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Abstract: This research investigates the applicability of combining spatial filter’s algorithm to extract
surface ocean current. Accordingly, the raster filters were tested on 80–13,505 daily images to detect
Kuroshio Current (KC) on weekly, seasonal, and climatological scales. The selected raster filters are
convolution, Laplacian, north gradient, sharpening, min/max, histogram equalization, standard
deviation, and natural break. In addition, conventional data set of sea surface currents, sea surface
temperature (SST), sea surface height (SSH), and non-conventional data such as total heat flux, surface
density (SSD), and salinity (SSS) were employed. Moreover, controversial data on ocean color are
included because very few studies revealed that chlorophyll-α is a proxy to SST in the summer to
extract KC. Interestingly, the performance of filters is uniform and thriving for seasonal and on a
climatological scale only by combining the algorithms. In contrast, the typical scenario of identifying
Kuroshio signatures using an individual filter and by designating a value spectrum is inapplicable
for specific seasons and data set. Furthermore, the KC’s centerlines computed from SST, SSH, total
heat flux, SSS, SSD, and chlorophyll-α correlate with sea surface currents. Deviations are observed
in the various segments of Kuroshio’s centerline extracted from heat flux, chlorophyll-α, and SSS
flowing across Tokara Strait from northeast Taiwan to the south of Japan.

Keywords: spatial filters; data classification; Kuroshio detection; satellite remote sensing; oceano-
graphic parameters; Argo drifter data

1. Introduction

The recent advancements in satellite sensors and their algorithms have archived coher-
ent, reliable, and high-resolution global oceanographic data for many decades. Moreover,
satellite oceanography offers more extended practicality, possibilities, area averaging, re-
peated synoptic temporal observations, and prediction of KC from the same angle than just
by using in-situ data [1,2].

Furthermore, the characteristics of Kuroshio water differ from those of its surround-
ings, and it forms a clear distinguished front of biophysical parameters such as SST, SSS,
and chlorophyll-α [3,4]. As warm and saline water is brought into the study region
(Figure 1) from the tropical pacific ocean, the SST and SSS of Kuroshio are higher than their
surrounding waters. As a result, precise temperature and salinity boundaries formed at the
north and western edges of the Kuroshio axis [5]. Therefore, satellite-based remote sensing
from various sensors provides valuable knowledge for current ocean investigations.

AVHRR (Advanced Very High-Resolution Radiometer) and MODIS (Moderate Reso-
lution Imaging Spectroradiometer) data help in detecting and monitoring the path, higher
core temperature, and eddies of Luzon Strait in Kuroshio region, eastern coast of Japan, and
the East China Sea [6–9]. However, studies conducted on the seas of East China, Huanghai,
Bohai [10], and on the northeast continental shelf of the United States found that, during
summer, the front thermal signatures fade and eventually disappear due to the uniform
heat of the ocean surface [11].
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It is noteworthy that the missing signature of the feature can be proxied from ocean
color images. Under such circumstances, by employing eight-day composites of Sea-
viewing Wide Field-of-view Sensor (SeaWiFS) ocean color images to map oceanic fronts
using chlorophyll-α maxima and the intensity of spectral signature by chlorophyll-α in
satellite images correlated with the volume of diatoms [12,13]. Within the nearshore
region north of the Kuroshio and its southern part, the population of phytoplankton varies
seasonally [14] and is comparatively reduced in the deep oceans throughout the year [15].
Still, chlorophyll-α is the largest in winter in the Kuroshio region and the other oceanic
region [16]. However, variation of chlorophyll-α within the coastal zones and the offshore
area along 135◦25′E enhance in June, July, and August and is lesser during December,
January, and February. Along with 137◦E, it is more prominent in the fall season and very
little in winter. Based on the above fact, numerous researchers from the ocean color research
team of Japan have acknowledged that chlorophyll-α derived from various satellite images
aids in mapping the Kuroshio extent during summer [17].

The diffused attenuation parameter (kd) from SeaWiFS Level-3 data mainly expressing
turbidity both in the oceanic and coastal region at a wavelength of 490 nm used to gain
knowledge about Kuroshio in the East China Sea, a pioneer in satellite-based oceanic
studies [18]. Canadian, the United States, and Japanese research reported consistent SSD
edifices associated with geostrophic currents. Moreover, the dominant nutrient density of
zooplankton within these cyclonic circulations influences the path of KC. Higher density
slows down the Kuroshio and leads to large meandering [19].

The counterpart of SST is SSS, a fundamental physical property of seawater, deriving
thermohaline circulation. In addition, SSS is a prominent factors driving global climate
change, and the interrelation between SST, chlorophyll-α, and SSS near the Antarctic ice
was studied using satellite-derived data sets [20]. Regardless, few studies [21] used an
unconventional strategy to detect surface front from multichannel satellites employing a
neural network algorithm to differentiate Kuroshio from the South China Sea. As a result,
they found that the salinity of Kuroshio water is very high compared to its surroundings.

Satellite altimetry is an additional dataset that provides knowledge about ocean
circulation [22,23]. The main objective of SSH is to derive ocean currents [2,24,25] as the
seawater naturally tends to move from increased sea level to the region of low sea level.
Therefore, satellite altimetry likewise helps monitor the Kuroshio transport [26] and its
variability of surface velocity [27].

Liu and Wu analyzed the role of heat release by evaporation in the Kuroshio region [28].
The localized air and sea interaction studies have primarily aimed at phase correlations
among the latent (LHF), sensible heat flux (SHF), and the SST from monthly time scales.
In addition, the thermodynamic property of seawater obtained by adding LHF and SHF
represents total heat flux. Studies using heat flux confirm that the significant latent heat
expands and forms a spatial boundary layer with distinct oceanic and meteorological
attributes on either side of the Kuroshio extension [29–35].

However, directly measuring the total component of surface ocean currents from
satellite investigations can only be possible by combining the observation from various
sensors [36]. Therefore, the total combined surface current by summing the geostrophic
and Ekman components from satellite altimetry and wind observation [37,38]. In addition,
Agulhas current mapped using Globcurrent data products at 0 m to understand the atmo-
spheric signature and its impact on local weather and climate [39]. Numerous scientific
communities have investigated the fluctuations in the route, dimension, meandering, and
velocity depending on the data from hydrographic in-situ observations, buoy (moored),
and Lagrangian drifter [40–48]. Because of the extreme baroclinic structure, accelerated
current, and influence of Kuroshio on the marine environment, operational agencies reg-
ularly monitor Kuroshio’s information to aid navigation, fisheries, disaster prevention,
and climate change studies [49]. The nutrient-depleted surface of KC is habitually quite
turbulent and manifests substantial variations in its course and velocity [50–54].
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The Argos satellite-tracking Lagrangian drifter has signified as a standard ocean
current observational method for oceanographers to examine the surface velocity and its
dispersion characteristics on the open ocean and marginal seas [55–58]. Nevertheless, the
Argos Lagrangian drifter was confined to examine the surface velocity of the uppermost
15 m, and also Argos are unable to distinguish subsurface jet structures [59] in the southeast
of Taiwan and Tokara Strait [60]. Therefore, multiple observational research has analyzed
Argo Lagrangian drifters’ fluctuations to study route, KC’s extent, and velocity.

