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Abstract: Aquaculture has enormous potential for ensuring global food security and has experienced
rapid growth globally. Thus, the accurate monitoring and mapping of coastal aquaculture ponds is
necessary for the sustainable development and efficient management of the aquaculture industry.
Here, we developed a map of coastal aquaculture ponds in China using Google Earth Engine (GEE)
and the ArcGIS platform, Sentinel-1 SAR image data for 2020, the Sentinel-1 Dual-Polarized Water
Index (SDWI), and water frequency obtained by identifying the special object features of aquaculture
ponds and postprocessing interpretation. Our map had an overall accuracy of 93%, and we found
that the coastal aquaculture pond area in China reached 6937 km? in 2020. The aquaculture pond
area was highest in Shandong, Guangdong, and Jiangsu Provinces, and at the city level, Dongying,
Binzhou, Tangshan, and Dalian had the most aquaculture pond area. Aquaculture ponds had spatial
heterogeneity; the aquaculture pond area in north China was larger than in south China and seaside
areas had more pond area than inland regions. In addition, aquaculture ponds were concentrated
near river estuaries, coastal plains, and gulfs, and were most dense in the Huang-Huai-Hai Plain
and Pearl River Delta. We showed that GEE cloud processing and ArcGIS local processing could
facilitate the classification of coastal aquaculture ponds, which can be used to inform and improve
decision-making for the spatial optimization and intelligent monitoring of coastal aquaculture, with
certain potential for spatial migration.

Keywords: aquaculture ponds; spatial distribution; Sentinel-1 SAR images; Google Earth Engine;
coastal area of China

1. Introduction

Since the 1970s, global aquaculture production has grown rapidly [1]. Along with
a rapidly growing world population, aquaculture plays an increasingly significant role
in the supply of high-quality animal protein [2]. Numerous studies have shown that
the aquaculture industry is developing at a high speed and can help achieve sustainable
development goals in the 2030 United Nations Agenda of for Sustainable Development [3,4],
such as reducing poverty, eliminating hunger, food security, improving nutritional status,
and promoting, protecting, and utilizing oceans and marine resource sustainably to boost
sustainable development [5]. With the emergence of the aquaculture industry, aquaculture
techniques and experience have been continuously updated and communicated [6], which
has promoted the growth of global aquaculture products. A series of environmental
problems, such as the destruction of natural wetlands [7], the degradation of ecosystem
stability [8], and water pollution [9], have been unavoidably brought by the rapid expansion
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of aquaculture ponds [10], which is especially true for the large-scale construction of dense
aquaculture ponds in coastal areas [11,12].

Cultivated land, grassland, and forest-centered food production departments have
carried out extensive studies [13,14], but studies on the aquaculture industry have just
begun. In particular, rapid population growth has considerably increased the demand for
aquaculture products, so it is rather essential to strengthen the sustainable and scientific
management of aquaculture [15]. The primary challenge in this management is a clear
understanding of aquaculture pond area and their spatial distribution characteristics [16].
Aquaculture data are usually acquired by reviewing statistical data, which is not timely or
frequent. Traditional field investigations can accurately identify and measure aquaculture
ponds, but field investigations consume a lot of manpower and financial resources [17].
Remote sensing technologies, which can have highly frequent observations at large spatial
scales, can be used to map aquaculture ponds and are an effective tool for accurately and
rapidly monitoring the spatial-temporal distribution and development of aquaculture
ponds [15,18].

Optical sensors and radar sensors have been extensively used to map aquaculture
ponds (Table A1) [19-21]. These sensors mainly include Landsat TM/ETM+/OLI, World-
view series, Spot series, QuickBird, ASTER, IKONOS, China GF image series, TerraSAR-X,
Sentinel-1, and Sentinel-2 [18,22,23]. Optical remote sensing images from these platforms,
which provide long time-series data, have been widely utilized for the long-term monitor-
ing of regional aquaculture ponds [10,24,25]. For instance, Stiller et al. [26] used Landsat
TM/ETM+/OLI images to investigate the temporal-spatial variation characteristics of
regional aquaculture ponds during 1984-2016 in the Yellow River Delta and Pearl River
Delta in China. Duan et al. [24] explored the dynamic variation in large-scale aquaculture
ponds in the Jiangsu Province of China during 1988-2018 using TM/OLI images. In general,
the spatial resolution of Landsat images is 30 m, while aquaculture ponds in remote sens-
ing images are so small that they cannot be accurately identified using coarse-resolution
satellite images [10,27]. Hence, medium- and high-resolution satellite images have been
used to map aquaculture ponds in recent years [15,23], but high-resolution images have a
low temporal resolution and are costly, which complicates large-scale aquaculture pond
mapping [15]. Sentinel images not only have a relatively long data record (2014-) and
high spatial resolution (10 m) but they also have strong practical operability [27,28]. For
example, Ottinger et al. [23] accurately mapped coastal aquaculture ponds in Asia using
Sentinel-1 and Sentinel-2 images. Sun et al. [16] mapped the spatial distribution of coastal
aquaculture ponds in Vietnam in 2020 using Sentinel-1 data.

