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Abstract: Accurate and timely crop yield prediction over large spatial regions is critical to national
food security and sustainable agricultural development. However, designing a robust model for
crop yield prediction over a large spatial region remains challenging due to inadequate surveyed
samples and an under-development of deep-learning frameworks. To tackle this issue, we integrated
multi-source (remote sensing, weather, and soil properties) data into a dual-stream deep-learning
neural network model for winter wheat in China’s major planting regions. The model consists
of two branches for robust feature learning: one for sequential data (remote sensing and weather
series data) and the other for statical data (soil properties). The extracted features by both branches
were aggregated through an adaptive fusion model to forecast the final wheat yield. We trained
and tested the model by using official county-level statistics of historical winter wheat yields. The
model achieved an average R2 of 0.79 and a root-mean-square error of 650.21 kg/ha, superior to
the compared methods and outperforming traditional machine-learning methods. The dual-stream
deep-learning neural network model provided decent in-season yield prediction, with an error of
about 13% compared to official statistics about two months before harvest. By effectively extracting
and aggregating features from multi-source datasets, the new approach provides a practical approach
to predicting winter wheat yields at the county scale over large spatial regions.

Keywords: winter wheat; crop yield prediction; deep learning; remote sensing; weather data; soil data

1. Introduction

Accurate and timely crop yield prediction is critical for ensuring food security and
planning production, storage, transportation, and other interconnected activities [1]. The
increasing challenges to agriculture, including climate change, a growing population,
and the degradation of cultivated land require effective methods to support a global
management system for sustainable agricultural development [2]. As the world’s most
populous and largest developing country, China has been devoted to achieving a high
self-sufficiency for cereal crops. With China’s aging farming population, accelerating
urbanization, and growing demand for a high-protein diet, food security will continue to
be the country’s top priority [3].

Remote sensing offers the benefits of a synoptic view, multi-temporal coverage, easy
access, and cost-effectiveness and is, therefore, a promising approach to crop yield predic-
tion [4–6]. The strategies for predicting crop yields with remote-sensing data can be divided
into two main categories: statistical and process-based models. The former usually assumes
that the photosynthetic capacity of crops, which can be inferred by surface reflectance or
spectral vegetation indices, is directly related to crop yield [7]. Several studies have been
based on statistical regression for the relationship between crop yields and variables such as
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remote-sensing indexes [8–12], reflectance [13,14], or backscattering [15]. Machine-learning
methods such as support vector machines and random forest models have been used to
predict crop yield [16–18]. These machine-learning methods could potentially offer great
performance for non-linear relationships. However, they are mainly based on spectral fea-
tures such as the normalized difference vegetation index and may fail to extract high-level
representative information that could be more closely related to crop yields.

The second category, process-based models, simulates crop yield dynamically using
a well-calibrated crop growth model, in which remote-sensing data is usually used to
reinitialize or recalibrate the model or update its state variables at a finer spatial resolution
than the driving data [19–27]. This strategy provides a mechanical and explanatory model
for crop yield components. Nevertheless, the calibration of process-based models across
large spatial regions remains challenging. It requires numerous field measurements, such as
soil and crop characteristics and field management practices (e.g., irrigation, fertilization).

Deep learning is capable of modeling high-level feature representations through a hi-
erarchical learning framework [28], and has achieved surprisingly successful performance
in many computer-vision tasks, such as image classification [29], object detection [30,31],
and semantic segmentation [32]. The most widely used deep-learning models include
convolutional and recurrent neural networks. Among the convolutional neural networks,
AlexNet [29] confirms the superior ability of deep-learning neural networks over proxies
such as manual indexes to discriminate between and represent critical features. Many
deeper and larger network structures have been developed, such as GoogLeNet (also
known as Inception-v1) [33], VGG [34], ResNet [35], and DenseNet [36], and have strength-
ened the deep-learning ability of models. Among the recurrent neural networks, the long
short-term memory (LSTM) model [37] and the gated recurrent unit (GRU) model [38] are
widely used because they are good at modeling the temporal dependencies of sequential
signals and show superior performance compared with other recurrent neural networks in
finding long-term relationships.

