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Abstract: Accurate spatial distribution and area of crops are important basic data for assessing
agricultural productivity and ensuring food security. Traditional classification methods tend to fit
most categories, which will cause the classification accuracy of major crops and minor crops to
be too low. Therefore, we proposed an improved Gray Wolf Optimizer support vector machine
(GWO-SVM) method with oversampling algorithm to solve the imbalance-class problem in the
classification process and improve the classification accuracy of complex crops. Fifteen feature bands
were selected based on feature importance evaluation and correlation analysis. Five different smote
methods were used to detect samples imbalanced with respect to major and minor crops. In addition,
the classification results were compared with support vector machine (SVM) and random forest
(RF) classifier. In order to improve the classification accuracy, we proposed a combined improved
GWO-SVM algorithm, using an oversampling algorithm(smote) to extract major crops and minor
crops and use SVM and RF as classification comparison methods. The experimental results showed
that band 2 (B2), band 4 (B4), band 6 (B6), band 11 (B11), normalized difference vegetation index
(NDVI), and enhanced vegetation index (EVI) had higher feature importance. The classification
results oversampling- based of smote, smote-enn, borderline-smote1, borderline-smote2, and distance-
smote were significantly improved, with accuracy 2.84%, 2.66%, 3.94%, 4.18%, 6.96% higher than
that those without 26 oversampling, respectively. At the same time, compared with SVM and RF, the
overall accuracy of improved GWO-SVM was improved by 0.8% and 1.1%, respectively. Therefore,
the GWO-SVM model in this study not only effectively solves the problem of equilibrium of complex
crop samples in the classification process, but also effectively improves the overall classification
accuracy of crops in complex farming areas, thus providing a feasible alternative for large-scale and
complex crop mapping.

Keywords: Sentinel-2 data; crop mapping; multi-temporal; oversampling algorithms; GWO-SVM

1. Introduction

Accurate crop mapping can help monitor crop growth and provide a basis for estimat-
ing food production [1] and predicting crop pests and diseases. Therefore, timely grasp
of crop planting area [2] has important significance for the adjustment of crop planting
structure, ensuring food security, and estimating food production.

Remote sensing [1,3,4] technology can monitor crop information quickly, accurately
and on a large scale, and is widely used in crop identification and classification, and is
a supplement to ground data. In recent years, several studies have been used remote
sensing satellite to map the crop fields in the world. The studies used optical and synthetic
aperture radar (SAR) [5] data at moderate spatial resolution and high spatial resolution.
SAR images are not affected by the weather and are widely used to map rice planting
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area [6]. Optical images contain abundant spectral information and are widely used in
crop mapping. Optical images used in those studies include MODIS [7–9], Landsat 8 [10],
Sentinel-2 [11–14], HJ1B [15], etc. In recent years, with the continuous improvement of
sensors, the UAV images with sub-meter resolution [16] and hyperspectral bands are
obtained [17] to accurately map crop areas.

Some studies have shown that using time-series images [18,19] and crop phenology
characteristics is an important method to achieve rapid and accurate remote sensing
monitoring of agricultural conditions, such as fine classification of crops, growth monitoring
and yield estimation. Asgarian et al. based on the phenological information of long-
term field investigation [20], innovatively applied decision tree by setting different NDVI
thresholds at different time phases, and realized the classification wheat, barley, alfalfa and
fruit trees. The images and classification methods adopted can lay the foundation for better
drawing crops in the severely arid regions in central Iran. Gallo [21] proposed a solution to
understand how CNN identify the time intervals that contribute to the determination of the
output class-Class Activation Interval (CAI). Therefore, with our CAI method we are able
to provide information on “when” the class associated with a pixel is present in the time
series of Earth Observation (EO) data. Skakun [22] proposed a phenological feature, which
came from the MODIS Normalized Difference Vegetation Index (NDVI) time series in the
predefined time period, and was normalized by the growing degree days(GDD) calculated
by the modern retrospective research and application analysis (MERRA2) products. This
enables us to distinguish winter crops, and realize the mapping of early season, large
area and winter crops based on satellite data and meteorological information. Another
study [23] proposed a small-scale irrigation and rain-fed crop detection in temperate regions
using optical (Sentinel-2), radar (Sentinel-1) and meteorological (SAFRAN) time series data,
combining vegetation, polarization and meteorological indices. In order to distinguish the
rainfed and irrigated plots of the same species, we rely on the phenology development
of vegetation cover as an explanatory variable, which is of great value to cereal crops in
temperate region.