It is important to note that most studies recognized the Kuroshio front on standard
dimensions (rectangular or square domain) based on their quantitative values from either
physical, chemical, or biological parameters. For example, Takahashi and Kawamura [49]
investigated the seasonal variation of Kuroshio through the two-dimensional histogram
coupled with ranges of SST between 25–30 ◦C and chlorophyll-α about 0.03–0.4 mg m−3. On
the other hand, the objective method can spatially detect ocean fronts. The spatial mapping
by an objective spatial filter method detects the sharp slope zones, also called edges formed
by various open ocean physical processes (such as mixing, upwelling, and convergence).
However, the conventional method using isotherms discussed above did not perform well
during summer due to uniform surface heating; similarly, the extraction of features by only
designating a range of values could not delineate the exact boundary of KC.

In order to delineate a feature from its surroundings, the effective and practical techniques
are edge detection, cluster shadow method, and entropic approach [10,11,61–85]. Apart from
the objective filters, the classification techniques, mainly natural-breaks Jenks optimization
method and standard deviation, are widely used in remote sensing [86–88]. These classifica-
tions aid in spatially identifying the characteristics that are crucial or impossible to recognize
precisely in multi-spectral remote sensing satellite data [89–91]. Likewise, the histogram and
gradient filter are two widely accepted methods due to their fortitude, adequate universal
validation, simplicity, and effortless implementation.

Accordingly, this study combines the previous findings in various aspects. First, we
utilize all seven of the oceanographic satellite-driven parameters to test the efficiency of
the spatial filter to distinguish the KC from its surrounding water masses. Furthermore,
this research endeavors to answer the best combination of objective filter and spatial
classification methods suitable for SST, SSH, total heat flux, SSS, SSD, chlorophyll-α, and sea
surface currents—and the possibilities of mapping the entire extent of Kuroshio precisely
with them. At the outset, weekly (typhoon Maria 3–12 July 2018 plus six days), seasonal
(December 2015 to February 2016 during very strong El Nino), and monthly climatology
means are computed between 20◦ to 40◦N and 115◦ to 145◦E for the whole duration of
available satellite data. It is followed by detecting KC and its centerline by combining
assorted raster stretching, spatial filters, and classification parametrization without any
prerequisite gradient threshold for remote sensing images. Finally, to validate the distance
and slope from SST, SSH, total heat flux, SSS, SSD, and chlorophyll-α were correlated with
sea surface currents using slope and distance matrices. In addition, the Kuroshio centerline
from all seven parameters was spatially overlaid on the Kuroshio extent mapped for
January and July climatology from Lagrangian drifters [55–58,92] to visualize the proximity
of KC derived from remote sensing parameters and Argo drifter data.

2. Data and Methods
2.1. Study Area

KC plays an essential part in the north Pacific circulation transporting seawater of volume
equivalent to six thousand large rivers by advecting an appreciable amount of heat from tropic
to northern mid-latitude. Therefore, any variation in KC’s path can influence large/small
scale climate changes. As one of the world’s substantial elements among the northwest region
of the subtropical Northern Pacific gyre, scientists and researchers from Hong Kong, United
States, China, Singapore, Korea, Japan, Indonesia, Philippines, Thailand, Vietnam, and the
Soviet Union, were associated in intercontinental research named “cooperative study of the
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Kuroshio”. Their investigation focused on understanding the changes in weather, climate,
marine animals, and plants in response to Kuroshio condition [93].

Being the second most influential and swift current globally next to the Gulf Stream,
KC actively engages as a carrier of meridional mass heat flux, momentum, and fresh water
through the western boundary, approximately 3000 km [94]. The area of interest is between
20◦ to 40◦N and 115◦ to 145◦E, where Kuroshio flows from the Philippines on the north
alongside the eastern Taiwan coastal regions towards the mid-continental shelf and break of
the East China Sea. Then, Kuroshio crosses the Kyushu, including Tokara Strait, advancing
northeast along Japan’s south coast (Figure 1). Finally, it opens into the Pacific Ocean,
where it comes under the influence of westerlies and turns eastward around 36◦N flows
across the ocean as the North Pacific Current [49,95–97].

Figure 1. Base map of the study area illustrating bathymetry merged with sea surface current portraying
Kuroshio’s path in blue dashed line. The yellow dashed line denotes the position of Tokara strait where
KC flows in ‘U’ pattern.

Three patterns of KC have been observed in the southern waters of Japan and cat-
egorized as: nearshore, offshore, and large/small meander [44–48]. Moreover, besides
path variation, Sun [40] stated that KC also exhibits remarkable temperature and salinity
changes. During winter, KC flows closer to the continental shelf of Taiwan and then slips
notably apart through the summer. Nevertheless, KC is nearly parallel to the shoreline and
illustrates no apparent periodical variations in the east of Taiwan [95,98]. The maximum KC
velocity and width estimated at around 100 cm s−1, and 170 km, concluded from ten-year
shipboard acoustic Doppler current profilers [53].

2.2. Data

As discussed below, the daily data obtained from Argo Lagrangian drifters and various
satellite missions are used for input and successive validation. Again, though, all datasets
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provided on a global spatial resolution, only data covering the extent of the study area have
been used.

2.2.1. Lagrangian Argo Drifter Data

Satellite tracked Argos Lagrangian drifters data from 1987 to 2019 provided by Atlantic
oceanographic and meteorology (AOML). The composites of surface velocity (at sea surface)
to validate the spatial proximity of the extracted Kuroshio path. These drifter data assembly
centers, cataloged by AOML (www.aoml.noaa.gov/phod/argo, accessed on 10 June 2021),
archive all ocean currents datasets using the network of drifters.

In this study, altogether, 585 Lagrangian drifter data obtained from satellite-tracked
Argos were normalized to generate 0.25◦ latitude by 0.25◦ longitude grids. AOML uses
quality management practices to revise these locations and temperatures to interpolate
them on 6-hour intervals utilizing an optimum Kriging procedure, typically employed for
2D and 3D investigations. In addition, some drifters include bound sensors to measure
salinity, pressure, wind speed, and direction.

Argo trajectory files include the information of Argos and the GPS location of drifters.
These files likewise contain cycle timing details for the computation of velocity. The time
data fields are from floats, estimations on float details in real-time, the satellites in real-time,
or in delayed mode analyses. Nevertheless, the Argos drifters are limited to examining the
surface velocity of the upper water column between 0 to 15 m [99].

2.2.2. Sea Surface Currents

Surface currents combined with regional and remote factors, including buoyancy
fluxes, winds, waves, tides, and mixed layer depth tides. The 1/4◦ grid, daily geostrophic,
and the Ekman currents from 1993 to 2018 are rendered as two different data products from
GlobCurrent (version 3.0) (http://www.globcurrent.org/, accessed on 25 February 2021).

GlobCurrent data set is of global coverage portraying the geostrophic currents, the
Ekman-component, tidal currents, and the Stokes drift at two different depths (valid at the
surface (hs) and z = 15 m). At both depths, combined currents are computed as a sum of
geostrophic and Ekman components as shown below:

Eastwardcombined (z = hs) = ugeost + uek (z = hs)

Northwardcombined (z = hs) = vgeost + vek (z = hs)
(1)

where, geost = geostrophic currents and ek = Ekman Currents. The geostrophic compo-
nents of ocean current are from sea surface altimetry, anomalies, and contemporary mean
dynamic topography [100], presenting an estimation of the time-averaged geostrophic current
with a temporal and spatial resolution of 10 days and 100 to 150 km, respectively [101].

