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Abstract: With advancements in big geospatial data and artificial intelligence, multi-source data and
diverse data-driven methods have become common in dengue risk prediction. Understanding the
current state of data and models in dengue risk prediction enables the implementation of efficient
and accurate prediction in the future. Focusing on predictors, data sources, spatial and temporal
scales, data-driven methods, and model evaluation, we performed a literature review based on
53 journal and conference papers published from 2018 to the present and concluded the following.
(1) The predominant predictors include local climate conditions, historical dengue cases, vegetation
indices, human mobility, population, internet search indices, social media indices, landscape, time
index, and extreme weather events. (2) They are mainly derived from the official meteorological
agency satellite-based datasets, public websites, department of health services and national electronic
diseases surveillance systems, official statistics, and public transport datasets. (3) Country-level,
province/state-level, city-level, district-level, and neighborhood-level are used as spatial scales, and
the city-level scale received the most attention. The temporal scales include yearly, monthly, weekly,
and daily, and both monthly and weekly are the most popular options. (4) Most studies define dengue
risk forecasting as a regression task, and a few studies define it as a classification task. Data-driven
methods can be categorized into single models, ensemble learning, and hybrid learning, with single
models being further subdivided into time series, machine learning, and deep learning models.
(5) Model evaluation concentrates primarily on the quantification of the difference/correlation
between time-series observations and predicted values, the ability of models to determine whether
a dengue outbreak occurs or not, and model uncertainty. Finally, we highlighted the importance
of big geospatial data, data cloud computing, and other deep learning models in future dengue
risk forecasting.

Keywords: dengue; risk forecasting; big geospatial data; data-driven models; review

1. Introduction

Dengue fever is a mosquito-borne viral infectious disease mainly transmitted by
Aedes aegypti and Aedes albopictus and is distributed in tropical and sub-tropical urban
and semi-urban areas worldwide. Approximately 390 million dengue virus infections are
reported annually, and more than half of the world’s population is at risk of dengue [1,2].

Dengue risk forecasting remains an important basis for dengue prevention and control
due to the lack of an effective vaccine. Establishing efficient and accurate dengue risk
forecasts can help policymakers to implement strategies for dengue prevention and control,
and the rational allocation of public health resources. Moreover, climate change and
urbanization will shift the burden of dengue to other regions, highlighting the urgent
need for dengue risk forecasting in the future [3], and continued investment is necessary
to prevent the resurgence of dengue, highlighting the importance of accurate and timely
dengue surveillance tools [4].
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In real-world applications, achieving dengue prediction requires the consideration of
different risk predictors, data sources, models, evaluation indices of model performance,
and spatial and temporal scales, which is a multidisciplinary task integrating remote sens-
ing, geographic information systems (GIS), epidemiology, and artificial intelligence. It
should also consider different forecast targets, such as dengue cases, incidence rates, oc-
currence, peak time, and peak intensity. Understanding the current state of dengue risk
prediction will enable the implementation of efficient and accurate dengue risk forecasting
in the future. Previous literature reviews have primarily focused on the models for dengue
risk mapping [5], dengue landscape factors and data sources [6,7], machine learning for
dengue diagnosis, spatio-temporal analysis of epidemics, control strategy evaluation [8],
and real-world data used in dengue management [9]. Only one literature review sum-
marized the process of dengue risk forecasting based on the publications from 2001 to
2017 and described the key aspects of dengue risk forecasting, including the available
dengue epidemiological datasets, direct and indirect dengue factors, data preparation and
representation, risk modeling, and evaluation [10]. In recent years, with the advancements
in big geospatial data and artificial intelligence, an increasing amount of geospatial data
(e.g., remote sensing images, ready-to-use products from satellite images, and meteorologi-
cal reanalysis data) and new models, especially deep learning models, are being used to
promote dengue risk forecasting (Figure 1).
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Figure 1. Histogram of publication years of the studies associated with dengue risk forecasting and
the application of deep learning in dengue risk forecasting from 1990 to 2022. The two categories of
literature records were collected using “dengue AND (predict* OR forecast*)” and “(deep learning
OR neural net-work) AND (dengue AND (predict* OR forecast*))” in the field of title and abstract in
Web of Science, Science Direct, MEDLINE (PubMed), Scopus, ACM digital library, and IEEE Xplore.

In this context, this study aims to create an inventory of recent studies of dengue risk
forecasting in terms of predictors and data sources, spatial and temporal scales, data-driven
models, and evaluation metrics, and then discuss the potential of big geospatial data and
deep learning for dengue risk forecasting. Such information would help to guide future
dengue risk prediction by providing more attention to geospatial big data, cloud computing,
and different deep learning models, which can improve the accuracy and timeliness of
dengue risk prediction.
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This review is divided into four sections. The first section provides a concise introduc-
tion to the review’s purpose. The second section describes the systematic literature selection
process and the current status of dengue risk forecasting. The third section discusses the
potential of big geospatial data and deep learning in future dengue risk forecasting. The
fourth section concludes with our findings and their implications.

2. Methods and Materials
2.1. General Framework of Dengue Risk Forecasting

Dengue risk forecasting often consists of the computation of risk predictors and
forecast targets, data preprocessing, modeling, and model evaluation metrics (Figure 2). In
this review, we focused on the application of big geospatial data, data-driven modeling,
and model evaluation.
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Figure 2. A general framework of dengue risk forecasting, in which the orange-filled rectangles
indicate the key terms concerned in this review.

