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Abstract: In order to realize the cooperative localization of multi-unmanned platforms in the GNSS-
denied environment, this paper proposes a collaborative SLAM (simultaneous localization and
mapping, SLAM) framework based on image feature point matching. Without GNSS, a single
unmanned platform UGV and UAV (unmanned ground vehicle, UGV; unmanned aerial vehicle, UAV)
equipped with vision and IMU (inertial measurement unit, IMU) sensors can exchange information
through data communication to jointly build a three-dimensional visual point map, and determine the
relative position of each other through visual-based position re- identification and PnP (Perspective-
n-Points, PnP) methods. When any agent can receive reliable GNSS signals, GNSS positioning
information will greatly improve the positioning accuracy without changing the positioning algorithm
framework. In order to achieve this function, we designed a set of two-stage position estimation
algorithms. In the first stage, we used the modified ORB-SLAM3 algorithm for position estimation
by fusing visual and IMU information. In the second stage, we integrated GNSS positioning and
cooperative positioning information using the factor graph optimization (FGO) algorithm. Our
framework consists of an UGV as the central server node and three UAVs carried by the UGV,
that will collaborate on space exploration missions. Finally, we simulated the influence of different
visibility and lighting conditions on the framework function on the virtual simulation experiment
platform built based on ROS (robot operating system, ROS) and Unity3D. The accuracy of the
cooperative localization algorithm and the single platform localization algorithm was evaluated. In
the two cases of GNSS-denied and GNSS-challenged, the error of co-location reduced by 15.5% and
19.7%, respectively, compared with single-platform independent positioning.

Keywords: differential GNSS; SLAM; cooperation SLAM; multi robot system; UAV; UGV

1. Introduction

The aerial and ground collaborative unmanned systems are a heterogeneous cross-
domain collaborative unmanned system composed of unmanned aerial vehicles (UAVs)
and unmanned ground vehicles (UGVs), with complex functions such as perception,
positioning, control and navigation. It can not only perform tasks independently, but
also interacting with multiple aircraft across domains. A heterogeneous team of UAVs
and UGVs can compensate for the lack of mobility, payload, and observation conditions
between different platforms. UAVs can quickly cover large areas and have a good point of
view for situational assessment. Ground vehicles have longer battery life, can carry large
payloads, and actively interact with the environment.

In recent years, single-platform SLAM technology has been developed significantly.
Early SLAM framework of sensor fusion mostly adopted the extended Kalman filter (EKF).
For example, MSCKF [1] proposed a multi-sensor location information fusion method
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loosely coupled with visual-inertial odometry (VIO). ORB-SLAM3 [2] proposed by Campos
e.g., revealed its potential in the aspects of high precision and high robustness. In the
aspect of map fusion, the ORBSLAM-Atlas [3] module used camera pose error covariance
to estimate the observability of the camera pose to determine whether to retain the camera
pose or create a new map. In the field of multi-sensor fusion SLAM, VINS-FUSION [4]
proposed a method that fused loosely-coupled global positioning information and VO/VIO
positioning result. Some excellent collaborative SLAM frameworks also emerged from
this foundation. When lacking external measurements, the relative position measurement
between unmanned platforms mainly relies on visual position re-identification. A common
way to obtain loop closures is to use visual place recognition methods, based on image or
keypoint descriptors and a bag of words model, such as [4,5]. Some recent works have
also studied closed-loop detection between distributed robots [6,7]. This method finds
closed-loops through local communication between robots [8], collects observation data in a
central server, and obtains a motion trajectory estimation of each robot through pose graph
optimization (PGO). Different from the above, Yun Chang et al. proposed a collaborative
SLAM method based on deep learning semantic description features [9].

There are two communication modes of multi-robot collaborative SLAM: distributed
and centralized. [9–11] are representative works of a distributed framework. In related
research of a centralized framework, Zou et al. introduced CoSLAM [12] in the early years,
which demonstrated considerable potential of the centralized collaborative SLAM, CCM-
SLAM [13] that deploys resource-consuming computations on servers, while still ensuring
each agent’s autonomy at low computational resource requirements by running a visual
odometry system onboard. CVISLAM [14] was the first collaborative SLAM framework for
bidirectional communication and extended visual-inertial odometry to the collaborative
SLAM domain. It achieved higher accuracy and metric scale estimation. However, this
study did not integrate GPS positioning information and thus lacks flexibility. Jialing Liu
et al. proposed a collaborative monocular inertial SLAM system for smart phones. This was
the first multi-agent collaborative SLAM system to run on a mobile phone [15], supporting
cross-device collaboration. Similar work has reported CoVins [16] which can perform
collaborative SLAM tasks on a larger scale. This study showed advantages in removing
redundant information and reducing the coordination overhead.