Ekman currents at the surface 0 and 15 m below are the modeling products of Ekman
current. The parameters to run the model are trajectories of the drifting buoys (15 m) and
the velocity determined from drifter floats. The fine-tuning of model parameters filters buoy
data using 20 days band-pass filter. Eventually, the model is coupled with 3-hourly wind
stress fields from ECMWF (European Centre for Medium-Range Weather Forecasts) with
80 km spatial resolution to provide the global current Ekman products. Although the sea
surface currents are not the mere sum of various current components, the resultant

√
u2 + v2

of combined zonal (u = Eastwardcombined) and meridional (v = Northwardcombined) elements
of GlobCurrent products at 0 m depth is utilized in this research [37].

2.2.3. SST

Optimum Interpolation SST (OISST version 2.1) is a high-resolution SST. We used
the data set provided by NOAA/NESDIS (National Environmental Satellite, Data, and
Information Service)/NCEI (National Centers for Environmental Information) with a
temporal resolution of one day. Version 2.1 (https://www.ncei.noaa.gov/, accessed on 17
December 2020) is a blend of in-situ SST with AVHRR’s SST. An infrared remote sensor of
AVHRR provides the skin temperature of the sea surface water. The optimum interpolation

www.aoml.noaa.gov/phod/argo/webpage_sections/argo_us_data_center.php
http://www.globcurrent.org/
https://www.ncei.noaa.gov/products/optimum-interpolation-sst
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algorithm fills the spatial gaps to produce global coverage of SST. From January 2016 to the
present time, modifications are:

1. In-Situ and drifter data transformed to traditional alphanumeric codes combined with
the universal binary data format.

2. Obtaining SST also from Argo floats.
3. The satellite input is modernized to operational meteorological satellites A and B.
4. Revised ship-based buoy SST rectification method and sea-ice-concentration to SST.

However, OISSST version 2.0 incorporates only the data from ship and buoy for cali-
bration. However, version 2.1 is obtained from 2.0 and includes ship, buoy, and Argo float
observation from January 2016 to correct AVHRR’s biases [102–105]. Therefore, this paper
used 1982–2019 daily averaged version 2.1 data with a spatial resolution of 0.25◦× 0.25◦.

2.2.4. Heat Flux

The SeaFlux project examines and delivers a fine-resolution satellite data set of surface
fluxes covering the global ocean (https://seaflux.org/, accessed on 19 November 2020).
The sea flux products incorporate the following features:

1. A comprehensive data set from research vessels and drifters for validation.
2. Satellite and in-situ data are collected over a region of 200 km approximately around

each point of situ.
3. Issued involving diurnal cycles are resolved using skin SST from refined high-resolution

data.
4. Betterment of models to calculate bulk turbulent flux.
5. Surface air temperature and humidity retrieval from satellites.
6. Sea flux products are calibrated by applying the end products to physical phenomena,

for instance, heat transport in the atmosphere and ocean.

Ocean heat flux products include SHF and LHF developed from multiple satellite
missions such as SSMI (Special Sensor Microwave Imager), QuikSCAT (Quick Scatterome-
ter), AVHRR, AMSR (Advanced Microwave Radiometer), and NCEP (National Centers for
Environment Prediction) [106,107].

Sensible heat is related directly to change in temperature, whereas latent heat is with
ocean surface evaporation [108]. The estimated accuracy of heat flux products is within
1 W m−2 correlated with flux measurements obtained over 120 buoys, indicating better
computed satellite global flux observations. The study analyzed the combined 1/4◦ equal
angle grid of LHF and SHF energy products over 1988–2018 to map the Kuroshio.

2.2.5. Chlorophyll-α

The ocean color project has delivered global L3 (level 3) binned from multiple satel-
lite sensors on daily and composites (5-day, 8-day, and monthly) time-series, empha-
sizing climatological studies. Version 4.2 contains sinusoidal projected chlorophyll-α
(mg m−3) in 4320 rows of latitude with 4 km vertical bins. The equal-area property
of projection has maintained the varying latitude along with longitude. This ocean
color data have an advanced algorithm to maintain only the bins with spatial informa-
tion and omit the rest. Recently, the ocean color data are also in geographic projection
(https://www.oceancolour.org/, accessed on 21 January 2021).

This study includes satellite-generated ocean color climate change initiative project
data with 4 km spatial resolution between 1997 to 2019. The ocean color datasets are
a blend of SeaWiFS, MERIS (Medium imaging spectrometer), MODIS-Aqua, and VIRS
(Visible Infrared Imaging Radiometer) [109]. In addition, ocean color remote sensing offers
chlorophyll-α digital signatures on time-series [110], representing phytoplankton bloom on
comprehensive scales and assimilating using contemporary science with best-performing
in-situ algorithms [111–113].

https://seaflux.org/
https://www.oceancolour.org/?fbclid=IwAR0i-A95GwDQOfGg-XgVYTJsW4OfUM8drN_x82nIoa61SYaJeNlWN15NuT0
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2.2.6. SSH

Satellite gridded altimetry measurements provide sea level anomaly. The mean
decadal sea level is rising under the impact of global warming. Therefore, precise sea-level
measurements are needed as this increasing sea level trend of an enormous magnitude
would pose a danger to the coastal and low-lying regions. The height of the mean sea
surface in a given time and space is well-defined as a sea surface anomaly. In this data set,
sea level anomalies correspond between 1993–2012, employing advanced altimeters. The
sea-level data set is furnished by a dedicated recording of the transition of sea level on a
stable and homogenous scale. Moreover, practical data sets by merging the products from
a constellation of remote sensing satellites provide global coverage.

SSH with a spatial resolution of 0.25◦× 0.25◦ above the geoid estimated between
1993 and 2019 from the sea level anomaly and mean dynamic topography together with
geostrophic velocities used in this study (https://cds.climate.copernicus.eu/, accessed on
4 March 2021). The Sea Level dataset is a time series of daily gridded SSH and derived
variables by merging two satellite altimetry measurements. The associate mission used for
the altimetry processing is Topex/Poseidon between 1993 and 2002, Jason-1 between 2002
and 2008, OSTM/Jason-2 between 2008 and 2016, Jason-3 since 25 June 2016 [114]. Thus,
this altimetry dataset is updated a year thrice with a delay of about six months. Moreover,
these datasets are processed and validated to improve the firmness and precision of the sea
level data to make them suitable for the climate and oceanographic applications.

2.2.7. SSS and SSD

Sea surface salinity and density play a significant part in the climate system and
directly relate to the ocean dynamics with ocean-front distribution impacted by climate
change [115,116]. Indeed, the global and regional water cycle has a consequential impact
on salinity and, therefore, density.

The older version of the data set was merging the Argos and Conductivity Temperature
Depth (CTD) measurements on a sparse global scale. The multivariate approaches blend
in situ and satellite data to yield gap-free fields of SSS and SSD at considerably effective
spatial and temporal resolution. Two prominent algorithms based on fusion techniques
and optimal interpolation (OI) to linearly regress the satellite measurements (SSS and
SSD). Four distinct compositions have been evaluated in the calibration of the algorithm to
interpolate SSS and calculate the interrelated SSD [117–119].

