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Abstract: Land subsidence has become an increasing global concern over the past few decades due to
natural and anthropogenic factors. However, although several studies have examined factors affecting
land subsidence in recent years, few have focused on the spatial heterogeneity of relationships
between land subsidence and urbanization. In this paper, we adopted the small baseline subset-
synthetic aperture radar interferometry (SBAS-InSAR) method using Sentinel-1 radar satellite images
to map land subsidence from 2015 to 2018 and characterized its spatial pattern in Wuhan. The bivariate
Moran’s I index was used to test and visualize the spatial correlations between land subsidence and
urbanization. A geographically weighted regression (GWR) model was employed to explore the
strengths and directions of impacts of urbanization on land subsidence. Our findings showed that
land subsidence was obvious and unevenly distributed in the study area, the annual deformation
rate varied from −42.85 mm/year to +29.98 mm/year, and its average value was −1.0 mm/year. A
clear spatial pattern for land subsidence in Wuhan was mapped, and several apparent subsidence
funnels were primarily located in central urban areas. All urbanization indicators were found
to be significantly spatially correlated with land subsidence at different scales. In addition, the
GWR model results showed that all urbanization indicators were significantly associated with land
subsidence across the whole study area in Wuhan. The results of bivariate Moran’s I and GWR
results confirmed that the relationships between land subsidence and urbanization spatially varied in
Wuhan at multiple spatial scales. Although scale dependence existed in both the bivariate Moran’s I
and GWR models for land subsidence and urbanization indicators, a “best” spatial scale could not be
confirmed because the disturbance of factors varied over different sampling scales. The results can
advance the understanding of the relationships between land subsidence and urbanization, and they
will provide guidance for subsidence control and sustainable urban planning.

Keywords: SBAS-InSAR; Sentinel-1 images; geographically weighted regression (GWR); bivariate
Moran’s I; land subsidence; urbanization; spatial non-stationarity

1. Introduction

Land subsidence (LS) is the gentle settlement of the ground surface due to the consol-
idation of compressible sediments or loss of regional earth materials as a result of water
exploitation or extraction of oil and gas. Land subsidence is usually observed as a series of
geological-environmental hazards, including severe destruction of buildings [1], roads [2],
bridges, pipelines [3], railway tracks [4], and metro networks [5], and it increases the risk of
urban flooding particularly in coastal regions experiencing sea-level rise [6]. In 1891, land
subsidence was first observed in Mexico City while it has been detected and recorded in
Shanghai (China) since 1921 [7,8]. Currently, land subsidence occurs mainly in regions with
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flat terrains where loose deposits accumulate in river deltas or coastal plains, especially
densely populated areas, as well as urban or agricultural areas developed in temperate or
arid climates that are characterized by long-term drought [9–11]. Although land subsidence
affects 8% of the global terrestrial area, people at risk account for approximately 16% of the
total world population comprising approximately 1.2 billion inhabitants [12]. Along with
a growing population and the developments in urbanization and industrialization, the
exposure of the population to land subsidence is expected to increase by 30% approximately
to 1.6 billion inhabitants while predicted potential subsidence areas will increase by only 7%
globally; 1596 of 7343 major world cities are predicted to be located in potential subsidence
areas by 2040 [13]. Land subsidence is one of the considerable challenges facing the world,
and poses a significant threat to the long-term sustainable development of the humankind.
Therefore, it is crucial to effectively monitor and map land subsidence in real time [14].

Differential synthetic aperture radar interferometry (D-InSAR) spaceborne-based is a
remotely sensed technology that enables investigation of widespread surface deformation
across the earth. In contrast to conventional spirit levelling and GPS survey techniques,
D-InSAR provides spatially dense displacement measurements that are updated periodi-
cally at relatively low cost. Advanced multitemporal InSAR (MT-InSAR) technology such
as persistent scatterer interferometry (PS-InSAR) [15,16] and small baseline subset inter-
ferometry (SBAS-InSAR) [17,18] can effectively overcome spatial-temporal decorrelations
and mitigate atmospheric delay effects, thus allowing the measurement of surface deforma-
tion with centimeter and even subcentimeter accuracy at very high spatial resolution [19].
To date, the MT-InSAR method has been widely applied to monitor deformation of the
earth’s surface [20], including volcanoes and seismic activity [21], landslides [22], glacial
motion [23], mining-related subsidence [24], subsidence of urban or peri-urban area [25,26],
and even large-scale land deformation nationwide [27].

Wuhan, as the largest city in central China, has recently been a relatively highly
populous metropolis. In the last two decades, Wuhan has experienced rapid urbanization
and industrialization combined with ongoing construction of high-rise buildings and
massive underground space development. At present, a variety of efforts have been made
to measure and map land subsidence derived from multisource space-borne remotely
sensed data based on the MT-InSAR method in Wuhan, concentrating on wide-coverage
urban surface settlement and building structure stability. It can be stated in detail as follows.
Zhou monitored the spatial distribution of land subsidence from 2015 to 2016 using Sentinel-
1 SAR images [28]. Han and Jiang [29,30] investigated the spatial pattern and temporal
evolution characteristics of land subsidence, aiming to reveal the spatiotemporal variations
in subsidence and the induction of subsidence. Bai and Zhang [31,32] qualitatively analyzed
the relationship between land subsidence and influential factors from the aspects of natural
conditions and human activities. In addition, Ding [33] predicted time-series surface
subsidence based on long short-term memory (LSTM) model in selected key regions.