Several studies noted that the accuracy and computational cost of many machine
learning methods suffer from the “curse of dimensionality” [24,25] arising from the correla-
tion between features of the input dataset. Therefore, it is necessary to optimize features
to reduce the impact on model performance and improve the crop mapping accuracy.
Ren et al. [12] proposed an optimal feature combination method based on the importance
analysis of temporal features. In the identification of species, the accuracy was 90% and
the accuracy was improved by 8%. Sitokonstantinou et al. [26] composited 10 spectral
bands (excluding the three bands with a 60 m resolution) and vegetation indices (including
NDVI, PSRI, and NDWI) of S-2A images from May to September. Two groups of optimal
features related to image acquisition date and spectral bands were obtained by using the
feature importance evaluation. The conclusion showed that the bands during May and
July, and the spectral bands (including visible light and near-infrared band) and the above
three vegetation indexes have higher importance values. The overall accuracy and kappa
coefficient values of the classification result in this study were higher than 0.87.

At present, machine learning has been widely used in supervised classification and has
been widely used in achieved good results in land use, crop identification and ecological
environment monitoring, and has achieved good classification results [27,28]. Common
machine learning methods include random forest [29], artificial neural network [30], sup-
port vector machine [31]. Random forest Algorithm (RF) is an integrated learning method,
which can obtain more accurate results compared to a single model. Li et al. [32] used the
improved flexible spatio-temporal fusion (IFSDAF) model and proposed a Random-Forest-
based model and a decision-rule-based model to draw crop types and crop rotation types.
Compared with the random-forest model, the overall accuracy of the decision rule-based
model was 89.7%. Xu et al. [33] used multi-temporal and multi-spectral remote sensing
data to construct a general crop classification model based on deep learning of long-term
and short-term memory structure and attention mechanism, with a mean average kappa
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score of 82.0% in transfer sites. The support vector machine algorithm (SVM) can map
the input data to a high-dimensional space and convert it into a non-linear support vector
machine, which can deal with non-linear high-dimensional data. Samui et al. [34] studied
Least Square Support Vector Machine (LSSVM) and Relevance Vector Machine (RVM), and
the overall classification accuracy reached 87.8% and 90.2%, respectively. Low et al. [35]
added the image to the support vector machine through feature importance analysis and
feature dimensionality reduction, and the classification accuracy increased by 4.3%. The
above study can make full use of the spectral characteristics of the image, especially the
data after feature optimization is added to support vector machine model to complete the
accurate classification of crops under complex planting conditions. However, this study
aims to obtain the optimal characteristic parameters though iterative optimization in the
intelligent optimization algorithm to improve the classification accuracy of complex crops.

The above research methods have achieved good classification results and high pre-
cision, but there are still problems in dealing with the imbalance of classification sample
data sets, which may bring great trouble to the classification of complex crops in the model.
As the main grain crop, winter wheat is widely distributed in space. Rape and other crops
are often dispersedly planted or sporadically distributed, and crop planting patterns will
lead to different degrees of imbalance in the proportion of samples. Lin et al. [36] in order
to solve the problem that the proportion of strong scintillation events in data sets is very
small, a strategy combined with improved limit gradient boosting (XGBoost) algorithm is
proposed to detect weak, medium and strong imbalance events, and the accuracy of the
results is 12% higher than that of random forests and decision trees. Wang [37] took Beijing
as the research area, identified DFP types based on machine learning method, adopted
borderline-Synthetic Minority oversampling technology, and compared the classification
accuracy of RF, AdaBoost and Gradient Boosting Decision Tree (GBDT) models. The results
show that the Area Under the Receiver Operating Characteristic curve (AUROC) of RF is
the highest, reaching 0.73. Therefore, for the problem of sample imbalance in agricultural
classification, over-sampling and other imbalance algorithms should be used to optimize
and solve the problem of low classification accuracy of a few sample crops in the classifier.

