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Abstract: As the second largest rice producer, India contributes about 20% of the world’s rice
production. Timely, accurate, and reliable rice yield prediction in India is crucial for global food
security and health issues. Deep learning models have achieved excellent performances in predicting
crop yield. However, the interpretation of deep learning models is still rare. In this study, we proposed
a transformer-based model, Informer, to predict rice yield across the Indian Indo-Gangetic Plains by
integrating time-series satellite data, environmental variables, and rice yield records from 2001 to 2016.
The results showed that Informer had better performance (R2 = 0.81, RMSE = 0.41 t/ha) than four
other machine learning and deep learning models for end-of-season prediction. For within-season
prediction, the Informer model could achieve stable performances (R2 ≈ 0.78) after late September,
which indicated that the optimal prediction could be achieved 2 months before rice maturity. In
addition, we interpreted the prediction models by evaluating the input feature importance and
analyzing hidden features. The evaluation of feature importance indicated that NIRV was the most
critical factor, while intervals 6 (mid-August) and 12 (mid-November) were the key periods for rice
yield prediction. The hidden feature analysis demonstrated that the attention-based long short-term
memory (AtLSTM) model accumulated the information of each growth period, while the Informer
model focused on the information around intervals 5 to 6 (August) and 11 to 12 (November). Our
findings provided a reliable and simple framework for crop yield prediction and a new perspective
for explaining the internal mechanism of deep learning models.

Keywords: crop yield prediction; remote sensing; deep learning; feature importance; attention

1. Introduction

Rice feeds more than 50% of the world’s 7.5 billion people [1], especially, 90% of rice
production and 87% of paddy rice harvested area come from Asia [2,3]. As the second
largest rice producer in the world after China, India contributes about 20% of the world’s
rice production [4]. However, rice yield in India highly depends on the variability of
monsoon affected by climate change in the tropics, which is the most vulnerable area in the
world [5,6]. Under the pressure of climate change, increasing crop yield to meet the rising
population demand and adapt to climate change is challenging [5,7]. Therefore, timely,
accurate, and reliable rice yield prediction in India plays a vital role in food security, health
issues, and marketing planning on the local, national, and global levels [8].

Remote Sens. 2022, 14, 5045. https://doi.org/10.3390/rs14195045 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14195045
https://doi.org/10.3390/rs14195045
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-4891-5264
https://orcid.org/0000-0002-1042-5649
https://doi.org/10.3390/rs14195045
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14195045?type=check_update&version=2


Remote Sens. 2022, 14, 5045 2 of 21

In recent decades, popular crop yield prediction methods include field surveys, crop
growth models, and statistical machine learning models [9–11]. Traditionally, field surveys
are used to estimate crop yield by collecting information from farmers. Field surveys can
capture the actual growth of crops, but this method is time-consuming, laborious, and
difficult to be applied on large scales [12,13]. Due to these limitations, crop growth models
and statistical machine learning models are more reliable and convenient for large-scale
predictions. Crop growth models can simulate crop growth, plant carbon assimilation, and
phenology using the information of meteorology, soil, phenology, and management [14].
However, these models require sufficient field data to adjust the specific parameters [15],
which restricts their performances at the regional-scale application [16].

Compared with crop growth models, machine learning methods can reduce depen-
dence on crop-specific parameters as remote sensing technology advances and describe
nonlinear relationships between input features and crop yield. Therefore, many machine
learning approaches have been applied to predict crop yield at the regional scales based on
climate and remote sensing data [10,17–19]. For instance, Shahhosseini et al. [17] applied
four machine learning methods, including least absolute shrinkage and selection opera-
tor (LASSO), ridge, random forest (RF), extreme gradient boosting (XGBoost), and their
ensembles as metamodels, to predict maize yield and found that XGBoost had the best
performance with a relative mean square error (RMSE) of 13.5%. Felipe Maldane et al. [18]
used RF, multiple linear regression (MLR), and artificial neural network (ANN) to estimate
the sugarcane yield, and the results showed that the prediction of RF was the closest to the
observed yield.