2.2. Literature Selection and Information Analysis

The process of literature selection was guided by the Preferred Reporting Items for the
Systematic Reviews and Meta-Analyses (PRISMA) statement [11], as presented in Figure 3.
Using the logical structure "dengue AND (predict* OR forecast*)", a broad search was
defined. From 2018 to the present, we conducted searches in the following databases:
Web of Science, Science Direct, MEDLINE (PubMed), Scopus, the ACM digital library, and
IEEE Xplore. Here, we utilized the ACM digital library and IEEE Xplore, two high-quality
literature databases in engineering, technology, and computing, to identify the data-driven
models (such as time series, machine learning, and deep learning models) in dengue
risk forecasting. The queries were limited to titles, abstracts, and keywords, and only
English-language journals and conference articles were considered. Using the EndNote
software, all records were merged and duplicates were eliminated. Then, we examined
the title and abstract of each record to select relevant articles. For example, a paper with
a title “Weekly dengue forecasts in Iquitos, Peru; San Juan, Puerto Rico; and Singapore” was
included. Lastly, a full-text screening was conducted using the following criteria: (1) the
paper focused on the dengue risk forecasting in the human population; (2) the paper
considered the number of cases, incidence rates, outbreaks, peak time, and peak intensity
as forecasting targets; (3) the paper identified specific risk predictors; and (4) the paper
constructed data-driven models, forecasted the dengue risk at given spatial and temporal
scales, and evaluated the model performance. Figure 3 depicts the literature selection
procedure. A total of 53 articles, including 37 journal articles and 16 conference papers,
were included in this review [12–64]. We manually extracted the information for each
article including an ID number, authors and published year, spatial and temporal scales,
risk predictors and data sources, forecasting targets, data-driven models, and evaluation
metrics (Table A1).
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2.3. Data Analysis

In order to comprehend the predominant predictors and data sources, we mapped
the co-occurrence of the keywords of predictors and data sources using the VOSviewer
software (V1.6.8), a tool for constructing and visualizing bibliometric networks. We also
counted the number of spatial scales and temporal scales to understand the commonly
used spatio-temporal units of dengue risk prediction. Finally, different data-driven models
and evaluation metrics were classified and described to help science and society to better
understand their differences.

3. Current Status of Dengue Risk Forecasting
3.1. Dengue Predictors and Data Sources

Figure 4 presents the co-occurrence map of predominant dengue predictors and data
sources listed in Table A1, which highlights the significance of local climate conditions
(e.g., temperature, rainfall, humidity, pressure, and wind), historical time series of dengue
cases, vegetation index, human mobility, population, internet search index, social media
index, landscape, time index, and extreme weather events (e.g., El Niño and La Niña) in
recent studies of dengue risk forecasting. In addition to the common dengue risk predictors,
other factors have also been mentioned in dengue risk forecasting, such as the economic
index [23], education index [23], air quality [18], sunshine index [50,64], and mosquito
biting rate [36].
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Figure 4. The co-occurrence map of predominate dengue risk predictors and data sources identified
from selected articles. We set the minimum number of keyword occurrences to 2 to map all keywords.
The keywords in green indicate the predominant predictors, and the keywords in purple indicate the
predominant data sources. The number in brackets indicates the number of a keyword appearing.
A keyword is associated with each node in the co-occurrence map, with each edge representing a
co-occurrence link between two keywords.

Different types of predominant dengue predictors play different roles in dengue risk
forecasting, which are explained in detail below:

â Local climate factors can influence the life cycles, survival rates, biting rates of vectors,
and the incubation period of the virus, thereby influencing the fluctuation in dengue
cases [26,38,65,66];

â Historical time series of dengue cases are becoming increasingly important for fu-
ture dengue risk prediction as they can provide the temporal characteristics of the
dengue transmission of the specific study area: the important basis for future dengue
transmission [12,16]. In addition, the time series of dengue cases in a typical dengue
epidemic area can be used as one of the covariates for risk forecasting in its neigh-
boring cities due to the proximity of the two cities and the spatial and temporal
relationship between the dengue epidemics in the two cities [16,67];

â Vegetation indices, such as Normalized Difference Vegetation Index (NDVI) and En-
hanced Vegetation Index (EVI), can be regarded as a proxy of vector presence [23,68];

â Human mobility is the primary cause of dengue long-distance transmission, as people
infected with the dengue virus can transfer the virus to mosquito populations in other
geographical areas and facilitate virus transmission within and between cities [17,25,29,34];

â The human population is another important human factor in dengue transmission as
it implies the number of hosts for dengue vectors [23,24];

â Internet search indices (e.g., the Baidu search index and Google search index) were
utilized for dengue tracking as they are widely accessible worldwide, and represent
the real-time attention of the population to a popular event, providing it strong
potential to supplement current epidemiological methods [9,27,69];
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â Social media indices, mainly including tweet counts and Sina Weibo posts, were
widely used for dengue risk forecasting as social media has become the key communi-
cation tool for governments, organizations, and individuals to disseminate valuable
information to the public during dengue epidemics. In addition, individual users can
also post their concerns and awareness of the dengue epidemics [29];

â Landscape refers to the characteristics used to characterize the surroundings in which
people are located, such as land surface temperature (LST) [17,23], street-view im-
ages [17], and building ages [17];

â Time indices (e.g., the ordinal number of the week and month) were used as two
predictors to account for seasonality and the long-term changing trend of dengue
occurrence [23,25];

â Extreme weather events (e.g., El Niño and La Niña) can drive climate variability at
both seasonal and inter-annual intervals [21].

Many types of data sources were used to identify the above dengue risk predictors in
previous studies, mainly including data from the official meteorological agency, satellite-
based datasets, public websites, department of health services and national electronic
diseases surveillance systems, official statistics, and public transport datasets (Figure 4 and
Table A1).