The Sentinel-1 satellite carries synthetic aperture radar (SAR) sensors, which can
relieve the influences of cloud layers on satellite images since its wavebands can pene-
trate cloud layers, have high temporal and spatial resolutions, and are provided free-of-
charge [23,29,30]. Given the weak backscattering of conventional SAR on water surfaces,
water bodies can be effectively identified using SAR images according to the echo intensity
of radar waves [15]. Nowadays, Sentinel-1 SAR images have been widely applied for the
identification of water bodies [31], with favorable applicability and operability in large-scale
continuous mapping and monitoring research, such as the monitoring of spatiotemporal
variations in water bodies (e.g., aquaculture ponds, surface floods, rivers, lakes, and reser-
voirs) [32-34]. Aquaculture ponds are shallow water surfaces surrounded by dikes, which
can be scanned and monitored using radar images according to the high contrast between
a smooth water surface (low radar backscattering) and a coarse non-water surface (high
radar backscattering) [23,35]. Therefore, Sentinel-1 SAR images are valuable for identifying
and monitoring aquaculture ponds. Presently, the GEE online platform is widely used
in aquaculture pond mapping [34], which can save a large amount of time and energy in
image acquisition and data processing. Our main workflow included image acquisition,
water index construction, the acquisition of potential aquaculture ponds, the object feature
screening of aquaculture ponds, space mapping, and accuracy evaluation, all of which was
conducted using GEE [16,34]. However, various sources of error, such as salt pans, seasonal
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water bodies, waste fishponds, and tidal flat wetlands, can be misclassified as aquaculture
ponds [36]. In summary, the efficient data processing capacity of GEE should be first used
to classify aquaculture ponds to save time and energy. Offline refined extraction should
also be conducted using the ArcGIS platform or other data processing software, so as to
construct online and offline aquaculture pond extraction methods and determine the most
accurate mapping of large-scale aquaculture ponds.

China has the longest history of aquaculture. As the world’s largest aquaculture coun-
try, the total aquaculture area of China was 70,361 km? in 2020, 30,369 km? of which was
aquaculture ponds, accounting for 43.16% of the total aquaculture area [37]. Aquaculture
ponds play significant roles in ensuring food security and providing high-quality proteins.
Here, we used cloud-based GEE and local ArcGIS methods to identify and map coastal
aquaculture. The main objectives of our study were to: (1) construct an online—offline
combined aquaculture pond extraction method to effectively map coastal aquaculture
ponds; (2) compare the similarities and differences between the aquaculture ponds we
identified using this method and those in the currently popular land cover (LC) datasets;
and (3) figure out the possible error sources in the extraction work of aquaculture ponds.
Our resultant maps can improve our knowledge of the location and spatial extent of China’s
coastal aquaculture ponds, and our method can be applied effectively in other large areas
to map and manage aquaculture ponds.

2. Materials and Methods
2.1. Study Area

Given China’s long history of coastal aquaculture, many aquaculture ponds (Figure 1)
are distributed along China’s 18,000 km of coastline. The coastal areas are mainly used for
fish, shellfish, algae, shrimp, and crab farming. For example, there are intensive breeding
ponds in the Pearl River Delta and many crab ponds in Sanmen Bay, Zhejiang Province. The
coastal aquaculture ponds in China have different shape and structural characteristics due
to the differences in their geographical locations (plains, hills, estuaries, deltas, mudflats,
and gulfs) and levels of socioeconomic development [17,18]. Our study took China’s coast
as the research area, which involved 260 counties, 12 provinces, and 2 special administrative
regions with an area of 278,764 km?2. Coastal aquaculture ponds presented significant spatial
agglomeration characteristics and large-area spatial network structural characteristics. In
addition, some isolated aquaculture ponds are distributed along coastal zones, whose area
is so small as not to be effectively identified. In our study, therefore, we aimed to map
aquaculture ponds that were larger than 0.005 km?. Based on previous studies and field
surveys, the coastal aquaculture ponds in China are basically wet during April-October
and are relatively stable water bodies [18,24]. In other months, however, the aquaculture
ponds are dry, and fishermen will perform desilting, sun drying, and sterilization activities.
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Figure 1. China’s coast and images of typical aquaculture ponds. (a) Geographical location of the
study area; (b) the location of the study area in China; (c) aquaculture ponds on the Liaoning estuary
delta plain (Sentinel-2 images using R8-G4-B3 band combinations); (d) aquaculture ponds on the
coastal plain of Jiangsu; (e) tidal flats in Shandong; (f) aquaculture ponds near Zhejiang Bay; and
(g) aquaculture ponds in the landside plains of Taiwan.

2.2. Dataset
2.2.1. Sentinel-1 Image and Processing

Sentinel-1, a full-time and all-weather radar-imaging system that was formally launched
in October of 2014, is characterized by dual polarization, a short revisit cycle, and rapid
product production [30]. We used all Sentinel-1 data covering our study area in
2020 (1 April to 31 October) stored in GEE, which included 1415 dual-polarized (VV + VH)
images (Figure 2) in the interferometric wide swath and ground range detection (GRD)
formats [35]. The spatial resolution of the dataset was 5 m x 20 m, its ground sampling
range was 10 m, and all images were stored in the GEE platform. The Sentinel-1 SAR data
on this platform were already preprocessed using Sentinel-1 toolbox from the European
Space Agency (ESA), including thermal noise removal, radiometric calibration, and terrain
correction [33].
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Figure 2. The number of available images in Sentinel-1 in the study area. (a) Availability of images in
the entire study area; (b) number of available images in each province.

2.2.2. Auxiliary Data

(1) DEM. The Shuttle Radar Topography Mission (SRTM) digital elevation data on
GEE platform were chosen as the DEM data. The SRTM V3 product (SRTM Plus) was
provided by NASA JPL. The spatial resolution of SRTM is 30 m, the horizontal accuracy
of its C-band and X-band are both 20 m, and the elevation accuracy of its C-band and
X-band are 20 m and 4 m, respectively. This dataset was gap-filled using open-source data
(ASTER GDEM2, GMTED2010, and NED), ensuring the data’s accuracy and applicability.
According to Duan et al. [17], coastal aquaculture ponds are mainly distributed in coastal
lowlands with an elevation of <20 m, so we performed elevation screening of the images
(DEM < 20 m) before extracting the aquaculture ponds.