In addition, deep learning methods can capture complex relationships from high-
dimensional data and recognize sequential patterns of time-series data [20,21]. Thus,
deep learning methods have been widely used in solving real-world problems with the
advancement of artificial intelligence [22–24]. Recently, popular deep learning methods,
such as the convolutional neural network (CNN) and long short-term memory (LSTM),
have been applied to predict crop yield and outperformed traditional machine learning
methods [13,25–27]. For instance, Cao et al. [27] predicted the county-level winter wheat
yield in China using deep learning methods, including DNN (deep neural networks),
1D-CNN (1D convolutional neural networks), and LSTM, while Tian et al. [13] found that
the LSTM model outperformed the BPNN (back propagation neural network) and SVM
(support vector machine) in predicting wheat yield.

Deep learning methods have achieved high accuracy in predicting crop yield. How-
ever, as ‘black-boxes’, deep learning methods have the disadvantage of low interpretability.
Therefore, how to improve interpretability is a crucial research question [28]. Existing
studies using deep learning methods mainly focus on improving yield prediction perfor-
mance without considering model interpretation. Improving interpretability is essential
to ensure the model’s reliability and to understand the environmental features relevant to
crop yield. Recently, the attention mechanism has provided a channel for interpreting deep
learning models by exploring the distribution of attention weights. Based on the attention
mechanism, the transformer model was proposed in natural language processing [29],
providing an approach to improve the interpretability of models. Precisely, the transformer
models can explain the internal working of a model using self-attention weights. Com-
pared with other traditional machine learning methods, transformer models have proved
their state-of-the-art performance in natural language processing applications, such as
generative language modeling [30,31]. Moreover, the latest agricultural studies have used
these transformer models in crop classification [32–34]. To our best knowledge, there are
still no studies that use transformer models to predict crop yield based on remote sensing
and climate data.

In this study, we adopted a transformer model called Informer to improve the per-
formance of district-level rice yield prediction and interpreted the internal mechanism of
models from multiple perspectives. First, the Informer model was applied with multi-
temporal inputs based on satellite and meteorological data from 2001 to 2016. Then, the
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Informer model was compared with LASSO, RF, XGBoost, and AtLSTM for performance
evaluation. Finally, the potential driving factors for yield prediction were investigated
by analyzing the feature importance and attention weights. This study seeks to address
two questions:

(1) How does the Informer model perform for rice yield prediction compared with several
traditional machine learning and deep learning models?

(2) How can we interpret deep learning models for predicting crop yield based on
attention mechanisms?

2. Materials

Three types of data, including time-series satellite variables, climate variables, and
district-level rice yield, were collected from different sources. The detailed information of
input data is shown in Table 1.

Table 1. Summary of the input features for model development.

Category Variables
Related

Crop
Properties

Spatial Resolution Source Temporal Resolution

Satellite imagery NDVI Plant vigor 1000 m MODIS 16-day
EVI

NIRV
SIF 0.05 degree CSIF 4-day

Climate Tmax Heat stress 0.5 degree CRUNCEP 1-day
Tmin
Srad

Pr Water stress 0.05 degree CHIRPS 1-day
Others Historical average yield (t/ha) District-level N/A

Crop area 500 m MODIS Yearly

Abbreviations: NDVI, normalized difference vegetation index; EVI, enhanced vegetation index; NIRV, near-
infrared reflectance of vegetation; SIF, solar-induced chlorophyll fluorescence; Tmax, daily maximum temperature;
Tmin, daily minimum temperature; Srad, solar radiation; Pr, daily total precipitation.

2.1. Study Area and Yield Data

The study area is the Indian Indo-Gangetic Plains in northwest India (Figure 1), a
flat alluvial plain with an average evaluation of 177 m, consisting of three states: Punjab,
Haryana, and Uttar Pradesh. The soil texture of this plain is mainly sandy loam to loam,
with moderate water-holding capacity, low organic matter content, and high fertility. The
water resources in this region are primarily derived from rainfall and groundwater, with
97% of cropland in Punjab, 83% in Haryana, and 68% in Uttar Pradesh being irrigated [35].
The dominant cropping system is Kharif rice in rotation with winter wheat in the Indian
Indo-Gangetic Plains. The wet season when Kharif rice is grown spans approximately May–
June through October–November. The dry season for wheat growing spans approximately
November–December through March–April [36,37]. Districtwise Kharif rice yield data
for 101 districts over 16 years (2001–2016) were retrieved from the Area and Production
Statistics database (https://aps.dac.gov.in (accessed on 10 May 2021)). The location and
topographic maps of the Indian Indo-Gangetic Plains are mapped in Figure 1.