In this study, Sentinel-2 time-series images with a resolution of 10m as the data source
and Huaibin County of Henan Province was used as the experimental region. The im-
portance analysis and correlation analysis of spectral and vegetation index characteristic
were carried out. The characteristics of high combination importance and low correlation
were used as classification features. In addition, oversampling algorithms such as smote,
borderline-smote, smote-enn and distance-smote are used to solve the problem of imbal-
anced samples in the classification process. Finally, based on the balanced sample data
and the optimized Sentinel-2 time series data, the GWO-SVM classifier is used to complete
the classification mapping of complex crops in the study area, which provides technical
reference or technical support for large area crop mapping.

2. Study Area and Datasets
2.1. Study Area

In this study, we selected the typical wheat and oil crops production areas, namely
Huaibin in Henan Province (Figure 1). Huaibin is northeastern in Xinyang City between
115◦11′–115◦35′ and 32◦15′–32◦38′. The total area of Huaibin County is 1209 square kilome-
ter (Km2). Huaibin belongs to the transition zone of north subtropical and warm climate,
with obvious monsoon climate and the same season of rain and heat. The mean annual air
temperature was 15.6 ◦C during 2000–2021 from Huaibin. Located on the upper reaches
of Huai River, Huaibin County is in the transition stage from the second ladder to the
third ladder in China. The terrain slopes from west to east and gradually decreases from
north to south, which can be divided into three types: hilly land, plain land and depression
land. The main crop planting system in Huaibin is two crops per year, wheat and rape
in winter, maize and rice in summer. The wheat and rape are usually planted in October
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and harvested in May. The different cropping cycles among these major crops provide the
foundation to identify and map the crop fields in this study.
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Figure 1. Location of Huaibin County, Henan Province, China.

2.2. Datasets
2.2.1. Sentinel-2 Data

Sentinel-2 satellite is a high-resolution multispectral imaging satellite designed for
global terrestrial observations including terrestrial vegetation, soil, and water resources,
inland waterways and coastal areas. Sentinel-2 image have high spectral and temporal
resolutions and can be used to monitor crop area and growth using long time series images.
Sentinel-2 comprises a constellation of two polar-orbiting satellites and provides imagery
across 13 spectral bands, with a 10-day revisit period and a maximum spatial resolution
of 10 m. Both satellites equipped with a multispectral instrument (MSI) that covers 13
spectral bands from visible light to short-wave infrared, with 10m, 20m and 60m resolution,
respectively. In this study, we selected 9 Sentinel-2 remote sensing images from November
2020 to May 2021 during the main crop growing season. The Sentinel-2 Data (L2A-level
image) were downloaded from the Google Earth Engine big data cloud platform. The band
parameters of Sentinel-2 data are shown in Table 1.

Table 1. Main band parameters of Sentinel-2 data.

Bands Description Center Wavelength
Bandwidth (nm) Resolution

B1 Coastal aerosol 442.7 60
B2 Blue 492.4 10
B3 Green 559.8 10
B4 Red 664.6 10
B5 Vegetation Red Edge 1 703.9 20
B6 Vegetation Red Edge 2 740.5 20
B7 Vegetation Red Edge 3 782.8 20
B8 NIR 832.8 10

B8A Narrow NIR 864.7 20
B9 Water vapour 945.2 60

B10 SWIR-Cirrus 1376.9 60
B11 SWIR1 1613.7 20
B12 SWIR2 2202.4 20

2.2.2. Field Sample Data

To obtain high-quality samples and ensure classification accuracy, a handheld GPS
system was used to obtain ground data during crop maturity and harvest stage. From 25
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May 2021 to 30 May 2021, we carried out field research in Huaibin. For example, winter
wheat is in the maturity and harvest period, and the yield results are relatively stable,
which facilitates the ground data collection. The field survey samples were collected by
using handled GPS with a positioning accuracy of ±5 m. The collected data included
crop types, growth situations, geographic coordinates and phenological periods. In 2021,
337 ground samples were taken: 174 samples of wheat, 68 samples of rape, 14 samples of
woodland, 24 samples of other crops, 54 samples of bare land, 3 samples of water. The
specific distribution of the samples is shown in Table 2 and Figure 2.

Table 2. The number of sample points.

Crop The Numbers of Sample Points Percent

Wheat 174 51.32%
Rape 68 20.17%

Woodland 14 4.15%
Other crops 24 7.12%

Bare land 54 16.02%
Water 3 0.089%
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Figure 2. The spatial distribution of crop samples in Huaibin County.