In this study we used, gap-free Level-4 datasets (1/4◦× 1/4◦ spatial resolution) of SSS
and SSD covering the period from 1993 to 2019 obtained by an advanced multivariate opti-
mal interpolation algorithm and satellite images on a regular grid from soil moisture ocean
salinity (https://resources.marine.copernicus.eu/products, accessed on 18 March 2021).

2.3. Methods

Figure 2 illustrates the overall framework with the combination of filters and data
classification followed in this research. In addition, this section presents the complex process
with demanding significant image analysis steps includes image pre-processing [120,121],
determining suitable filters, data algorithm, feature extraction, computation of midpoints with
Kuroshio centerline, and accuracy assessment.

The estimated weekly, seasonal, and monthly climatologies are from the mean values
of daily data used to map the association of mentioned parameters over Kuroshio in the
study area. Our strategy to detect Kuroshio on a multi-variate proposition. First, the
enhancement of spatial signatures at fronts associated with the feature is revealed in remote
sensing images applying contextual filters and data classification methods. They eliminate
noise but preserve the features, followed by edge detection to extract the features in satellite
images that have been digitally analyzed with the combination of filters to preserve its
features. The hierarchy and combination of filters and data processing algorithms are
illustrated in Figure 2.

https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-sea-level-global?tab=overview
https://resources.marine.copernicus.eu/products
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Figure 2. Methodology explaining the sequence of spatial filters and data analysis applied for each
data set with their respective output.

2.3.1. Raster Filters

A convolution, Laplacian, and sharpening filters are fit to process the SST, SSD, and
SSS climatological datasets in multiple combinations to achieve specific results to extract
the Kuroshio centerline. These functions perform filtering on a pixel basis in a satellite
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image to sharpen and detect edges of features within an image. The principal innovative
approach of our filters is that it analyzes a small pixel window at a time within a more
comprehensive large pixel window.

Convolution Filter

In our research, we applied a kernel of a convolution filter across all the pixels of an
image. It is one of the most effective digital image analysis processes similar to a median
filter that eliminates spurious data while preserving and enhancing the edges of the features.
These are used in various front detection algorithms to pre-process in steps using a shifting
3 × 3 overlapping kernel [64]. Convolution filters operate by estimating the weighting
pixel values of their neighbors. In oceanography, the first contextual filtering was used
to classify the vertical profiles in addition to validating large-scale climatological datasets
obtained from the Northern Pacific Ocean [73,122].

Laplacian Filter

A second derivative of the Laplacian filter [123] is further applied to enhance the
Kuroshio regardless of edge direction. The Laplacian filter (L) passed over the climatological
pixels (I) in both X and Y-axis is provided by:

L(X, Y) =
∂2 I
∂ X2 +

∂2 I
∂ Y2 (2)

It is used on an image that has been improved, smoothed, and reduced sensitivity to noise.
Indeed, a sliding 3 × 3-pixel window is emphasized peak values within an image applying
a kernel with a high center value typically enclosed by negative odd kernel weights in the
north-south and east-west pixel direction and zeroes at the corners of Kernel:

∇ =

0 1 0
1 −4 1
0 1 0

 (3)

Sharpening Filter

We used a high-pass sharpening filter to strongly the relative variation in the values
concerning its neighboring pixels. Our 5 × 5 high-pass filter determines the focal sum by
spatial statistic by weighted pixel:

∇ =


−1 −3 −4 −3 −1
−3 0 6 0 −3
−4 6 21 6 −4
−3 0 6 0 −3
−1 3 −4 −3 −1

 (4)

It reveals the boundaries between Kuroshio and its surrounding water masses by sharpen-
ing edges within features, especially in SSS and SSD datasets combined with other image
processing algorithms. The high-pass filter is also known for enhancing edges. The logic
behind this kernel is to automatically identify cells to use in the region and weigh them
(i.e., multiply them) [124].

2.3.2. Gradient Computation

On a satellite image f (x,y) at any coordinate of pixel (x,y), the gradient is a vector
component:

∇ f =
Gx

Gy
=

∂ f /∂ x
∂ f /∂ y

(5)
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During the gradient computation, the points of a vector are in the direction of the
maximum rate of change of an image f at (x, y). In edge detection, a significant component
is the magnitude of vector:

|∇ f | =
√

Gx 2 + Gy 2 (6)

The maximum rate of increase in the gradient of f (x, y) per unit distance in the
direction of ∇ f . The magnitude of a gradient vector is typically calculated using:

|∇ f | = |Gx|+ |Gy| (7)

The direction of the gradient is given by:

α(x, y) = tan−1 Gy

Gx
(8)

A nonlinear north gradient filter is used as one of the analysis methods to process SSH
data. This gradient vector (G) on the y-axis is calculated by a 3 × 3, GY mask:

∇ =

−1 −2 −1
0 0 0
1 2 1

 (9)

to enhance edges’ visibility with 45◦ increments simply and effectively on satellite images
and extensively used in various remote sensing applications. In addition, the Sobel operator
is a derivative filter with a smoothing effect at each pixel containing approximations for
direction with the most significant increase and how edges are oriented [125,126]; in our
case, it is the y-axis:

∇ =

 1 2 1
0 0 0
−1 −2 −1

 (10)

2.3.3. Conditional Filtering

The detection of KC from chlorophyll-α was brought out in three stages. Firstly, as
Takahashi et al. [49] proposed, the chlorophyll-α concentration in Kuroshio depends on
the volume of various phytoplankton species. Moreover, they vary seasonally among
open ocean, coastal regions, north and south of Kuroshio waters. Therefore, based on
various iterations, Liu and Hou [18] used contour ranges of chlorophyll-α between 0.02
to 0.4 mg m−3 to show Kuroshio fronts between the water masses. Hence, in our study,
we improvised the range of chlorophyll-α as a conditional filter to suit seasonal and
climatological data:

0 < Chlorophyll-α < 0.5 mg m−3 (11)

Secondly, we tested the values using a conditional filter to extract the pixels within the
threshold values and mask the remaining to extract the extent of Kuroshio. The resultant
image retains chlorophyll-α between 0 to 0.5 mg m−3. When this image is viewed, the
minimum brightness value of 0 to 0 mg m−3 and maximum of 255 to 0.5 mg m−3 are not
depicted without enhancement. Therefore, applying a minimum-maximum linear contrast
stretch [127,128]:

g(x, y) =
f (x, y)−min
max−min

∗ N (12)

where,

g(x, y) = Enhanced output image.
f (x, y) = Input images after applying improvised range of chlorophyll-α.
min,max = Minimum and maximum intensity values of input image.
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N = Total number of intensity values assigned to a pixel.

Finally, using Jenks natural breaks classification, the enhanced image was stratified
by rationing values to a disseminated number of classes intending to minimize variances
within classes simultaneously maximizing among class means [129]. The summary of
filters used to extract the extent of KC from the selected seven satellite-based oceanographic
parameters (Table 1) and the sequence in which they were applied (Figure 2).

Table 1. Overview of filters used for each parameter to delineate the KC.