2.2. Satellite Imagery

We considered the normalized difference vegetation index (NDVI), enhanced veg-
etation index (EVI), near-infrared reflectance of vegetation (NIRV), and solar-induced
chlorophyll fluorescence (SIF) for crop yield prediction in this study. Both NDVI and EVI
were extracted from the 16-day Moderate Resolution Imaging Spectroradiometer (MODIS)
MOD13A2 product with a spatial resolution of 1 km. NIRV was calculated using the MODIS
NIR reflectance (NIRT) and MODIS NDVI from the MOD13A2 product [38].

NIRV = NDVI×NIR (1)

https://aps.dac.gov.in
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Figure 1. The location and topographic maps of the Indian Indo-Gangetic Plains. The topographic 
data from GEBCO gridded bathymetry data (https://www.gebco.net/ (accessed on 26 September 
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Figure 1. The location and topographic maps of the Indian Indo-Gangetic Plains. The to-
pographic data from GEBCO gridded bathymetry data (https://www.gebco.net/ (accessed on
26 September 2022)).

Besides, the satellite-based SIF data were extracted from a global spatially contiguous
SIF (CSIF) dataset product, which provides 4-day data with 0.05◦ spatial resolution [39].
By training a neural network, Zhang et al. [39] generated the CSIF dataset using surface
reflectance from the MODIS and SIF from the Orbiting Carbon Observatory-2 (OCO-2). SIF
has been proven effective in monitoring the photosynthetic activity of terrestrial ecosystems
and is widely used in predicting crop yield [19].

2.3. Environmental Data

Environmental data consisted of four climate variables. We collected three climate
variables from the 6 h atmospheric forcing dataset, CRUNCEP Version 7 [40]. The three
climate variables, including daily maximum temperature (Tmax, ◦C), minimum tempera-
ture (Tmin, ◦C), and solar radiation (Srad, W m−2), were extracted from the CRUNCEP
dataset with a spatial resolution of 0.5◦. In addition, the daily total precipitation (Pr, mm)
was collected from the Climate Hazards Group InfraRed Precipitation with Station Data
(CHIRPS) dataset, which has a 0.05◦ spatial resolution [41].

2.4. Data Preprocessing

The climatic variables were first calculated and aggregated to a 16-day interval from
25 May (or 24 May) to 2 December (or 1 December), resulting in 12 time-series input
features (Table 2). Then, the climate and satellite data were unified into 500 m spatial
resolutions and masked by the cropland layer derived from the MODIS Land Cover Type
product (MCD12Q1 v6), which has a spatial resolution of 500 m and can be obtained from
the Google Earth Engine (GEE) platform. We did not use a specific crop type classification
map since the rice–wheat rotation accounts for about 85% of the cultivated land in the
Indo-Gangetic Plains [42]. Therefore, rice is the dominant crop of the Kharif season in the
study area, and the croplands of MODIS can effectively represent the distribution area
of rice. In addition, we did not use the spatial production allocation model (SPAM) data,
which had specific crop type maps, because it was only available in 2005 and 2010, while
the cropping area changed from 2001 to 2016. The eight sequential variables (i.e., NDVI,
EVI, NIRV, SIF, Tmax, Tmin, Srad, and Pr) were aggregated spatially to the district level.
Finally, a total of 96 features were applied to build models, consisting of eight sequential
variables with 12 time intervals for each.

https://www.gebco.net/
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Table 2. The start dates and end dates of the 12 time intervals.

Number of the
Interval

Start Date End Date

Normal Year Leap Year Normal Year Leap Year

1 25 May 24 May 9 June 8 June
2 10 June 9 June 25 June 24 June
3 26 June 25 June 11 July 10 July
4 12 July 11 July 27 July 26 July
5 28 July 27 July 12 August 11 August
6 13 August 12 August 28 August 27 August
7 29 August 28 August 13 September 12 September
8 14 September 13 September 29 September 28 September
9 30 September 29 September 15 October 14 October
10 16 October 15 October 31 October 30 October
11 01 November 31 October 16 November 15 November
12 17 November 16 November 2 December 1 December

3. Method
3.1. Informer Model

The transformer model based on the self-attention structure was proposed by Vaswani
in 2017 [29]. The transformer model uses the self-attention mechanism rather than the
sequential structure of RNNs, which has efficient parallel computing and can capture global
information. Compared with RNN models, transformer-based models have superior perfor-
mance in solving long-sequence time-series forecasting problems [43]. However, traditional
transformer-based models need expensive costs of computation and dozens of CPUs owing
to the self-attention mechanism and architecture. Therefore, it is unaffordable for the
transformer models to solve realistic problems. To overcome the deficiencies of transformer
models and improve prediction performance, the Informer model, which can achieve better
efficiency and overcome resource consumption, was proposed by Zhou et al. [43].

