q.; Yin, H.; Friedl, M.A.; You, L.; Li, Z.; Tang, H.; Wu, W. Integrating coarse-resolution images and agricultural statistics to
generate sub-pixel crop type maps and reconciled area estimates. Remote Sens. Environ. 2021, 258, 112365. [CrossRef]

http://doi.org/10.1016/j.rse.2020.111912
http://dx.doi.org/10.1080/01431161.2010.531783
http://dx.doi.org/10.5194/isprsarchives-XL-7-W3-45-2015
http://dx.doi.org/10.3390/rs8030166
http://dx.doi.org/10.1016/j.rse.2020.112048
http://dx.doi.org/10.3390/rs70607959
http://dx.doi.org/10.3390/rs13010065
http://dx.doi.org/10.3390/rs11101191
http://dx.doi.org/10.1016/j.fcr.2012.08.008
http://dx.doi.org/10.1080/01431161.2020.1820619
http://dx.doi.org/10.1016/j.rse.2017.03.014
http://dx.doi.org/10.1016/j.rse.2020.111946
http://dx.doi.org/10.1016/j.rse.2017.05.025
http://dx.doi.org/10.1016/j.rse.2021.112365


Remote Sens. 2022, 14, 5605 17 of 18

15. Zhong, L.; Gong, P.; Biging, G.S. Efficient corn and soybean mapping with temporal extendability: A multi-year experiment
using Landsat imagery. Remote Sens. Environ. 2014, 140, 1–13. [CrossRef]

16. Wardlow, B.D.; Egbert, S.L. Large-area crop mapping using time-series MODIS 250 m NDVI data: An assessment for the U.S.
Central Great Plains. Remote Sens. Environ. 2008, 112, 1096–1116. [CrossRef]

17. Ozdogan, M. The spatial distribution of crop types from MODIS data: Temporal unmixing using Independent Component
Analysis. Remote Sens. Environ. 2010, 114, 1190–1204. [CrossRef]

18. Xiao, X.; Boles, S.; Liu, J.; Zhuang, D.; Frolking, S.; Li, C.; Salas, W.; Moore III, B. Mapping paddy rice agriculture in southern
China using multi-temporal MODIS images. Remote Sens. Environ. 2005, 95, 480–492. [CrossRef]

19. Zhong, L.; Hu, L.; Zhou, H.; Tao, X. Deep learning based winter wheat mapping using statistical data as ground references in
Kansas and northern Texas, US. Remote Sens. Environ. 2019, 233, 111411. [CrossRef]

20. Li, L.; Friedl, M.A.; Xin, Q.; Gray, J.; Pan, Y.; Frolking, S. Mapping crop cycles in China using MODIS-EVI time series. Remote Sens.
2014, 6, 2473–2493. [CrossRef]

21. Skakun, S.; Franch, B.; Vermote, E.; Roger, J.C.; Becker-Reshef, I.; Justice, C.; Kussul, N. Early season large-area winter crop
mapping using MODIS NDVI data, growing degree days information and a Gaussian mixture model. Remote Sens. Environ. 2017,
195, 244–258. [CrossRef]

22. Massey, R.; Sankey, T.T.; Congalton, R.G.; Yadav, K.; Thenkabail, P.S.; Ozdogan, M.; Meador, A.J.S. MODIS phenology-derived,
multi-year distribution of conterminous US crop types. Remote Sens. Environ. 2017, 198, 490–503. [CrossRef]

23. Qiong, H.; Yaxiong, M.; Baodong, X.; Qian, S.; Huajun, T.; Wenbin, W. Estimating Sub-Pixel Soybean Fraction from Time-Series
MODIS Data Using an Optimized Geographically Weighted Regression Model. Remote Sens. 2018, 10, 491.

24. Zhong, L.; Yu, L.; Li, X.; Hu, L.; Gong, P. Rapid corn and soybean mapping in US Corn Belt and neighboring areas. Sci. Rep. 2016,
6, 1–14. [CrossRef] [PubMed]

25. Shao, Y.; Lunetta, R.S. Comparison of sub-pixel classification approaches for crop-specific mapping. In Proceedings of the 2009
17th International Conference on Geoinformatics, Fairfax, VA, USA, 12–14 August 2009; pp. 1–4.