(2) JRC yearly water classification history. We used a surface water bodies dataset
derived from the high-resolution maps of global surface water bodies and their long-term
changes, with the data span from 16 March 1984 to 31 December 2020. Each pixel was
individually classified into water/non-water using an expert system and the results were
collated into a monthly history for the entire time period and two epochs (1984-1999,
2000-2020) for change detection. This dataset was generated using 4,453,989 scenes ac-
quired by Landsat 5, 7, and 8, which could better reflect the spatial distribution of surface
water bodies (resolution: 30 m) [38]. This yearly seasonality classification collection con-
tains a year-by-year classification of the seasonality of water based on the occurrence values
detected throughout the year (acquired in 2020).
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(3) Google Earth images. The built-in historical high-resolution image data from
Google Earth features a high spatial resolution (maximum resolution up to 0.25 m) and
favorable ground—object identification and resolving effects (acquired on 13 July 2020).
In addition to the field survey, the spatial distribution of coastal aquaculture ponds was
verified using Google Earth high-resolution image data, and verification data points of
aquaculture ponds were established on this basis.

(4) Sentinel-2 images. Sentinel-2 images have 12 bands, and different band combi-
nations can be used to classify various ground objects and land cover types. We used
the Sentinel-2 median image of the study area from April to August 2020 from the GEE
platform, which we used in the post-processing and error elimination of the classification
of aquaculture ponds.

(5) River, lake, and reservoir data. The data of regional rivers, lakes, and reservoirs
came from OpenStreetMap (https://www.openstreetmap accessed on 31 August 2022).
Then, the needed water surface data were screened from the point-line-surface data
acquired on this platform (acquired on 20 December 2020), and the coordinate system of
this dataset was identical with that of the remote sensing image (WGS-1984).

(6) Land cover data. The LC data for 2020 included three different types of data
sources: GlobelLLand30 (GLC), ESA-WorldCover (ESA), China Land Cover Dataset (CLCD).
GLC is the first global geographic information public product provided by China to the
United Nations, and includes data for 2000, 2010, and 2020. GLC uses multi-period Landsat
TM/ETM+/OLI, HJ-1 and GF-1 images, with a data accuracy of >86% and data resolution
of 30 m (http:/ /www.globallandcover.com accessed on 31 August 2022). ESA provide a
new baseline global land cover product at a 10 m resolution for 2020 based on Sentinel-1
and -2 data that was developed and validated in near-real time. The overall accuracy of
ESA is 74.4% (https:/ /esa-worldcover.org/en accessed on 31 August 2022). CLCD was
released by Yang and Huang [25] at Wuhan University, China. This dataset was based on
335,709-scene Landsat data in GEE, with an overall accuracy of 80% and a spatial resolution
of 30 m (https://zenodo.org/record/5816591). The three types of LC data in the study area
are displayed in Figure A1.

(6) Other data. The other data included China’s administrative boundary data in 2020
and the China Fisheries Statistical Yearbook (acquired in 2020) [37].

2.3. Methods

As shown in the Figure 3, the overall extraction process (Figure 3) of coastal aquacul-
ture ponds in China mainly included: (1) data acquisition and preprocessing; (2) extraction
of potential aquaculture ponds; (3) the refined classification of aquaculture ponds; and
(4) the evaluation of mapping accuracy. In general, aquaculture ponds are shallow waters,
which cannot be effectively distinguished from water bodies such as surface rivers, lakes,
reservoirs, and pit-ponds in remote sensing images, so refined processing was performed
using the preliminary extraction of potential aquaculture ponds to acquire real surface
aquaculture ponds.
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Figure 3. Extraction process from aquaculture ponds.

2.3.1. Preliminary Extraction of Potential Aquaculture Ponds

The selection of a water index is of crucial importance to the extraction of aquaculture
ponds. Here, we identified surface water bodies mainly using the Sentinel-1 Dual-Polarized
Water Index (SDWI) [39]. Dedicated to Sentinel-1 dual-polarized bands, this index can
effectively distinguish the difference between water and other objects in dual-polarized
wavebands and can enhance the information of surface water bodies and eliminate dis-
turbances from other surface types such as vegetation and soil. SDWI (Equation (1)) is
calculated as:

SDWI =1In(10 x VV x VH) — 8 )

where VV and VH denote the pixel values of the VV median image and VH median
image, respectively.

Using the water index, we compared the three methods of self-defined, OTSU, and
water frequency to determine the appropriate threshold for segmentation. The aquaculture
ponds in coastal plains of Jiangsu were used as a test case (Figure 4a). First, we evaluated
the self-defined threshold. Given the significant difference in SDWI between surface water
bodies and other ground objects (Figure 4b), the valley (SDWI = —4.438) between two
peak values in the SDWI histogram served as the segmentation threshold to separate
surface water bodies from other ground objects (Figure 4c). The pixels were classified as
water bodies when SDWI was greater than —4.438. Second, we used the OTSU method
to divide an image into background and foreground, namely water bodies and non-water
bodies, where a greater between-class variance indicated a greater gap between ground
objects [40]. So, we found that the OTSU algorithm could be applied to SAR images with an
evident peak and valley in the pixel histogram. Third, we evaluated water frequency using
a stratified random sampling of regional water body data using the permanent surface
water dataset (JRC) to generate random water body samples. We calculated the confidence
interval of most water bodies by deducting the doubled variance from the mean value of
sampling points and thereby determined the threshold of surface water bodies. The sample
points generated by permanent surface water bodies were relatively stable, being basically
unchanged within the year, so it could be applied to the SDWI of the Sentinel-1 SAR data.
Moreover, sampling all images from April to October and counting the frequency of water
bodies could reduce the impact of regional precipitation on SAR images.
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We found the self-defined water body threshold to be less effective (Figure 4d), and this
method missed the main water body signal. The OTSU and water frequency methods better
identified surface water bodies, but the OTSU method tended to over-identify surface water
(Figure 4e). The water frequency method determined the threshold based on permanent
surface water bodies. During April-October, the coastal aquaculture ponds in China
remain shallow and are relatively stable, so the water frequency method was more reliable
and practical during this period (Figure 4f). The key to determine the threshold value
according to the water frequency method is the frequency, so here we experimented with a
water frequency of 50-80% for the same region and found that, with a water frequency of
<60% (Figure 4f1,f2), a wide range of aquaculture ponds were identified and had a poor
segmentation effect. When the water frequency was >70% (Figure 4f4), partial water body
information was easily excluded. We found that when water frequency was between 60% to
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70% (Figure 4£3), the water bodies were effectively segmented, and most of the information
of surface water bodies was preserved.