We present the architecture of the Informer model for rice yield prediction in Figure 2.
The Informer model consists of an input layer, two encoder layers, one decoder layer, and
an output layer. The canonical self-attention [29] is replaced by the ProbSparse self-attention
mechanism in the Informer model. The ProbSparse self-attention can efficiently reduce
the time complexity and memory usage. The encoder consists of two identical multihead
attention layers formed by combining multiple self-attention. The encoder module is
designed to handle longer sequential inputs under memory usage limitations by using
the self-attention distilling operation. The self-attention distilling operation can extract
dominating attention and reduce the network size sharply, which is beneficial for receiving
long-sequence inputs. The decoder used in the Informer model is a standard decoder
structure containing a stack of two identical multihead attention layers [29]. Then, the
output of the decoder is aggregated into the fully connected layer, and the fully connected
layer acquires the final output. The detailed architecture of Informer can be referred to in a
study by Zhou et al. [43].

To obtain the best performance of the Informer model, we set the dimension of the
model to 512, the number of heads to 8, the dimension of the fully connected layer to 2048,
the ProbSparse attention factor to 5, the experiment times to 3, the train epochs to 10, the
batch size to 16, the early stopping patience to 3, and the optimizer learning rate to 0.0001.
The number of encoder and decoder layers was set to 2 and 1, respectively. The Informer
model was implemented using the open-source PyTorch library in Python 3.6.
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3.2. Baseline Models

To validate the proposed Informer model, we compared the Informer model with
four other models, including one linear regression method (least absolute shrinkage and
selection operator regression (LASSO)), two machine learning methods (random forest
(RF) and extreme gradient boosting (XGBoost)), and one deep learning method (attention-
based long short-term memory (AtLSTM)). The following content explains the detailed
information about the other four models.

LASSO is a regularized regression method and uses L1 regularization [44]. The main
parameter of LASSO is alpha, which was tuned using the grid search with cross-validation.
RF is an ensemble machine learning algorithm composed of numerous independent de-
cision trees. RF has an accurate prediction ability, thanks to RF avoiding overfitting
and injecting correct randomness [45]. XGBoost has parallel and distributed computing,
which makes XGBoost have a quicker running speed than other popular machine learning
methods [46]. The parameters of RF and XGBoost were tuned using a randomized search
with cross-validation. LASSO and RF were realized using the scikit-learn library. XGBoost
was trained using the XGBoost library.

The LSTM model was proposed by Hochreiter and Schmidhuber [21] and has solved
the error flow and artificial long-time-lag tasks in existing recurrent neural networks
(RNN) [21]. LSTM has been widely applied to real-world sequences processing problems
such as natural language processing [47] and crop yield prediction [48,49]. The AtLSTM
model is an attention-based LSTM model that is practical and reliable in many fields, such
as the industrial field [50]. In this study, we used a six-layer AtLSTM model to predict
rice yield, which consists of one input layer, two LSTM layers, one attention module layer,
one fully connected layer, and one output layer (Figure 3). The input is a time series with
climate and satellite data at 12 intervals of the rice growth period.

The LSTM cell consists of three gates: a forget gate g f
t , an input gate gi

t, and an output
gate go

t , which can control the cell state (St) and output (Ot). The calculation formula used
for generating hidden features Ot is shown in Equations (2)–(6):

g f
t = σ(W f · [Ot−1, It] + b f ) (2)

gi
t = σ(Wi · [Ot−1, It] + bi) (3)

St = g f
t · St−1 + gi

t · tanh(Wc · [Ot−1, It] + bc) (4)

go
t = σ(Wo · [Ot−1, It] + bo) (5)

Ot = go
t · tanh(St) (6)
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where g f
t , gi

t, and go
t are the forget gate, input gate, and output gate, respectively. Wf, Wi,