â The official meteorological agencies provide data collected from meteorological sta-
tions that are mainly used for identifying local climatic factors;

â Satellite-based datasets, including multi-source remote sensing images and ready-to-
use products, can be used for computing the local climate factors (e.g., temperature
and rainfall) and vegetation indices;

â Public websites, such as search engines and social media sites, can provide internet
search indices and social media indices;

â Both the department of health services and the national electronic diseases surveil-
lance systems (e.g., the Brazilian Notifiable Diseases Information System (SINAN) and
the nowcasting surveillance system of arboviruses in Brazil, namely, infodengue [68])
provide historical dengue cases. It should be noted that some dengue projects (e.g.,
NOAA dengue forecasting project [69]) can also provide historical dengue epidemio-
logical data;

â Official statistics provide data related to population density and building age in recent
studies of dengue risk forecasting;

â Public transport data, such as bus transportation data and incoming and outgoing
travel volumes, were used to characterize human mobility.

3.2. Spatial and Temporal Scales

Recent studies have predicted the dengue risk at different spatial scales, such as
country-level, state/ province-level, city-level, district-level, and neighborhood-level, and
different temporal scales, including yearly, monthly, weekly, and daily (Figure 5). The
spatial scale that has received the most attention is the city-level, while the popular temporal
scales are monthly and weekly. The availability of dengue epidemiological data probably
affects the selection of spatial and temporal scales in dengue risk prediction. Most studies
mainly obtained dengue epidemiological data (i.e., cases or incidence rates) from the
department of health services, national electronic disease surveillance systems, published
articles [70], and dengue forecasting projects [68,69], which are often provided at the spatial
scale of a city or state/province; thus, there is a value for each week or each month. Multi-
source data of dengue risk predictors need to be downscaled in space and time to match the
spatial and temporal scales of epidemiological data. Notably, the state/province-level and
city-level dengue risk forecasting models are often used to provide an early warning signal
(EWS), whereas the fine-grained intra-urban forecasts (e.g., district-level and neighborhood-
level) enable one to predict the areas with higher dengue risk, facilitating the precise
implementation of prevention and control strategies [17,25]; however, dengue data sparsity
at the intra-city level in some study areas makes data-driven risk prediction difficult [17,43].
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3.3. Models

The popular data-driven methods for dengue risk forecasting can be categorized
into three groups: (1) single-model forecasting approaches; (2) ensemble learning; and
(3) hybrid learning (Figure 6). Single-model forecasting approaches use time series, machine
learning, and deep learning models to predict the dengue transmission risk separately.
Moreover, they use computed model evaluation metrics and they compare the predictive
performance of models. Both ensemble learning and hybrid learning combine the strengths
of multiple models for improving the accuracy of dengue risk prediction. The principle
of ensemble learning is not model coupling, but rather the best possible combination
of the predicted results from two or more base models via different approaches. The
training and evaluation of different models are implemented separately or sequentially. In
contrast, hybrid learning couples two or more single models or combines data manipulation
algorithms with models, and then realizes the model initialization through parameter
optimization. Detailed information to this end is presented below.
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3.3.1. Time Series Models

The time series methods for dengue risk forecasting include the auto regression (AR),
the autoregressive integrated moving average model (ARIMA), autoregressive integrated
moving average eXogenous variable models (ARIMAX), the seasonal integrated moving
average model (SARIMA), and seasonal autoregressive integrated moving average with
eXogenous factors (SARIMAX). ARIMA is a linear model that forecasts dengue risk using
only historical dengue time series while being stationary (i.e., the mean and variance of
dengue time series are independent of time). It includes AR, moving average (MA), and
integration (I). To construct an ARIMA, the first step is to transform the non-stationary
dengue data series into a stationary time series using d-order differencing. Then, the orders
of the AR model (p) and MA model (q) are determined using ordinary least squares by
analyzing the autocorrelation (OLS). Moreover, ARIMAX, SARIMA, and SARIMAX are a
variation of ARIMA, which could add external variables, a seasonal component of historical
dengue time series, and both of them to ARIMA. In real applications, ARIMA, ARIMAX,
SARIMA, and SARIMAX are often used as the benchmark for evaluating the performance
of other models [12,23–25,37,45,53].

3.3.2. Machine Learning Approaches

Diverse machine learning models are used in dengue risk forecasting that convert
the prediction of future dengue cases into a linear or non-linear regression task (Figure 6),
including linear regression (LR), Poisson regression (PR), ridge regression (RR), the least
absolute shrinkage and selection operator (LASSO), the generalized additive model (GAM),
the generalized linear model (GLM), random forest (RF), support vector machine (SVM),
support vector regression (SVR), least square support vector machines (LSSVM), adaptive
boosting (AdaBoost), gradient boosting (Gboost), decision tree (DT), and eXtreme gradient
boosting (XGBoost). In addition, a few studies consider the identification of dengue out-
breaks as forecast targets (Table A1), which identifies the outbreaks using machine learning
models [13,62] or determines the outbreaks based on the predicted dengue cases [25].