The aforementioned works have led to a substantial understanding of the spatial
extent, magnitude, and temporal evolution of land deformation and qualitatively explored
influential factors in Wuhan. However, local clustering patterns between land subsidence
and urbanization have been ignored, and fewer studies have examined the quantitative
impact of urbanization on land subsidence in Wuhan, especially for spatially varying rela-
tionships between land subsidence and urbanization at different scales. In fact, knowledge
of spatially varying relationships is an important prerequisite to protect cities from damage
due to surface subsidence. In addition, previous studies have neglected the interactions
between land subsidence and its various impact factors, which exhibit scale dependence.

To address the gaps in the existing studies, we first adopted the SBAS-InSAR method
using Sentinel-1 radar satellite images to map land subsidence and characterized its spa-
tial pattern in Wuhan. Furthermore, the bivariate Moran’s I index was used to test and
visualize the spatial correlations between land subsidence and urbanization. In addition, a
geographically weighted regression (GWR) model was employed to explore the strengths
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and directions of impacts of urbanization on land subsidence. Finally, we discussed scale
effects on the spatially varying relationship between land subsidence and urbanization.

2. Study Area

Wuhan is located in the eastern region of the Jiang-Han Plain, with geographical
coordinates between latitudes 29◦58′ N and 31◦22′ N and between longitudes 113◦41′ E
and 115◦05′ E (see Figure 1). The Yangtze River and its largest branch, the Han River, have
a confluence in central urban areas of Wuhan, which divides it into three main parts. The
overall terrain of Wuhan is flat, with an average altitude of approximately 37 m above sea
level. Soft clay layers with high compressibility and low strength are primarily spread
along both banks of the Yangtze River in Wuhan. The belts of carbonate rock in Wuhan
cover an area of more than 1100 km2, and they align in a trend with a nearly east–west
orientation. Wuhan is in a northern humid subtropical monsoon climate zone, which is
characterized by plentiful rainfall and abundant sunshine. The average annual temperature
is approximately 16.6 ◦C and precipitation ranges from 1150 mm to 1450 mm. The rainfall
is concentrated mainly in the rainy season from June to August every year, accounting for
41% of the total precipitation.
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Figure 1. Location of study area and Wuhan city. The study area is represented by the red square.
The simplified geological setting of the study area is shown in the right panel.

Wuhan, the capital city of Hubei Province, acts as an important industrial and eco-
nomic center, cultural and educational base, and comprehensive transportation hub in
central China. It covers a total area of 8494 km2 with permanent residents totaling approxi-
mately 11.08 million in 2018. Wuhan has witnessed unprecedented economic development
and urban sprawl since the new millennium.The urban built-up area in 2000 was 221.01 km2,
while it reached 812.39 km2 at the end of 2018, and the average annual urban expansion
rate was more than 7%. During the process of horizontal urban growth, a mass of high-rise
buildings and underground space development promoted significant urban expansion
in the vertical direction, thus resulting in the continuous emergence of the subsidence
phenomena in Wuhan.



Remote Sens. 2022, 14, 291 4 of 19

3. Materials and Methods
3.1. Land Subsidence Extraction

Sentinel-1 mission SAR sensors operate in the C-band (a wavelength of approximately
5.6 cm) and two satellites consisting of Sentinel-1 A/B satellites observe earth’s surface
globally within 6 days and 12 days for a single satellite. The Sentinel-1 interferometric wide
swath mode (IW) provides large swath width of ~250 km images using the novel terrain
observation by progressive scans (TOPSAR) imaging technique. The spatial resolutions of
the IW mode are less than 20 m and 5 m in the azimuth and range directions (single look),
respectively [34]. The Sentinel-1 satellite single look complex (SLC) data for interferometric
applications can be accessed freely from European Space Agency (ESA) Copernicus Open
Access Hub website (https://scihub.copernicus.eu (accessed on 8 December 2021).