2.3.2. Refined Classification of Aquaculture Ponds

(1) Object feature extraction of aquaculture ponds

Since 2015, the standardization transformation of aquaculture ponds has been rapidly
promoted by coastal aquaculture studies, namely, the pond shape, pond area, and ridge
width. Hence, the object features of potential aquaculture ponds were extracted in this study
using the area, perimeter, aspect ratio(AR) (Equation (2)), shape index (LSI) (Equation (3)),
and compactness (Equation (4)) of aquaculture ponds based on the relatively regular
morphological characteristics of coastal aquaculture ponds [16,41]. The calculation formula
is as follows:

. Width
Aspect Ratio = Height (2)
Perimeter x 0.25
ISl ———————— 3
v Area ®)

Area

where Width, Height, Perimeter, and Area stand for the width, length, perimeter, and area
of plaques, respectively.

As shown in Figure 4g, we excluded the ponds that were too small (<0.01 km?) or
too large (>10 km?) and those with short perimeters (<150 m) were excluded. We found
through repeated experiments that for all aquaculture ponds in the experimental area, the
AR, LSI, and Compactness were always greater than 1.11, 1.2, and 0.3, respectively. The
irregularly shaped water surface bodies (Figure 4h) with unreasonable areas and perimeters
could be effectively eliminated through object feature extraction.

(2) Elimination of other water bodies

The aquaculture pond data acquired in the previous step were masked using surface
water bodies, including rivers, lakes, and reservoirs, provided by OpenStreetMap. Using
high-resolution images from Google Earth and 10 m remote sensing images from Sentinel-2,
obvious non-aquaculture ponds (channels, streams, and saltpans) or isolated water bodies
were removed to obtain a more accurate map of coastal aquaculture ponds. It could
be observed from Figure 4i that isolated plaques and aquaculture-pond-like channels
dedicated for water drainage or diversion could be effectively eliminated through post-
classification using high-resolution images.

2.3.3. Accuracy Verification

To assess the accuracy of coastal aquaculture ponds in China, a total of 9155 random
points were generated in the study area, including 2555 non-aquaculture pond sample
points and 6600 aquaculture pond sample points (Figure 5). The sample points were visually
interpreted using high-resolution images from Google Earth in 2020, and an aquaculture
pond and non-aquaculture pond confusion matrix was constructed. Finally, the extraction
accuracy was evaluated by calculating the overall accuracy (OA) and Kappa coefficients
of the confusion matrix. Using the verification sample sets of aquaculture ponds and non-
aquaculture ponds in the study area, we calculated the user’s accuracy (UA), producer’s
accuracy (PA), and OA for aquaculture ponds and non-aquaculture ponds.
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Furthermore, it was necessary to strengthen the comparison between the study results
and other LC data products in order to characterize the identification effect on coastal
aquaculture ponds—a concrete type of LC. Three main LC products were selected, GLC,
ESA, and CLCD, and we performed spatial overlay analysis on the identification results of
aquaculture ponds and the three types of LC data. We counted the aquaculture pond area
and water areas in different provinces, cities, and counties, and the correlation coefficient
was used to characterize the relationship between the two. These correlations also reflected
the credibility of the research results to a certain extent.

2.3.4. Nuclear Density Analysis

As a common method for hot-spot analysis of geographic elements, the nuclear density
analysis method can better reflect the spatial agglomeration and distribution characteristics
of a geographic element. The nuclear density analysis (Equation (5)) was calculated as:

) = g LR ®)

where f},(x) is the nuclear density function; n is the sample point; & is the bandwidth, that
is, the search radius; K is the nuclear function; and x — x; is the distance from the predicted
value x to the sample x;. The nuclear density analysis of aquaculture ponds was performed
using the ArcGIS10.5 spatial analysis module.
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3. Results
3.1. Accuracy Assessment

The OA was 93% and the Kappa coefficient was 0.84 (Table 1), which indicated that
our aquaculture pond classification methods had high accuracy. From a provincial level
(Figure A2), the OA and Kappa coefficients were the highest in northern Liaoning, Hebei,
Tianjin, and Shandong, whose overall accuracy and Kappa coefficients were approximately
1. In Zhejiang and Fujian Provinces, the OA and Kappa coefficients were low, where the OA
was 0.88 and the Kappa coefficient was 0.78, which was mainly ascribed to the irregular
shapes and small aquaculture pond areas in these provinces and a lower identification
effect than with the northern large-scale aquaculture ponds. In southern Hainan and
Taiwan, the OA and Kappa coefficients were high, with an overall accuracy of 0.96 and 0.91,
respectively. The UA was lower than 0.90 only in Fujian (0.86) and Guangxi (0.87) and was
greater than 0.90 in the other provinces. The PA was low in Fujian (0.87) and Guangdong
(0.87) and greater than 0.90 in other provinces.

Table 1. Confusion matrix of extraction results and manual interpretation results.

Types Non-Aquaculture Aquaculture Sum
Non-aquaculture 2264 315 2579
Aquaculture 291 6285 6576
Sum 2555 6600 9155
User’s accuracy (UA) 0.88 0.96
Producer’s accuracy (PA) 0.89 0.95
Overall accuracy (OA) 0.93
Kappa 0.84

3.2. Spatial Distribution of Coastal Aquaculture Ponds

All aquaculture ponds (>0.005 km?, totaling 6937 km?) in the coastal county-level
cities of China were extracted. At the provincial level (Figure 6a), the densities of coastal
aquaculture ponds were the largest in Shandong, Guangdong, and Jiangsu, and were 1557,
1032, and 1028 km?, respectively, which accounted for 22.49%, 14.90%, and 14.84% of the
total aquaculture pond area in the study area. In addition, the area ratio of aquaculture
ponds was greater than 10% in both Liaoning (LN) and Hebei (HB), and was small in Fujian
(EJ) (5.51%), Tianjin (TJ) (4.73%), Zhejiang (Z]) (4.51%), Taiwan (TW) (3.52%), Guangxi (GX)
(2.52%), and Hainan (HN) (1.00%), and was smallest in Shanghai (SH), Hong Kong (MK),
and Macao (M).