All the above research only provides some thought to solving the ground-air collab-
orative navigation problems. They did not evaluate the specific application of various
methods in aerial and ground collaborative navigation problems under GNSS-challenged
environments. Even so, many challenges of this application still exist. For example, how to
overcome the place recognition of crossing platforms under the aerial-ground difference of
visual angles, or how to correct drift errors of GNSS positioning information for different
platforms. The previous research mostly considered that a single platform did not need to
run a complete SLAM optimization process during collaborative SLAM and only needed to
execute visual odometry or visual-inertia odometry. However, with the rapid development
of the terminal equipment computing power, we considered that a deploy communication
interface, loosely-coupled with two-stage optimization and a complete single-platform
SLAM process on a terminal device at the same time will not only improve the positioning
accuracy of the single-platform but also improve the robustness of the single-platform
positioning algorithm of the whole system in the case of communication disorder. The
key to collaborative positioning in GNSS-challenging environments is to ensure system
initialization and positioning without GNSS signals, and to improve overall positioning
accuracy with GNSS positioning when GNSS positioning information is available.

In order to solve ground-air collaborative positioning problems, Moafipoor et al. pro-
posed a method that used UGV and UAV collaboration to navigate [17]. When GPS is
not available, the constraints of the external measurements provided by the extended
Kalman filter and tracking filter are used to ensure the normal operation of the navigation
function under adverse GPS conditions. In this paper, graph optimization was adopted
to solve similar problems, assuming that GPS signals of each agent may be interfered
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with at any time. Peter Fankhauser et al. proposed a completely integrated method of
relative observation between robots, independent of external positioning, and without
initial guesstimates about the robot’s posture [18]. This method was applied to the mutual
positioning between a hexacopter and a quadrupedal robot. J Park et al. studied the map
point registration between UAV and UGV through feature points and realized the work of
spatial data collection by multiple agents in a decentralized environment [19]. Hailong Qin
proposed a two layer shared novel optimized exploration path planning and navigation
framework, which provided optimal exploration paths and integrated the collaborative
exploration and mapping efforts through an OctoMap-based volumetric motion planning
interface [20]. They only considered GNSS-denied environments, not GNSS-challenged
environments. In practical applications, on the one hand, we hope to use GNSS positioning
information when receiving GNSS signals, and on the other hand, we hope to maintain a
certain navigation function in the absence of GPS.

In this paper, we proposed an algorithm framework based on feature point matching
and graph optimization for ground-air collaborative positioning in GNSS-challenged envi-
ronments and verify its function in the virtual simulation system. Compared with previous
related work, the main contributions of this paper are summarized as follows:

1. GNSS information is used to eliminate drift errors of the SLAM process in a loosely-
coupled way. This method can work normally even if the GNSS signal is disturbed
or missing;

2. The cooperative location process is divided into several stages, and we try our best
to balance the server computing power, communication bandwidth and algorithm
performance. This allows the system to perform a complete global map initialization
in the environment without GNSS signals;

3. The function of the proposed method is verified by using a virtual simulation system,
and the positioning accuracy of the algorithm is analyzed.

2. Materials and Methods
2.1. System Overview

The architecture of the framework is depicted in Figure 1. At the early stages of system
startup, all the UAV take off from a platform on the top of a UGV. After the unmanned
platform completes IMU initialization and performs the first global bundle adjustment
(BA), map fusion and relative pose solutions are completed between unmanned platforms
through the local map. A flowchart of the co-location program executed on the server is
shown below:

Figure 1. Overall algorithm framework. “MPs/KFs” is short for map points and keyframes. In the
figure, the oval block represents all kinds of data, and the square block represents the processing
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of data. Input for each platform includes images, IMU, and GNSS location information. Each
data handler thread is responsible for handling a corresponding agent. Pose estimation and global
optimization on a single platform and server are realized by factor graph optimization. Finally, the
final state after global optimization is output to the subsequent program for path planning, task
allocation or map construction.

For convenience of explanation, the first stage of the position estimation coordinate
system for a single platform is called the VIO frame. The coordinate system where each
agent’s local map is located after a single platform has completed the second stage of
position estimation is called the local frame. The coordinate system where the global map
is located after map fusion is completed on the server is called the global frame. The co-
location program on the server is shown in Figure 2. When there is no GNSS positioning or
collaborative positioning information, the VIO frame will overlap with the local frame. The
global frame overlaps with the local frame of the UGV before initialization, and the process
of global map initialization is to obtain the relative positioning relation between each UAV
and UGV through PnP solutions and convert the local map of each agent to a global map
based on UGV’s local map. After initialization, the local frame of each agent will overlap
with the global frame. As the unmanned platform continues to move, each agent generates
a new keyframe during the local SLAM process and sends these new keyframes and map
points to the server through wireless data communication. The server stack will cache map
information from each agent. These keyframes and map points will be added to the global
map through the initialized relative position changes between platforms. After the program
discovers place recognition among platforms through detecting feature points, loop-closure
and map fusion of the global map will be executed, as well as optimization. The optimized
position and pose will be used to estimate that in the second stage, together with the
GNSS positioning from each platform. Finally, the new pose of the new keyframes after
collaborative positioning in the closed-loop position will be sent back to the corresponding
agent. And the agent that accepts the collaborative positioning information will adjust their
pose during the second stage of local optimization.

Figure 2. The running process of the co-location module in Figure 1 is explained in detail. The function
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of this module is to restore the received MPs/KFs data from each agent to a local map. The local map
is further stitched into a global map through visual position re-identification, or a new closed-loop
is added to the global map that has been initialized. Finally, the GNSS positioning information is
integrated to perform global optimization and output the result of co-location.