3.3.3. Deep Learning Approaches

Compared with time series and machine learning methods, the use of deep learn-
ing models is still limited in recent studies of dengue risk forecasting. Deep learning
models include artificial neural networks (ANN) [23,30,38,44,53], convolutional neural
network (CNN) [64], long–short-term memory (LSTM) [12,14,16,25,45,64], LSTM with
transfer learning (LSTM-TL) [16,61], LSTM with attention mechanism (LSTM-AT) [64], and
transformer [64]. LSTM-TL enables the transfer of a pre-trained LSTM model from one
study area to another area if the two areas have comparable climatic and environmental
conditions and dengue epidemics [16,67]. In fact, LSTM become popular in dengue risk
forecasting due to its good performance and high practicality [12,16,64]. It is an RNN archi-
tecture (Figure 7a) and can automatically identify the characteristics of long-term trends
and short-term fluctuations of time series via an input gate, an output gate, and a forget
gate (Figure 7b) [71]. It is not susceptible to gradient vanishing and gradient explosion and
is therefore capable of learning non-linear relationships from long sequences of data [72].
It can adjust how long the time series of predictors (i.e., the time step in Figure 8) is used
to explore the non-linear relationship between predictors and forecast targets [16]. Addi-
tionally, it permits implementing N-week-ahead prediction (i.e., the prediction in advance
of dengue epidemics) by considering different time lags between predictors and forecast
targets, and defining multiple scenarios to analyze the role of historical dengue cases
(Figure 8a), external factors (Figure 8b), and both of them in dengue risk forecasting [12]
(Figure 8c).
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3.3.4. Ensemble Learning

Ensemble learning combines the forecasting results from a set of single models to
generate the outcomes of interest using different algorithms, such as bagging, boosting,
random subspace, and stacked generalization. This acts to reduce the bias and variance
from single models and to improve the accuracy of forecasting [73]. The robust performance
of ensemble learning can be explained by the fact that every single model learns different
features from time-series sets, while the aggregated model learns all of the useful features
learned by the single models [73].

In recent years, ensemble learning has been applied to dengue risk forecasting [27,37,39,53].
Specifically, Guo et al. (2019) developed an ensemble penalized regression algorithm (EPRA)
for the near real-time forecasting of dengue occurrence and outbreaks, which includes
model training, validation, evaluation, and aggregation. EPRA compiled the results of
five penalties using the bagging method and iterative random sampling [27]. Buczak et al.
(2018) incorporated three single models with different predictors (i.e., analogue models with
dengue and climate data, additive seasonal Holt–Winters models with or without wavelet
smoothing, and simple historical models) into an ensemble model [37]. Rangarajan et al.
(2019) used the additive seasonal Holt–Winters model in dengue case forecasting, creating
multiple models by varying the input parameters (e.g., the seasonal length, error measure
metrics, and the ending month of the training set), and then combining them by weighting
the forecasts from single models to achieve the best performance [39].

3.3.5. Hybrid Learning

Hybrid learning often employs two single models and effectively combines them
using optimization algorithms based on the additive relationship between linear and non-
linear time series components, and there are typically three hybrid learning structures:
parallel, series, and parallel-series [74]. Parallel hybrid learning provides a combination of
different forecasts, and the relative effectiveness of each forecast (i.e., a component weight)
is determined by selecting a specific weighting algorithm, and the weighted forecasts are
combined using linear or non-linear functions. Series hybrid learning decomposes the time
series into linear and non-linear components, models them using linear and non-linear
models, and combines various forecasts for the final predictions. Parallel-series hybrid
learning utilizes the strengths of both parallel and series structures by combining them [74].

Among them, series hybrid learning has shown promise in dengue risk forecasting. For
instance, Chakraborty et al. (2019) proposed a series of hybrid models (i.e., ARIMA-SVM,
ARIMA-ANN, ARIMA-LSTM, and ARIMA-NNAR) by combining ARIMA with machine
learning and deep learning models utilizing a series structure [30]. AI models are used to
handle the residual values between actual data and forecast results, while ARIMA is used
to model the linear tendency. These proposed models are evaluated on three dengue time-
series sets, and the hybrid model has superior performance and reduces model uncertainty
in inferential statistics and time series [30].

3.4. Evaluation Metrics

Model evaluation in dengue risk prediction primarily involves the following aspects
(Table A1): (1) Quantifying the variance/correlation between time-series observations and
predicted values (e.g., MSE, RMSE, MAE, RMAE, MAPE, MSLE, RRSE, RMSPE, Pearson
correlation, and R2); (2) Assessing the ability to identify whether the disease outbreak
occurs (e.g., confusion matrix, accuracy, ROC, MCC, precision, and sensitivity); (3) and
Indicating the uncertainty of model performance (e.g., p-value and confidence interval).
It should be noted that the dropout method can be used to generate the forecast intervals
for deep learning models, and then indicate the uncertainty of model performance. For
example, our previous study generated many forecasts by randomly dropping a fixed
percentage of units and calculating the maximum, minimum, and mean of many forecasts
to produce the predicted interval based on the fixed parameters of LSTM and testing
set [12].
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4. Discussion

We identified the current status of dengue risk forecasting in terms of the predictors
and data sources, data-driven models, spatial and temporal scales, and evaluation metrics,
based on 53 papers published from 2018 to the present. Focusing on the development of
big geospatial data and deep learning, and the need for fine-grained prediction of dengue
risk, we explored the potential of big geospatial data, cloud computing, and deep learning
in future dengue risk forecasting in the following discussion.

4.1. Potentials of Big Geospatial Data in Identification of More Dengue Risk Predictors

The majority of current dengue risk forecasting studies predict the number of cases
or incidence rates at given spatial scales, mainly using time series of temperature, pre-
cipitation, humidity, pressure, wind, and vegetation predictors. Some publicly available
geospatial data facilitate the identification of these factors (Figure 4). Other factors, such as
hydrological, landscape, and socio-economic factors, affecting dengue transmission risk
remain limited in risk prediction. The impact of these factors on dengue transmission
is evident, especially in Southeast Asia, which is a typical dengue region with intense
urban sprawl, a dense population, diverse landscape types, and suitable climate conditions.
For example, river-level proved to be strongly related to dengue risk because rivers were
shown to act as breeding sites for Aedes mosquitoes in Dhaka, Bangladesh [75]. Landscape
factors proved to have a strong influence on increasing sensitivity to the occurrence of
Aedes mosquitoes [76]. Urban landscape types (e.g., residential, commercial, industrial,
slum, construction sites, and trees) can be considered as proxies for the number of mosquito
breeding and resting sites and Aedes–human encounters [6], and urbanization favors the
spread of dengue by creating new breeding and resting sites and increasing the likelihood
of Aedes–human encounters. Additionally, dengue transmission is significantly related to
the Gross Domestic Product (GDP) in Guangzhou, China [77].