Candidates Heat Flux SST Sea Surfac Current Chlorophyll-α SSH SSD SSS

Natural Break Classification X X X
Min-Max Stretch X X X
Histogram Equalization X
Convolution Filter X X X
Laplacian Filter X
Conditional Filter X
Standard Deviation Stretch_{n = 1} X X X
Sharpening Filter X X
North Gradient Filter X

2.3.4. Classification Method to Represent Kuroshio

In multi-spectral remote sensing satellite data, the spectral classification methods aid
with extracting quite complicated and hidden features [86–88]. The classification method
used varies depending on the nature of the data. We employed natural break classification
(Heat Flux and chlorophyll-α), minimum-maximum stretch (Heat Flux, sea surface current
and chlorophyll-α), histogram equalized method (SST), and standard deviation (n = 1)
(Argo drifter data, SSH, SSS, and SSD).

We also determined the number of classes so that, in such a way, the distribution-
characteristic of original data does not change and can be expressed faithfully as methods
suggested by Osaragi [91]. Natural Breaks classification distinguishes the breakpoints by
scanning for groups and patterns integrated within the data. It is the most famous method
used in spatial analysis to minimize variation within the data class.

The minimum-maximum, histogram equalized, and standard deviation stretches
functions are applied to radiometric enhancing the satellite image by adjusting properties
such as brightness, contrast, and gamma so that the eye can easily perceive Kuroshio.
The minimum-maximum is a linear contrast stretch in which the initial minimum and
maximum values of the original data are assigned to 0 and 255 on the computer screen.
In some data such as SSH, SSS, and SSD, the majority of the pixel befall within a higher
and lower limit. Therefore, we trimmed off the extreme values. It is done statistically by
defining a linear standard deviation stretch applied between the values outlined by the
standard deviation (n = 1) condition.

Similarly, histogram equalized is also a contrast stretch function to display more
frequency values. Thus, it details the areas with the most significant frequency of pixel
values. As a result, the SST pixels in Kuroshio are better enhanced than those in the original
histogram, wherever values occur less frequently.

2.3.5. Feature Extraction

After stratifying the dataset by employing the hierarchy of coupled digital analysis
techniques illustrated in Figure 2, the Kuroshio is visible on the satellite images. Then, to
isolate the feature from its surroundings, the homogeneous cluster of pixels within the
Kuroshio region are identified, eliminating the insignificant sub-pixel elements and after
determining the Kuroshio region by feature extraction, followed by delineating the cluster
of homogenous pixels by image segmentation.

The resultant Kuroshio extent by boundary extraction (image segmentation) is a vector
format. At this point, by analyzing the boundaries of Kuroshio extent and they appear
to be “step-like” as they follow a definite contour of pixels. To represent a more realistic
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appearance of the features, ‘steps’ are softened by running a smoothing filter over the
edges carefully without distorting the edges and causing a shift in latitude and longitude
coordinates. Ultimately, calculating the midpoint between the similar top and bottom
X coordinates with varying Y-coordinates throughout the Kuroshio polygon boundary
layer length yields the vertex of centerline. Finally, connecting vertices obtained inside the
polygon represent Kuroshio’s centerline.

2.3.6. Correlation and Proximity Analysis

A correlation analysis was carried to understand the strength of linear relationship
between two quantitative variables of the Kuroshio centerline obtained from the seven
oceanographic parameters employed in this study. As the centerline is a linear feature,
it attributes the only length. Therefore, to get more meaningful quantitative fields, all
the centerlines must be brought to an equal distance, then calculate the number of pixels
covered by each centerline via dividing the shape length and pixel size. The resultant
is x and y coordinates of pixels in the same column varying concerning row as shown
in Figure 3a,b. Finally, calculate quantitative fields from the origin using consequent
coordinates, slope, and distance. Furthermore, the slope correlation matrix and distance
correlation matrix demonstrate the linear relationship among various parameters.

Finally, the Kuroshio from SST, SSH, total heat flux, SSS, SSD, and chlorophyll-α is
validated with Kuroshio from sea surface current as a reference using standard deviation
and correlation from slope and distance using Taylor’s plot. In addition to the correlation
matrix and Taylor’s plot, Kuroshio extent mapped from Lagrangian Argo drifters. Lastly,
to examine proximity, all seven oceanographic parameters are overlaid on the results of
drifter data.

Figure 3. Depicts the computed midpoints from centerlines (a) location of vertex in similar column
varying with rows; (b) sample zoomed segment from red box illustrating the grids from which the
latitude and longitude were used to compute distance matrix and slope matrix to analyse spatial
variation among the centerlines from all seven parameters.



Remote Sens. 2022, 14, 332 13 of 30

3. Results
3.1. Mapping Kuroshio Ocean Front by Utilizing Methodology from Previous Related Studies

Initially, methods suggested by Wang [130] were employed to map the warm tongue
of KC from SST climatology by defining an isotherm of 23 ◦C (Figure 4). Nevertheless,
defining isotherm could not detect during summer as KC wears off due to uniform sea
surface heating. The blue polygon (Figure 4) represents a region of Kuroshio warm tongue.

Later, we regenerated the results as per the algorithms proposed by Liu and Hou for
detecting Kuroshio front from SST and chlorophyll-α [18] using a range between 25–27 ◦C
(Figure 5a) and 0.02–0.4 mg m−3 (Figure 5b). The black box in Figure 5a represents the
Kuroshio tongue, and the green color in Figure 5b shows the Kuroshio region. These
algorithms were able to detect Kuroshio between Taiwan and Kyushu, and inferred that
the shape of KC’s extent is not conserved when applied to the datasets of this research.

However, the single value or algorithm did not yield the expected outcome. Therefore,
we decided and tested the various combinations of image analysis techniques to find the
most competent alliance of spatial filters, classification algorithms, raster queries, feature
extraction approaches, and analysis methods to map and examine the interrelation between
the Kuroshio centerline from daily data processed to weekly, seasonal and climatology (30,
32, 22, 26, 27, 27, 25, and 32 years) of total heat flux, SST, chlorophyll-α, SSH, SSS, SSD, sea
surface current, and satellite-tracked Legrangian Argo drifter data, respectively.

Figure 4. The SST climatology dispersal from 1993 to 2007. The blue polygon is a zone of Kuroshio
warm tongue recreated for our study area using OISST version 2.0 by employing isotherm of 23 ◦C as
per proposed by Wang et al. [130] .

This research, monthly climatological synoptic view of all the eight datasets with a
fundamental image enhancement covering the study area between 20◦ to 40◦N and 115◦ to
145◦E, as illustrated in Figure 6.
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Figure 5. Climatological annual mean distributions recreated for our study area (a) SST from OISST
version 2.0 between 2000–2009 illustrating isolines and Kuroshio warm tongue inside the black
box; (b) Oceancolour Version 4.2 chlorophyll-α average from 1998–2010 to demarcate KC as per the
methodology by Liu and Hou [18].

3.2. Detection of Kuroshio from Satellite Data

At the outset, we selected the datasets from their first day of availability. Then, those
that do not start in January and end in December are filtered. Thus, while computing
climatology (monthly) (Figure 4), all datasets have completed 12 months. Finally, we tested
the selected algorithms on the area between 20◦ to 40◦N and 115◦ to 145◦E (Figure 1).