2.2. Keyframe-Based SLAM Algorithm Fusing GNSS Positioning Information and
Co-Location Information

We deployed a SLAM framework modified and based on ORB-SLAM3 on each agent
to run independently, to ensure each agent can complete independent navigation tasks
in the situation where communication links are lost. The algorithm’s flow is shown in
Figure 3. ORB-SLAM3 was modified as follows:

Figure 3. The tracking thread processes sensor information in real time and initially estimates the
pose of the current frame. In the process of tracking the local map, the track thread determines
whether the current frame is used as a keyframe. Different from ORBSLAM3′s keyframe addition
strategy, when valid GNSS positioning information completes timestamp alignment, frames aligned
with GNSS information are also inserted as keyframes.

• A communication module to the server was added to exchange keyframe and map
point information with the server instantly. The details about this part will be intro-
duced in Section 2.3.1;

• The position estimation of the second stage was added, and both GNSS positioning
information and collaborative positioning information were fused.

Each node represents a keyframe position and pose in the world frame. In Figure 4,
the line between two nodes is called an “edge”, which represents the constraint of the
amount to be optimized in the optimization of the factor graph. The edge between two
consecutive nodes is a local constraint, which comes from ORB-SLAM3′s pose estimation.
The other edge is the constraint from the co-location results of the server and GNSS satellite
positioning information. We used the VIO factor as the local constraints, and GNSS location
information and co-location information as global constraints. An illustration of the second-
stage global pose graph structure is shown in Figure 4.
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Figure 4. Schematic diagram of the pose graph structure to be optimized in the second stage. The
circle is the state quantity, and the yellow square is the constraint of local observation, that is, the
relative pose transformation of VIO from ORBSLAM3. The other colored squares are constrained by
global observations.

Construction of residuals with local constraints refer to ORBSLAM3 [1], supposing that
there are two continuous keyframes KFti and KFtj , we define qv

t as the attitude quaternion
KFt under the VIO coordinate system, and pv

t as the three-dimensional coordinate under
the VIO coordinate system of KFt. Similarly, ql

t and pl
t are the quaternion and coordinates

under the global coordinate system. The VIO local factor is derived as:

zL − sL(χ) = zL − sL(xtj ,xti ) =

[
qv

tj
−1
(

Pv
ti
− Pv

tj

)
qv

tj
−1qv

ti

]
�

ql
tj
−1
(

Pl
ti
− Pl

tj

)
ql

tj
−1ql

ti

 (1)

where z is the measured value, provided by the results of the one-stage position estimation;
χ is the state prediction; and s is the observation equation. χ is calculated from the pose
transformation between the two moments. The specific method used in this paper uses the
relative pose of the current moment and the previous moment obtained from the position
estimation in the first stage to add to the position coordinate xtj at the previous moment to
obtain the position coordinate xti at the current moment. � is the minus operation on the
error state of quaternion. We take the pose covariance matrix generated during SLAM as
the covariance of local measurements. The essence of the local factor is the relative change
in the pose in two keyframes.

Consider the following two situations where GNSS does not work: the GNSS signal
is poor or has interference, resulting in a large error in the GNSS positioning information,
resulting in a large drift in an agent’s navigation trajectory; the GNSS signal is completely
disabled, and there is no GNSS positioning information. Upon receipt of a valid GNSS
location, the longitudinal dimension heights of the original measurements will be trans-
formed into x, y, z coordinates in the local Cartesian coordinates system (ENU) during
GNSS data preprocessing. PG

t = [xw
t , yw

t , zw
t ]

T is the coordinate of the GNSS information
in the transformed ENU coordinate system. PG

t is the measured value of GNSS at that
moment, t. The uncertainty of measurement is assumed to be a Gaussian distribution with
mean and covariance. Pt

w is the assumed GNSS estimate. The GNSS factor is derived as:

zG
t − sG

t (χ) = zG
t − sG

t (xt) = PG
t − Pw

t (2)

When each agent receives a new pose about a keyframe’s collaborative positioning
from the server, we introduce the result of collaborative positioning as a new measured
value into the process of secondary optimization. We assume that the result obtained by KFt
in the first-stage pose estimation at that moment in the VIO coordinate system is {qv, pv}.
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The pose obtained by KFt after the co-location is transformed into {qc, pc} on the local
framework of the agent. The co-location factor is derived as:

zC
t − sC

t (χ) = zC
t − sC

t (xt) =

[
ql

v
−1
(

Pl
c − Pl

v

)
ql

v
−1ql

c

]
�
[

qw
v
−1(Pw

c − Pw
v )

qw
v
−1qw

c

]
(3)

Lastly, in order to prevent VIO from drifting too much, the transformation of the
VIO coordinate system to the global coordinate system should be updated after each
optimization. The operation must make the position after fusion overlap with the results
of GNSS positioning and cooperative positioning as much as possible, and the difference
between the two frames should be as equal as possible with VIO. The data from VIO does
not impose constraints on the absolute position after fusion, and only requires that the
incremental error of the position after fusion and the incremental error of VIO should be as
small as possible.