These factors provide us with more detailed spatial information on the breeding
and resting sites of mosquitoes and their identification requires multi-source geospatial
data. A recent study used pixel-level satellite image segmentation to identify various
urban landscape factors (i.e., buildings, roads, trees, cropland, waterways, and standing
water), computed the percentage of each factor per township, and integrated both the deep
landscape features and temporal features of climate factors into a time series susceptible
infected recovered (TSIR) model to forecast dengue outbreaks. Liu et al. (2021) used a
pre-trained CNN to extract features from street-view images of Baidu Maps to represent
the physical environment’s suitability for mosquito breeding, which was combined with
meteorological factors to predict dengue risk [17]. Moreover, some ready-to-use geospatial
data related to socio-economic factors have been published, such as the gridded global GDP
datasets at 5 arc-min resolution for 1990, 2000, and 2015 [78,79]. These studies highlight
the importance of different geospatial data types in future dengue risk forecasting, which
focuses on identifying accurate spatial features and improving the accuracy of dengue risk
prediction by integrating both spatial and temporal features in modeling.

4.2. Potential of Geospatial Data Cloud Computing in Dengue Risk Prediction

The effective use of big geospatial data is complicated due to the volume and velocity
requirements of big geospatial data, the diversity of datasets and resolutions, and the
variety of data analysis methods [5,80,81]. In recent years, the emergence of free-to-use
cloud computing platforms for big geospatial data, such as Google Earth Engine (GEE),
has provided unprecedented opportunities for dengue risk forecasting [82]. First, the
GEE platform hosts a large number of remote sensing images from various sensors (e.g.,
MODIS, Landsat 4, Landsat 5, Landsat 7, Landsat 8, Sentinel-1, and Sentinel-2), global
scale ready-to-use datasets on multiple topics (e.g., vegetation indices, impervious surface,
population density, land surface temperature, and meteorological reanalysis), and a vari-
ety of algorithms (e.g., image preprocessing, image composite and visual interpretation,
feature extraction, machine learning, and deep learning models) [83,84]. Table 1 illustrates
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a selection of global-scale big geospatial data that enables the identification of dengue
climate and environment at different spatial and temporal scales and the definition of the
predominate area of dengue transmission by creating a buffer zone with a fixed size (e.g.,
the fight range of Aedes mosquitoes) around the impervious surface. Second, it is able
to divide the big geospatial data and use multiple computers to process them in parallel
to produce the predictors according to the spatial and temporal scales required for the
dengue prediction task. Third, it allows external raster and vector data to be uploaded and
can provide additional predictors for dengue risk forecasting. A recent literature review
on the application of the GEE platform indicates that it has great potential for multiple
applications, such as land cover and land use mapping, and climate change, urban, and
habitat mapping [85]. However, its applications in public health are still limited, and
only two studies have used GEE in the identification of factors driving disease to date.
Frake et al. (2020) used GEE to identify multiple driving factors of malaria [86], and our
previous study demonstrated the capability of GEE in identifying dengue climate and
environmental factors on a weekly scale [12]. Therefore, future research should focus more
on big geospatial data cloud computing to build a multi-scales dataset of dengue risk
predictors and achieve accurate and timely risk predictions.

Table 1. The representative ready-to-use products in GEE platform can be used to define the predom-
inant transmission area of dengue fever and identify dengue predictors.

Predictors and Datasets Spatial
Resolution

Temporal
Resolution Period

Climate
Temperature GLDAS-2.1 27,000 m 3-hourly 2000 to present

Rainfall GLDAS-2.1 27,000 m 3-hourly 2000 to present
Humidity GLDAS-2.1 27,000 m 3-hourly 2000 to present

Environment

NDVI MOD09GA 500 m Daily 2000 to present
EVI MOD09GA 500 m Daily 2000 to present

NDWI MOD09GA 500 m Daily 2000 to present
dLST MOD11A1 1000 m Daily 2000 to present
nLST MOD11A1 1000 m Daily 2000 to present

Transmission
areas

Population density GPW v4.0 1000 m 5-year 2000, 2005, 2010,
2015, 2020

Imperious surface GAIA 30 m Annual 1985–2018

4.3. Potentials of Deep Learning Models in Dengue Risk Forecasting

Diverse CNN-based very high resolution (VHR) image segmentation enables the accu-
rate identification of landscape elements in the deep learning community, and diverse CNN
models (e.g., U-Net and DeeplabV3+) have been developed in recent years [85]. Integrating
CNN-based urban landscape maps and open-source urban data (e.g., Point-of-Interests
(POI) data) enables the identification of building types (such as residences, institutions,
commercial areas, and urban villages/slums) [87,88]. This information could be useful
to characterize the likelihood of human–Aedes encounters and enhance dengue risk fore-
casting. Another potential of deep learning may be the provision of new architectures
that can adapt to various forecast scenarios. The majority of studies focus on dengue risk
forecasting at large spatial scales, and forecasting dengue risk within cities at finer spatial
scales remains limited (Figure 5). As a result of the spatial heterogeneity of landscape and
socio-demographic conditions, for instance, dengue risk frequently varies across a city,
and forecasting dengue risk in a city at finer spatial scales (e.g., the neighborhood-level
or grid-level) is more significant for precise prevention and control. In this situation, con-
volutional Long–Short-Term Memory (ConvLSTM) is a viable option that can effectively
predict the sequential evolution of spatial patterns by learning the relationships between
time and space.
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4.4. Limitations of the Use of Big Geospatial Data and Deep Learning in Dengue Risk Forecasting