Deep learning is becoming increasingly popular in remote sensing [39–44], and re-
searchers have started employing deep-learning models based on remote-sensing data for
crop yield prediction [45–50]. Previous studies have adopted deep-learning methods to
predict corn yields at a county level in the U.S. [16,51]. They used MODIS remote-sensing
and weather data to achieve a correlation coefficient of about 0.8 (R2 = 0.64) between the
predicted and official statistical corn yields. However, their models only cascaded several
fully connected layers with no modern deep-learning structures such as convolutional
neural networks or recurrent neural networks, thereby limiting the model’s performance.
You et al. [45] proposed a deep Gaussian process model to estimate soybean yields in the
USA using only MODIS data and achieved an average RMSE = 373 kg/ha and MAPE = 15%
compared with USDA predictions from 2011 to 2015. You et al. [45] used convolutional
and recurrent-neural-network methods. The convolutional neural network performed
better, with the average RMSE dropping by 8%, which agrees with our findings. As
a representative structure of recurrent neural networks, LSTM has also been utilized by
Wang et al. [52] for soybean yield prediction with maximum R2 = 0.58 and RMSE from
230 to 700 kg/ha. Oliveira et al. [46] achieved good performance for US soybean (with
R2 = 0.75 and RMSE = 354 kg/ha) and maize (with R2 = 0.71 and RMSE = 1393 kg/ha) yield
prediction with LSTM. Auto-encoder has also been studied by Ma et al. [47] to estimate
rice yields in South Korea based on remote-sensing and weather data and achieved a better
performance (RMSE% = 6.89%) than traditional artificial neural networks (RMSE% = 8.03%).
However, none of the abovementioned studies simultaneously considered remote-sensing,
weather, and soil data, which fails to take complete advantage of multi-source data to
provide a more comprehensive characterization of the crop growth process and improve
the accuracy of the prediction model. The extended LSTM is always used in predicting
crop yields by multi-source data, such as rice yield prediction [53], smallholder maize
yield estimation [54] in China, and corn yield estimation in the USA corn belt [50]. Luo
et al. [55] developed an LSTM-based framework, mapping the global wheat production
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with R2 = 0.76 in the USA. Tian et al. [56] estimated wheat yields by remote-sensing and
meteorological data, achieving better performance in the Guanzhong Plain (R2 = 0.83 and
RMSE = 357.77 kg/ha). These methods have tried to extract more discriminative yield-
related features by combining multi-source data. However, these methods are weak in
exploring the feature-learning structure. In addition, few previous have studies compared
the suitability of the convolutional neural network and recurrent neural network structures
for crop yield prediction.

In the present study, we developed a novel dual-stream deep-learning neural network
model to improve regional prediction of crop yields by integrating remote-sensing data with
other feature data (specifically weather and soil data). Our objectives were to (i) compare the
capabilities of well-known convolutional neural networks and recurrent neural networks
for winter wheat yield prediction in China, (ii) develop a novel adaptive deep-fusion model
that could integrate multi-source data to improve yield prediction, and (iii) assess the
model’s prediction performance for the major winter wheat planting areas of China.

2. Study Area and Dataset
2.1. Study Area

This study focused on China’s major winter wheat growing regions (Figure 1), which
account for about 95% of China’s total winter wheat planting area. This area extends from
98◦16′E to 122◦43′E and from 22◦27′N to 40◦56′N, which represents a vast geographical
area. It includes two main winter wheat planting regions: the northern and southern
areas. The northern area lies south of the Great Wall and north of the Qinling Mountains
and Huaihe River, accounting for more than half of China’s wheat planting area. It has
a temperate continental monsoon climate, with an annual average temperature of 9 to
15 ◦C and a yearly rainfall of 440 to 980 mm. The primary prevailing crop rotation is
winter wheat, followed by summer corn. The southern area is located south of the Qinling
Mountains and Huaihe River. It has a subtropical monsoon climate, with an annual average
temperature of 16 to 24 ◦C and annual precipitation of more than 1000 mm. Winter wheat is
mostly rotated with paddy rice in this area. The study area comprises 14 provinces and two
provincial-scale municipalities: Beijing, Tianjin, Hebei, Shanxi, Jiangsu, Anhui, Shandong,
Henan, Hubei, Chongqing, Sichuan, Guizhou, Yunnan, Shaanxi, Gansu, and Ningxia. This
area includes a total of average 555 winter wheat planting counties (Figure 1). Winter wheat
in the study area is usually sown from September to late October and harvested from late
May to mid-June of the following year. Its phenological development is closely related to
latitude, that is, the development stage in the south is usually earlier than in the north.
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The geospatial vector data of administrative divisions shown in Figure 1 was sourced
from the National Catalogue Service for Geographic Information (https://www.webmap.
cn/commres.do?method=result100W, accessed on 1 September 2019).

2.2. Dataset

Crop yield is affected by many factors, including weather conditions, soil properties,
irrigation systems, cultivation techniques, fertilizers, and crop variety [47,57–61]. Integrat-
ing all of these factors within a yield-prediction model is challenging because some specific
datasets are difficult to obtain. In the present study, we used three major data sources to
account for the yield predictor indicators: remote-sensing, weather, and soil property data.