At the prefecture city level (Figure 6b), we selected and displayed only the administra-
tive units that ranked in the top 27 (area ratio > 1%) in the aquaculture pond area. Among
all the coastal prefecture-level cities, the aquaculture pond area was the largest in Yancheng
City (YC), with an area ratio of 10.59%, which was much higher than that in other coastal
prefecture-level cities. Thus, there was intense aquaculture production activity in this city,
where the straight coastline and rich silted mudflat resources provided superior conditions
for the development of aquaculture ponds, and coastal land reclamation activities ensured
abundant land resources so that large-area and regularly shaped coastal aquaculture ponds
are distributed in Yancheng City. Secondly, the area ratios of aquaculture ponds in Dongy-
ing (DY), Binzhou (BZ), Tangshan (TS), and Dalian (DL) were 9.72%, 8.51%, 8.03%, and
6.79%, respectively. All of the aforementioned prefecture-level cities are distributed near
Bohai Bay, where the alluviation effect of sea waves is weakened, which contributes to the
dense distribution of large-scale aquaculture ponds. The area ratios of aquaculture ponds
in Tianjin (T]) (4.73%), Cangzhou (CZ) (3.40%), Lianyungang (LYG) (2.89%), Jiangmen
(M) (2.87%), Zhanjiang (Z]) (2.43%), Jinzhou (JZ) (2.25%), and Fuzhou (FZ) (2.00%) were
all greater than 2%, while the aquaculture pond area in other prefecture-level cities was
relatively small.
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Figure 6. Area distribution of aquaculture ponds along the coast of China. (a) The area distribution
of aquaculture ponds in each province; (b) the distribution of the top 27 prefecture-level cities in
terms of aquaculture pond area; (c) aquaculture pond area at the city level; (d) west coast of Taiwan
Province as an example of the number of aquaculture pond areas in 30 buffer zones.

At the county scale (Figure 6¢), the high-value areas of aquaculture ponds were
consistent with those at the prefecture city level and were concentrated in Shandong,
Tianjin, and Hebei Provinces on the west side of the Bohai Gulf. The top five counties in
terms of aquaculture pond area were Hekou District (Dongying City), Caofeidian District
(Tangshan City), Binhai New District (Tianjin City), Wudi County (Binzhou City), and
Zhanhua District (Binzhou City). The aquaculture pond area in counties on the north
side of Jiangsu Province was also large, and aquaculture ponds were densely distributed
near the seaside. In south China, the aquaculture pond area was large only in Taishan
City, Zhongshan City, and in the Xinhui District of Guangdong Province; Fuqing City and
Zhangpu County in Fujian Province; Hepu County in Guangxi Province; and Zhangpu
County in Taiwan. Thus, the aquaculture pond area in north China was much larger than
in south China.

From the perspective of land and sea distribution, given the large south-north span of
coastal zones in China, a total of 30 buffer zones were generated along the west coastal zone
in Taiwan (Figure 6d), whose areas of aquaculture ponds were calculated. We discovered
that 97.63% of the aquaculture ponds were concentrated in the coastal zones within 120 km
along the coastline, and only 2.37% of the aquaculture ponds were distributed in inland
areas beyond 120 km along the coastline, which indicated that aquaculture ponds were
highly concentrated along the seaside areas. Seaside aquaculture ponds were denser
and larger due to the abundant seaside land resources, which made it convenient for
constructing large-scale aquaculture ponds. Inland aquaculture ponds were scattered near
rivers, lakes, and reservoirs. Considering the shortage of land resources for aquaculture
inland, the inland aquaculture pond area was generally small.

Aquaculture ponds were concentrated near coastal estuary deltas, coastal plains, and
gulfs (Figure 7a). The longitudinal distribution (Figure 7b) of aquaculture ponds was dense
within the region 117.42°E-118.81°E, which is located at the border between Hebei and
Shandong and the west side of the Bohai Gulf. In addition, the area of such aquaculture
ponds was larger than in south China. In terms of latitudinal distribution, there were
three dense aquaculture pond areas (Figure 7c) in the Pearl River Delta (21.29°N-24.22°N)
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in Guangdong Province, the coastal plains (32.27°N-34.67°N) in Yancheng City, Jiangsu
Province, and the coastal plains (37.38°N—40.92°N) in the northern Yellow River Delta.
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Figure 7. Spatial distribution characteristics of aquaculture ponds along the coast of China. (a) The
spatial distribution of aquaculture ponds; (b) the aquaculture pond area at 0.1° longitude; (c) the
aquaculture pond area at 0.1° latitude; (d-k) superimposed images of the eight estuary delta Sentinel-
1 images and aquaculture ponds, in which (d) is the Liaohe delta (121° 47'41"E, 40° 54'23''N);
(e) is the Yellow River delta (119° 4'39"'E, 37° 45'40"'N); (f) is the Yangtze Estuary delta (121° 35'53'E,
31° 33/36''N); (g) is the Qiantang River Delta (120° 46'50"'E, 30° 11'15''N); (h) is the mouth of Xinghua
Bay in Fujian (119° 15'23"'E, 25° 28'57''N); (i) is the Pearl River Delta (113° 39'48''E, 22° 41'28''N);
(j) is the Nanliujiang Delta in Guangxi (109° 3/5”E, 21° 36/58''N); and (k) is the Jishuixi Delta in
Taiwan (120° 7/40.15"'E, 23° 17/35"/N).