26. Verbeiren, S.; Eerens, H.; Piccard, I.; Bauwens, I.; Van Orshoven, J. Sub-pixel classification of SPOT-VEGETATION time series for
the assessment of regional crop areas in Belgium. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 486–497. [CrossRef]

27. Aplin, P.; Atkinson, P.M. Sub-pixel land cover mapping for per-field classification. Int. J. Remote Sens. 2001, 22, 2853–2858.
[CrossRef]

28. Chen, Y.; Ge, Y.; Chen, Y.; Jin, Y.; An, R. Subpixel land cover mapping using multiscale spatial dependence. IEEE Trans. Geosci.
Remote Sens. 2018, 56, 5097–5106. [CrossRef]

29. Wang, Q.; Zhang, C.; Atkinson, P.M. Sub-pixel mapping with point constraints. Remote Sens. Environ. 2020, 244, 111817.
[CrossRef]

30. Atkinson, P.M. Mapping sub-pixel boundaries from remotely sensed images. In Innovations in GIS; CRC Press: Boca Raton, FL,
USA, 1997; pp. 184–202.

31. Mertens, K.C.; De Baets, B.; Verbeke, L.P.; De Wulf, R.R. A sub-pixel mapping algorithm based on sub-pixel/pixel spatial
attraction models. Int. J. Remote Sens. 2006, 27, 3293–3310. [CrossRef]

32. Atkinson, P.M. Sub-pixel target mapping from soft-classified, remotely sensed imagery. Photogramm. Eng. Remote Sens. 2005,
71, 839–846. [CrossRef]

33. Wang, Q.; Shi, W.; Atkinson, P.M. Sub-pixel mapping of remote sensing images based on radial basis function interpolation.
ISPRS J. Photogramm. Remote Sens. 2014, 92, 1–15. [CrossRef]

34. Pengyu, H.; Liping, D.; Chen, Z.; Liying, G. Transfer learning for crop classification with Cropland Data Layer data (CDL) as
training samples. Sci. Total Environ. 2020, 733, 138869.

35. Ji, S.; Zhang, C.; Xu, A.; Shi, Y.; Duan, Y. 3D convolutional neural networks for crop classification with multi-temporal remote
sensing images. Remote Sens. 2018, 10, 75. [CrossRef]

36. Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-time single image and video
super-resolution using an efficient sub-pixel convolutional neural network. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1874–1883.

37. Li, Z.; Chen, G.; Zhang, T. A CNN-Transformer Hybrid Approach for Crop Classification Using Multitemporal Multisensor
Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 847–858. [CrossRef]

38. Wang, S.; Azzari, G.; Lobell, D.B. Crop type mapping without field-level labels: Random forest transfer and unsupervised
clustering techniques. Remote Sens. Environ. 2019, 222, 303–317. [CrossRef]

39. Zhong, L.; Hu, L.; Zhou, H. Deep learning based multi-temporal crop classification. Remote Sens. Environ. 2018, 221, 430–443.
[CrossRef]

40. Ozgur Turkoglu, M.; D’Aronco, S.; Perich, G.; Liebisch, F.; Streit, C.; Schindler, K.; Wegner, J.D. Crop mapping from image time
series: Deep learning with multi-scale label hierarchies. Remote Sens. Environ. 2021, 264, 112603. [CrossRef]

41. Song, X.P.; Huang, W.; Hansen, M.C.; Potapov, P. An evaluation of Landsat, Sentinel-2, Sentinel-1 and MODIS data for crop type
mapping. Sci. Remote Sens. 2021, 3, 100018. [CrossRef]