2.2.1. Remote-Sensing Data

MODIS-derived products from the National Aeronautics and Space Administration
(NASA) have been widely used in crop yield prediction due to their free, open access,
and global coverage [7,57,62]. Among these products, we used MOD09A1 (Terra 8-day
500 m surface reflectance, https://lpdaac.usgs.gov/products/mod09a1v006/, accessed on
1 September 2019) and MOD11A2 (Terra 8-day 1 km land surface temperature/emissivity,
https://lpdaac.usgs.gov/products/mod11a2v006/, accessed on 1 September 2019) within
a growing-season from 2001 to 2015, which provide an 8-day composite value for seven
surface spectral reflectance bands and two temperature bands (daytime and nighttime land
surface temperature).

2.2.2. Weather Data

We obtained the weather data used in this study from the China meteorological forcing
dataset, which is maintained by the Institute of Tibetan Plateau Research, Chinese Academy
of Sciences [63,64]. The dataset provides seven gridded meteorological variables, including
temperature, air pressure, specific humidity, wind speed, downward shortwave radiation,
downward longwave radiation, and precipitation rate. The spatial resolution is 0.1◦, and
the temporal resolution is 3 h [65].

2.2.3. Soil Property Data

Soil property data were downloaded from SoilGrids.org, which provides data on nine
features that describe soil physical and chemical properties for most of the world, including
clay, silt, sand content, coarse fragments, and bulk density [46,66]. These variables are
available at seven depths from 0 to 200 cm with a spatial resolution of 1 km or 250 m [65].

2.2.4. Cropland Land Cover Data

A crop mask for winter wheat is needed to delineate winter wheat’s spatial distribution
in a yield-prediction model. In this study, we used the MODIS Land Cover Product
because winter wheat is the dominant crop in the cropland during the growing season in
China. Although this could introduce certain errors, previous studies [52,67] justified using
the MODIS Land Cover Product for crop yield prediction because they found that this
approach did not degrade the model results compared with higher resolution crop-type
maps. Therefore, the MODIS-derived MCD12Q1 product was used in this study, which
provides annual global land cover data at a resolution of 500 m, to distinguish cropland
from non-cropland.

https://www.webmap.cn/commres.do?method=result100W
https://www.webmap.cn/commres.do?method=result100W
https://lpdaac.usgs.gov/products/mod09a1v006/
https://lpdaac.usgs.gov/products/mod11a2v006/
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2.2.5. County-Level Yield Data

We obtained winter wheat yield data of an average of 555 counties from China’s
county-level statistical yearbooks from 2001 to 2015, except for 2006 because of missing
data. All yields were reported as kg/ha. Table 1 summarizes the input variables used in
the deep-learning model.

Table 1. Input variables are used in the deep-learning model.

Data Source Variable Name Units of
Measurement

Spatial
Resolution

Temporal
Resolution Description

Remote-
sensing

data

sur_refl_b01 500 m 8 d Surface reflectance band 1 (620–670 nm)
sur_refl_b02 500 m 8 d Surface reflectance band 2 (841–876 nm)
sur_refl_b03 500 m 8 d Surface reflectance band 3 (459–479 nm)
sur_refl_b04 500 m 8 d Surface reflectance band 4 (545–565 nm)
sur_refl_b05 500 m 8 d Surface reflectance band 5 (1230–1250 nm)
sur_refl_b06 500 m 8 d Surface reflectance band 6 (1628–1652 nm)
sur_refl_b07 500 m 8 d Surface reflectance band 7 (2105–2155 nm)

LST_Day 1 km 8 d Daytime land surface temperature
LST_Night 1 km 8 d Nighttime land surface temperature

Weather data

temp K 0.1 daily Instantaneous near-surface (2 m)
air temperature

pres Pa 0.1 daily Instantaneous near-surface (2 m)
air pressure

shum kg kg−1 0.1 daily Instantaneous near surface (2 m) air
specific humidity

wind m s−1 0.1 daily Instantaneous near-surface (10 m)
wind speed

srad W m−2 0.1 daily Surface downward shortwave radiation
lrad W m−2 0.1 daily Surface downward longwave radiation
prec mm hr−1 0.1 daily Precipitation rate

Soil data

BLDFIE kg m−3 1 km Bulk density (fine earth)
CECSOL cmolc kg−1 1 km Cation exchange capacity of the soil
CLYPPT % 1 km Clay content (0 to 2 µm) mass fraction
CRFVOL % 1 km Coarse fragment volumetric fraction

ORCDRC g kg−1 1 km Soil organic carbon content (fine
earth fraction)

PHIHOX 1 km pH × 10 in H2O
PHIKCL 1 km pH × 10 in KCl
SLTPPT % 1 km Silt content (2 to 50 µm) mass fraction
SNDPPT % 1 km Sand content (50 to 2000 µm) mass fraction

3. Methods

We integrated the multi-source remote-sensing, weather, and soil property data into
a deep-learning model for winter wheat yield prediction in China. The multi-source data
could be categorized into two types: dynamic datasets (including remote-sensing and
weather data) and static datasets (the soil properties). Therefore, a dual-stream deep-
learning neural network was developed between the crop yield and the aggregated features
extracted and integrated from these two data types. Figure 2 illustrates the framework
for this analysis, which consisted of six main components: (a) data preprocessing; (b) the
remote-sensing–weather branch; (c) the soil branch; (d) the fusion module; (e) network
training; and (f) accuracy assessment. Details of these components are provided in the
following sections.
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3.1. Data Preprocessing