Even with important advancements in big geospatial data cloud computing and data-
driven methods, developing accurate, timely, and effective dengue risk models remains
challenging. For example, other factors affecting dengue transmission, such as the cycle of
four dengue serotypes (i.e., DENV 1–4) [89], population immune status [89], and mosquito
population [90,91], are often difficult to quantify. In addition, the number of dengue cases is
also affected by the accuracy of the local disease surveillance system and the awareness of
dengue fever among the populace [92]. As a result of the possibility of error in the disease
surveillance procedure, dengue epidemiological data contain substantial noise, which has
an impact on the ability of models in dengue risk forecasting.

5. Conclusions

This study examined the use of big geospatial data in the identification of dengue
risk predictors and data-driven methods for dengue risk forecasting. We identified the
commonly used predictors and data sources; the spatial and temporal scales; data-driven
methods, including time series, machine learning, deep learning, ensemble learning, and
hybrid learning; and model evaluation metrics in contemporary dengue risk forecasting.
The potential of big geospatial data cloud computing and deep learning for future dengue
risk forecasting was then explored in detail. This review produced timely and essential in-
formation regarding dengue risk forecasting, which will help future dengue risk forecasting
tasks and the risk forecasting of other arboviral diseases, such as Zika and Chikungunya.

Author Contributions: Conceptualization, methodology, data analyses, original draft preparation
and reviewing the bibliography: Z.L. Funding acquisition and reviewing the manuscript: J.D. All
authors have read and agreed to the published version of the manuscript.

Funding: This study was supported by the Key Research Program of Frontier Sciences (QYZDB-
SSW-DQC005) of the Chinese Academy of Sciences (CAS), the Strategic Priority Research Program
(XDA19040301) of the CAS, and the Institute of Geographic Sciences and Natural Resources Research
of the CAS (E0V00110YZ).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Article ID (J: journal article, C: conference paper), authors, publication year, spatial scales,
temporal scales, types of predictors, types of data sources, models, evaluation metrics, and types of
tasks (R: regression, C: classification) used in the selected journal and conference articles.

ID Authors Year Spatial
Scales

Temporal
Scales

Types of
Predictors Types of Data Sources Models Evaluation

Metrics Task

J1 Li et al. [12] 2022 City-level Weekly

Temperature

Satellite-based dataset
ARIMA
LSTM

RMSE
MAE R

Rainfall

Vegetation
index

Humidity

Dengue
Department of health services
and national electronic disease

surveillance system

C2 Pham et al. [13] 2018 City-level Daily

Temperature

Official meteorological agency LR
DT

LSTM

RMSE
MAE

R, C

Rainfall

Humidity

Wind

Vegetation
index Satellite-based dataset

J3 Mussumeci
et al. [14] 2020 City-level Weekly

Temperature
Official meteorological agency

LASSO
RF

LSTM

MSE
MSLE R

Temperature
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Table A1. Cont.

ID Authors Year Spatial
Scales

Temporal
Scales

Types of
Predictors Types of Data Sources Models Evaluation

Metrics Task

J3 Mussumeci
et al. [14] 2020 City-level Weekly

Humidity
Official meteorological agency

LASSO
RF

LSTM

MSE
MSLE

R
Pressure

Social media
index Public website

C4
Saleh et al.

[15] 2021 City-level Weekly

Rainfall

Public website
SVR

LSTM R2RMSEMAEMSE R

Humidity

Temperature

Temperature

Vegetation
index Satellite-based dataset

J5 Xu et al. [16] 2020 City-level Monthly

Pressure

Official meteorological agency

GAM
SVR
GBM

BPNN
LSTM

LSTM-TL

RMSE
RRSE R

Temperature

Rainfall

Humidity

J6 Liu et al. [17] 2021 Town-level Weekly

Landscape Public website

MLP
SVM

Pearson
correlation

Hit rate
R, C

Temperature
Official meteorological agency

Rainfall

Population Satellite-based dataset

C7
Chovatiya
et al. [18] 2019 City-level Monthly

Humidity

Public website

LSTM RMSE R

Temperature

Pressure

Rainfall
Official meteorological agency

Air quality

C8
Mustaffa
et al. [19] 2018 City-level Weekly

Rainfall

Official meteorological agency Hybrid
FPA-LSSVM

MSE
RMSPE RTemperature

Humidity

J9 Liu et al. [20] 2019 City-level Monthly

Temperature

Official meteorological agency GAMM
GAM RMSE R

Humidity

Rainfall

Internet Public website

J10 Carvajal et al.
[21] 2018 City-level Weekly

Temperature

Official meteorological agency
GAM

SARIMA
RF
GB

RMSEMAE R

Rainfall

Humidity

Wind

El Niño/La
Niña Official meteorological agency

Social media
index Public website

J11 Appice et al.
[22] 2020 State-level Monthly Temperature Official meteorological agency

VAR
ARIMA

AutoTiC-NN
M5
SVR
kNN

RMSE
Cluster
analysis

R

J12 Zhao et al.
[23] 2020

Country-
level/state-

level
Weekly

Vegetation
index

Satellite-based dataset

ARIMA
RF

ANN

MAE
RMAE R

Landscape

Rainfall

Population

Official meteorological agency
Economic

index

Educational
index

Time —



Remote Sens. 2022, 14, 5052 15 of 22

Table A1. Cont.