2.3. Communication

The communication modules on the agents and server was based on The ROS commu-
nication infrastructure [21]. It was used for message passing over a wireless network. The
communication interface supports two-way communication between the agents and the
server, we applied it to update the keyframe pose at a given moment for single-platform
SLAM. The server uses it to receive map information from each agent. With this module,
the objects waiting to be sent were first serialized/deserialized. Since ROS is not a real-time
communication system, time stamps needed to be attached to packets.

2.3.1. Agent-to-Server Communication

In order to realize map data sharing from agent to server and save data bandwidth
as much as possible, we added several state variables into the ORB-SLAM3 program to
monitor the running status of SLAM on a single platform, including: IMU initialization
process, whether visual-inertial bundle adjustment (VIBA) is completed, and tracking the
running status of threads. After the IMU completes initialization and VIBA, all the previous
keyframes and map point information is serialized and sent. The keyframe information
includes the unique ID of this keyframe on the agent, its pose and time stamp, the information
of feature points it contains, and the numbers of all map points observed by this keyframe. The
map point information contains the ID of this map point on the agent, its three-dimensional
coordinates, its descriptors, and the ID of all keyframes that have observed this map point
so far. Unique IDs ensure that these messages are not sent repeatedly to reduce the required
network bandwidth. The communication module distinguishes between dynamic information
(such as the pose of a keyframe that may be adjusted according to the running state of SLAM)
and static information (descriptors of feature points). In the process of communicating with
the server, each agent will send the smallest packet at the highest frequency (including at least
one newly added keyframe information).

2.3.2. Server-to-Agent Communication

Each agent handler thread is responsible for processing keyframes and map points
from the corresponding agent on the server. Each keyframe is not processed until all of
its observed map points have been deserialized by an agent handler and inserted into
the map stack. The server map stack contains separate maps that contain data from each
agent. When the server maps complete location identification and merge, the two maps are
removed from the map stack and replaced with their merged map until there is only one
global map in the entire server map stack. When the server detects the new closed-loop
and completes the global pose optimization, it sends the ID and pose of the keyframe back
to the corresponding agent to be updated.
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2.4. Global Map Initialization and Intra-Agent Measurements

In order to enable the system to complete the positioning of each agent without GNSS
at the initial stage of operation, we let the UAVs and UGVs start from the same position with
the same angle of view. In this paper, UAVs are set to take off from the top platform of the
UGV. After the IMU initialization is completed (which commonly needs 15–35 keyframes
and takes 5–10 s), the agents perform a visual-inertial bundle adjustment. The aim of this
action is to improve the precision of the initial map. Then, each agent sends its initial
optimized local map to the server. For a certain terminal Agentc, the server will start the
alignment from the keyframe KFc at the most recent moment sent in the Mapc. First, a
subset of maps Mapm from the server map stack and brute-force descriptors are chosen that
match all keyframes contained within that map with KFc

t through DBoW2, and obtained

the most likely matched candidate
{

KFm
t1

, KFm
t2

. . . KFm
ti

}
(We set i to four times that of the

number of agents). For each keyframe, among all the feature points contained in it and its
five best common-view keyframes, the 2D-2D feature point matching provided by DBoW2
is used to obtain the 3D-3D matching between their corresponding map points. The map
points of candidacy KFm

tn
will be converted to KFc

t through Tn
cm. If the reprojection error is

less than the threshold, a vote is cast for the corresponding KFm
tn

, and the frame with the
most votes is selected as the matching frame. For further improvement of the closed-loop’s
robustness, the matching frame and its common-view frame together need to achieve
three successful matches to be considered as the complete place recognition. If, at this
moment, Agentc is a UAV, Agentm is a UGV, then the UAV’s local map will be fused into
the UGV’s through TUAVc_UGVm

= Tcm. If both Agentc and Agentm are UAVs, the relative
pose transformation will be saved until one of them is fused with the UGV’s map, and
another will complete fusion through TUAVc_UAVm

× TUAVm_UGV . After the above pairwise
pairing of the unmanned platforms, the local map of each UAV is finally converted into the
coordinate system of the local map of the unmanned vehicle. New incremental keyframes
and map points received by the server during subsequent operations will be transferred to
the global map with the corresponding poses until a new loop closure or GNSS location
provides a new location constraint.

2.5. Loop Closure and Global Optimization

The place recognition of loop closure is similar to the global map initialization, which
depends on the feature point matching provided by DBoW2, and the initial matching
through RANSAC and the PnP algorithm. Different from the global map initialization,
considering the long-term drift of single-platform SLAM, a finer relative position transition
is required. As above, we suppose that KFc of Agentc and KFm of KFm have complete

initial matching and Tcm =

(
R t
0 1

)
∈ SE(3). All converted map points contained within

the common-view frame of KFm, and those found matching to the key points in KFc. After
the above intra-agent measurements have been completed, we need to adjust the map
information according to the new closed-loop and fuse all the positioning information from
each agent to perform global optimization. The details are as follows.