2.2.3. Visual Interpretation Data

In order to obtain more sample points, we collected a large number of reference data
from the high-resolution Google Earth image, including training sample points and test
sample points (Figure 3) of wheat and rape, etc. Due to the differences in spectral and
texture features of different crops in high spatial resolution images, sample points of crops
were selected based on Google Earth images. When selecting samples, it is necessary
to make full use of multi-temporal data and remote sensing image data combined with
different bands, and use NDVI, EVI and other time series curves to judge different crop
types. In order to improve the classification accuracy of samples, pure pixels should be
selected. Table 3 is the number of visual interpretation sample points.
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Table 3. The number of visual interpretation sample points.

Crop The Numbers of Sample Points Percent

Wheat 156 45.61%
Rape 88 25.73%

Woodland 17 4.97%
Bareland 50 14.61%

Water 13 3.80%
Built-up 18 5.26%

3. Methods

In order to effectively improve the classification accuracy of complex crops, the tem-
poral remote sensing data of the whole growth period from November 2020 to May 2021
were selected in this study. In addition to the 10 spectral bands of Sentinel data, NDVI,
EVI, SAVI, NDWI and NDBI were selected according to the characteristics of crop phe-
nology, vegetation coverage, soil reflectance, moisture content and biomass in the study
area. Then, Pearson and XGBoost methods are used to complete the correlation analysis
and importance evaluation of all features, so as to optimize features and reduce feature
redundancy. Previous studies have shown that sample imbalance will make the classifica-
tion model more biased, which will not only lead to low accuracy of categories with fewer
samples, but also affect the overall classification accuracy. Therefore, this study introduced
oversampling methods, including smote, borderline-smote, smote-enn, distance-smote to
solve the problem of sample imbalance in the classification process. Finally, combined
with traditional classification methods such as GWO-SVM, SVM and random forest, the
accuracy of classification results is compared based on user accuracy, producer accuracy,
F1-score and overall accuracy. Figure 4 is the overall flow chart of this study.
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3.1. Time Series Vegetation Indexes

Vegetation index is sensitive to vegetation greenness and water status, which can
obtain the physical differences of land use types. More emphasis on vegetation signals
while reducing soil background and solar irradiance contributions. NDVI and Enhanced
Vegetation Index (EVI) have high correlation with canopy leaf area index and chlorophyll,
which can indicate the comprehensive changes of vegetation greenness and biomass. Nor-
malized Difference Water Index (NDWI) reflects crop canopy water content and vegetation
canopy water content. When vegetation is under water stress, NDWI can be accurately
detected. Soil regulated vegetation index (SAVI) attempts to minimize the influence of soil
brightness through soil brightness correction coefficient. The five vegetation indexes in
Table 4 were initially selected for analysis.

Table 4. B, G, R and NIR are the reflectivity of blue, green, red and near-infrared bands, respectively;
L is the soil regulation parameter and has a value of 0.5.

Vegetation Indexes Equations

Normalized Difference Vegetation
Index (NDVI) NDVI = (NIR − R)/(NIR + R) [38]

Enhanced Vegetation Index (EVI) EVI = 2.5 × (NIR − R)/(NIR + 6R − 7.5B + 1) [39]
Soil Regulation vegetation Index (SAVI) SAVI = (1 + L)1(NIR − R)/(NIR) [40]

Normalized Difference Water Index (NDWI) NDWI = (G − NIR)/(G + NIR) [41]
Normalized Difference Built-up Index (NDBI) NDBI = (SWIR − NIR)/(SWIR + NIR) [42]

Many studies have shown that the change of crop phenological characteristics in
agricultural ecosystems is the most obvious. Using the difference of crop phenological
characteristics can effectively improve the classification accuracy of complex crops and is
also the basis for accurate monitoring of crops [43]. Crop phenological period reflects the
growth and development of crops. Since the phenological periods of wheat, rape and other
crops in the study area are relatively similar in a specific period of time, it is difficult to
effectively distinguish the spectral characteristics, so it is difficult to effectively extract the
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crop planting area by using single-phase images. Therefore, based on the analysis of crop
NDVI time series curve (Figure 5), this study completed the classification of wheat, rape,
and other crops.
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3.2. Feature Variable Optimization