We chose and displayed eight of the largest coastal estuary deltas and gulfs in China.
Figure 7d shows the Liao River Delta plain in Liaoning Province, where a large area of aqua-
culture ponds was concentrated on the west side of the estuary. These aquaculture ponds
were large, regularly shaped, and dense. Figure 7e exhibits the Yellow River Delta, where
aquaculture ponds were concentrated in the south of the estuary and densely distributed in
seaside areas, with a large area and a regular shape. Figure 7f shows Chongming Island in
the Yangtze Estuary Delta, where the distribution of coastal aquaculture ponds was small
since this area is close to the socioeconomically developed Shanghai. Figure 7g displays
the Qiantang River estuary, where the south side of the river is rich in land resources that
have accumulated silt and have a dense distribution of small-scale aquaculture ponds.
Figure 7h displays the Xinghua Bay in Fujian Province, where aquaculture ponds were
densely distributed along the two sides of the port. Figure 7i shows the Pearl River Delta
in Guangdong Province, which had small-scale aquaculture ponds that were irregularly
shaped, densely distributed, and covered a wide area. Figure 7j exhibits the Nanliu River
Delta in Guangxi Province, where small, irregularly-shaped aquaculture ponds were spread
all over the delta plain, which has an advantageous geographical location for aquaculture



Remote Sens. 2022, 14, 5372

14 of 23

110°E
1

pond construction. Figure 7k shows the Driving Creek Delta plain in Taiwan, where the
terrain is flat on both sides and had a dense distribution of small-scale aquaculture ponds.

From the perspective of spatial agglomeration, the coastal aquaculture ponds in
China showed significant spatial agglomeration characteristics (Figure 8), but the spatial
heterogeneity was also prominent, with the nuclear density ranging from 0 to 13.35. The
high-nuclear-density areas were concentrated in coastal areas such as estuary deltas, gulfs,
and coastal plains, among which 12 obvious high-nuclear-density values were chosen.
Areas 1,2, 4,11, and 12 were coastal plains; areas 5, 6, 7, and 8 were gulfs; areas 3, 9, and
10 represented estuaries and estuary deltas. Areas 3, 9, and 8 represented the Yellow River
Delta, the Pearl River Delta, and the estuary of Chindwin River and Dalan River in Guangxi
Province, respectively. In the above three areas, the terrain was flat with densely distributed
river networks, and aquaculture ponds were densely distributed near estuaries.
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Figure 8. Spatial agglomeration characteristics of aquaculture ponds along the coast of China.
(a) Characteristics of nuclear density distribution in aquaculture ponds; and (b) distribution charac-
teristics of aquaculture ponds in areas with high nuclear density.

3.3. Comparison between Aquaculture Ponds and Different Land Cover Products

As shown in Figure 9, the extracted aquaculture ponds were compared with the three
types of LC products. First, the overlapping area between our extracted aquaculture ponds
and GLC data was 5363 km?, or 77.31%, which indicated that the spatial distribution of the
aquaculture ponds we identified agreed well with the GLC data products and reflected that
our resultant maps were a highly reliable. The spatial resolution of GLC products was 30 m,
so the plaques of this type of product were large, and the water areas had a wide-range
distribution characteristic (Figure 9¢,g,k,0,s). Second, the overlapping area between our
aquaculture pond map and the ESA data products was 73.98%. The resolution of the ESA
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products was 10 m, which matched the resolution of our aquaculture pond map. As shown
in Figure 9d,h,1,p,t, these products had a high accuracy, and the ground object distribution
was basically consistent with aquaculture ponds. Finally, the overlapping area between our
aquaculture pond map and CLCD was 61.81%. Except for Figure e, the spatial distribution
of water areas in other selected areas was basically identical with the aquaculture ponds,
and the resolution of the CLCD data products was 30 m, but the mapping plaques were
evidently smaller than those of the GLC data (Figure 9i,m,q,u).
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Figure 9. Comparison of our aquaculture ponds with three land cover products. (a) Spatial dis-
tribution of aquaculture ponds; (b,f,j,n,r) distribution of aquaculture ponds in typical areas; and
(c-e,g—i,k-m,0—q,s—u) superimposed features of aquaculture ponds and three land cover products.

At the provincial level, the areas of aquaculture ponds in all provinces were smaller
than the water area in the three LC products and had identical distribution characteristics
with the areas of the three types of water areas, namely, the water area and aquaculture
ponds were the largest in Guangdong, Jiangsu, Liaoning, and Hebei (Figure 10a). In
addition, the aquaculture pond area in the different provinces that we identified in this
study was highly correlated with the three LC data products (R? > 0.90), among which the
aquaculture pond area had the highest correlation with the ESA products (R? = 0.96), which
indicated that the 10-meter ESA data products had a favorable ground object identification
effect (Figure 10b).

At the prefecture-city level, aquaculture pond areas and LC products in 63 prefecture-
level cities were extracted as shown in Figure 10c. We found that aquaculture ponds
in prefecture-level cities had the highest correlation with the ESA products (R? = 0.84),
followed by the GLC (R% = 0.83) and CLCD data products (R% = 0.77). In addition, the
aquaculture pond area in different prefecture-level cities tended to be smaller than that of
the three types of LC data products (9d). The water area of the GLC data products was
the largest, followed by the ESA and CLCD data products. In the prefecture-level cities,
the aquaculture pond area was the largest in Yancheng, Dongying, Binzhou, Tangshan,
and Dalian. In the CLCD products, the aquaculture pond area was the largest in Shanghai,
Dongying, Yancheng, Binzhou, and Tangshan. For the ESA products, the aquaculture pond
area was the largest in Dongying, Shanghai, Binzhou, Dalian, and Yancheng. In the GLC
products, the aquaculture pond area was the largest in Dongying, Yancheng, Shanghai,
Binzhou, and Dalian.
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Figure 10. Statistics on the correlation between the aquaculture pond area and the water area of
three land cover products in different provinces, cities, and counties. (a) Distribution of aquaculture
ponds and water areas in provinces; (b,c) correlations between aquaculture ponds and water areas in
provinces and prefecture-level cities; and (d) distribution characteristics of aquaculture ponds and
water areas in prefecture-level cities.