2.5.1. Refinement of Transformation Matrix

Tcm is used to convert all map points contained within the common-view keyframe
of KFm, and matching map points are located in the feature points of KFc. To obtain as
many matches as possible, the map points are found that matches KFc in KFm and all of

its keyframes at the same time. The nonlinear optimization of T∗cm =

(
sR t
0 1

)
∈ sim(3) is

carried out by using all the map point matching relationships found (the initial value of s
is 1), and the goal function is the bidirectional reprojection error
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2.5.2. Pose Graph Optimization

After obtaining the optimized transformation matrix T∗cm, the redundant map points
need to be eliminated in the above matching process for each pair of matching map
points describing the same feature point. Then propagation of the corrections must be
disseminated to the rest of the map through pose graph optimization. To eliminate duplicate
points, for each pair of matches the points from Agentc are removed, and the points from
Agentm inherit all the observations of the removed points. By adding edges to the co-
visibility and essential graphs, the observability is propagating between the common-view
frames of KFm and KFm.

As it has sufficient computing power on the server and is not sensitive to the time cost,
global BA optimization can be directly carried out on the adjusted visibility and essential graphs.

2.5.3. Global the Second-Stage Pose Estimation

The factor graph structure of the global two-stage optimization is similar to that of
the single platform, the difference is that in the global optimization process only the GNSS
positioning information (if any) is needed to be taken into consideration. This is due to
the GNSS positioning information from different agents will also generate new position
constraints on the global map making the track change significantly and intersect, even if
there is no visual re-location at that position. In this case, we would lower the threshold in
line with the RANSAC algorithm. If it can pass the detection after reducing the number
of inner points, a new closed-loop will be established here. The subsequent processing is
consistent with the closed-loop process described above.

3. Simulation and Experimental Result
3.1. Virtual Simulation Experiment Platform

The overall architecture of the multi-unmanned platform simulation system based
on Unity3D and ROS architecture is shown in Figure 5. The UAV flight control and visual
simulation is based on Flightmare [22]. The ROS Gazebo [23] simulation environment was
run on Computer A to constrain the movements of UAVs and UGVs through dynamic
models, and to generate the true values of the position and motion velocity. Position and
velocity errors were superimposed to generate virtual IMU and GNSS data. Among them,
GPS positioning information in GPGGA format was chosen as GNSS satellite positioning.
The location and timestamp of an agent sent to the visual simulation module was passed
through ROS-Unity3D interface. The visual simulation module moves the agent’s model
to the corresponding coordinates, renders the photo, and finally sends the most up-to-
date image and timestamp to the algorithm verification program on Computer B. The
configuration of the two computers in the figure is shown in the Table 1.

3.1.1. Engine Dynamics Modeling and Simulation for a Type of UAV and UGV

The rigid body appearance, physical properties, joint types and other aspects of the
unmanned platform are described through URDF files. The motion of the unmanned
platform model in the ROS environment can be viewed through Gazebo. Its position
in Gazebo is taken as the true value of the pose of the unmanned platform. hybrid A*
algorithm to UGV is applied to realize the path planning, and TEB algorithm to realize
trajectory tracking. The UAV adopts a four-rotor model, using the quadrotor dynamics to
design the control algorithm, and the Euler method and fourth-order Runge-Kutta method
to integrate the UAV dynamics equation.

3.1.2. Visual Simulation Based on Unity3D

The visual simulation module includes scene resources and unmanned platform
models. The scene resource module is responsible for the construction and optimization
of 3D scenes in the visual simulation software, and makes the scenes restore the real
environment as much as possible to run smoothly through the 3D model import and level
of detail (LOD) optimization. Multiple unmanned platforms can be loaded in the simulation
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scene according to the demand, and the objects can be driven to move according to the
immediate feedback of the data in ROS. Particle effect components are used to simulate
weather, such as rain and fog. The light was set in the Unity scene to simulate a sunny day,
dusk and night. Various meteorological and light environments were combined to simulate
different visibilities in the real world. Lastly, the virtual RGB images were obtained through
the Unity camera module.

Figure 5. The virtual data generation program is deployed on Computer A, and the agent handler and
cooperative location program is deployed on Computer B. They are connected using a gigabit network.

Table 1. The hardware configuration of the computers running the virtual simulation platform and
the positioning algorithm.

Platform Type Characteristic

Computer A Desktop computer Intel9-11700k + 32 Gb + 2080Ti
Computer B Desktop computer AMD3990x + 64 Gb + 2080Ti

3.1.3. Virtual Sensor Data Generation

Based on the modeling of the unmanned platform in Section 3.1.2, two sensor compo-
nents were added: an inertial measurement unit module and a GPS module. IMU and GPS
data were obtained by adding noise to the true value of the sensor model in the Gazebo
coordinate system. The IMU-related parameters are shown in Table 2:

Table 2. IMU data production module parameter configuration table.

Parameter Value

Gyroscope noise density 0.0003394 [Hz]
Gyro deviation random walk 0.000038785 [Hz]

Gyro deviation related time constant 1000.0 [s]
Gyroscope opening deviation standard deviation 0.0087 [rad/s]

Accelerometer noise density 0.004 [Hz]
Accelerometer deviation random walk 0.006 [Hz]

Accelerometer deviation related time constant 300.0 [s]
Update frequency 100 [Hz]

The parameters related to GPS are shown in Table 3.
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Table 3. GPS data production module parameter configuration table.