Feature selection is an important method of feature dimension reduction in remote
sensing image classification, and XGBoost has good effect in feature importance evaluation
and correlation analysis. Based on python environment, this study uses XGBoost algorithm
to achieve feature optimization. The XGBoost algorithm is an improved method based
on GBDT model and a machine learning model based on Boosting idea. Compared with
the traditional GBDT algorithm, it no longer uses the first-order derivative information,
but is based on the second-order Taylor expansion, which can improve the efficiency of
sorting the importance of input features and the optimal solution. Therefore, this study uses
XGBoost model to evaluate the feature importance. In addition, based on the evaluation
results of feature importance, Pearson correlation analysis is again used to reduce feature
redundancy, and the Pearson coefficient standard is set to 0.9.

3.3. Oversampling Algorithm

Crop planting categories and spatial distribution usually cause the imbalance of
samples in the classification process, which leads to the overrepresentation of large sample
categories in the loss function in the traditional classification method. In order to solve the
problem of sample imbalance, the existing research methods mainly include over-sampling
of a few types of data or under-sampling of most types. Smote algorithm is an improved
scheme based on random oversampling algorithm, which generates new samples by the
difference between adjacent minority samples. The smote [44], Borderline-Smote [45] only
conducted over-sampling for a few samples of boundary to improve the class distribution
of samples, thereby improving the classification accuracy of a few samples. Distance-
smote [46] assumed that the samples located at the edge of the class were more conducive
to the formation of the classification boundary. The seed samples were obtained by directly
comparing the distance and aggregation degree between the samples and the class center,
and the new samples were synthesized on the connection between the seed samples and the
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class center. In this study, oversampling technique is used to solve the problem of sample
imbalance in classification. The results before and after sampling are shown in Figure 6.
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3.4. Selection of Classification Algorithms

In order to examine the performance of the improved GWO-SVM proposed in this
study, it was compared with two supervised classification methods called random forest
(RF) and support vector machine (SVM). Gray Wolf Optimizer is a new meta-inspired
method that simulates the leadership level and hunting mechanism of l grey wolf in
nature, and also realizes the three steps of hunting, searching for prey, enclosing prey,
and attacking prey. Some studies show that compared with particle swarm optimization
(PSO), gravitational search algorithm (GSA) and other algorithms, GWO algorithm [47] can
provide very competitive results, which is suitable for challenging problems with unknown
search space. In addition, GWO-SVM [48] can obtain the optimal parameters by iterative
optimization to improve classification accuracy. Based on the above research results, this
study uses the improved GWO-SVM method to realize the classification and extraction of
complex crops, and compares it with traditional classification methods such as SVM, RF.
Support vector machines uses kernel function to map linearly inseparable samples into
high-dimensional linearly separable feature space, transforms the high-dimensional space
problem into a quadratic programming problem, and obtains the global optimal solution
through convex optimization, which is widely used in remote sensing image classification.
Random forest is an ensemble learning method based on decision tree, which combines
Bagging ensemble learning theory and random subspace method.

3.5. Accuracy Evaluation

To compare the accuracy of different classification methods, we randomly select
training samples, and make the selected samples evenly distributed in the study area.
Confusion matrix is a common accuracy evaluation index, so we select one of the evaluation
indexes of confusion matrix. We also selected overall accuracy (OA), producer accuracy
(PA), user accuracy (UA) and F1 score as evaluation indicators for crop mapping. The
calculation method of each indicator is as follows.

OA =
∑n

i=1 Xii

X
(1)

PA =
Xii
Xi∗

(2)

UA =
Xii
X∗i

(3)
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F1i = 2
UAi ∗ PAi
UAi + PAi

(4)

In the Equations (1)–(4), X is the total number of test samples, Xi∗ and X∗i are the
total number of test samples of type i and the total number of samples of type i in the
classification results, respectively. Xii is the number of the i-th row and the i-th column
of the confusion matrix, indicating the number of correctly classified samples of the i-th
category, and n is the number of classification categories.

4. Results

In this study, the Sentinel-2 time series image and its vegetation index were used to
complete the feature selection. Based on the analysis of the processing performance of
oversampling algorithms such as smote, smote-enn, borderline-smote1, borderline-smote2,
distance-smote on imbalanced datasets, the effects of different methods on classification
accuracy were evaluated. The classification results were compared with those of traditional
classification methods, such as random forests and support vector machines, based on
the indexes of computational efficiency, computational complexity and overall accuracy.
Finally, the oversampling method with the optimal classification accuracy is selected.
For the improved GWO-SVM, SVM and RF classification methods, the user accuracy,
producer accuracy and F1 score classification index are used to evaluate the remote sensing
classification effect of complex crops.