The weather variables were first resampled to an 8-day temporal resolution using the
mean-value composite method to be consistent with the MODIS 8-day product data. We
then aggregated all remote-sensing, weather, and soil property data at a county level using
the average value after being masked to the cropping area within the county. We then used
min–max normalization to convert all data to values between 0 and 1 because the remote-
sensing and weather data were continuous sequential variables. In contrast, soil properties
remain almost constant over time. We compiled the first two datasets as dynamic data
and the soil dataset as static data [46]. The period for the dynamic data was from October
to mid-June of the following year, corresponding to winter wheat’s sowing and maturity
stages. The remote-sensing and weather data were combined into a 16 × 32 matrix that
comprised nine remotely sensed variables plus seven weather variables for 32 eight-day
periods. Soil variables were compiled into a two-dimensional array with seven depths and
nine soil properties and provided the model’s static inputs.

3.2. Remote-Sensing–Weather Branch

An accurate winter wheat yield prediction requires extracting representative features
from the input data. We combined the time series of remote-sensing images and weather
data throughout the winter wheat growing season to generate the sequential dataset for
feature extraction in the RS–weather branch. To compare the performance of several
well-known deep-learning models for yield prediction, we modeled the network structure
of the RS–weather branch using four convolutional neural network models: VGG [68],
Inception [33], ResNet [35], and DenseNet [36] We also compared two recurrent neural
network models: the long short-term memory (LSTM) model [37] and the gated recurrent
unit (GRU) model [38]. All the network variants of the RS–weather branch are shown in
Figure 3. Our experimental results (see the Section 4 for details) indicated that the Inception-
based model yielded the highest accuracy, so we selected this model for subsequent analysis
of the RS–weather branch (Figure 4).
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As depicted in Figure 4, we used only one-dimensional convolutions (Conv 1 d) and
average pooling (Average pool 1 d). To increase our ability to generalize the original
Inception modules, we added a dropout layer [69] with a rate of 0.25 after each convolution
layer. One of the Inception module’s merits is that it can extract features from a multi-scale
receptive field [33], resulting in a strong ability to learn short- and long-range dependencies.
The network variants for the RS–weather branch are illustrated as follows.
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3.3. Soil Branch

Previous studies [46] have demonstrated that soil property data are vital for accurate
crop yield prediction. Therefore, incorporating soil property data provides both unique
information (different from the sequential data) and complementary information and could
increase yield-prediction performance. Given that the soil property data are relatively
stable compared to the RS–weather sequential data, we separated the soil branch from
the RS–weather branch. Figure 5 shows the architecture of the soil branch. Only one-
dimensional convolutions were employed to decrease the model’s complexity, reducing
the risk of overfitting the input data [42].
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3.4. Fusion Module

After extracting the features of the multi-source data from the RS–weather data and the
soil property data, we conducted feature-level fusion to provide the final yield prediction.
Previous studies [46] simply stacked and concatenated these features without considering
the relationships among them and their relative importance for yield prediction. In the
present study, inspired by both the Squeeze-and-Excitation Network (SENet) model [70]
and our previous research [42], we proposed an adaptive fusion module to aggregate the
features from the RS–weather branch and the soil branch.

Figure 6 depicts the structure of the feature-fusion module that we used to recalibrate
or re-weight the input features. The weights assigned to the elements can be automatically
learned end-to-end. Specifically, we generated a channel descriptor after the input feature
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was passed through a global average pooling layer [70]. Next, the channel-wise weight was
learned by two consecutive fully connected layers and a sigmoid layer [70]. After feature
fusion, the informative features were enhanced. In contrast, the less valuable features and
noise were suppressed [42], which could effectively improve the representativeness and
robustness of the fused features.
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3.5. Network Training

Since the yield prediction model was trained from scratch (i.e., no pre-trained model
was used), it was necessary to determine how to initialize all the model parameters. In this
study, we initialized the model weights using the normalization method of [71], but the
initial biases were set to zero.

During the network training, we used the Adam optimization method [72] due to its
ability to adjust the learning rate automatically, leading to a faster and more stable training
procedure. The initial learning rate for Adam was set to 10−3. We adopted the early-stop
strategy to select the best model with the minimum validation loss.

Since the winter wheat yield prediction is a regression problem, we calculated the L2
loss based on the mean-squared error (MSE) [45].