Parameter Value

Standard deviation of Gaussian noise at horizontal position 0.05 [m]
Standard deviation of Gaussian noise in vertical position 0.15 [m]
Standard deviation of horizontal velocity Gaussian noise 0.05 [m/s]

Standard deviation of vertical velocity Gaussian noise 0.05 [m/s]
Update frequency 5 [Hz]

3.2. Experimental Results

This section introduces the simulation and experimental results of the autonomous
positioning in an unknown environment by using the heterogeneous UAV and UGV system
proposed. In the following experiment, we generated specified waypoints for the three
UAVs and a UGV through the virtual simulation and saved the resulting sensor data and
time stamps in the ROS bag for subsequent repeating tests. We examined the robustness of
the method we proposed in an actual engineering scenario by modifying the ambient light,
weather in the scene, and the down view angle of the UAV camera. Then we analyzed
and compared the influence of the collaborative positioning framework on the positioning
accuracy of each platform with single-platform positioning. The detailed settings for each
dataset are shown in the Table 4.

Table 4. Parameter Settings for each dataset.

Dataset Lighting Conditions Meteorology Agent Camera Angle Path Length

Factory 01 bright High visibility

UAV1 45◦ 162.47 m
UAV2 45◦ 161.29 m
UAV3 45◦ 168.96 m
UGV 0◦ 106.43 m

Factory 02 bright thick-foggy

UAV1 45◦ 162.47 m
UAV2 45◦ 161.29 m
UAV3 45◦ 168.96 m
UGV 0◦ 106.43 m

Factory 03 somber High visibility

UAV1 45◦ 162.47 m
UAV2 45◦ 161.29 m
UAV3 45◦ 168.96 m
UGV 0◦ 106.43 m

Factory 04 somber thick-foggy

UAV1 45◦ 162.47 m
UAV2 45◦ 161.29 m
UAV3 45◦ 168.96 m
UGV 0◦ 106.43 m

Factory 05 bright mist

UAV1 45◦ 162.47 m
UAV2 45◦ 161.29 m
UAV3 45◦ 168.96 m
UGV 0◦ 106.43 m

Factory 06 somber mist

UAV1 45◦ 162.47 m
UAV2 45◦ 161.29 m
UAV3 45◦ 168.96 m
UGV 0◦ 106.43 m

Factory 07 bright High visibility

UAV1 25◦ 162.47 m
UAV2 25◦ 161.29 m
UAV3 25◦ 168.96 m
UGV 0◦ 106.43 m

Factory 08 bright High visibility

UAV1 25◦ 162.47 m
UAV2 45◦ 161.29 m
UAV3 75◦ 168.96 m
UGV 0◦ 106.43 m
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3.2.1. The Influence of External Factors on the Function of Algorithm Framework

Our algorithm depends on visual graph feature points to complete place recognition,
which is the foundation of subsequent map fusion and loop closure. Considering that
visual angle difference and observation conditions are the main factors affecting feature
point matching, we set three meteorological environments in the virtual simulation system:
no occlusion, mist and fog, and two lighting environments: normal light and high light
ratio under sunset. There was no cover, mist and fog representing the visibility of infinity,
150 m and 50 m, respectively. A schematic of the scenario is shown in Figure 6.

Figure 6. Schematic diagram of the virtual simulation scene (a) bright scene with high visibility; (b) a
dimly lit but fog-free scene; (c) foggy and dim scene. Different observation conditions will affect the
extraction and matching of feature points.

The first thing worth paying attention to is the network bandwidth occupied by each
agent and server for exchanging data in the virtual communication network environment.
In Table 5, we list the average bandwidth and instantaneous traffic peaks of upload and
downlink data between each agent and server. The peak of uploaded data occurs during
map initialization, and the bandwidth usage is relatively smooth thereafter. There is a
positive correlation between bandwidth usage and keyframe generation speed.

Table 5. This table shows the network bandwidth usage after all simulation datasets were run. The
results are obtained from seven experiments.

Agent Upload Downlink
Average Maximum Average Maximum

UAV1 0.35 MB/s 1.1 MB/s 0.4 KB/s 0.8 KB/s

UAV2 0.34 MB/s 1.1 MB/s 0.6 KB/s 0.9 KB/s

UAV3 0.40 MB/s 1.3 MB/s 0.4 KB/s 0.7 KB/s

UGV 0.31 MB/s 0.9 MB/s 0.2 KB/s 0.4 KB/s

Here, we compared the number of closed-loops generated with that of the feature
points matched on the closed-loop frame during the operation process of the collaborative
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positioning algorithm on different datasets. From the results in Table 6, we found that
the feature point matching had similar performance under two similar viewing angles
when the viewing angle of UAV was the same. As many feature point pairs as possible are
beneficial not only to achieve robust place recognition, but also to improve the positioning
accuracy of SLAM. However, the number of feature point matching between UAV and
UGV will decrease with an increase in the angle of view difference, which is more obvious
when a UAV flies at low altitude. We believe that setting the camera angle of the UAV to
45◦ in the downward view can balance the need for visual repositioning among UAVs and
between UAVs and UGVs better.

Table 6. The number of feature points matching and successful location re-identification under
different angles of view and illuminations.