4.1. Feature Importance Analysis and Correlation Analysis

Feature importance evaluation is implemented by XGBoost package in python. By
analyzing the feature importance of each month’s time series images. The feature im-
portance result map from November 2020 to May 2021 is generated (Figure 7). Figure 7
shows that from November 2020 to May 2021, B2 is of high importance, which is caused
by the high reflectivity of the bare ground and buildings. Then, the importance of NDVI
gradually increased from October 2020 to March 2021, because crops such as wheat and
rapeseed began to grow green after entering the seedling stage in November and entered
the regreening period from February, were in the rapid growth stage. NDVI and EVI
increased rapidly, which is an important indicator reflecting crop coverage and growth. In
addition, the importance of B3, B4, and B6 is also higher, because the green, red and red
edge bands are important spectral bands reflecting crop growth.

In this study, the correlation analysis was conducted on the selected 10 spectral band 5
vegetative indexes, and the correlation coefficients are shown in Figure 8. It can be seen
that B2 has a higher correlation with B3 and B4, and the correlation coefficient is greater
than 0.9. B6 has a higher correlation with B7, B8, and B8A, but its importance is weak.
In the vegetation index, the correlation coefficients between NDVI and EVI and SAVI
were 0.98 and 0.99, respectively, and the correlation coefficient between NDWI and SAVI
reached 1.00.

4.2. Performance with Different Oversampling Algorithms

Figure 9 shows the overall distribution of the sample points. Among then, wheat as
the main crop occupies the largest sample proportion, which is 51.32%, with other crops
and buildings have fewer sample points. Existing studies has shown that when the ratio
of the two types of samples in the dataset exceeds 1:2, the dataset can be considered to
be imbalanced. Therefore, for the extremely imbalanced sample data in this study, smote,
borderline-smote, smote-enn and distance-smote algorithms are, respectively used for
processing. The results before and after processing are shown in Figure 10. It can be
seen from Figure 10b that smote and smote-enn generate new samples based on a small
number of class samples with boundaries differences. Borderline-smote1 and Borderline-
smote2 generate new samples for the minority class samples at the border. Distance-smote
compares the distance between the sample and the class center to obtain new samples.
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Aiming at mitigating the impact of data sample imbalance on crop mapping, a com-
bination of oversampling algorithms was proposed to achieve resampling. As shown in
Table 5, comparisons were made between the distance-smote algorithm and other sev-
eral single oversampling methods, namely the smote, smote-enn, Borderline-smote1 and
Borderline-smote2 algorithms, on the basic of the raw data used in the training process. All
the comparison experiments were based on the data randomly selected from the overall
training crop samples. The training process was achieved with the GWO-SVM algorithm.
As shown in Table 5, the accuracy of the raw data is the lowest, only 89.40%, while the
accuracy is improved by using distance-smote methods, reaching 96.36%. Distance-smote
on wheat and woodland had the highest producer accuracy, are 0.99 and 0.82. However,
the producer accuracy on rape of Borderline-smote1 and Borderline-smote2 algorithms.
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Table 5. Classification accuracy of different oversampling algorithms.

Oversampling Technology Raw Data Smote Smote-enn Borderline-
smote1

Borderline-
smote2

Distance-
smote

PA
Wheat 0.96 0.98 0.97 0.98 0.98 0.99
Rape 0.79 0.90 0.85 0.93 0.92 0.91

Woodland 0.76 0.81 0.75 0.75 0.78 0.82

UA
Wheat 0.95 0.91 0.96 0.93 0.95 0.98
Rape 0.93 0.99 0.93 1.00 0.97 0.98

Woodland 0.59 0.77 0.68 0.71 0.70 0.93

F1 score
Wheat 0.96 0.95 0.96 0.97 0.95 0.96
Rape 0.85 0.86 0.81 0.92 0.91 0.90

Woodland 0.67 0.86 0.71 0.83 0.78 0.84
Accuracy (%) 0.8940 0.9224 0.9206 0.9334 0.9358 0.9636