MSE =
1
n

n

∑
i=1

(yi − yp
i )

2
(1)

where yi and yp
i represent the official statistical and predicted winter wheat yields for

county i, respectively, and n is the number of counties.
In this study, 90% of the official statistical data were randomly chosen as training

samples to optimize the yield prediction model. The remaining 10% of the data was used
as the validation dataset to evaluate the performance of the training. Since all the training
and validation datasets were randomly selected, the model could learn from various
soil, weather, and growth status scenarios. The proposed winter wheat yield prediction
model was trained with the TensorFlow library (https://tensorflow.google.cn/, accessed
on 1 September 2019).

3.6. Accuracy Assessment

To quantify the effectiveness of the proposed model for winter wheat yield prediction,
we calculated the coefficient of determination (R2), root-mean-square error (RMSE), mean
absolute percentage error (MAPE), and mean error (ME):

https://tensorflow.google.cn/
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R2 = 1−
n

∑
i=1

(yp
i − yi)

2
/

n

∑
i=1

(yi − y)2 (2)

RMSE =

√
1
n

n

∑
i=1

(yi − yp
i )

2
(3)

MAPE =
100
n

n

∑
i=1

∣∣∣∣∣y
p
i − yi

yi

∣∣∣∣∣ (4)

ME =
1
n

n

∑
i=1

(
yp

i − yi

)
(5)

where y is the mean value of the official statistical yield, and yi and yp
i have the same

meaning as in Equation (1). An effective yield prediction model should simultaneously
have a high R2, low RMSE, low MAPE, and low ME. We also used leave-one-out cross-
validation [47,67].

4. Results
4.1. Comparing Different Deep-Learning Models to Predict Winter Wheat Yield

Table 2 indicates that the Inception-based model had the highest accuracy for pre-
dicting China’s winter wheat yield from 2001 to 2015, with a mean R2 of 0.79, an RMSE
of 650.21 kg/ha, and a MAPE of 12.4%. The ResNet-based model had the second-best
performance, with a slightly lower R2 (0.78) and a higher RMSE (660.34 kg/ha) but a lower
MAPE (12.2%) than the Inception-based model. The LSTM and DenseNet models per-
formed similarly, whereas VGG and GRU had inferior accuracy. Therefore, we selected
the Inception-based model for the RS–weather branch of the proposed dual-stream deep-
learning neural network.

Table 2. Performance of different deep-learning models based on the leave-one-out cross-validation.
All methods produced statistically significant results (p < 0.05). The model with the best fit is
boldfaced. MAPE, mean absolute percentage error; RMSE, root-mean-square error.

Method R2 RMSE (kg/ha) MAPE (%) ME (kg/ha)

VGG 0.76 692.39 13.16 129.55
ResNet 0.78 660.34 12.18 55.83

DenseNet 0.78 663.87 12.60 79.72
Inception 0.79 650.21 12.37 54.21

LSTM 0.78 678.25 12.95 17.14
GRU 0.76 704.45 13.40 22.13

Figure 7 shows the RMSE of the deep-learning models for each year between 2001
and 2015. The Inception-based model had a lower RMSE than other models in most years
and achieved the best accuracy in 2011, with the lowest RMSE (506.21 kg/ha). The models
based on recurrent neural networks (LSTM and GRU) had higher accuracy than models
based on convolutional neural networks from 2001 to 2003.

Our results indicated the average winter wheat yield statistics and the prediction
results from the six deep-learning models from 2001 to 2015. From 2001 to 2003, most of
the deep-learning models overestimated the winter wheat yield. According to historical
climate data and previous studies [73], from 2001 to 2003, there was a severe drought
in China, leading to significant differences in yields compared with the other years and
resulting in the low performance of most of the deep-learning models. However, the yield
predictions by LSTM and GRU were closer to the actual values during these years than
models based on convolutional neural networks, which suggests that it could be possible to
use these models to replace the convolution models in years with severe drought (Figure 8).
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4.2. Spatial Variation in Winter Wheat Yield Predictions

As mentioned in Section 4.1, the Inception-based model provided the best accuracy
(the highest mean R2 and lowest RMSE) for the period from 2001 to 2015, with the lowest
RMSE (506 kg/ha) in 2011. Therefore, we analyzed the spatial pattern of yield prediction
results at the county level in 2011 using the results of the Inception-based model (Figure 9).

Figure 9a shows the official statistical winter wheat yield in 2011, and Figure 9b shows
the corresponding results predicted by the dual-stream deep-learning neural network
model. The two figures show similar patterns, indicating that the developed deep-learning
model performed well nationally. Figure 9c shows the spatial distribution of relative error
for the proposed model. The relative error was less than 15% for 83% of the counties in
the North China Plain, although several counties in northwestern and southwestern China
had a high relative error (>25%). With our new model, the R2 and RMSE in 2011 were 0.89
and 506 kg/ha, respectively, which shows high prediction accuracy. The results showed no
distinct overestimation or underestimation, indicating that the dual-stream deep-learning
neural network model provided unbiased estimates.
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5. Discussion
5.1. Impact of Different Data Sources on Winter Wheat Yield Prediction

Due to the multi-source data (i.e., remote-sensing, weather, and soil property data)
being highly correlated with winter wheat yield, ablation analysis [74] can be used to
evaluate each data source’s impact on yield prediction performance. Therefore, we per-
formed a series of experiments to establish the yield-prediction model using individual
remote-sensing data, weather data, or soil property data. The Inception prediction model
was used, and leave-one-out cross-validation was used to assess the model’s accuracy.