In this work, we used 30 Sentinel-1A SAR images acquired in IW mode with VV
(vertical-vertical) polarization between April 2015 and January 2019 to provide an assess-
ment of land subsidence in Wuhan, China. All scenes were acquired along the descending
orbits and average value of incidence angle is approximately 41.59◦. The SBAS algo-
rithm [17] was employed to process multitemporal IW SLC level-1 data products to derive
the land subsidence velocity. A combination of time-series images within thresholds of
spatial and temporal baseline (smaller than 148 m and less than 365 days) was selected to
generate a connected graph of differential interferograms, which allows maximization of
geometric coherence [35]. After the removal of interferometric pairs with low coherence and
poor unwrapping, a total of 99 differential interferograms were obtained. The average num-
ber of connections per scene is more than 5 to ensure sufficient interconnected redundancy.
The flat-earth phase of interferograms can be determined and removed by the precise
orbit determination (POD) data provided by the ESA. Shuttle Radar Topographic Mission
(SRTM) DEM data with a resolution of 30 m obtained from the U.S. Geological Survey
(https://lta.cr.usgs.gov (accessed on 8 December 2021) was used to simulate and eliminate
topographic phases and geocode displacement results. We selected 30 stable pixels without
displacement located in the study site as ground control points (GCPs) to perform orbital
refinement and phase reflattening for interferometric pairs. A multilooking operation with
a ratio of 1:4 in the azimuth and range directions was carried out to improve the phase
performance of the differential interferograms, and the interferograms were processed with
the adaptive Goldstein-Werner filter to further mitigate the effects of speckle noise. Then,
phase unwrapping of each interferometric pair was implemented with minimum cost flow
(MCF) network and Delaunay 3D method, setting the unwrapping coherence threshold
ranging from 0.2 to 0.3 by trial and error. The singular value decomposition (SVD) method
was employed to generate the minimum norm least square solution for the unwrapped
phase for pixels exhibiting consistently high coherence levels from interferograms and
to retrieve the deformation time series. In addition, the atmospheric phase signal and
nonlinear displacement component were estimated and subtracted from the displacement
time series through a low pass spatial filter combined with a high temporal pass filter.
Finally, the line-of-sight (LOS) deformation was transformed into the vertical direction
using the radar incident angle assuming that the displacement in the horizontal direction
is negligible. Thus, positive values of the deformation rate indicate that the ground is
moving upwards in the vertical direction (uplift), whereas negative values mean that the
ground is moving downwards in the vertical direction (subsidence). The land subsidence
velocity map was extracted using SARScape module version 5.2.1 in the ENVI software
environment and is shown in Figure 2.

https://scihub.copernicus.eu
https://lta.cr.usgs.gov
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3.2. Urbanization Metric Quantification

Impervious surfaces, defined as artificial structures that prevent natural infiltration
of water into the soil, are considered an indicator of urbanization [36,37]. The impervious
surface area (ISA) data were extracted from the global artificial impervious area (GAIA)
dataset [38], an annual product in raster format with a 30 × 30 m resolution between
1985 and 2018. The original ISA raster data in 2018 were resampled at a resolution of
500 × 500 m. Building and road network data in vector format were obtained from the
Wuhan Nature Resource and Planning Bureau.

Night-time lights generated by anthropogenic activities correlate significantly with
numerous urbanization and socioeconomic parameters at regional or global scales, which
have been recorded by satellite sensors for a long time. Satellite-based artificial night-
time light (NTL) observations provide a unique proxy measure for unveiling urbanization
and regional development [39]. Night-time light satellite images are obtained from the
extended time series (2000–2018) of global NPP-VIIRS-like night-time light data [40], which
has a consistent temporal trend at both global and regional scales. NTL and ISA can be
applied to represent the comprehensive degree of urbanization because they both belong
to physical quantity.
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Numerous high-rise buildings and roads densely concentrated within the limits of
plane space transform the natural landscape, which is necessary content and one of the
spatial manifestations of urbanization. Buildings and roads parallel the intensity of ur-
banization, and the changes in landscape characteristics can reflect the degree of human
influences on the environment. The building load plays an important factor in land subsi-
dence. The central area of the building group has larger subsidence and the subsidence
superimposition effect is obvious [41]. The kernel density method is employed to quantify
the component of urbanization related to buildings, called building kernel density (BKD),
based on the weight of base areas by the number of floors. Similarly, the line density
method is used to estimate the component urbanization related to roads named road line
density (RLD), based on the weight of the type and grade of roads.

3.3. Exploratory Spatial Data Analysis

Tobler’s first law of geography [42] pointed out that ubiquitous spatial dependence
occurs widely in geographical phenomena. Spatial dependency is defined as an effect
between the occurrence of a given geographical location and that of surrounding loca-
tions. The global and local Moran’s I indicators were used to describe the global spatial
dependence among variables. The global Moran’s I statistic is defined as follows [43]:

Ig =
n ∑n

i=1 ∑n
j=1 Wij

(
Xi − X

)(
Xj − X

)
∑n

i=1 ∑n
j=1 Wij ∑n

i=1
(
Xi − X

)2 , (1)

where n is equal to the total number of spatial units in the study area; Xi and Xj are the
observed value of the variable for spatial units i and j (i 6= j), respectively; X denotes the
mean of the variable; and Wij is the spatial weight between spatial units i and j defined
by the inverse distance method, which is commonly used in row-standardized form. In
general, the global Moran’s I value ranges from −1 to 1. The Global Moran’s I > 0 indicates
that similar subsidence values are clustered together (positive spatial autocorrelation),
whereas the global Moran’s I < 0 indicates that dissimilar subsidence values are clustered
together (negative spatial autocorrelation); and when the global Moran’s I is zero, no spatial
autocorrelation exists.