42. Hao, P.; Zhan, Y.; Wang, L.; Niu, Z.; Shakir, M. Feature selection of time series MODIS data for early crop classification using
random forest: A case study in Kansas, USA. Remote Sens. 2015, 7, 5347–5369. [CrossRef]

http://dx.doi.org/10.1016/j.rse.2013.08.023
http://dx.doi.org/10.1016/j.rse.2007.07.019
http://dx.doi.org/10.1016/j.rse.2010.01.006
http://dx.doi.org/10.1016/j.rse.2004.12.009
http://dx.doi.org/10.1016/j.rse.2019.111411
http://dx.doi.org/10.3390/rs6032473
http://dx.doi.org/10.1016/j.rse.2017.04.026
http://dx.doi.org/10.1016/j.rse.2017.06.033
http://dx.doi.org/10.1038/srep36240
http://www.ncbi.nlm.nih.gov/pubmed/27811989
http://dx.doi.org/10.1016/j.jag.2006.12.003
http://dx.doi.org/10.1080/01431160110053176
http://dx.doi.org/10.1109/TGRS.2018.2808410
http://dx.doi.org/10.1016/j.rse.2020.111817
http://dx.doi.org/10.1080/01431160500497127
http://dx.doi.org/10.14358/PERS.71.7.839
http://dx.doi.org/10.1016/j.isprsjprs.2014.02.012
http://dx.doi.org/10.3390/rs10010075
http://dx.doi.org/10.1109/JSTARS.2020.2971763
http://dx.doi.org/10.1016/j.rse.2018.12.026
http://dx.doi.org/10.1016/j.rse.2018.11.032
http://dx.doi.org/10.1016/j.rse.2021.112603
http://dx.doi.org/10.1016/j.srs.2021.100018
http://dx.doi.org/10.3390/rs70505347


Remote Sens. 2022, 14, 5605 18 of 18

43. Liu, J.; Huffman, T.; Qian, B.; Shang, J.; Jing, Q. Crop yield estimation in the Canadian Prairies using Terra/MODIS-derived crop
metrics. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2685–2697. [CrossRef]

44. Hao, P.; Wang, L.; Zhan, Y.; Wang, C.; Niu, Z.; Wu, M. Crop classification using crop knowledge of the previous-year: Case study
in Southwest Kansas, USA. Eur. J. Remote Sens. 2016, 49, 1061–1077. [CrossRef]

45. Pan, Y.; Li, L.; Zhang, J.; Liang, S.; Zhu, X.; Sulla-Menashe, D. Winter wheat area estimation from MODIS-EVI time series data
using the Crop Proportion Phenology Index. Remote Sens. Environ. 2012, 119, 232–242. [CrossRef]

46. Gusso, A.; Arvor, D.; Ricardo Ducati, J.; Veronez, M.R.; da Silveira, L.G. Assessing the MODIS crop detection algorithm for
soybean crop area mapping and expansion in the Mato Grosso State, Brazil. Sci. World J. 2014, 2014, 863141. [CrossRef] [PubMed]

47. Nguyen-Thanh, S.; Chen, C.F.; Chen, C.R.; Huynh-Ngoc, D.; Chang, L.Y. A Phenology-Based Classification of Time-Series MODIS
Data for Rice Crop Monitoring in Mekong Delta, Vietnam. Remote Sens. 2013, 6, 135.

48. Sakamoto, T.; Gitelson, A.A.; Arkebauer, T.J. MODIS-based corn grain yield estimation model incorporating crop phenology
information. Remote Sens. Environ. 2013, 131, 215–231. [CrossRef]

49. Mkhabela, M.; Bullock, P.; Raj, S.; Wang, S.; Yang, Y. Crop yield forecasting on the Canadian Prairies using MODIS NDVI data.
Agric. For. Meteorol. 2011, 151, 385–393. [CrossRef]

50. Qiu, B.; Li, W.; Tang, Z.; Chen, C.; Qi, W. Mapping paddy rice areas based on vegetation phenology and surface moisture
conditions. Ecol. Indic. 2015, 56, 79–86. [CrossRef]

51. Onojeghuo, A.O.; Blackburn, G.A.; Wang, Q.; Atkinson, P.M.; Kindred, D.; Miao, Y. Rice crop phenology mapping at high spatial
and temporal resolution using downscaled MODIS time-series. GIScience Remote Sens. 2018, 55, 659–677. [CrossRef]

52. Zhong, C.; Wang, C.; Wu, C. Modis-based fractional crop mapping in the US Midwest with spatially constrained phenological
mixture analysis. Remote Sens. 2015, 7, 512–529. [CrossRef]

53. Liang, L.; Schwartz, M.D.; Fei, S. Validating satellite phenology through intensive ground observation and landscape scaling in a
mixed seasonal forest. Remote Sens. Environ. 2011, 115, 143–157. [CrossRef]

54. Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance
of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [CrossRef]

55. Galford, G.L.; Mustard, J.F.; Melillo, J.; Gendrin, A.; Cerri, C.C.; Cerri, C. Wavelet analysis of MODIS time series to detect
expansion and intensification of row-crop agriculture in Brazil. Remote Sens. Environ. 2008, 112, 576–587. [CrossRef]

56. Sakamoto, T.; Yokozawa, M.; Toritani, H.; Shibayama, M.; Ishitsuka, N.; Ohno, H. A crop phenology detection method using
time-series MODIS data. Remote Sens. Environ. 2005, 96, 366–374. [CrossRef]

57. Yang, S.; Gu, L.; Li, X.; Jiang, T.; Ren, R. Crop classification method based on optimal feature selection and hybrid CNN-RF
networks for multi-temporal remote sensing imagery. Remote Sens. 2020, 12, 3119. [CrossRef]

58. Dimitrov, P.; Dong, Q.; Eerens, H.; Gikov, A.; Filchev, L.; Roumenina, E.; Jelev, G. Sub-pixel crop type classification using
PROBA-V 100 m NDVI time series and reference data from Sentinel-2 classifications. Remote Sens. 2019, 11, 1370. [CrossRef]

59. Papadimitriou, F. Spatial Complexity: Theory, Mathematical Methods and Applications; Springer: Berlin/Heidelberg, Germany, 2020.
60. Sun, H.; Xu, A.; Lin, H.; Zhang, L.; Mei, Y. Winter wheat mapping using temporal signatures of MODIS vegetation index data.

Int. J. Remote Sens. 2012, 33, 5026–5042. [CrossRef]
61. Wang, C.; Zhong, C.; Yang, Z. Assessing bioenergy-driven agricultural land use change and biomass quantities in the US Midwest

with MODIS time series. J. Appl. Remote Sens. 2014, 8, 085198. [CrossRef]
62. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference

on computer vision and pattern recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.
63. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient

convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.
64. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
65. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the

International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October
2015; pp. 234–241.

66. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted
windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October
2021; pp. 10012–10022.

67. Lunetta, R.S.; Shao, Y.; Ediriwickrema, J.; Lyon, J.G. Monitoring agricultural cropping patterns across the Laurentian Great Lakes
Basin using MODIS-NDVI data. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 81–88. [CrossRef]

http://dx.doi.org/10.1109/JSTARS.2020.2984158
http://dx.doi.org/10.5721/EuJRS20164954
http://dx.doi.org/10.1016/j.rse.2011.10.011
http://dx.doi.org/10.1155/2014/863141
http://www.ncbi.nlm.nih.gov/pubmed/24983007
http://dx.doi.org/10.1016/j.rse.2012.12.017
http://dx.doi.org/10.1016/j.agrformet.2010.11.012
http://dx.doi.org/10.1016/j.ecolind.2015.03.039
http://dx.doi.org/10.1080/15481603.2018.1423725
http://dx.doi.org/10.3390/rs70100512
http://dx.doi.org/10.1016/j.rse.2010.08.013
http://dx.doi.org/10.1016/S0034-4257(02)00096-2
http://dx.doi.org/10.1016/j.rse.2007.05.017
http://dx.doi.org/10.1016/j.rse.2005.03.008
http://dx.doi.org/10.3390/rs12193119
http://dx.doi.org/10.3390/rs11111370
http://dx.doi.org/10.1080/01431161.2012.657366
http://dx.doi.org/10.1117/1.JRS.8.085198
http://dx.doi.org/10.1016/j.jag.2009.11.005

	Introduction
	Materials
	Study Areas
	Remote Sensing Data
	Cropland Layer Dataset

	Method and Experiments
	Methodology
	Experiment Settings
	Model Validation

	Results
	Methods Comparison
	Upsampling Methods
	Evaluation of Spatial and Temporal Modules
	Vegetation Index Selection
	Generalizability Analysis
	Spatial Generalizability
	Temporal Generalizability


	Discussion
	SPM Methods Analysis
	Time Series Analysis
	Uncertainty of Model Generalization Ability

	Conclusions
	References