Our results showed that remote-sensing data alone achieved the highest prediction
accuracy, with a mean R2 of 0.73, an RMSE of 743.91 kg/ha, and a MAPE of 14.4% (Table 3).
This was mainly because the multi-temporal remote-sensing reflectance could directly catch
the crop’s growth trajectory, simultaneously capturing the evolution of the aboveground
foliage and providing essential information for the final grain yield [23]. The weather
and soil property data decreased the accuracy compared to the remote-sensing data. Two
factors may explain this finding. On the one hand, many regions rely heavily on irrigation,
especially in the North China Plain. Therefore, the impact of weather conditions (primarily
the amount of precipitation) on winter wheat yield is weaker in these regions than in other
areas where irrigation is not widely performed. On the other hand, soil property data
only reflects the primary soil conditions and does not account for the widespread use of
fertilizers. Fertilization could significantly change the soil nutrient structure, reducing the
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correlation between soil properties and winter wheat yield. In addition, it is interesting
that the soil data alone performed better than the weather data. This shows a strong
spatial correlation between soil data and winter wheat yield, consistent with the actual
production. It also reflects the rationality of the proposed model, which comprised soil
data as an independent static branch. Figure 10 shows the variation in the RMSE of winter
wheat yield prediction for each data source from 2001 to 2015. The results showed that the
dual-stream deep-learning neural network model achieved the highest prediction accuracy
in most years. In drought years (2001–2003), soil data alone could achieve a comparable
and relatively high accuracy with the remote-sensing data alone, while the weather data
alone had relatively low accuracy in most years. This suggests that soil data can have
significantly improved model accuracy in drought conditions.

Table 3. Performance of each data source for winter wheat yield prediction. The new model
developed in this study combined all three datasets, but the analysis in this table examined each
dataset separately. All R2 values were statistically significant (p < 0.05). MAPE, mean absolute
percentage error; RMSE, root-mean-square error.

Dataset R2 RMSE (kg/ha) MAPE (%)

Remote sensing 0.73 743.91 14.43%

Weather 0.67 832.11 15.93%

Soil 0.69 807.19 15.13%

Dual-stream deep-learning neural
network model 0.79 650.21 12.37%
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All the factors in our analysis influenced the final crop yield (e.g., weather conditions,
soil nutrients, and crop management practices). They would therefore have a more compre-
hensive impact on crop growth than any one group of factors, and the remote-sensing data
could directly capture most of this effect. Therefore, it is logical that the remote-sensing data
contributed more to the yield-prediction performance than the other datasets. Including
weather and soil property data provided additional unique information that could further
improve the prediction accuracy. This was consistent with several previous studies [18,57].

5.2. Comparison with Traditional Methods

To further evaluate the proposed yield prediction method’s performance, we per-
formed experiments to compare our results with previous methods such as a multiple
regression, a support vector machine, and a random forest model (Table 4).
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Table 4. Comparison of the present results with three traditional methods. All R2 values were statisti-
cally significant (p < 0.05). MAPE, mean absolute percentage error; RMSE, root-mean-square error.

Method R2 RMSE (kg/ha) MAPE (%)

Multiple regression 0.55 971.04 19.07%

Random forest 0.62 890.85 17.67%

Support vector machine 0.55 966.87 19.66%

Dual-stream deep-learning neural
network model 0.79 650.21 12.37%

The new dual-stream deep-learning neural network outperformed all three traditional
methods. The multiple regression and support vector machines had similar performances
(R2 = 0.55), and although the random forest model had the highest accuracy (R2 = 0.62)
among the traditional methods, it had a much higher error (both RMSE and MAPE)
and a lower R2 than our new model. One reason may be that the predictor variables
showed high collinearity and complexity. Therefore, these models could result in severe
overfitting (i.e., fitting the training data well but achieving poor prediction results during
validation). The random forest model was less sensitive to the collinearity of the input
variables and therefore achieved better performance than multiple regression and a support
vector machine. In contrast, deep learning could automatically extract, weigh, and fuse
informative features from the input variables and was less affected by noise and collinearity
in the input data, resulting in the highest performance.