The local indicator of spatial association (LISA; local Moran’s I statistic) measures the
degree of spatial autocorrelation in each sample unit. For each spatial unit i, the LISA is
calculated as follows [44,45]:

Ii =
(n− 1)

(
Xi − X

)
∑n

j=1,j 6=i
(
Xj − X

)2 ∑n
j=1,j 6=i Wij

(
Xj − X

)
, (2)

The LISA index can identify two spatial cluster types: a high-high cluster indicating a
high value surrounded by higher value; and a low-low cluster indicating a low subsidence
value surrounded by neighbors with lower values. Spatial outliers refer to those values
that are significantly different from the values of their neighbors, including low-high (a low
value surrounded by high value) and high-low (a high value surrounded by low values)
outliers. The Monte Carlo simulation method (999 permutations) was used to test the
statistical significance of Moran’s I, and significance value for spatial autocorrelation was
set at p < 0.05. The global Moran’s I is regarded as the average LISA value of all spatial
units. The land subsidence/uplift clusters were obtained using GeoDa software version
1.12 (GeoDa Press LLC, Chicago, IL, USA) and are shown in Figure 3.
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in Wuhan city.

We use the bivariate Moran’s I index to measure the spatial association relationships
between land subsidence and urbanization. The bivariate global Moran’s I can detect
whether a cluster or outlier exist in the study area, and bivariate local Moran’s I is able
to identify the exact location. The bivariate global Moran’s I statistic is expressed as
follows [46]:

Ilm = ∑n
p=1 ∑n

q=1 Wpqzp
l zq

m, (3)

For each spatial unit p, the bivariate local Moran’s I (bivariate LISA) is defined
as follows:

Ip
lm = zp

l ∑n
q=1 Wpqzq

m, (4)

where n is the total number of spatial units; zp
l is the standard value of land subsidence in

spatial unit p; zq
m is the standard value of the urbanization metric in spatial unit q; and Wpq

is the spatial weight between units p and q. The value of bivariate Moran’s I ranges between
−1 and 1, where a positive value suggests positive spatial correlation and a negative value
indicates negative spatial correlation between two variables. When bivariate Moran’s I is
equal to 0, it signifies a random spatial pattern. In the case of statistical significance, the
bivariate local Moran’s I index divides the spatial relationship between land subsidence and
urbanization in each sample unit into: “High-High (HH)”, “Low-Low (LL)”, “High-Low
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(HL)”, and “Low-High (LH)”. We used Monte Carlo randomization (9999 permutations)
to assess the significance of the bivariate Moran’s I. When the test is significant (p < 0.05),
there is a clustered or dispersed pattern between two variables. The land subsidence/uplift
clusters were obtained using GeoDa software version 1.12 (GeoDa Press LLC, Chicago, IL,
USA; Anselin, Luc, 2006) and are shown in Figure 3.

3.4. Geographically Weighted Regression Model

GWR is a relatively simple but effective, technique that extends the traditional re-
gression framework for exploring spatial nonstationarity. It allows different relationships
to exist at different points in space, such that local rather than global parameters can be
estimated. Brunsdon [47] described spatial heterogeneity as a condition where a global
regression model cannot describe the relationship between the response variable and
explanatory variables because of the variation in characteristics among the observation
regions. Global regression models, such as ordinary least squares (OLS), assume constant
relationships over space, ignoring the effects of spatial heterogeneity among the observa-
tions. The GWR model can capture spatial nonstationarity by allowing the variation in
relationships across space, and the model can be defined as follows [48]:

yi = βi0 + ∑k βikxik + εi (5)

where yi represents the value of the dependent variable, βi0 is the constant term, xik is the
value of the independent variable k of unit I, βik is the parameter estimate associated with
xik, and εi is the random error. The local estimates for unit i using matrix representation are
calculated as follows [47,48]:

β̂(i) =
(

XTW(i)X
)−1

XTW(i)Y, (6)

where X is a (n × (k + 1)) independent variable matrix, the first column of which represents
the intercept term and all of them are set as 1; Y denotes an n × 1 vector of dependent
variables; W(i) is an n × n matrix with the element Wij indicating the spatial weight
between units i and j, whose diagonal elements are spatial weights between two units, and
the off-diagonal elements are set to zero. To obtain weights, we used the adaptive Gaussian
function to define the spatial kernel:

Wij = exp [−(
dij

bi
)

2

], (7)

where bi represents the spatial distance between units i and j, i.e., the bandwidth of unit i,
which determines whether the kernel function will be performed.