4. Discussion
4.1. Uncertainties Resulting from Methods and Data

Our classification framework had a good classification effect by virtue of GEE cloud
processing and ArcGIS software. As for the comparisons of the data results, our extracted
area was basically identical with the actual situation in all the provinces, with the correlation
coefficient reaching as high as 86.69%. At the provincial level, the area of extracted coastal
aquaculture ponds in Guangxi Province (174.36 km?) was basically consistent with the
classified aquaculture pond area in Beibu Gulf in Guangxi Province (199.3 km?) [42],
and that (1031.72 km?) in Guangdong Province basically agreed with the study results
(1369.00 km?) of Huang and Wei [41].

Using radar backscattering images (Sentinel-1 SAR data), our method captured the
water surface roughness using SDWI and effectively identified all aquaculture ponds
in the study area by combining the water frequency. However, the attenuation of the
backscattering cross section of SAR images by rainfall cannot be ignored. Therefore, we
performed a statistical analysis on the SDWI index of all the images in the study area
to comprehensively consider the response of all the SAR images to water body signals.
Moreover, paddy fields and aquaculture ponds could be effectively distinguished through
time-based screening (April-October); other water bodies such as rivers, lakes, reservoirs,
and wetlands could be effectively distinguished through the relatively spatial geometric
object features of aquaculture ponds. Sources of error such as saltpans, photovoltaic panels,
and waste ponds were eliminated through visual interpretation. Based on previous studies,
therefore, our method improved the mapping of coastal aquaculture ponds and could be
applied for the mapping of aquaculture ponds in other areas.
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Of course, different scholars have adopted different data sources and methods to
classify coastal aquaculture ponds, which leads to differences among the study results. In
our study, the aquaculture pond area we extracted in coastal county-level cities in China
was 6938 km?, which was larger than the area of 3761 km? reported in the 2020 China
Fisheries Statistical Yearbook, mainly because some inland freshwater aquaculture ponds
existed in our study area. In addition, our results were slightly lower than the results of the
aquaculture ponds extracted by Duan et al. [18] (9614 km?) in coastal 30 km buffer zones of
China in 2020. This difference was mainly because Duan et al. [18] used Landsat images
(resolution: 30 m) and the area of the extracted aquaculture ponds was large, while the
aquaculture pond area extracted using Sentinel-1 images (resolution: 10 m) was closer to
the real area of aquaculture ponds. Moreover, the 30 km buffer zones differed, to some
extent, from coastal county-level cities in this study, which led to differences in the results
between the two. Hence, several uncertainties should be considered when applying the
proposed method to other areas.

First, as for the selection of data sources, Landsat images are suitable for exploring
the long-time-series spatial-temporal variation characteristics of aquaculture ponds, while
the Sentinel data can realize the refined mapping of aquaculture ponds within a short time
series since 2014. Second, the waterlogging frequency of aquaculture ponds varies from
area to area, so the monthly series data every year should be selected according to the
precipitation and aquaculture ponds in the study area. For instance, Sun et al. [16] extracted
the January-April Sentinel-1 SAR data in 2020 for the classification of regional aquaculture
ponds in Vietnam. Stiller et al. [26] selected all the Landsat images from September 2014 to
September 2016 for classifying aquaculture ponds in the Yellow River Delta and Pearl
River Delta in China. Finally, the information of water bodies with high inundation
frequencies, such as saltpans, reservoirs, and tidal flat wetlands, exists in different areas, so
the classification is inseparable from later-stage manually refined processing.

4.2. Sources of Errors in Aquaculture Pond Identification

The key to the extraction of coastal aquaculture ponds lies in distinguishing between
water and land. Therefore, the SDWI constructed by Sentinel-1 images was selected in
our study, which could effectively distinguish water bodies from land. In addition, the
images from April to October were selected, which was the growing season of coastal rice,
so the SDWI was able to distinguish paddy fields from aquaculture ponds. However, errors
were unavoidable in the classification of coastal aquaculture lands, and in particular there
was abundant information on coastal water bodies along with water sources in addition to
aquaculture ponds. Some surface water bodies, such as rivers, lakes, and reservoirs were
masked through OpenStreetMap, but some remaining water bodies were sources of error.

First, salt pans are a special type of industrial and mining land and are artificial water
bodies used for salt production. They are distributed in a large continuous area in a regular
block shape near the silty coast. Our study period was April-October, the same time
frame as salt manufacturing in salt fields, so the salt pans in the study area were filled
with seawater, becoming important water sources of surface water bodies. As shown in
Figure 11a, minor differences were observed between salt pans and aquaculture ponds in
the original Sentinel-1 images, so such salt pans were all identified as surface water bodies.
For example, the brightness of salt pans in Sentinel-2 images (waveband combination:
R8-G4-B3) was obviously higher than that of aquaculture ponds.
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Figure 11. Sources of errors in coastal aquaculture pond extraction. The main error sources in the
extraction process of aquaculture ponds were (a) salt pans, (b) photovoltaic power stations panels,
(c) reservoirs, (d) tidal flat wetlands, (e) abandoned fishponds, and (f) seasonal water bodies.