5.3. Comparison with Other Deep-Learning Yield-Prediction Methods

Our results indicated that LSTM and GRU performed better in severe drought condi-
tions. One possible reason is that recurrent neural networks have a higher ability to model
short- and long-range dependencies between sequential data, leading to a more robust
performance than convolutional neural network models. However, VGG had the worst per-
formance among the seven deep-learning models we discussed. This was mainly because
VGG has a less sophisticated structure than the others, which limited its ability to extract
representative and robust features of the data. ResNet and DenseNet both adopt a residual
connection structure, which has the merits of removing hierarchical features and improving
gradient flow simultaneously, thereby improving performance compared with VGG. Unlike
the other convolutional neural networks, the Inception-based model used several parallel
convolutions at different scales, which improved its ability to extract multi-scale features.
However, all convolutional neural networks risk overestimating the yield during years with
abnormal conditions. Therefore, if extreme weather conditions exist during the training
data periods, recurrent neural networks (especially LSTM) better account for those outlier
years; under other circumstances, the Inception-based structure is recommended for yield
prediction due to its ability to extract more relevant multi-scale features.

One difference between the present study and the previous studies in the USA relates
to land use patterns. Land parcels in the U.S. and many other developed countries tend
to be larger than the land parcels in China, with a single planting pattern. Therefore,
mixed pixels create fewer problems affecting the model’s performance. China has more
fragmented land parcels, and the planting patterns constantly change, resulting in more
mixed pixels than in the U.S. This makes accurate crop-yield prediction more challenging
in China. The new model proposed in the present study achieved good accuracy, with
MAPE = 12.4%, comparable to or better than previous state-of-the-art methods. The model
performance would be further improved if remote-sensing data with finer spatial resolution
became available, reducing the effect of mixed pixels.
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5.4. In-Season Winter Wheat Yield Prediction

Winter wheat is often planted in September or October and harvested in May or June
of the following year in China. Early and accurate prediction of winter wheat yield over
large areas ahead of the harvest is essential for food security and planning import and
export levels. To account for this, we explored how our model might be used for in-season
yield prediction in China’s major winter wheat planting area (Figure 11).
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Considering that the period after green-up is most important for winter wheat yield [22],
we utilized soil property data and only the subset of the remote-sensing and weather data
during the green-up period to train and test the yield-prediction model. Figure 11 shows
the results of predicting the final yield before harvest based only on this early-season data
up to the point at which the prediction is calculated. The model performance was weakest
between DOY 41 and DOY 97 (green-up to the booting period), with some fluctuations,
and the mean R2 was 0.74. This was probably due to the insufficient information conveyed
by the limited remote-sensing and weather data, which limited our model’s ability to
characterize the growth status of winter wheat. As the amount of sequential data available
increased, the prediction performance improved after DOY 97 (booting period), reaching
a maximum R2 of 0.78 at both DOY 137 (heading to flowering) and DOY 161 (from flowering
to maturity). Figure 11 also shows that R2 increased rapidly between DOY 97 and DOY 105
(the heading stage) and that both RMSE and MAPE decreased, indicating that the proposed
model could obtain a reliable yield-prediction result about two months before the winter
wheat harvest.

5.5. Possibility of Establishing a Parcel-Level Crop Yield-Prediction Model

With the development of precision agriculture, accurate parcel-level or field-level
crop yield information is in great demand because it would reveal crop growth and yield
responses to field management practices and environmental stress [75–77]. However,
compared with county-level yield prediction, for which remote-sensing data with coarse
resolution (e.g., MODIS) would meet the data requirements for the analysis, parcel-level
prediction needs data with finer spatial resolution, such as Landsat-8 and Sentinel-2 data or
even the harmonized Landsat-8 and Sentinel-2 data to avoid interference from cloud cover.

Researchers have also proposed several parcel-level crop yield predictions [75–77].
However, these methods were mainly based on simple regression models, whose accuracy
and robustness could be further improved by considering a deep-learning approach. The
new model we developed could be easily extended to parcel-level crop yield prediction if
parcel-level datasets become available, including crop yield data, high-resolution remote-
sensing data, and (based on the benefits demonstrated in this paper) soil data. Other factors
that may influence the crop yield at the parcel level should also be accounted for, such as
winter wheat varieties and field-management measures (e.g., fertilization and irrigation).
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Any parcel-level yield prediction based on deep learning would also require a large
quantity of site-specific yield data. However, collecting a large number of representative
parcel-level yield measured data to support such an analysis is time-consuming and remains
challenging. To address this issue, high accuracy, with less uncertainty of parcel yield from
data assimilation, should be considered in the future to provide ground-truthing data for
training and testing of the deep-learning models [6].

5.6. Limitations and Future Perspective

It is essential to discuss the uncertainty of our new model to show its limitations, as this
discussion could provide vital clues for future studies. Specifically, the model uncertainty
could be analyzed from the data and the model levels.