The selection of bandwidth of spatial kernel function plays a critical role in GWR
model performance [49], which is more important than the choice of spatial kernel function
itself. In this work, we used the corrected Akaike information criterion (AICc) to determine
the appropriate bandwidth of each kernel as it achieves a balance between goodness-of-fit
and model complexity. Under the circumstance of GWR, the AICc is expressed as follows:

AIC = 2n loge(σ̂
2) + n loge(2π) + n

{
n + tr(S)

n− 2− tr(S)

}
, (8)

where S denotes the hat matrix; σ̂2 is defined as the variance in the error term; and tr(S) is
the trace of the hat matrix.
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4. Results and Discussion
4.1. Spatial Autocorrelations of Land Subsidence

A total of 2,013,600 pixels were ultimately identified as coherent targets (CTs) in the
study area, the density of which was 1293 CTs per km2. In general, CT pixels were more
densely distributed in the core of urban areas with plenty of buildings and roads than
peri-urban areas. Figure 2 demonstrates the spatial distribution of the CT pixels and the cor-
responding vertical deformation velocity field map across the study area. During the whole
observation period, the annual deformation rate of CT pixels varied from −42.85 mm/year
to +29.98 mm/year, and its average value and standard deviation were −1.0 mm/year and
3.86 mm/year, respectively. As shown in Figure 2, obvious heterogeneous land subsidence
patterns were detected in Wuhan. The main land subsidence zones were distributed in
central built-up areas of Wuhan along the bank of the Yangtze River. Most of the severe
subsidence zones were located in Jianghan (JH), Jiangan (JA), Qiaokou (QK), Wuchang
(WC), and Hongshan (HS) districts.

The global Moran’s I index was calculated to examine the spatial dependence of
land subsidence across the whole study area (Figure 3). The value of global Moran’s I at
the four block scales ranged from 0.70 to 0.81 and passed the significance test at the 99%
confidence level, which indicated a significantly positive global spatial autocorrelation of
land subsidence across the entire study area. In general, the values of the global Moran’s
index for land subsidence have an increasing trend with increasing block scale, with the
exception of 1.5 km × 1.5 km. The multiscale comparative analysis of the global Moran’s
I index suggests that the spatial autocorrelation of land subsidence is not an accidental
phenomenon dependent on scale.

The LISA index was used to depict the local spatial correlation of land subsidence
across the study area (Figure 3). The cluster maps of LISA in Figure 3 exhibit the spatial
aggregation state of land subsidence and distinct spatial patterns of the clusters at four block
scales. The low-low clusters (serious land subsidence) were mainly concentrated in QK, JH,
the south of Hanyang (HY), the southwest of HS, the north of Jiangxia (JX) and WC along
the southern bank of the Yangtze River, while the high-high value agglomerations (land
uplift) were mostly located north of HS and south of Huangpi (HP) along the Yangtze River.
With an increase in block scale, the area of low-value and high-value agglomerations for
land subsidence gradually shrank and some clusters disappeared. Nevertheless, the spatial
distribution of low-value and high-value agglomerations for land subsidence became more
concentrated. The LISA index can accurately delineate the funnel of land subsidence
quantitatively. Thus, the multiscale LISA index can help guide corresponding actions at
different administrative levels to address the consequences of land subsidence. The small
number of spatial outliers (low-high or high-low) for land subsidence at four block scales
were sporadically distributed within the study area. The high-low outlier refers to area
where a unit with higher subsidence value is surrounded by other comparatively lower
subsidence value units, it is likely to develop into an emerging subsiding area in the near
future according to Tobler’s first law of geography [42].

4.2. Spatial Patterns of Urbanization

As shown in Figure 4, all urbanization indicators (ISA, NTL, BKD and RLD) gradually
decrease from the city center to its outer periphery, and their spatial distributions are similar
to each other globally. The ratio of the area for ISA across the study area is 44.40%, and the
averages of NTL, BKD, and RLD are 16.31 n·W·cm−2·sr−1, 523.40, and 14.93, respectively.
ISA and NTL are comprehensive indicators of urbanization, while BKD and RLD focus on
a single aspect of urbanization. Therefore, the intragroup similarity between ISA and NTL,
BKD and RDL is higher than the intergroup similarity in terms of spatial patterns. It is
observed that water bodies, which are mainly composed of rivers, lakes, and reservoirs, play
a crucial role in shaping the urban expansion of Wuhan according to the spatial distribution
of urbanization indicators. In addition, BKD and RLD were both found to exhibit low
values compared to the relatively values of high ISA and NTL in the southeastern part of
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the study area, which indicated local spatial disparities among urbanization indicators.
The urban-rural gradient of NTL and BKD has a significant spatial variation as opposed to
ISA and RLD. Although the spatial distribution of RLD is different from that of the original
road, RLD also showed an obvious linear distribution characteristic.
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4.3. Spatial Associations between Land Subsidence and Urban Development