Second, coastal areas are rich in land resources and contain rich solar energy resources,
so coastal photovoltaic power stations possess excellent resource advantages. Hence, a lot
of photovoltaic power stations have been built in coastal areas of China. Given that the
main extraction objects were pure aquaculture ponds, multi-attribute photovoltaic power
stations were removed. As shown in Figure 11b, the water body information beneath
photovoltaic panels in the original images were still effectively identified, and they were
also identified as surface water bodies in the identification of potential aquaculture ponds,
so they were removed. Third, as shown in Figure 11c, the coastal hilly area of Guangdong
Province had aquaculture ponds that were distributed near reservoirs, but some small
reservoirs could not be distinguished from aquaculture ponds during classification, which
was also an important source of error that influenced our results.
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Fourth, although tidal flat wetlands were included in the extraction results of potential
aquaculture ponds, some irregular tidal flat wetlands could be removed using object-
oriented features (Figure 11d), while some relatively regular tidal flat wetlands could only
be determined by combining high-resolution images and visual interpretation. Thus, the
extraction results of aquaculture ponds were also influenced, to some extent, by seaside
tidal flat wetlands. Fifth, some aquaculture ponds in coastal areas are subjected to serious
bottom hardening through multi-year production activities with a high operating cost, so
they are idled as abandoned fishponds distributed in all coastal provinces. The inundation
frequency of abandoned fishponds was high during April-October, so they could be
easily identified as aquaculture ponds (Figure 11e), while this type of ground object had a
similar shape to real aquaculture ponds, so they could only be determined by combining
high-resolution images and visual interpretation. Finally, the inundation frequency was
high in seasonal water bodies that serve as important regional water sources. If regular,
some seasonal water bodies could be easily identified as aquaculture ponds (Figure 11f).
However, seasonal water bodies were distinguished from aquaculture ponds by combining
their object features and their lower concentration degree than aquaculture ponds.

Of course, there were more sources of error than those we listed above, such as
uncultivated paddy fields, sewage treatment ponds, abandoned rivers, and artificial pond
landscapes. The water body information in different areas is varied and complex, so the
classification of aquaculture ponds should be conducted according to the actual situation
in the study area.

4.3. Sustainable Management of Aquaculture Ponds and Prospects

China’s coastal aquaculture ponds display significant spatial heterogeneity, e.g., large-
scale aquaculture ponds are densely distributed in northern Hebei and Shandong and
small-scale ponds are densely distributed in southern Fujian, Guangdong, and Guangxi,
which leads to certain differences in the sustainable development of different aquaculture
ponds. For the medium- and large-scale aquaculture ponds in the north, the efficient output
of aquaculture ponds can be achieved by improving the quality of fry and optimizing
the breeding species. For the small-scale aquaculture ponds in the south, the government
should optimize the spatial layout, promote the construction of standardized ponds, and
eliminate substandard ponds that pollute the environment.

Moreover, in our study, we combined the Sentinel-1 SAR data with the water frequency
method to efficiently map aquaculture ponds along the coast of China. However, the
research time scale was only for 2020. In future research, we can apply this method to
long-term aquaculture pond identification to investigate the temporal and spatial variation
characteristics of coastal aquaculture ponds. In particular, the intensity of human activities
in the coastal zone is increasing rapidly, and the expansion or reduction in aquaculture
ponds have a significant impact on the regional ecological environment, which also requires
the long-term mapping of aquaculture ponds.

5. Conclusions

Currently, the human demand for food, food diversity, and food nutrition are un-
precedentedly high, and we accurately mapped coastal aquaculture ponds to provide
information that can be used to optimize the spatial layout of fishery aquaculture activities
and ensure fishery food security. Our maps highlight the spatial heterogeneity of aqua-
culture ponds and provide a basis for decision making by the government to formulate
aquaculture-pond-planning policies.

Here, we used aquaculture-pond-mapping methods that were based on GEE cloud
processing and ArcGIS local processing. Using Sentinel-1 SAR high-resolution remote
sensing images (10 m), our method combined the water index and water frequency to com-
prehensively identify regional potential aquaculture ponds, and we acquired a relatively
refined and accurate dataset of the spatial distribution of aquaculture ponds in the coastal
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areas of China by combining the regular object features and refined classification. Our main
conclusions were:

(1) Our method had a high classification accuracy (the overall accuracy was 0.93),
which indicated that our method could be applied to map aquaculture ponds in other areas;

(2) The spatial heterogeneity of coastal aquaculture ponds in China was prominent,
and large-scale dense aquaculture ponds played a dominant role in north China while
small-scale ponds were dominant in south China;

(3) Our method was highly correlated with other land cover data products, accompa-
nied by a more refined identification of aquaculture pond plaques;

(4) The classification of aquaculture ponds was complicated by sources of error, such
as salt pans, photovoltaic panels, reservoirs, tidal flat wetlands, abandoned aquaculture
ponds, and seasonal water bodies.

Author Contributions: Conceptualization, P.T., Y.L. and J.L.; methodology, P.T., Y.L. and H.Z,;
software, P.T. and H.Z.; writing—original draft preparation, P.T., Y.Y. and Y.L.; writing—review and
editing, PT., Y.L., L.C. and R.P;; supervision, H.Z., S.A. and Y.Y. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by National Natural Science Funded project (41976209, 42206236),
College Students” Science and Technology Innovation Activity Plan and Xinmiao Talent Plan of
Zhejiang Province (2022R405B086), and Postgraduate Research and Innovation Fund of Ningbo
University (IF2022021).

Acknowledgments: The authors express their gratitude to the editors and the anonymous reviewers
for providing valuable comments and suggestions to improve the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Summary of previous studies on extraction from aquaculture ponds.

Years Region/Local Country Multiple Countries
1984-2016 Stiller et al (2019) * Ren et al (2019) *

1990,1995, 2000, 2005, 2008,2011, 2014, 2017, 2020 Duan et al (2021) *

1988-2018 Duan et al (2020) *

1987-2018 Fu et al (2021) *

2014-2016 Ottinger et al (2017) *
2014-2017 Prasad et al (2019) #

2016 Yu et al (2020) #

2019 Ottinger et al (2021) #
2020 Sun et al (2021) #;

Duan et al (2020) *

* Landsat data were used; # Sentinel data were used; + Landsat and Sentinel data were used.
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