4.3. Comparison of Different Classification Methods

We have achieved the classification of the study area through different classification
methods. Figure 11 shows the results of crop mapping for the entire county classified using
the method proposed in this study. It can be seen that there are six categories, namely
wheat, rape, woodland, buildings, water bodies and bare land, it can be seen from the figure
that wheat is mainly distributed in the northern part of the Huai River, while rapeseed
and woodland are mainly distributed in the southern part of the Huai River. This article
compares SVM and Random Forest, which have performed well in crop mapping in recent
years. Mainly compare the overall accuracy of different crops in the study area, F1-score,
user accuracy and producer accuracy.
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The output results of the Pearson correlation matrix can be seen from Fig. 8 that
wheat is mainly distributed in the north of Huai River, and rape and woodland are mainly
distributed in the south of Huai River. The study area covers an area of 1291 Km2. The error
was small, which was also in line with the field survey results. Therefore, this study can
provide technical reference for the accurate classification of crops at the county level. Table 6
is the classification results of three classification methods based on GWO-SVM, including
overall accuracy, F1-score, user accuracy and producer accuracy. It can be seen from Table 5
that the overall accuracy of the improved GWO-SVM is 96.36%, and the user accuracy of
rape and built-up is also significantly higher than the other two classification methods.
In addition, in order to further verify the classification results of different methods, we
randomly selected two regions in the study area for comparisons. It can be seen that the
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crop plots extracted based on the improved GWO-SVM method in Figure 12a are more
regular and less salt and pepper phenomenon. However, the classification result of RF
model in Figure 12b are relatively fragmented, and the SVM method in Figure 12b also
misclassified the rape and the building. Compared with the improved GWO-SVM, RF and
SVM have a poorer extraction effect on narrow rural roads, and there are misclassifications
of wheat and rape, and support vector machine has more misclassification of woodland.
Further details can be found in the discussion.

Table 6. The classification accuracy for improved GWO-SVM, RF and SVM.

Classification Improved GWO-SVM RF SVM

OA 0.9636 0.9558 0.9525
F1 score 0.96 0.98 0.94

Wheat
PA 0.99 0.99 1.00
UA 0.98 0.97 0.98

Rape PA 0.91 0.86 0.83
UA 0.98 0.94 0.96

Woodland
PA 0.82 0.83 0.82
UA 0.93 0.93 0.93

Bareland
PA 0.83 0.79 0.98
UA 0.79 0.78 0.78

Water
PA 0.97 0.95 0.96
UA 0.97 0.96 0.93

Built-up PA 1.00 0.98 1.00
UA 0.89 0.82 0.78
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5. Discussion
5.1. The Significance of Feature Selection

Due to the diversified crops and high filed fragmentation, it is necessary to select
remote sensing image data for crop mapping. As shown in Figure 5, the time-series NDVI
of different categories is different in specific growth periods, especially winter wheat
shows an obvious upward trend in November and a downward trend in December. This
is because after wheat enters the seedling and tillering stages, the vegetation coverage
increases, and then stops growing at the overwintering stage. After February of the next
year, the winter wheat was in the rising stage and jointing stage, the rapid growth of
NDVI and EVI vegetation index showed an upward trend. After May, the winter wheat
gradually entered the mature stage, and the chlorophyll content decrease, which also led to
vegetation index showed a gentle downward trend. Rapeseed declined after a slow rise
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from November to December due to lower surface coverage at seedling stage and reduced
chlorophyll content after wintering. From March to May, the vegetation index increased
first and then decreased. The reason is similar to that of winter wheat, which is due to the
influence of vegetation physiological characteristics such as fractional cover and canopy
characteristics, leaf green content and so on. Therefore, it is necessary to classify crops with
similar spectral characteristics by using multi-temporal image data and feature selection.
Audrey Mercier [49] used multi-temporal Sentinel-1 and Sentinel-2 time series images to
distinguish wheat from rape and found that leaf area index (LAI) and NDVI were the
most important.