Satellite tracked Lagrangian Argo drifters widely used observational data physical
oceanography to study and analyze the statistical dispersion properties of surface currents
in both deep and continental edges in exceptional spatial resolution. The maturing data of
Argos are from various oceanographic research programs, most of them focusing on Kuroshio
and its contiguous neighborhoods. Moreover, data from numerous drifters are obliged to
investigate the facade of ocean currents. Therefore, to study KC as per the previous studies,
approximately data from 585 Argos and 120,000 observations are required.

Furthermore, the mathematical trajectory modeling for scientific applications is a
demonstrative tool to calculate Lagrangian simulations. In this respect, mastery in un-
derstanding ocean currents is a must to simulate vivid trajectories [131]. On the other
hand, remotely sensed sea surface current represents the combined east seawater velocity
and meridional north seawater velocity components of geostrophic and Ekman currents.
However, in this study, satellite rendered KC is correlated with Argo data by vying slope
and distance from the origin (Figure 7). The calculated slope and distance from the origin
using the coordinates (latitude and longitude) of midpoints from the centerlines of KC
employing Argo and satellite-based sea surface current. Then, calculating the coordinates
of the vertex in similar columns varies with rows. Figure 7a,b shows the KC centerline
from Lagrangian drifters, and GlobCurrent exhibits a 95% similar spatial pattern between
Taiwan and south of Japan with a distance less than 500 m. However, as we move upstream
of KC from the south of Japan to the end, the spatial pattern correlation reduces to 75%,
and variations of distance increases between 500 m to 1.5 km, in the various sections of KC,
primarily from October–March.
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Figure 6. Synoptic view of data (a) Argo; (b) Sea Surface Current; (c) SST; (d) Heat Flux; (e) SSS;
(f) SSD; (g) Chlorophyll-α; and (h) SSH illustrating entire KC by applying simple spatial filters .

Finally, the synoptic composition of the whole procedure applied for all the selected
datasets and all months, especially for March, is illustrated in Figure 2. The Kuroshio extent
and its centerline from monthly climatology data of sea surface current at 0 m between
1993 and 2018 (Figure 8a). The Kuroshio extent from their respective parameters used to
extract the climatological Kuroshio as a polygon zone for March as shown in Figure 8b,
whereas, in previous studies, KC was studied as a rectangular region or as a line feature.
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Figure 7. Correlation of KC from Argo drifter (grey) and Satellite rendered (red) (a) illustrates the
variation in slope (degree) with distance (meter). (b) the climatological spatial variation among KC
from drifters and satellite during 1993–2018 .

Minimum-maximum stretch, natural break classification, and feature extraction dis-
tinguish Kuroshio from its surrounding area. The 25 years mean climatological surface
current velocity in the study area is from 0.1 to 1.3 ms−1, whereas the standard deviation
ranges between 0 to 0.6 ms−1. The Kuroshio from the sea surface current data is used to
validate the results from other parameters.

Figure 9a shows the overlay of the Kuroshio centerline obtained from long-term
monthly climatological SST (red), heat flux (black), and sea surface current (dotted blue).
The mean climatological of 32 years SST and 30 years heat flux is around 14.75 ◦C and
140 Wm−2. The SST-based results are from a sequence following histogram equalization,
convolution filter, and Laplacian filter, succeeded by feature extraction. Moreover, the
sea flux data being a thermal component related to SST, revealed the centerline with a
different combination of digital image analysis techniques similar to surface current (i.e.,
minimum-maximum stretch and natural break). Still, the sequence of applied algorithms
was different (Figure 2).

Figure 9b illustrates a comparison of the centerline of sea surface current (dotted
blue) Kuroshio with SSS (cyan) and SSD (brown). The minimum and maximum SSS and
SSD from 27 years monthly long-term average data sets are 30.4 to 35 PSU and 1022.5 to
1027 kg m−3. Surprisingly, both SSS and SSD yielded results by applying similar algorithms
and in the same hierarchy. Suitable methods for SSS and SSD are standard deviation (n = 1)
classification algorithms, including convolution, sharpening, and feature extraction.
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Figure 8. The climatological monthly dispersal (a) sea surface current data with Kuroshio extent and
its centerline (1993–2018); (b) the Kuroshio extent from their respective parameters.

Figure 9. The KC centerline from monthly climatology (a) Sea Surface current (dotted blue) overlaid on
SST (red) and Heat Flux (black); (b) comparison of Sea Surface current (dotted blue) with SSS (cyan) and
SSD (brown); (c) Sea Surface current (dotted blue) with chlorophyll-α (green) and SSH (pink).
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Figure 9c gives the synoptic view of results from chlorophyll-α (green), SSH (pink),
and sea surface current (blue dotted). The range of chlorophyll-α from 26 years of monthly
climatology is between 0 to 12.5 mg m−3, with a higher concentration of chlorophyll-α is
observed between the Mainland and Taiwan and Mainland and Japan. At the same time,
the concentration is found to be minimum in the path where Kuroshio current flows. After
applying minimum-maximum stretch in combination with a conditional filter, Kuroshio
distinguished itself from its surroundings by retaining only the chlorophyll-α within 0 to
0.5 mg m−3. The application of filters is followed by natural break data classification to
further enhance the feature, finally with vectorization.

On the other hand, the 22 year average monthly from the sum of sea level anomaly
and mean surface geoid is found to be 0.95 m. Furthermore, we extracted the Kuroshio
centerline by applying a data classification algorithm of standard deviation (n = 1) followed
by a north gradient filter and then feature extraction.

3.3. Inter-Comparison of Kuroshio Centerline from Climatology

Figure10a depicts the slope matrix in percentage. It represents the intercomparison of
Kuroshio centerlines variation in Latitude with an increase in Longitude from Taiwan till
Japan among seven selected parameters. The slope variation of one parameter is compared
to another parameter using twenty-one combinations on the y-axis and climatological
months on the x-axis. One percent variation in the slope represents 0.0087◦. Thus, the slope
matrix gives an accurate insight into how the path of Kuroshio fluctuates with one another
on a monthly climatological scale using sharp color changes.

Figure 10b illustrates how far the centerline of Kuroshio spatially varies amongst
selected seven parameters using the distance matrix. For example, one percent variation in
the distance matrix equals 1.77 km. The distance is measured based on the interpretation of
changes in the y-axis for every change in the x-axis. The usage of 252 combinations in total
with obvious intensities to compare and associate the spatial distribution of the Kuroshio’s
centerline extract from heat flux, SST, SSS, SSD, chlorophyll-α, SSH, and sea surface current
on a long term monthly scale.

Figure 10. Inter-comparison of KC climatological centerline from heat flux (HF), SST, SSS, SSD,
chlorophyll-α (CL), SSH, and sea surface current (HS) using (a) slope matrix; (b) distance matrix.

Figure 11 portrays the overlay projection of the centerlines from all parameters and
all months. The length of the Kuroshio current was measured as 2818 km. However, the
measured distance along the path, including curves and detours, was 3086 km. Then,
elect five cross-sections considering the location where Koroshio tends to arc, progressing
uninterrupted and at the end.



Remote Sens. 2022, 14, 332 19 of 30

Figure 11. Kuroshio centerlines of all seven parameters to analyze the deviation from dominant path
using five cross-sections at different locations where Kuroshio flows straight path (a,c,d), in ‘U’ shape
(b) and its end point (e).