Wc, and Wo are the weight matrices of the forget gate, input gate, input candidate element,
and output gate, respectively. bf, bi, bc, and bo are biases of the forget gate, input gate, input
candidate element, and output gate, respectively. St, St-1, Ot, and Ot-1 are the current cell
state, previous cell state, current cell output, and previous cell output. It is the current
input. σ is the sigmoid function.
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To better utilize multi-time-step information for crop yield prediction, the attention
module adjusts the contribution of hidden features by normalizing the weight parameters.
The attention weight αt of each hidden feature O∗t obtained by the LSTM layers is generated
using a softmax function (Equations (7) and (8)):

αt = so f tmax(Wa ·Ot + ba) (7)

O∗t = αtOt (8)

where Wa and ba are learnable weight matrices in the attention module and shared by all
time steps. αt is the attention weight. O∗t is the adjusted hidden feature. Then, the output
of the attention module is aggregated into the fully connected layer.

To derive the best performance of the AtLSTM model, we set the hidden features to
32, the batch size to 16, and the number of LSTM layers to 2, and applied the dropout
mechanism to the LSTM layers to prevent overfitting by setting the dropout rates to 20%.
We applied an Adam optimizer with a learning rate of 0.001 to optimize the parameters
of the network. The mean squared error (MSE) is a loss function used to evaluate the
difference between predicted and actual values. The AtLSTM model was implemented
using the PyTorch library in Python 3.6.

3.3. Model Interpretation Approaches
3.3.1. Input Feature Importance Evaluation

The feature importance of two machine learning methods (RF and XGBoost) was used
to rank features. Greater values of feature importance indicate higher relative importance.
We evaluated the feature importance of two machine learning methods (RF and XGBoost)
from 2009 to 2016.

3.3.2. Hidden Feature Analysis

We used two interpretation methods to interpret hidden features of two deep learning
models, including attention weight distribution for AtLSTM and self-attention weight
matrix for Informer. First, we applied attention values to evaluate the relative importance
of hidden features of AtLSTM when predicting rice yield. Compared with the traditional
LSTM model, the AtLSTM model can give higher attention weights to essential features
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and assign lower weights to redundant features [51]. Therefore, the attention weights of
AtLSTM can represent the relative importance of hidden features and make the model
more interpretable. We analyzed the attention values of AtLSTM over time.

Second, the self-attention weight matrix was adopted to interpret hidden features
of the Informer model. The attention mechanism is one of the main structures of the
transformer model. Each input feature has a different attention weight using the attention
mechanism [52]. The analysis of attention weights can interpret the internal mechanism of
the transformer model. The higher the weight of low-level features at a specific time step,
the more critical that time step is for high-level features. In this study, we calculated the self-
attention weight matrix of the first and second encoder layers, indicating the importance of
features in each time step. The attention matrix of this study is the average self-attention
weight matrix of multiple heads and all samples.

3.4. Model Evaluation

To evaluate the practicality of the models, we applied the leave-one-year-out prediction
to all the models for each test year from 2009 to 2016. We first eliminated the test year
and then trained the model to predict the test year with all the remaining years. The
leave-one-year-out strategy has been applied in previous studies [8,10,27]. Although we
cannot capture the real-world future data, the leave-one-year-out strategy ensures that
each test year has the same number of training years, making the model performance
independent of the amount of training data [53]. We applied 2009–2016 as the test years
to ensure that each test year has the same training data without using too much future
data. We further used the better-performing models to evaluate the within-season yield
prediction. The within-season yield prediction using data from different periods can detect
when the models can achieve the optimal prediction.

Our study was conducted at the district level. Therefore, we selected R2 (coefficients
of determination), RMSE (root mean square error), MAPE (mean absolute percentage
error), and d (Willmott’s index of agreement) [54] between the observed and predicted
district-level yield for each prediction year to assess performance.

R2 =

 ∑n
i=1 (Oi −

−
O)(Pi −

−
P)√

∑n
i=1 (Oi −

−
O)

2
√
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i=1 (Pi −

−
P)

2
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2

(9)
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√
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i=1 (Oi − Pi)
2

n
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∣∣∣∣Pi −Oi
Oi

∣∣∣∣ (11)

d = 1−

n
∑

i=1
|Pi−Oi|

n
∑

i=1

(∣∣Pi−O
∣∣+ ∣∣Oi−O

∣∣) (12)

where n is the number of samples. Pi and Oi represent the predicted and observed values.
P and O represent the mean values of the predicted and observed yields.