ID Authors Year Spatial
Scales

Temporal
Scales

Types of
Predictors Types of Data Sources Models Evaluation

Metrics Task

J13 Benedum
et al. [24] 2020 City-level Weekly

Dengue
Department of health services
and national electronic disease

surveillance system PR
Logistic

regression
ARIMA
SARIMA

RF

nMAE
MCC

R, CPopulation Official Statistics

Temperature
Official meteorological agency

Humidity

Rainfall Satellite-based dataset

J14 Bomfim
et al. [25] 2020 Neighborhood-

level
Weekly

Human mobility Public transport data
ARIMA
LSTM

Precision
Recall
F-score
MAE
RMSE

R, C
Time —

J15 Withanage
et al. [26] 2018

District-level

Monthly

Rainfall

Official meteorological agency

LR

RMSE
MAE

MAPE
PSS

R

Temperature

Humidity

Dengue
Department of health services
and national electronic disease

surveillance system

J16 Guo et al. [27] 2019 City-level Weekly

Temperature

Official meteorological agency

Ensemble
learning

RMSE
MAE

Pearson
correlation

R

Humidity

Rainfall

Internet
Public website

Social media
index

J17 Fakhruddin
et al. [28] 2019 City-level Weekly

Rainfall

Official meteorological agency GLM

MSE
R4

Adjusted R4

p-value
RHumidity

J18 Ramadona
et al. [29] 2019 Neighborhood-

level
Monthly

Social media
index

Public website PR
BIC
R3.5

SRMSE
R

Human
mobility

J19 Chakraborty
et al. [30] 2019

City-level,
Country-

level
Weekly/monthlyDengue Public website

ARIMA
ANN

NNAR
Hybrid
ARIMA-

ANN
Hybrid
ARIMA-
NNAR

RMSE
MAE

SMAPE
R

J20 Cortes et al.
[31] 2018 City-level Monthly Dengue

Department of health services
and national electronic disease

surveillance system

ARIMA
SARIMA Comparison R

J21 Jayaraj
et al. [32] 2019 District-level Monthly

Temperature

Official meteorological agency
PR

SARIMA
SARIMAX

AIC
MAE
MSE

RHumidity

Rainfall

C22
Tanawi et al.

[33] 2021 City-level Weekly

Humidity

Official meteorological agency

SVR RMSE
MAE R

Rainfall

Temperature

Dengue
Department of health services
and national electronic disease

surveillance system

J23 Findlater
et al. [34] 2019 Country-

level
Yearly

Human
mobility Public transport data

NBR unknown R
Population Official Statistics

J24 Bal et al. [35] 2020 City-level Monthly

Temperature

Official meteorological agency
Zero-

inflated
PR

Comparison,
CI R

Humidity

Rainfall

Dengue
Department of health services
and national electronic disease

surveillance system
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Table A1. Cont.

ID Authors Year Spatial
Scales

Temporal
Scales

Types of
Predictors Types of Data Sources Models Evaluation

Metrics Task

J25 Cheng et al.
[36] 2020 City-level Daily

Temperature
Official meteorological agency

AR MAE
RMSE R

Humidity

Mosquito
index Unknown

J26 Buczak
et al. [37] 2018 City-level Weekly

Temperature

Satellite-based dataset
Ensemble
learning
SARIMA

MAE R
Rainfall

Vegetation
index

J27 Polwiang
[38] 2020 City-level Monthly

Humidity

Official meteorological agency
PR

ARIMA
ANN

Correlation
coefficient

MAE
RMSE
MAPE

RTemperature

Rainfall

J28 Rangarajan
et al. [39] 2019 Country-

level Weekly Internet Public website

ARLR
AR

LASSO
Ensemble
learning,

Naïve
method

RMSE
MAE

MAPE
R

J29 Gabriel
et al. [40] 2019 City-level Monthly Dengue

Department of health services
and national electronic disease

surveillance system
SARIMA Comparison R

J30 Yuan et al.
[41] 2019 Province-

level
Yearly/weekly

Temperature
Official meteorological agency PR MSE R

Rainfall

J31 Zhu et al.
[42] 2019 Province-

level
Weekly

Temperature

Official meteorological agency Probit
regression

Correlation
Coefficient R

Pressure

Humidity

Wind

J32 Chen et al.
[43] 2018 Neighborhood-

level
Weekly

Human
mobility Public transport data

LASSO RMSE,
ROC

R, C
Landscape Official Statistics

Humidity
Official meteorological agency

Temperature

Vegetation
index Satellite-based dataset

J33 Shashvat et al.
[44] 2019 City-level Monthly

Rainfall

Official meteorological agency

LR
ANN
SVR

ARIMA
Ensemble
learning

RMSE
MSE
MAE

RHumidity

J34 Valencia
et al. [45] 2021 City-level Weekly

Temperature

Official meteorological agency
SARIMA

SARIMAXL-
STM

RMSE
MAPE RHumidity

Rainfall

C35
Mishra

et al. [46] 2019 City-level Weekly

Rainfall Official meteorological agency LR
SVR
NN

XGBoost
BR

GBR

MAE R
Vegetation index Satellite-based dataset

C36
Nan et al.

[47] 2018 City-level Daily

Temperature

Official meteorological agency

XGBoost
RF

LASSO
AdaBoost

SVM
LR

Gboost
RR

RMSE
MAE

R2
RPressure

Wind

J37 Liu et al. [48] 2020 Town-level Weekly

Temperature
Official meteorological agency

SVM
LASSO
ANN

Pearson
correlation

Hit Rate
R, C

Rainfall

Population Satellite-based dataset

Human
mobility

China Mobile
Telecommunications Company
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Table A1. Cont.