Camera Angle Lighting Conditions Number of Successful Relocations Average Number of Matching Point Pairs

25–25◦
bright 28 123.83

somber 27.3 110

45–45◦
bright 27 139

somber 27 113

75–75◦
bright 28 128.33

somber 27 129.5

25–75◦
bright 5 36

somber 4 35

25–45◦
bright 11 47

somber 10 44.83

45–75◦
bright 14 55.5

somber 11 49

0–25◦
bright 12 47

somber 10 42

0–45◦
bright 17 51.5

somber 17 38.83

0–75◦
bright 4 23.33

somber FAIL 18

As can be seen from the data in Table 7, the change of light affected the detection of
feature points, but the number of feature points in the picture was still enough to produce
the correct closed-loop. In the mist mode, 59% of feature point pairs were lost, and the
number of correct closed-loops produced also dropped dramatically. Moreover, dense
fog interfered the feature point detection and place recognition thoroughly. In the dense
fog mode, except when the map initialization was completed when all the UAVs and
UGVs started from the same position at the first stage of the operation, all the position
re-identifications failed at the position where the closed-loop should be generated due to
insufficient matching feature points in subsequent operations.

Table 7. The number of feature points matching and successful location reidentification under
different angles of view and illuminations.

Lighting Conditions Meteorology Average Number of Successful Relocations Average Number of Matching Point Pairs

bright
high visibility 27 125.83

mist 11 58
thick-foggy FAIL 17.5

somber
high visibility 27 112

mist 7 39.83
thick-foggy FAIL 15.33
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3.2.2. Collaborative SLAM Estimation Accuracy

To estimate the positioning accuracy of the system, in this section the influence of
external observation conditions on the experiment results were ignored and the camera
view that generated the largest average number of matching point pairs (45◦) was adopted.
The experiment for this section was run on Factory 01, 03, 05, 06 on the datasets described
in Table 8.

Table 8. The accuracy of each agent running in different modes.

Agent Mode ATE_RMSE (m)/Mean Error (m)

UAV1

GPS-challenged Co-location 1 0.262/0.170
GPS-challenged Co-location 2 0.311/0.197

GPS-Denied Co-location 0.930/0.842
ORB-SLAM3 1.110/0.911

ORB-SLAM3 fusion GPS 0.371/0.223

UAV2

GPS-challenged Co-location 1 0.416/0.293
GPS-challenged Co-location 2 0.472/0.401

GPS-Denied Co-location 1.298/1.025
ORB-SLAM3 1.523/1.465

ORB-SLAM3 fusion GPS 0.488/0.317

UAV3

GPS-challenged Co-location 1 0.368/0.273
GPS-challenged Co-location 2 0.397/0.285

GPS-Denied Co-location 0.782/0.502
ORB-SLAM3 0.979/0.735

ORBSLAM3 fusion GPS 0.396/0.299

UGV

GPS-challenged Co-location 1 0.172/0.134
GPS-challenged Co-location 2 0.173/0.137

GPS-Denied Co-location 0.219/0.171
ORB-SLAM3 0.405/0.297

ORB-SLAM3 fusion GPS 0.186/0.175

We estimated the absolute trajectory error (ATE) of each agent. We tested the positioning
performance in GPS-denied and GPS-challenged modes separately. In the GPS-challenged 1
mode, all agents obtained valid GPS location information every 20 s. In the GPS-challenged 2
mode, the UAV could only randomly obtain four valid GPS positions during the operation,
and the UGV masked all GPS location information. In the GPS-denied mode, all agents would
not use the GPS location data in the dataset. The effect trajectory of the three UAVs and the
unmanned vehicle in the collaborative positioning is shown in Figure 7a.

Figure 7. Cont.
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Figure 7. (a) The rendering of the co-location of three UAVs and a UGV; (b–e) trajectories and ground
truth for a single-platform operation of each agent.

4. Discussion

From the experiments described in Section 3 we draw the following three conclusions.

1. Experiments in the virtual simulation platform demonstrated that the co-location
framework we designed can maintain usable positioning accuracy over hundreds of
meters of trajectory when the GNSS signal is rejected. At the same time, the co-location
framework outperforms the single platform in terms of accuracy. This is essentially
attributed to the new position constraints arising from place recognition between the
different platforms.

2. The SLAM front-ends we currently employ were not sufficiently stable under poor
observation conditions. For example, poor visibility environments or poor near-
orthogonal viewing angles affected the proper function and positioning accuracy of
the air-ground co-location system. The main reason is that the ORB feature-based
SLAM front-end we adopted often cannot provide a sufficient number of feature
points for matching to achieve robust location re-identification. Other common front-
end methods, such as optical flow method, have more stringent requirements on
observation conditions and viewing angles. In the SLAM front-end process, if the
threshold of hamming distance for ORB detection is lowered in order to increase the
number of matched pairs, it will lead to excessive false matches affecting the accuracy
of VIO. Therefore, place recognition that relies on ORB features can only be adapted to
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the images generated under more optimum observation conditions. The visual front-
end used in this manuscript fulfills the basic requirements for cooperative air-ground
localization but is not yet sufficiently robust for weak observation conditions.