The values of global bivariate Moran’s I at four block scales are less than 0 (p < 0.01),
indicating significantly negative spatial correlations between the four types of urbaniza-
tion indicators and surface deformation (Figure 5). That is, overall, urbanization is an
important factor leading to land subsidence. However, the degree of negative spatial
correlation varied with different urbanization factor types and scales. Among these types,
the strongest negative correlation was found between land subsidence and BKD (Moran’s
I: ranging from −0.1911 to −0.1639), followed by that between land subsidence and NTL
(Moran’s I: ranging from −0.1793 to −0.1220) and that between land subsidence and RLD
(Moran’s I: ranging from −0.1224 to −0.0683). The weakest correlation was between land
subsidence and ISA (Moran’s I: ranging from −0.1121 to −0.0666). The negative spatial
correlation between urbanization and land deformation manifested as a gradual increase
in the block size.
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The cluster maps of the bivariate local Moran’s I in Figure 5 further illustrate the pat-
tern of spatial heterogeneity in the relationships between land subsidence and urbanization
at four block scales. We observed an obvious clustering pattern similarity between the
spatial distributions of each of the urbanization indicators and land subsidence in the study
area at four block scales. The low-high spatial outliers were mainly concentrated in the
urban center of Wuhan, particularly in JA, JH, QK, and WC along the bank of the Yangtze
River, and the southwest HS. A low-low cluster was significantly observed in the periphery
of the study area, especially in the south HS, north JX. The high-low areas were mostly
located across the region clustered in the northeast section of the study area. A high-high
cluster was mainly distributed in the transition zone between East Lake and the Yangtze
River and Hanyang (HY) district along the bank of the Han River, almost adjacent to the
low-high regions. At block scale of 2 km × 2 km, the number of statistically significant
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clusters and their occupied areas both decreased compared to those at other scales in terms
of the four types of urbanization indicators. In particular, the other three types of clusters
(except for low-high outliers) exhibited drastic declines in the number of clusters and the
occupied areas and the low-high cluster appeared to have a concentrated distribution.
The degree of global spatial correlation was the highest when low-high outliers became
dominant agglomerates because clusters whose bivariate spatial autocorrelation type was
opposing no longer canceled each other out. This suggests that the value of local bivariate
Moran’s I between land subsidence and urbanization indicators depends on the block scale
to some degree.

4.4. Impacts of Urbanization on Land Subsidence

To prevent the disturbance of potential multicollinearity on the parameter estimation of
the model, each urbanization factor was independently analyzed with the land subsidence
indicator in the GWR model due to high correlations existing among the urbanization
indicators [50]. Thus, a total of 4 × 4 = 16 GWR models were generated and combined with
four block scales. The standardized residual values of all GWR models range from−11.0298
to 6.7591 at most; more than 97% is in the range of −2.58–2.58. Therefore, the standardized
residual values of all GWR models are randomly distributed at a 95% confidence level. To
further examine whether the residuals from GWR models exhibit spatial randomness, a
spatial autocorrelation analysis was performed on the residuals to obtain the global Moran’s
I statistics. As shown in Table 1, in general, low spatial autocorrelations of residuals from
the GWR model are detected at the small block scale compared to the large scale, indicating
that the variance in land subsidence over the study area is relatively random and exhibits
spatial stationarity at the small block scale.

Table 1. Global Moran’s I for residuals of GWR models.

Scale ISA NTL BKD RLD

500 m 0.0570 −0.0377 −0.0623 −0.0581
1000 m 0.1267 −0.0309 −0.0711 −0.0038
1500 m −0.0281 −0.0585 −0.0278 −0.0129
2000 m 0.1150 0.1167 0.1268 0.0216

Notes: Bold numbers denote significance at less than 0.01 level. Abbreviations: impervious surface area (ISA);
night-time lights (NTL); building kernel density (BKD); road line density (RLD).

The local parameter estimates of the GWR model indicate the spatially varying rela-
tionships between the independent variable and response variable at different locations.
The magnitude of the absolute value of the model regression coefficient denotes the degree
of impact of an independent variable on land subsidence. In addition, the local adjusted
determined coefficient (adjusted R2) value from the GWR model is used to detect and assess
the ability of the explanatory variable to explain the spatial variance in land subsidence,
and a higher local adjusted R2 value means better performance of the model. The ranges
of local parameter estimate and adjusted R2 between land subsidence and urbanization
indicators obtained from GWR models are summarized in Table 2. Both positive and
negative relationships are identified by local coefficients between urbanization indicators
and land subsidence at different block scales, and the average of regression coefficients
for NTL (except at the 1500 m scale) is less than 0. The local adjusted R2 indicated that
the urbanization indicators could explain more than 75% of the spatial variance in land
subsidence on average at the four block scales (Table 2). In general, the explanatory power
of urbanization indicators on land subsidence presents no significant difference from small
to large block scales. However, the higher adjusted R2 suggests that NTL has a stronger
ability to explain the land subsidence changes than ISA at different block scales, which
indicates that both ISA and NTL are relatively comprehensive indicators measuring the de-
gree of urbanization, although NTL can reflect dynamic human activities and urban vitality
better than ISA because artificial lights provide a direct signature of human activity [51].
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Table 2. Descriptive statistical summary for GWR models.

Scale Variable
Coefficient

Adjusted R2

Min Lower Quartile Mean Upper Quartile Max

500 m

ISA −0.2393 −0.0058 0.0240 0.0528 0.3389 0.7525
NTL −2.2963 −0.1292 −0.0026 0.1413 3.6109 0.7929
BKD −32.1901 −0.0593 0.0722 0.1371 39.3492 0.8180
RLD −3.1004 −0.0548 0.0295 0.0913 1.9124 0.8205

1000 m

ISA −0.2357 −0.0332 0.0126 0.0653 0.2151 0.7535
NTL −1.4376 −0.1626 −0.0126 0.1586 2.2220 0.8191
BKD −13.7699 −0.0816 0.0356 0.1842 6.6497 0.8374
RLD −0.7648 −0.0905 0.0389 0.1339 1.5085 0.8019