ID Authors Year Spatial
Scales

Temporal
Scales

Types of
Predictors Types of Data Sources Models Evaluation

Metrics Task

C38
Kurnianingsih

et al. [49] 2020 Province-
level

Yearly
Others

Official meteorological agency LSTM MAE
RMSE REl Niño/La

Niña

J39 Puengpreeda
et al. [50] 2020 Province-

level
Weekly

Internet Public website

LASSO
RR
RF

AdaBoost
Extra-Trees

MSE
MAE

R2
R

Rainfall

Official meteorological agency

Humidity

Sunshine
Index

Temperature

Wind

J40 Shashvat
et al. [51] 2021 City-level Monthly

Rainfall
Public website ES

ARIMA

MAE
AIC
BIC

MASE

R
Humidity

C41
Mustaffa
et al. [52] 2019 City-level Monthly

Rainfall

Public website

Hybrid
FPA-LSSVM,

Hybrid
MFO-

LSSVM,
Hybrid
GWO-

LSSVM

RMSPE,
MSE RTemperature

Humidity

J42 Baquero et al.
[53] 2018 City-level Monthly

Temperature

Official meteorological agency

GAM
ANN

SARIMA
Ensemble

model

RMSE RHumidity

Rainfall

C43 Anggraeni
et al. [54] 2019 City-level Weekly Dengue

Department of health services
and national electronic disease

surveillance system

Hybrid
Fuzzy-

ARIMA

MSE
SMAPE R

C44
Baker et al.

[55] 2021 City-level Weekly

Temperature

Public website

MLR
PR

NBM
NB
DT

SVM
kNN

AdaBoost
Ensemble
learning

MAE R

Rainfall

Humidity

Vegetation
index

Dengue

J45 Chakraborty
et al. [56] 2020 Country-

level
Weekly

Rainfall

Official meteorological agency

GP
GAM

ARIMA
RF

RMSE
MAD RHumidity

Temperature

C46
Saptarini et al.

[57] 2018 City-level Monthly

Rainfall

Official meteorological agency Hybrid
GA-ERNN MSE R

Humidity

Temperature

Sea level

C47
Kerdprasop

et al. [58] 2020 City-level Monthly

Time —
ANN MLR

GLM
LR

SVR CART
CHAID

Ensemble
learning

Correlation
coefficient R

Rainfall

Satellite-based dataset

Vegetation
index

Temperature

El Niño/La
Niña

C48
Raju et al.

[59] 2019 State-level Monthly

Dengue
Department of health services
and national electronic disease

surveillance system LR
KR

SVR

MAE,
MSE RRainfall

Official meteorological agencyTemperature

Humidity
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Table A1. Cont.

ID Authors Year Spatial
Scales

Temporal
Scales

Types of
Predictors Types of Data Sources Models Evaluation

Metrics Task

C49
Thiruchelvam

et al. [60] 2021 District-level Weekly

Temperature

Official meteorological agency

ARIMAX,
LSE

MSE
AIC R

Humidity

Rainfall

Dengue
Department of health services
and national electronic disease

surveillance system

C50
Jayasani
et al. [61] 2021 District-level Monthly

Rainfall Official meteorological agency

LSTM
LSTM-TL

VAR

RMSE
MAD R

Dengue
Department of health services
and national electronic disease

surveillance system

Temperature
Public website

Humidity

J51 Stolerman
et al. [62] 2019 City-level Yearly

Rainfall
Official meteorological agency

SVM Accuracy C
Temperature

Dengue
Department of health services
and national electronic disease

surveillance system

J52 Koh et al.
[63] 2018 City-level Weekly

Dengue
Department of health services
and national electronic disease

surveillance system
AR

Bayesian
NN

MSE R

Rainfall Public website

J53 Nguyen
et al. [64] 2022 Province-

level
Monthly

Rainfall

Official meteorological agency

PR
SVR

XGBoost
SARIMA

CNN
Transformer

LSTM
LSTM-AT

MAE
RMSE

Accuracy
Precision

Sensitivity
Specificity

R, C

Temperature

Humidity

Sunshine
Index

Evaporation

AR: Autoregression; ARIMA: autoregressive integrated moving average model; ARIMAX: auto-regressive in-
tegrated moving average eXogenous variable models; SARIMA: seasonal integrated moving average model;
SARIMAX: seasonal autoregressive integrated moving average with eXogenous factors; LR: linear regression;
MLR: multiple linear regression; PR: Poisson regression; RR: ridge regression; LASSO: least absolute shrinkage
and selection operator; GAM: generalized additive model; GLM: generalized linear model; RF: random forest;
SVM: support vector machine; SVR: support vector regression; LSSVM: least square support vector machines;
AdaBoost: adaptive boosting; Gboost: gradient boosting; DT: decision tree; and XGBoost: eXtreme Gradient boost-
ing; GBM: gradient boosting machine; GAMM: generalized additive mixed model; VAR: vector auto regression;
kNN: k-Nearest neighbors; NBR: negative binomial regression; Zero-inflated PR: zero-inflated Poisson regression;
ARLR: autoregressive likelihood ratio method; BR: bagging regressor; ES: exponential smoothing; MLR: multiple
linear regression; NBM: negative binomial regression; NB: naïve Bayes; GP: Gaussian process; CART: classifica-
tion and regression tree; CHAID: chi-squared automatic interaction detection; KR: kernel ridge; AutoTiC-NN:
autoencoding-based time series clustering with nearest neighbor; NN: neural networks; ANN: artificial neural
networks; RNN: recurrent neural network; LSTM: long–short-term memory; LSTM-TL: LSTM with transfer
learning; LSTM-AT: LSTM with attention mechanism; CNN: convolutional neural network.
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