4. Results
4.1. Model Performance and Comparison

The Informer model was compared with the four other methods for the end-of-season
prediction using the leave-one-year-out strategy. R2, RMSE (t/ha), MAPE (%), and d of
rice yield prediction in each of the past 8 years by the five models are shown in Figure 4.
Overall, the Informer model showed a better predictive capability than all other models,
with an average R2 of 0.81, RMSE of 0.41 t/ha, MAPE of 15.47%, and d of 0.74 from 2009 to
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2016. Moreover, the Informer model performed best in multiple testing years. Additionally,
the machine learning (i.e., RF and XGBoost) and deep learning (i.e., AtLSTM) models
provided better results than the traditional linear regression model (i.e., LASSO) in rice
yield prediction in India, demonstrating that the machine learning methods could handle
the nonlinear relationship between yield and input variables. The scatter plot showed that
the observed and predicted rice yield had a linear and positive pattern for the five models in
the testing years from 2009 to 2016 (Figures 5 and S1). Overall, we found that the Informer
model showed the best performance in predicting rice yield in multiple testing years. In
addition, the AtLSTM model had the most satisfactory performance in 2013. Meanwhile,
we found the lowest performance in the LASSO model compared with the other models
(Figures 5 and S1).
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The spatial patterns of the predicted yield for all testing years are presented in
Figures 6 and S2. Overall, the spatial patterns of the predicted yield were in good agree-
ment with the observed yield, especially for the four machine learning models. The Punjab
State, the northwest of the study area, had high-yield districts. In contrast, the Uttar
Pradesh State had low-yield districts in the southeast of the study area. The proposed
Informer model best agreed with the observed yield for multiple testing years, while the
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LASSO performed worst, especially in the high-yield area. The relative error maps of the
predicted rice yield in all testing years are shown in Figures 7 and S3. Comparing all five
models, the Informer model outperformed the other models in multiple test years, such
as 2012, 2014, 2015, and 2016, indicating that the Informer model can effectively improve
the performance of yield prediction. In contrast, the LASSO model performed the worst,
especially in 2010 and 2015, compared with the other models. The three baseline methods,
RF, XGBoost, and AtLSTM, were more advantageous than the linear LASSO but not as well
as the Informer model.
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4.2. Within-Season Yield Prediction

To further explore the performances of different models over time, the Informer model
was compared with other machine learning models, including RF, XGBoost, and AtLSTM.
We excluded the LASSO model in the comparison since the LASSO model had the poorest
performance among all models (Figures 5 and S1). For overall comparison among models,
we used each model’s average R2, RMSE (t/ha), MAPE (%), and d from 2009 to 2016. The
within-season prediction was achieved by each model using data from different periods,
with results shown in Figure 8. With the progress of the growing season, the yield prediction
performance could be improved by more training data. The yield prediction performances
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of all the models were stable since interval 8 (mid-September), which indicated that the
models could achieve the optimal prediction within 2 months before rice maturity. For rice
yield prediction in all testing years, the proposed Informer model performed better than
the other models since interval 9 (late-September) with the highest R2 of 0.78, lowest RMSE
of 0.44 t/ha, lowest MAPE of 16.56%, and highest d of 0.72, while the AtLSTM model had
better performance than the other models during interval 5 (late-July) to 8 (mid- September)
with the lowest RMSE and MAPE. The results demonstrate that the Informer model had
the best performance in predicting rice yield, especially with more information at the end
of the growing season. AtLSTM had the second-best within-season prediction performance
among all models, illustrating its excellent ability to predict yield using long-term series
data and the attention mechanism.
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The spatial patterns of the average absolute relative error in all testing years using the
Informer model and information from different periods are shown in Figure 9. The average
absolute relative errors of the Informer model were mainly prominent in the early growth
periods, indicating that adequate information was critical for the yield prediction. As the
growing season progressed, the performance of the Informer model was significantly im-
proved in the Punjab and Haryana States. In contrast, fewer improvements were obtained
in the southern Uttar Pradesh State. The spatial patterns of relative errors had been stable
since mid-September, consistent with the results shown in Figure 8.
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Figure 9. Spatial patterns of the average absolute relative error (%) for the Informer model with the
progression of the growing season in all testing years (2009–2016).

4.3. Input Feature Importance Evaluation

The average feature importance of the top 15 features from 2009 to 2016 is given in
Figure 10, and the feature importance values of each year are shown in Figures S4 and S5.
Overall, the results indicate that NIRV was the most important feature to predict rice yield
among eight factors, demonstrating that NIRV was superior to other vegetation indices
in predicting crop yield. Moreover, Srad and Tmax had higher feature importance values
than other climatic variables. In addition, intervals 6 and 12 had high values of feature
importance among the 12 intervals in each year.