1500 m

ISA −0.5730 −0.0766 0.0043 0.1050 0.3629 0.7895
NTL −4.4310 −0.1935 0.0129 0.2425 3.4730 0.8667
BKD −1.4849 −0.0952 0.1182 0.2601 3.4356 0.7841
RLD −0.8631 −0.1476 0.0408 0.2192 2.0384 0.7835

2000 m

ISA −0.5431 −0.0940 0.0013 0.1154 0.3364 0.7701
NTL −1.2506 −0.2347 −0.0581 0.1684 0.9370 0.7805
BKD −3.2007 −0.1089 0.0918 0.2867 2.2430 0.7660
RLD −1.7809 −0.2026 0.0237 0.2558 1.8308 0.8136

As shown in Figure 6, the explanatory ability of GWR revealed by the local adjusted
R2 varies spatially. In general, GWR exhibits stronger explanatory power in WC, QS,
central HS adjacent to East Lake, and northern JX. In contrast, the prediction ability of
GWR appears to be lower in JA and around the periphery of the study area. The spatial
patterns of coefficients of independent variables for urbanization indicators identified by
GWR are clearly shown in Figure 7. In terms of the spatially varying regression coefficients,
the directions (positive or negative) and strengths of the relationships between land defor-
mation and urbanization indicators are not constant over the study area at different block
scales. This result suggests that homogeneity and heterogeneity in the spatial relationships
between land subsidence and urbanization indicators are sensitive to spatial scales. In
addition, the spatial patterns of the regression coefficients of urbanization indicators tend
to become more similar with increasing block scale. At the 2000 km block scale, negative
relationships between urbanization indicators and land surface deformation are detected
for JA, JH, QK, and WC along the Yangtze River and south HS, indicating that urban
construction and anthropogenic activities resulted in the occurrence of land subsidence.

As shown in Figure 7, the negative values of the regression coefficients from the GWR
model concentration region coincide with the distribution of soft soils or carbonate rocks,
which have a high degree of urbanization. According to the definitions of urbanization
indicators (ISA, NTL, BKD, and RLD), a region with a high degree of urbanization has large
dynamic and static loads or is undergoing frequent construction and renewal activities.
The urban construction of Wuhan city witnessed a stage of rapid development during the
study period. In the construction process, groundwater extraction is required for operations
around sites where buildings and subways are constructed. Previous studies have shown
that the loss of groundwater results in consolidation of highly compressible soft soils and
the dissolution of carbonate rocks, which thereby leads to land subsidence [30]. At the same
time, the excavation of a subway tunnel inevitably disturbs the surrounding soil layers,
followed by ground settlement. After the completion of project construction, i.e., in the
process of building and subway operation, continuous dynamic and static loading act on
the foundations of structures such as buildings, subways, and bridges. When the soil layer
underneath a structure can no longer support the loading, settlement occurs within the
structure and the surrounding area [32,41,52].



Remote Sens. 2022, 14, 291 14 of 19Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 19 
 

 

 
Figure 6. Spatial patterns of local adjusted 𝑅ଶ obtained from the GWR model for urbanization in-
dicators at four block scales. 

As shown in Figure 7, the negative values of the regression coefficients from the GWR 
model concentration region coincide with the distribution of soft soils or carbonate rocks, 
which have a high degree of urbanization. According to the definitions of urbanization 
indicators (ISA, NTL, BKD, and RLD), a region with a high degree of urbanization has 
large dynamic and static loads or is undergoing frequent construction and renewal activ-
ities. The urban construction of Wuhan city witnessed a stage of rapid development dur-
ing the study period. In the construction process, groundwater extraction is required for 
operations around sites where buildings and subways are constructed. Previous studies 
have shown that the loss of groundwater results in consolidation of highly compressible 
soft soils and the dissolution of carbonate rocks, which thereby leads to land subsidence 
[30]. At the same time, the excavation of a subway tunnel inevitably disturbs the sur-
rounding soil layers, followed by ground settlement. After the completion of project con-
struction, i.e., in the process of building and subway operation, continuous dynamic and 
static loading act on the foundations of structures such as buildings, subways, and 
bridges. When the soil layer underneath a structure can no longer support the loading, 
settlement occurs within the structure and the surrounding area [32,41,52]. 

Figure 6. Spatial patterns of local adjusted R2 obtained from the GWR model for urbanization
indicators at four block scales.

In contrast, some unexpected local relationships are also identified by the GWR
model. For example, the southeastern and northeastern parts of the study area have
concentrations of positive values. The density of deformation monitoring point pixels
obtained in peri-urban areas is sparser than that in the center of the city due to dense
vegetation and abundant waters. As a result, the land surface deformation monitoring data
in the aggregated unit are easily influenced by random errors, and such unexpected results
thus appear. Additionally, some omitted unknown variables in the GWR model may also
contribute to the unexpected results.
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Figure 7. Spatial distribution of regression coefficients between urbanization indicators and
land subsidence.