Figure 11a is the cross-section around Tokara Strait; the approximate variation among
centerlines is 134 km, equivalent to a 4.5 pixel. The second cross-section (Figure 11b) is
south of Kyushu, and, notably, Kuroshio takes a ‘U-turn’. At this location, the deviation
is 154 km. The following two cross-sections (Figure 11c,d) are selected 132.5◦E, 31◦N and
136◦E, 33◦N. In between these coordinates, Kuroshio tends to flow uninterrupted with a
variation of 80 and 90 km. Finally, a cross-section at the end of the study area window
(Figure 11e). Then, distance was measured between the condensed lines, which is 134 km,
and by including those of Chlorophyll-α manifesting extreme shift is 177 km.

The standardized ratio of distance and slope variations showing their corresponding
magnitude between the Kuroshio from sea surface current data and heat flux, SST, SSH,
chlorophyll-α, SSH, SSS, and SSD are illustrated in the framework of Figure 12a,b. The
statistics behind the normalization or non-dimensionalization is by dividing both the root
mean difference and the standard deviation of the data set (in a column of model prediction)
values by the standard deviation values of the observations. Then, the observation point
is plotted along the x-axis at a unit distance from the origin, making it possible to plot
statistics for different variables with different units on the same plot.

Figure 12. Illustrates the comparison of distance and slope of climatological heat flux (HF), SST, SSS,
SSD, chlorophyll-α (CL) and SSH with sea surface current (REF = reference parameter) from their
correlation and normalized standard deviations using (a) distance correlation; (b) slope correlation.
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Furthermore, most of the case variance values (i.e., the normalized standard devi-
ation of heat flux, SST, SSH, chlorophyll-α, SSH, SSS, SSD) and reference variance (sea
surface current) computed from monthly climatology fall within 0.75 and 1.25 for distance
(Figure 12a) and 0.5 and 1.5 in case of the slope (Figure 12b). Their respective case variance
range is 0 to 0.2 (distance) and 0 to 0.45 (slope). Most of the cross-correlation coefficients
of variance from SST, SSH, total heat flux, SSS, SSD, and chlorophyll-α parameters to sea
surface current are under 0.99 for distance and 0.9 for slope.

3.4. Kuroshio from Weekly and Seasonal Data

Two extreme weather and climate events, such as typhoons and very strong El Nino,
were selected to examine the refined combination of filters on weekly and seasonal scales
to detect KC. Figure 13 illustrates the study area during typhoon Maria struck during
3–12 July 2018, plus six more days as the environment is uncertain with a coupling of
various dynamic factors [132]. On a daily to weekly time scale from SSS and chlorophyll-
α, the spatial signals of KC could not be identified and were very weak in SSD by the
combination of filters. However, the combined spatial algorithms effectively unveiled the
eddy’s from sea surface current data on a small-time scale data set.

Figure 14 demonstrates the performance of filters to identify and extract KC during
the winter season of very strong El-Nino in December 2015–February 2016. On a seasonal
scale, the spatial pattern from SSS, chlorophyll-α, and SSD was also quite pale; hence, more
iteration by the combination of the filter was employed on these datasets. Thus, data sets
such as chlorophyll-α and SSS must be on a seasonal scale for effective mapping of sea
surface current.

Figure 13. Daily to weekly time scale of satellite based oceanographic data set during typhoon
Maria (3–12 July 2018, plus six more days) (a) unveiling of Kuroshio by applying combination of
spatial filters; (b) extracted KC extent with centerline; (c) comparison of centerline with sea surface
current(blue dotted).
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Figure 14. Daily to seasonal scale dispersal of remote sensing ocean parameters during very strong
El-Nino between December 2015 to February 2016 (a) unveiling of Kuroshio; (b) extracted KC extent
with centerline; (c) comparison of centerline with sea surface current (blue dotted).

4. Discussion

The results obtained by replicating existing methods [18,130] of using spectral range as
shown in Figures 4 and 5 were able to disclose only the warm tongue [133], the KC extent,
centerline, and its prevail undetected. Moreover, the Kuroshio extent is distinguished in
spectral and visible from Argo [99], Satellite-derived ocean current [101] and SSH [114] by
applying simple filters. At the same time, it fades off in summer (SST and HF) and remains
invisible in other datasets Figure 6.

During the first part of the summer, the length of KC from SST and HF decreases and
tours uninterrupted, possibly due to the seasonal uniform surface warming [18]. Hence, to
unveil the Kuroshio extent and its centerline, the methodology proposed by combining vari-
ous algorithms in this study, as shown in Figure 2, stands out. Using histogram equalization,
convolution, and Laplacian filter on SST, to distinguish the KC from its surrounding water
masses, even during the summer (Figure 15). It was incomprehensible for conventional
ramps [18,130] to detect the weakening thermal signatures, which ultimately disappear
due to ocean surface heating. Similarly, we could plot Kuroshio from Taiwan to Kyushu
during summer with an exception in June by using heat flux data. However, during August,
heat flux data show a loop in the northeast of Taiwan, possibly due to eddy formation, as
illustrated in Figure 9a. The branch in northward dividing from the main path is related to
Tsushima current, especially during December to March [134]. The slope variation between
SST and sea flux is less than 30% in most months, indicating a similar spatial pattern, except
for 50% in October. The KC identified from the Argo drifter [99] overall 85% correlates
spatially with the satellite-based surface current but with variation observed in the south
of Japan from October to March with 75% similarity in spatial structure. The Kuroshio
extent from ocean current data [100] is narrow near Taiwan and gets wider as it flows along
the east coast of Japan. Using our methodology, the results in Figures 8 and 9 show the
Kuroshio path. Its centerline can be precisely distinguished from its surroundings in the
North Pacific by a line feature from the east coast of Taiwan streaming northeastward.

In addition, the Kuroshio centerline plotted using thermal oceanographic parame-
ters like SST, and total sea flux on ocean current does not overlap uniformly through its
flow path (Figure 9a). Near Taiwan, all three parameters protrude most of the months.
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During December, January, and February, the thermal constraints braid around 26◦N and
prolong northeast.

On the other hand, the distance between SST and heat flux reaches a maximum of 60%
in July and August. The slope variation between SST and surface current-based Kuroshio is
almost similar. The maximum distance between them is observed during July at nearly 85 km.

The salinity and density-based centerlines diffuse except for February in the north of
Taiwan (Figure 9b). A deviation is observed between SSS and SSD around Tokara Strait.
Our methodology could not detect SSS between 24◦N and 30◦N during August, maybe
due to higher run-off inflow [135]. The slope and distance between Kuroshio from SSS
and SSD is uniform, but 60% slope variation in May. SSS shows a notable slope deviation
from ocean current through November to May. From Figure 9c, SSH overlay uniformly
with Kuroshio from sea surface current. The chlorophyll-α centerline wiggles without a
well-defined seasonal pattern indicate a distinct layer also in summer within waters of the
continental shelf and the Kuroshio region [12–16].

A small bifurcation is observed from the main branch of chlorophyll-α, whereas
clear and notable extensions are visible from SST; this discrepancy may happen from
baroclinicity. The overall difference in the distance among SST and chlorophyll-a’s Kuroshio
is significantly less than three pixels except for September.