The above research is consistent with the conclusion that the use satellite images
can improve the classification accuracy of complex crops. In terms of feature selection,
this paper realizes the importance evaluation and correlation analysis based on XGBoost
package and Pearson coefficient. The results showed that NDVI, EVI, SAVI and B2, B8A had
high feature importance in crop classification model, and the correlation between NDVI and
SAVI was 0.99. Wang et al. [50] found that B2 and NDVI have high characteristic importance
based on RF classification method in winter crop mapping in complex agricultural areas,
which is consistent with the conclusion of this study. In summary, by analyzing and
optimizing the spectral and vegetation index characteristics of different crops, this study
not only reduces the feature redundancy and improves the classification accuracy, but also
provides a more efficient method for the classification of complex crops at county scale.

5.2. Role of Oversampling Algorithms

In this study, five oversampling algorithms, smote, smote-enn, distance-smote,
borderline-smote1, borderline-smote2, to solve the problem of sample data imbalance.
The accuracy was improved by 1.2%, 2.5%, 3.2%, 4.5% and 3.1%, respectively, compared
with imbalanced data Lin et al. [36] used the smote-enn oversampling technique to solve
the problem of small proportion of strong scintillation in datasets, and the accuracy was
improved by 4–5% compared with decision trees and random forests. Zhang et al. [9] used
borderline-smote to study the problem of susceptibility of debris flow, and the results were
about 15% higher than the imbalanced. In this study, five oversampling techniques are
applied to solve the sample imbalance problems, and the distance-smote method shows
remarkable performance in solving this problem. However, smote aims to increase the
number of minority classes and improves the classification accuracy of small sample classes
such as rape, but the accuracy of major classes has not improved significantly. Therefore, in
the next step, this study should combine the undersampling method to improve and solve
the classification accuracy problem caused by sample imbalance in general.

5.3. Compare Different Classification Algorithms

In order to compare different classification algorithms, imbalanced crop sample test
datasets were established. The results significantly illustrate the excellent performance
of the improved GWO-SVM in crop classification. It can be shown in Table 5 that the
accuracy of the improved GWO-SVM was higher than SVM and RF. The overall testing
accuracy of the improved GWO-SVM is 96.36%, higher than SVM 1.1% and higher than RF
0.8%. The F1 score of the improved GWO-SVM is 0.96, higher than SVM 2%. Compared
to wheat, the rape and bareland are minor class. The PA of Rape are minor class. In the
rape class, the producer accuracy of the improved GWO-SVM algorithm was 5% and 8%
higher than that of SVM and RF, respectively. In the bareland class, the user accuracy
of the improved GWO-SVM algorithm was 1% and 1% higher than that of SVM and RF,
respectively. These results indicate that it is valuable to enhance the detection accuracy for
strong scintillation events with different degrees of imbalance in the testing data with the
method of resampling the imbalanced training data by distance-smote before training the
GWO-SVM model.

In this paper, SVM with GWO optimization algorithm not only improves the classifi-
cation efficiency and accuracy of complex crops, but also has strong global search ability. In
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addition, parameter A also controls the local search part range of the algorithm, making the
global search ability and local search ability relatively balanced, which is an improvement
to the firefly algorithm. However, GWO-SVM still has some limitations, that is, in the face
of complex optimization problems, there is a slow convergence in the later stage.

6. Conclusions

Timely and accurate crop mapping is the basis for government decision-making and
evaluation of agricultural production. Crop classification results provide basic data support
for planting structure optimization and production decisions.

In this study, the importance evaluation and correlation analysis were completed based
on the characteristics of time series Sentinel-2 image spectral and vegetation index. The
smote, Borderline-smote1, Borderline-smote2, smote-enn and distance-smote oversampling
methods were used to solve the imbalance problem of minority class samples in the
procedure. We found the distance-smote performed the best. Finally, GWO-SVM, RF,
SVM and other methods were used to complete the comparative analysis of complex crop
mapping results. It is found that NDVI and EVI are of high importance, and B2, B4, B6,
and B11 are more important. In this study, the classification accuracy was improved by
feature selection. Therefore, it is necessary to conduct feature importance evaluation and
correlation analysis for feature selection in the classification procedure. In the imbalanced
processing of sample points, it is found that the user accuracy and producer accuracy
of the classification results are higher than those of the imbalanced processing by using
smote, borderline-smote1, borderline-smote2, distance-smote, and smote-enn methods. In
addition, studies have shown that distance-smote can improve the classification accuracy
and classification efficiency of complex crops to the greatest extent. Therefore, this work
will provide reference for researchers who use imbalanced samples to classify crops, and the
crops will provide necessary information for the management of local wheat and oil crops.
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