4.4. Hidden Feature Analysis

Therefore, the attention weights of AtLSTM can represent the relative importance of
hidden features and make the model more interpretable. We analyzed the attention values
of AtLSTM over time. The average attention weight values of the AtLSTM model from
2009 to 2016 are given in Figure 11, and the attention weight values for each year from
2009 to 2016 are given in Figure S6. Overall, we found that AtLSTM had higher attention
values in the reproductive and ripening phases than in the vegetation phase. AtLSTM
generated the attention values, reflecting the influence of extracted hidden features on the
prediction results. Notably, the attention weight value remained below 0.09 from intervals
1 to 5 and was higher than 0.09 after interval 6 from 2009 to 2016. The attention weight
value increased rapidly during intervals 1 to 6, and was stable after interval 6, indicating
that the cumulative information became more and more useful in the vegetation phase and
stabilized in the reproductive phase.
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To illustrate the importance of different intervals, we presented the average self-
attention weight matrices of the Informer model from 2009 to 2016 in Figure 12 and the
self-attention weight matrices of each year from 2009 to 2016 in Figures S7 and S8. In
layer 1, the results indicated that intervals 3, 4, 8, and 11 had more significant contributions
to high-level features than the others. In layer 2, the self-attention weight matrices showed
that intervals 5 to 6 and 11 to 12 had high self-attention weight values. These results
demonstrate that the leaf development and tillering stages around intervals 5 to 6 (August)
and the flowering and grain-filling stages around intervals 11 to 12 (November) were
important for predicting rice yield.
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5. Discussion
5.1. Advantage Analysis of the Informer Model

To the best of our knowledge, the transformer model based on the self-attention
mechanism has not been explored in modeling crop yield in previous studies. In this study,
we used a transformer model called Informer to predict rice yield based on remote sensing
and climate data. Our results show that the Informer model exhibited the best performance
in predicting rice yield compared with the other four machine learning models. This was
mainly because the Informer model had the self-attention mechanism. Enabled by the
self-attention mechanisms, the Informer model can compute correlations between each
pair of remote sensing and climate variables at all time steps, and effectively extract the
temporal dependence of long time series [29,34].

Compared with traditional deep learning models, such as CNN and RNN, the Informer
model abandons recurrence and convolutions completely, which effectively improves
model scalability and training efficiency and makes the model more parallelized [29]. In
addition, another advantage of the Informer model is that it can address some deficiencies
of regular transformer models, such as the consumption of considerable resources [43].
The Informer model’s structure makes it better than traditional deep learning models in
handling long sequence time-series forecasting problems. Therefore, the Informer model
proposed in our study can be extended to other cropping areas for predicting crop yield
and guiding agricultural practice.

5.2. Interpretation of Rice Yield Prediction Models

We employed machine learning and deep learning methods not only to obtain satis-
factory yield prediction performance but also to explain the internal mechanism of models.
Recently, attention values have been widely used to interpret deep learning models in many
fields, such as financial time series prediction [51] and crop yield estimation [55]. First, we
applied feature importance to interpret machine learning models. The feature importance
analysis showed that NIRV was the most critical feature (Figure 10) since NIRV can better
estimate GPP and has great potential in predicting crop yield [19]. Moreover, Srad and
Tmax were the crucial factors in the rice yield prediction among four climatic variables
(Figure 10). The reason was that they could directly influence rice’s photosynthesis and
carbon cumulation.