3. The method described in this manuscript allows the location information of each
agent in the entire unmanned cluster to be propagated to the other agents in the
cluster. This process improves the positioning accuracy while also allowing the server
and the individual unmanned platforms to acquire relative positions to each other.
We designed a comparison of four cases. They were GPS-challenged co-location,
GPS-denied co-location, single-platform independent operation of ORBSLAM3, and
single-platform independent operation of ORBSLAM3 fusion GPS. In GPS-denied
mode, the simulation was performed on a solar body with no GNSS fix except of Earth,
or on Earth but the GNSS signal had interference. In this case, the positioning of each
agent completely depended on the camera and IMU. It can be seen from Table 8 that
the accuracy of co-location was significantly improved compared with the positioning
accuracy of ORBSLAM3 running on a single platform. Assuming that some agents in
the system obtained satellite positioning information, the positioning accuracy of all
agents was improved. It is worth noting that even if we assume in the experiment
that the UGV cannot obtain satellite positioning signals at all, its positioning accuracy
still benefits from the co-location algorithm. This is due to the fact that the new
constraints brought by the satellite positioning information are propagated to the
local maps of all agents through the global map. Through the comparison of the two
GPS-challenged modes, we found that only a few GPS points were enough to greatly
improve the positioning accuracy. The GPS-challenged 1 mode used several times
more GPS positioning points than the GPS-challenged 2 mode, but the positioning
accuracy was not significantly improved compared with the latter.

In the experiments designed in this manuscript, we set the UAV to use high-precision
GNSS positioning information, while the UGV could not obtain GNSS signals. There were
two main reasons for this assumption. The first point was that, in practice, UAVs located
in the sky can often obtain GNSS positions with good accuracy through RTK or relative
positioning measurements. Whereas vehicles located on the ground may temporarily lose
their GNSS position due to obstruction by reinforced concrete buildings, or by entering
tunnels and interiors. The second point was that ORBSLAM3 itself is an excellent single-
platform SLAM algorithm, which can have a trajectory drift error of less than 1% with
a closed-loop bottleneck. This makes it difficult for the meter-level errors inherent in
GNSS to contribute to the improvement in positioning accuracy if differential-free GNSS
positioning is used in a virtual scene of limited size. If the scale of the motion trajectory
reaches several kilometers, however, even differential-free GNSS positioning information
can greatly optimize the positioning accuracy.

In our paper, we focused on collaborative localization. However, in engineering
applications, the movement of each agent in the system was not infinite due to the limitation
of communication bandwidth and communication distance. Due to the lack of prior
information of the global map, the pose information of each agent and the local map
information received by the server had time delays, and the global positioning pose
updated through the visual closed-loop had no gradient information. In this case, if a
motion strategy for convex online learning to train unmanned clusters is required, delayed
mirror descent (DMD) [24] would be a good choice. We will use this approach in the
subsequent work. In the aspect of multi-agent motion control, our method only used the
most basic D* Lite algorithm. Only the trajectory of a single agent was considered to fit the
route generated in advance. However, in practical applications, there may be obstacles in
the waypoints planned in advance, and the route itself is unreachable. Cooperation among
multiple agents can be difficult to achieve. Collaborative algorithms such as [25] realize the
decentralized and real-time cooperative pursuit of a single evader in the planar domain.
By improving the method proposed in this paper, the control of the prior map obtained by
the UAV would be improved.
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Finally, it is worth mentioning that in the statistics of network bandwidth usage, we
found that the peak bandwidth usage occurs in the map initialization phase, which is about
three times the average value. In the case of long distance or interference, this will put
higher requirements on the performance of wireless communication devices. When there
is a prior map, it will greatly relieve the bandwidth pressure during system initialization.
During system initialization, at least four high-quality GNSS positioning points are needed
to convert the VIO coordinate system to the northeast sky coordinate system. Meanwhile,
ORBSLAM3′s IMU initialization requires initial zero-bias estimation and gravity direction
estimation to obtain scale information, which makes the initialization of the global map
take too long. How to complete global map initialization more efficiently and quickly or to
make better use of prior map information is the next urgent problem to be solved.

5. Conclusions

This manuscript uses ORB-based feature point re-identification to improve the posi-
tioning accuracy of all unmanned platforms in a cluster by fusing the local maps of each
unmanned platform with new position constraints and global GNSS positioning informa-
tion. Through a centralized collaborative positioning service, this can provide low latency
positioning information for subsequent collaborative path planning and task allocation
algorithms. The co-location algorithm proposed in this manuscript has better accuracy
in both GNSS-challenged and GNSS-denied modes than the ORB-SLAM3 algorithm run-
ning on a single platform. The two-stage position estimation method used can also be
combined with other positioning sensors such as UWBs and barometers in addition to the
GNSS global positioning information applied in the manuscript. Current techniques for
the localization of air-ground unmanned clusters in complex environments present new
demands in the direction of visual front-ends, optimization methods and multi-sensor
fusion. The approach proposed in this manuscript can be extended to other unmanned
clusters in areas such as UAVs, logistics, agriculture and military. In the future, based on
the current results, our subsequent work will further investigate the impact of different
vision front-end techniques on location re-identification, a key aspect that critically affects
map fusion and closed-loop detection. We will consider the use of feature detection and
matching techniques based on deep learning or point and line features to improve the
robustness of the algorithmic framework and to improve the localization accuracy based
on this. Finally, our proposed approach in this manuscript has high computational resource
requirements for map fusion and global optimization, and we will aim to mitigate the
computational power and communication bandwidth required for global map maintenance
on a server.
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