As for the input variables of the deep-learning model, we only included remote-
sensing, weather, and soil property data from the data perspective. Other features were
not considered, which are also closely related to final crop yield (e.g., soil moisture content,
winter wheat varieties, irrigation, and fertilization). Among these data sources, soil mois-
ture content during the growing season is critical for determining the final crop yield [18].
Therefore, future research could introduce remote-sensing data obtained by passive or
active microwave sensors to retrieve soil moisture content and provide complementary
information that would improve crop yield prediction. Moreover, due to a lack of data
under extreme weather conditions, the proposed deep-learning model is less able to accu-
rately predict crop yield responses to extreme climate change, as shown by the decreased
accuracy during a drought period (i.e., the arid period from 2001 to 2003). With ongoing
data collection to support model training, the deep-learning model would likely become
easier to generalize, resulting in a better yield prediction under various meteorological
disaster scenarios.

The values of the predictor variables for each county were generated by averaging all
the pixel values within the county’s borders, which means that the spatial variation in the
input data (especially the remote-sensing data) was not accounted for, leading to a loss of
useful information. Therefore, future studies should consider more sophisticated spatial
feature extraction methods. From this perspective, two-dimensional convolutional neural
networks might be introduced instead of the approach we used due to the superior ability
of two-dimensional convolution to extract spatial features from the original pixels. The
cropland cover data in this study was obtained from the MODIS land-cover-type product,
which does not differentiate among crop types. Although previous studies [52,67] justified
the use of this product by noting that it did not significantly decrease the yield-prediction
performance, future research should use a winter wheat mask with a finer spatial resolution
to reduce estimation errors.

From the modeling perspective, we only considered a few recent convolutional neural
networks and recurrent neural network models. More structures could be examined to
explore their potential, such as CapsuleNet [78]. In addition, because each growth stage
of a crop has a different impact on the final yield, it will be essential to identify and
account for the key stages and their interactions with factors such as temperature and
precipitation. Hence, a future study could introduce an attention mechanism [79,80] into
the yield-prediction model, allowing the model to learn the explicit representations of crop
growth cycles to increase the interpretability of the deep-learning models.

Wheat cultivation in China occurs against a background of high variation in winter
wheat’s phenological stages, which remains challenging for accurate yield prediction. De-
spite those challenges, the proposed deep-learning model still obtained promising results,
with high suitability for large-scale crop-yield prediction. However, prior studies [81,82]
showed that splitting a large study area into smaller agro-climatic zones and establish-
ing a prediction model for each zone could improve the model’s performance. Hence,
a future study could also consider building separate yield-prediction models for each
agro-climatic zone.
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Given that attention mechanisms have been widely used in many remote-sensing
classification applications [83–85], this method could help to interpret how the deep-
learning model makes its decisions. For wheat yield estimation, attention could be added
to a recurrent network (e.g., LSTM) to give more information about the importance of each
period of the winter wheat’s growth stages. Furthermore, a bi-directional attention structure
might be a better choice due to its ability to model the dependencies between two periods
in a forward–backward manner, revealing more clues about which period contributes most
to the yield estimation. For instance, with the help of an attention mechanism, the deep-
learning model could tell that if the temperature is too high during a specific period, the
yield will decrease by a predictable amount. Therefore, further research is justified in using
an attention mechanism, especially bi-directional attention, to improve the interpretation
ability of deep-learning models in yield estimation.

6. Conclusions

In this study, a novel deep-learning model was developed for winter wheat yield pre-
diction based on multi-source data (remote-sensing, weather, and soil properties) in China’s
major winter wheat planting areas. We proposed a dual-stream deep-learning neural net-
work based on well-known, previously developed deep-learning structures (VGG, ResNet,
DenseNet, Inception, LSTM, and GRU) with non-linear relationships between winter wheat
yield and the multi-source predictor indicators. We found that the Inception-based model
achieved the highest accuracy, with an R2 of 0.79, an RMSE of 650.21 kg/ha, and a MAPE of
12.4%. The prediction model’s errors were randomly distributed and showed no obvious
under- or over-estimation.

We also investigated the influence of the predictor variable on winter wheat yield
prediction. The remote-sensing data had a stronger contribution in predicting yields than
the weather and soil property data. One possible explanation is that the remotely sensed
surface reflectance provides a more comprehensive representation of the crop’s growth and
stress situations. The dual-stream deep-learning neural network model outperformed the
traditional multivariate regression and machine-learning models by increasing the R2 by
17.0 to 24.1% and decreasing RMSE by 240.6 to 320.8 kg/ha. The dual-stream deep-learning
neural network model could also provide an accurate yield prediction about two months
before harvesting, with predicted values within 13% of the official reported yield statistics,
showing an excellent in-season prediction capability.

Our study demonstrated the advantages of using a deep-learning model for the large-
scale, long-term prediction of winter wheat yields across China at a county level. The
proposed method, without particular constraints on crop type or region, would be likely to
generalize to other crops (e.g., maize, paddy rice) and other similar agricultural planting
regions worldwide with minimal effort.
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