4.5. Scale Effects of Relationships between Land Subsidence and Urbanization

The scale effect refers to smaller units being aggregated into larger units for spatial
data, this likely provides inconsistent results [53]. Numerous studies have pointed out that
the scale effect has been proven to be ubiquitous in the analysis of geographical phenomena
and processes [54–56]. Neglecting the scale effect may lead to uncertainty in the results
of spatial analyses and statistics and may even produce false conclusions. Thus, scale
effects cannot be overlooked when analyzing the relationship between land subsidence
and urbanization. In this work, the global and local bivariate Moran’s I (Figure 5), the
spatial patterns of the local adjusted R2 (Figure 6), and the directions and strengths of the
identified relationships between land subsidence and urbanization (Figure 7) all varied
among the different block scales. In other words, the above results showed that the spatially
varying relationship between land subsidence and urbanization was also scale dependent.
First, the explanatory ability of the GWR models increased as the block scale increased,
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but approximately 20% of the spatial variance in land subsidence remained unexplained
even at a block scale of 2 km. The reason for this may be that the larger block size was able
to significantly reduce random disturbance for the estimation of land subsidence at the
statistical unit due to the effect of spatial filtering. Nevertheless, the spatial autocorrelations
of the residuals produced from the GWR models did not change accordingly with the
variation in the block scale. Notably, significant positive spatial autocorrelations were
found in the GWR model for land subsidence and ISA at the scales of 1.0 km (Moran’s
I = 0.1267, p < 0.01) and 2.0 km (Moran’s I = 0.1150, p < 0.01), NTL (Moran’s I = 0.1167,
p < 0.01), and BKD (Moran’s I = 0.1268, p < 0.01) at the 2.0 km scale. This finding indicated
that although the results of the GWR model varied with changes in the block scale, certain
bias occurred randomly in the calibration due to the interference of other factors that were
not considered.

In fact, the interactions between land subsidence and urbanization indicators are very
complicated, and thus it is difficult to design an appropriate method to sample spatial data.
Therefore, to correctly analyze such interactions, a comparative analysis with multiscale
data is very important and necessary. Although it is difficult to recommend the “best”
spatial scales for the GWR model because the influences of factors vary over different
sampling scales [57], the degrees of fitting for an observation measured by the adjusted
R2 and the spatial autocorrelation of the GWR model residuals should both be considered
for the selection of a suitable block scale. In general, the suitable spatial scale in a GWR
model should not only effectively prevent the interference of random factors but also reveal
locally varying patterns of the identified relationships. Furthermore, the directions (positive
or negative) and strengths of the spatial regression coefficients produced for the GWR
models also varied across various scales and implied that spatial relationships between
land subsidence and urbanization indicators gradually became global and that the spatial
stationarity tended to be strong, which was consistent with the spatial resolution effects on
the relationships between urban heat islands and their impact factors [58,59].

In this paper, an adaptive Gaussian kernel using the golden section search method
was adopted to identify the optimal bandwidth size for a GWR model and mainly focused
on the effects of block scale [60]. Future work is needed to consider a comparative analysis
with multi-bandwidth models for GWR. In addition, we only analyzed spatially varying
relationships between land subsidence and urbanization indicators at four block scales. As
a result, it remains unknown whether there is a threshold within which scale effects are
significant. It is therefore necessary to conduct a further comparative study of the GWR
results obtained for a series of block scales [61].

5. Conclusions

In this study, the land deformation in Wuhan, the largest city in central China, obtained
from Sentinel-1 SAR time-series datasets based on the SBAS-InSAR method was presented.
We investigated the spatially varying relationships between land subsidence and urbaniza-
tion in Wuhan by using bivariate Moran’s I and GWR models. Our analysis concentrated on
a set of empirical results that support the following conclusions. The derived deformation
results showed that land subsidence was obvious and unevenly distributed in the study
area, the annual deformation rate varies from −42.85 mm/year to +29.98 mm/year, and its
average value was −1.0 mm/year. A clear spatial pattern for land subsidence in Wuhan
was mapped, and several apparent subsidence funnels identified by the LISA index were
primarily located in central urban areas. As indicated by bivariate global and local Moran’s
I, four types of urbanization indicators ISA, NTL, BKD, and RLD, were found to be signifi-
cantly spatially correlated with land subsidence at different scales, which implied that the
urbanization indicators could have an impact on the land subsidence of its surrounding
neighbors. In addition, the GWR model results showed that all urbanization indicators
were significantly associated with land subsidence across the whole study area in Wuhan,
mainly controlled by the thickness of soft soil, but the relationships were not completely
consistent among land subsidence and different urbanization indicators. The results of
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bivariate Moran’s I and GWR confirmed that the relationships between land subsidence
and urbanization varied spatially in Wuhan at multiple spatial scales. Moreover, scale
dependence existed both in bivariate Moran’s I and GWR models for land subsidence and
all urbanization indicators, however, a “best” spatial scale could not be confirmed because
the disturbances of factors vary over different sampling scales. We suggest that the results
from our study advance the understanding of the spatially varying relationships between
land subsidence and urbanization, and it is hoped that they will provide guidance for
subsidence control and sustainable urban planning.
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