Second, we analyzed the hidden features to interpret deep learning models using
attention weights. The analysis of hidden features provides a new sight to understand the
internal working of deep learning models for rice yield prediction. In this study, we applied
attention weights and a self-attention weight matrix to interpret AtLSTM and Informer,
respectively. The attention weight distributions of AtLSTM illustrated that the reproductive
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and ripening phases were more important than the vegetation phase (Figure 11). The reason
may be that AtLSTM had a recurrent network structure that could store the cumulative
information of crop growth with time [34]. In addition, we found that the Informer
model had higher attention weights around intervals 5 to 6 (August) and intervals 11 to
12 (November) (Figure 12), which indicated that those periods provided critical information
to the later layer of the Informer model. This is because the leaf development and tillering
stages (August) before the heading stage of Kharif rice are closely related to rice yield [56],
while the flowering and grain-filling stages (November) are sensitive to high temperature
and have a great impact on rice yield [57–59]. The results agreed with the feature importance
of machine learning methods, which proved the reliability of our results. The Informer
model obtains the later-layer features by calculating the attention weight and weighted
summation of earlier-layer features. The results show that the self-attention weights of the
Informer model disagreed with the attention weights of the AtLSTM model, which could
attribute to the unique structure of these two deep learning methods. The AtLSTM model
accumulated the temporal information in the hidden layer by the LSTM cell, resulting in
the reproductive phase storing more information than the vegetation phase. Then, the
attention weight value of the reproductive phase was higher than the vegetation phase. In
contrast, the Informer model acquired temporal dependencies between any two intervals
instead of accumulating temporal information over time.

5.3. Uncertainties and Future Work

Overall, the proposed Informer model achieved competitive performance for rice
yield prediction across the Indian Indo-Gangetic Plains, which indicated that the Informer
model had great potential to predict crop yield. Furthermore, interpreting deep learning
models can demonstrate model reliability by evaluating input feature importance and
analyzing hidden features. However, our study still has some limitations that need to be
improved. First, the current study only considers the climate and satellite factors to predict
crop yield due to the scarcity of field management data on the regional scale. Still, other
features, such as soil properties, tillage, and fertilization rates, are also closely related to
rice yield. Our study could reduce the prediction accuracy due to the lack of considering
the above features. We should further consider more related features to improve the
predictive performance as more high-quality data related to crop yield become available in
the future. In addition, we should consider more high-resolution data, such as data based
on drones, and develop the high-resolution-based model in the future, which can make
the Informer model have better performance. Second, although we have interpreted the
machine learning and deep learning models based on feature importance and attention
values, we ignore model uncertainty analysis in this study. The estimation of uncertainty
is critical for evaluating the model’s confidence in predicting crop yield, which has been
suggested by some previous studies [11,60]. Therefore, we should further analyze the
uncertainty of models to quantify the reliability of deep learning models in future studies.
Third, we determined the optimal parameters of the Informer model by trying multiple
trials and optimizing training loss, which may limit the performance of the Informer
model. For future studies, automatedly searching optimal parameters will improve the
accuracy of the Informer model in predicting yield. Fourth, this study used districtwise
Kharif rice yield data over 16 years because smaller-scale yield statistics were not available,
which caused the training sample size to be small. The small training set can make it
difficult for deep learning methods to train well. Thus, more detailed statistics on crop
yield can improve the performance of deep learning methods. Finally, in multiple testing
years, the Informer model has outperformed the other four widely used machine learning
models. However, it is difficult for the Informer model to predict crop yield under extreme
scenarios, such as heatwaves, floods, and droughts. With the rise in global temperatures,
the crop yield will be greatly affected by heat stress in summer, especially in the Indian
Indo-Gangetic Plains [37,61]. To deal with the above issues, combining the Informer model
with crop growth models, such as the decision support system for agrotechnology transfer
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(DSSAT) [62], can be considered to improve the predictive ability of the Informer model
under environmental stress.

6. Conclusions

Accurate rice yield estimation is vital for food security, health issues, and agriculture
trading. This study proposed the Informer model to predict district-level rice yield based
on multitemporal satellite data, sequential climatic products, and historical rice yield. To
evaluate the proposed Informer model, we compared the Informer model with four widely
used machine learning methods, including LASSO, RF, XGBoost, and AtLSTM. Overall,
the results showed that the Informer model performed best among the five models, with
an average R2 of 0.81, RMSE of 0.41 t/ha, MAPE of 15.47%, and d of 0.74 from 2009 to 2016.
In addition, we evaluated the performance of different models within the growing season.
The proposed Informer model achieved optimal prediction (R2 ≈ 0.78) 2 months before
rice maturity. The feature importance analysis showed that NIRV was the most critical
factor, while intervals 6 (mid-August) and 12 (mid-November) were the essential periods
for rice yield prediction. The hidden feature analysis demonstrated that the AtLSTM model
accumulated the information of each growth period, while the Informer model focused
on the information around intervals 5 to 6 (August) and 11 to 12 (November). This study
proposed a modeling framework to predict crop yield and explain the internal mechanism
of deep learning models at the regional scale.
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