The observed maximum difference of slope and distance is in summer between
chlorophyll-α and surface current. Except for the distance of chlorophyll-α and heat flux
during August climatology, all other parameters are in good correlation with the sea surface
current. At the same time, the correlation of slope amongst case variance of SST, SSH, total
heat flux, SSS, SSD, and chlorophyll-α parameters and reference variance of surface current
are in wide range but still within the correlation of 0.95. However, the chlorophyll-α and
heat flux of August and September are between 0.8 and 0.95.

Figure 16a,b depict the overlay of all seven parameters on Kuroshio current mapped
from 585 satellite-tracked Lagrangian Argo drifters for January and July, when the deviation
is observed commonly.

The minimum and maximum 32 years monthly climatological velocity of ocean current
from Argo drifters [99] in the study area is 0.1 and 1.4 ms−1. Interestingly, proximity
analysis found that the centerline from all seven parameters falls within the Kuroshio
region(red) mapped from drifter data. However, more deviation in the centerlines is
observed in July around Kyushu, Tokyo, and the Kuroshio current’s northeast end.

The signatures of chlorophyll-α and SSS are undetected from a daily to a weekly
dataset to extract KC. In contrast, identified distinct eddies around the south of Japan by
applying the combination of filters discussed in methodology on sea surface current in
Figure 13. Nevertheless, the filters performed uniformly on seasonal and climatological
data sets. However, the signatures of SSS, SSD, and chlorophyll-α are very weak [12–16];
hence, more iterations are needed for the vectorization of KC. The computed deviation
of the KC centerline uses the distance and slope (Table 2). The grey color highlights the
maximum deviation, whereas ‘No Data’ indicates that KC was not effectively extracted
from chlorophyll-α and SSS from a daily to weekly scale. The maximum deviation of 4
pixels is observed between SSD and other parameters except for seasonal chlorophyll-α. As
expected, sea surface current (HS), SSH, and SST have a close spatial similarity.

Based on the analysis, oceanographic parameters like total heat flux, SST, chlorophyll-α,
SSS, SSD, and SSH can also map to Kuroshio taking utmost care while selecting datasets for a
particular season. Moreover, as the satellite-based ocean currents data are available from only
1993, another dataset as stand-alone or combined can be used as a proxy to map Kuroshio
before 1993. Thus, the designed framework is suitable for this study’s area of interest.
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Figure 15. Unveiling Kuroshio from SST in various stages by the combination of spatial algorithms
during summer.

Figure 16. Kuroshio centerline from seven parameters overlay on Kuroshio from drifter data
(a) January; (b) July.
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Table 2. Comparison of deviation between the KC centerline from weekly and seasonal mean. The
highlights in grey represents the parameters with maximum deviation.

Parameters El-Nino(Seasonal) km Maria(Weekly) km

HS4 chlorophyll-α 47.5 No Data
HS4 SST 29 9
HS4 SSD 71 100
HS4 SSH 50 0.3
HS4 SSS 63 No Data
HS4 HF 20.5 25

chlorophyll-α4 SST 76 No Data
chlorophyll-α4 SSD 23 No Data
chlorophyll-α4 SSH 2 No Data
chlorophyll-α4 SSS 15 No Data
chlorophyll-α4 HF 26 No Data

SST4 SSD 100.1 91
SST4 SSH 79 9
SST4 SSS 91 No Data
SST4 HF 50 18

SSD4 SSH 20 100
SSD4 SSS 8 No Data
SSD4 HF 50 73
SSH4 SSS 12 No Data
SSH4 HF 29 27
SSS4 HF 42 No Data

As for the chosen filters, their window size in pixel does not allow editing its
kernel [10,11,61–85]. There are many potential configurations of filters and algorithms possible;
deciding suitable candidates is an indispensable dilemma while determining whether to filter
specific pixels or omit them intact in the window. It is worth mentioning that missing spectral
signatures can be obtained from SST, chlorophyll-α, heat flux, SSS, SSD, SSH, sea surface cur-
rent, and drifter data in the summertime by employing our framework. Then, during winter,
the emerging thermal branches indicate the essential role of warm current overpowering the
surface temperature evolution.

5. Conclusions

Although there are many studies on mapping Kuroshio [43,99,136–138], especially using
remote sensing spatial filters [18,100,124,125,127], we have used all the oceanographic data to
employ various digital image analysis filters. This research has reinforced the applicability of
remote sensing satellite data to map ocean surface currents, especially Kuroshio.

The strategy incorporated multi-sensors from different satellites and a combination of
spatial algorithms to increase the likelihood of extracting the centerline and extent of KC
by demarcating from the surrounding water masses [1,75,138] of the East China Sea on the
west and Pacific on its east. As input, 9490 to 13,505 daily images corresponding to between
26 to 37 years were used to compute monthly climatologies of SST, heat flux, chlorophyll-α,
SSH, SSS, SSD, and sea surface current from both satellite and Argo drifters as in Figure 6.

Later, a suitable combination of spatial algorithms, filters, and conditions for each data
set has been identified to extricate KC effectively. The novel perspective of this methodology is
that it does not require a gradient threshold (objective value) depicted in Figure 2. In contrast,
the conventional approach [18,130] employing isotherms, a single filter, and a simple indicator
methodology cannot efficiently distinguish Kuroshio on the facade (Figures 4 and 5), notably
throughout summer due to uniform heating, and it reappears in winter. In addition, the
SST gradually diminishes from upstream to downstream. However, many studies [109–113]
suggested that the missing summertime SST can be proxied using chlorophyll-α data. We
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have manifested in this research that SST can be detected even during June, July, and August
using a combination of spatial filters and algorithms (Figure 15).

The highlight is that, along with chlorophyll-α, a few other non-conventional datasets
discussed in this study also provide the KC signature by retaining its shape as well. First, all
the KC centerlines from SST, SSH, total heat flux, SSS, SSD, and chlorophyll-α oceanographic
parameters were validated using 25 years satellite-based sea surface current (Figure 12) and
then by correlating slope (Figure 10a) and distance (Figure 10b) using 252 combinations.
Finally, these seven datasets were overlaid on the KC extracted from 32 years of satellite-
tracked Argo drifted data to test their spatial proximity, as shown in Figure 16. Interestingly,
the centerlines’ deviation from the dominant path is no more than 2 pixels (Figure 11).
Nevertheless, choosing spatial algorithms, dimensions of windows, and kernel methods for
deciding proper candidates is a vital predicament, time-consuming, and not an easy chore.

To conclude, numerous investigations employed exclusively satellite-based sea surface
current and drifter data as an ultimate source for studying KC [1,11,64–66,70,85,99,101,118,119].
This research additionally sheds light on the possibilities along with the surface current (satellite
and drifters), SST, chlorophyll-α, and various other data sets (heat flux, SSH, SSD, and SSS) that
can map KC, not only as centerline but also its extent as a polygon vector feature. Moreover,
the results of one parameter can be used as a proxy to another on a long-term climatology and
seasonal scale (92 images * 7 data sets).

Nevertheless, for weekly analysis on 16 images from five parameters (SST, sea surface
current, HF, and SSD), altogether 80 images proved competitive by considering more iteration
for vectorizing SSD. The results of the Kuroshio centerline illustrated in Figure 9 can help to
monitor the seasonal and long-term spatio-temporal variation in addition to the analyses of
physical and biological processes in the Kuroshio extent outlined by these various parameters
and analyzing their interdependencies, inter variations on various time scales.
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